AD9054 [ADI]

8-Bit, 200 MSPS A/D Converter; 8 - BIT , 200 MSPS A / D转换器
AD9054
型号: AD9054
厂家: ADI    ADI
描述:

8-Bit, 200 MSPS A/D Converter
8 - BIT , 200 MSPS A / D转换器

转换器
文件: 总20页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, 200 MSPS  
A/D Converter  
a
AD9054  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
200 MSPS Guaranteed Conversion Rate  
135 MSPS Low Cost Version Available  
350 MHz Analog Bandw idth  
1 V p-p Analog Input Range  
Internal +2.5 V Reference and T/ H  
Low Pow er: 500 m W  
VREF IN  
VREF OUT  
AD9054  
؉2.5V REFERENCE  
AIN  
8
8
T/H  
QUANTIZER  
DA –DA  
ENCODE  
LOGIC  
DEMULTIPLEXER  
7
0
AIN  
+5 V Single Supply Operation  
TTL Output Interface  
ENCODE  
ENCODE  
DB –DB  
7
0
TIMING  
Single or Dem ultiplexed Output Ports  
V
DS  
GND  
DEMUX  
DS  
DD  
APPLICATIONS  
RGB Graphics Processing  
High Resolution Video  
Digital Data Storage Read Channels  
Digital Com m unications  
Digital Instrum entation  
Medical Im aging  
T he AD9054s encode input interfaces directly to T T L, CMOS  
or positive-ECL logic and will operate with single-ended or  
differential inputs. T he user may select dual-channel or single-  
channel digital outputs. T he dual (demultiplexed) mode inter-  
leaves ADC data through two 8-bit channels at one-half the  
clock rate. Operation in demultiplexed mode reduces the speed  
and cost of external digital interfaces while allowing the ADC to  
be clocked to the full 200 MSPS conversion rate. In the single-  
channel (nondemultiplexed) mode, all data is piped at the full  
clock rate to the Channel A outputs.  
GENERAL D ESCRIP TIO N  
T he AD9054 is an 8-bit monolithic analog-to-digital converter  
optimized for high speed, low power, small size and ease of use.  
With a 200 MSPS encode rate capability and full-power analog  
bandwidth of 350 MHz, the component is ideal for applications  
requiring the highest possible dynamic performance.  
T o minimize system cost and power dissipation, the AD9054  
includes an internal +2.5 V reference and track-and-hold circuit.  
T he user provides only a +5 V power supply and an encode  
clock. No external reference or driver components are required  
for many applications.  
Fabricated with an advanced BiCMOS process, the AD9054 is  
provided in a space-saving 44-lead T QFP surface mount plastic  
package (ST -44) and specified over the full industrial (–40°C to  
+85°C) temperature range.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD9054–SPECIFICATIONS  
(V = +5 V, external reference, fS = max unless otherwise noted)  
ELECTRICAL CHARACTERISTICS DD  
Test  
AD 9054BST-200  
AD 9054BST-135  
P aram eter  
Tem p  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUT ION  
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
I
±0.9  
±1.0  
±0.6  
+1.5/–1.0  
+2.0/–1.0  
±1.5  
±0.9  
±1.0  
±0.6  
±0.9  
+1.5/–1.0 LSB  
+2.0/–1.0 LSB  
Integral Nonlinearity  
±1.5  
±2.0  
LSB  
LSB  
±0.9  
±2.0  
No Missing Codes  
Gain Error1  
Guaranteed  
±2  
Guaranteed  
±7  
±2  
160  
±7  
% FS  
Gain T empco1  
V
160  
ppm/°C  
ANALOG INPUT  
Input Voltage Range  
(With Respect to AIN)  
Compliance Range AIN or AIN  
Input Offset Voltage  
Full  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
Full  
V
V
I
VI  
I
VI  
V
I
VI  
V
±512  
±512  
mV p–p  
V
mV  
mV  
kΩ  
kΩ  
pF  
µA  
µA  
1.8  
3.2  
±16  
±19  
1.8  
3.2  
±16  
±19  
±4  
±8  
62  
±4  
±8  
62  
Input Resistance  
36  
23  
36  
23  
Input Capacitance  
Input Bias Current  
4
25  
4
25  
50  
75  
50  
75  
Analog Bandwidth, Full Power2  
+25°C  
350  
350  
MHz  
REFERENCE OUT PUT  
Output Voltage  
T emperature Coefficient  
Full  
Full  
VI  
V
2.4  
2.5  
110  
2.6  
2.4  
2.5  
110  
2.6  
V
ppm/°C  
SWIT CHING PERFORMANCE  
Maximum Conversion Rate (fS)  
Minimum Conversion Rate (fS)  
Full  
Full  
VI  
IV  
IV  
IV  
V
200  
135  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
25  
15  
15  
25  
15  
15  
Encode Pulsewidth High (tEH  
)
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
2.0  
2.0  
3.0  
3.0  
Encode Pulsewidth Low (tEL  
Aperture Delay (tA)  
)
0.5  
2.3  
0.5  
2.3  
Aperture Uncertainty (Jitter)  
V
Data Sync Setup T ime (tSDS  
Data Sync Hold T ime (tHDS  
)
)
IV  
IV  
IV  
VI  
VI  
0
0
0.5  
2.0  
2.7  
0.5  
2.0  
2.7  
Data Sync Pulsewidth (tPWDS  
)
Output Valid T ime (tV)3  
5.1  
5.9  
5.7  
7.5  
3
Output Propagation Delay (tPD  
)
Full  
7.9  
8.5  
ns  
DIGIT AL INPUT S  
HIGH Level Current (IIH  
LOW Level Current (IIL  
Input Capacitance  
4
)
Full  
Full  
+25°C  
VI  
VI  
V
500  
500  
3
625  
625  
500  
500  
3
625  
625  
µA  
µA  
pF  
4
)
DIFFERENT IAL INPUT S  
Differential Signal Amplitude (VID  
HIGH Input Voltage (VIHD  
LOW Input Voltage (VILD  
)
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
400  
1.5  
0
400  
1.5  
0
mV  
V
V
)
VDD  
VDD – 0.4  
VDD  
VDD – 0.4  
)
Common-Mode Input (VICM  
)
1.5  
1.5  
V
DEMUX INPUT  
HIGH Input Voltage (VIH  
)
Full  
Full  
IV  
IV  
2.0  
0
VDD  
0.8  
2.0  
0
VDD  
0.8  
V
V
LOW Input Voltage (VIL  
)
DIGIT AL OUT PUT S  
HIGH Input Voltage (VOH  
)
Full  
Full  
VI  
VI  
2.4  
2.4  
V
V
LOW Input Voltage (VOL  
Output Coding  
)
0.4  
0.4  
Binary  
Binary  
–2–  
REV. 0  
AD9054  
Test  
AD 9054BST-200  
AD 9054BST-135  
P aram eter  
Tem p  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
POWER SUPPLY  
VDD Supply Current (IDD  
)
Full  
Full  
VI  
VI  
100  
500  
145  
725  
100  
500  
140  
700  
mA  
mW  
Power Dissipation5, 6  
Power Supply Sensitivity7  
+25°C  
I
0.005  
0.015  
0.005  
0.015  
V/V  
DYNAMIC PERFORMANCE8  
T ransient Response  
Overvoltage Recovery T ime  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
+25°C  
+25°C  
V
V
1.5  
1.5  
1.5  
1.5  
ns  
ns  
fIN = 19.7 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
IV  
V
I
V
I
42  
42  
42  
45  
45  
45  
45  
45  
45  
42  
42  
45  
45  
45  
45  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 49.7 MHz  
fIN = 70.1 MHz  
V
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
fIN = 19.7 MHz  
+25°C  
Full  
+25°C  
Full  
+25°C  
Full  
IV  
V
I
V
I
40  
40  
39  
43  
43  
43  
43  
42  
42  
40  
40  
43  
43  
43  
43  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 49.7 MHz  
fIN = 70.1 MHz  
V
Effective Number of Bits  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
+25°C  
+25°C  
+25°C  
IV  
I
I
6.35  
6.35  
6.18  
6.85  
6.85  
6.85  
6.35  
6.35  
6.85  
6.85  
Bits  
Bits  
Bits  
fIN = 70.1 MHz  
2nd Harmonic Distortion  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
+25°C  
+25°C  
+25°C  
IV  
I
I
58  
54  
52  
63  
59  
55  
58  
54  
63  
59  
dBc  
dBc  
dBc  
fIN = 70.1 MHz  
3rd Harmonic Distortion  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
+25°C  
+25°C  
+25°C  
IV  
I
I
48  
48  
43  
56  
54  
50  
48  
48  
56  
54  
dBc  
dBc  
dBc  
fIN = 70.1 MHz  
Two-Tone Intermod Distortion  
(IMD)  
fIN = 19.7 MHz  
fIN = 49.7 MHz  
fIN = 70.1 MHz  
+25°C  
+25°C  
+25°C  
V
V
V
60  
55  
50  
60  
55  
dBc  
dBc  
dBc  
NOT ES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed +2.5 V external reference).  
23 dB bandwidth with full-power input signal.  
3tV and tPD are measured from the threshold crossing of the ENCODE input to valid T T L levels of the digital outputs. T he output ac load during test is 5 pF (Refer to  
equivalent circuits Figures 5 and 6).  
4IIH and IIL are valid for differential input voltages of less than 1.5 V. At higher differential voltages, the input current will increase to a maximum of 1.25 mA.  
5Power dissipation is measured under the following conditions: analog input is –1 dBfs at 19.7 MHz.  
6T ypical thermal impedance for the ST -44 (T QFP) 44–lead package (in still air): θJC = 20°C/W, θCA = 35°C/W, θJA = 55°C/W.  
7A change in input offset voltage with respect to a change in VDD  
.
8SNR/harmonics based on an analog input voltage of –1.0 dBfs referenced to a 1.024 V full–scale input range.  
Specifications subject to change without notice.  
EXP LANATIO N O F TEST LEVELS  
Test Level  
I. 100% production tested.  
IV. Parameter is guaranteed by design and characterization testing.  
V. Parameter is a typical value only.  
VI. 100% production tested at +25°C; guaranteed by design  
II. 100% production tested at +25°C and sample tested at  
and characterization testing for industrial temperature range.  
specified temperatures.  
III. Sample tested only.  
REV. 0  
–3–  
AD9054  
P IN FUNCTIO N D ESCRIP TIO NS  
ABSO LUTE MAXIMUM RATINGS*  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to 0.0 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . VDD to 0.0 V  
VREF IN, VREF OUT . . . . . . . . . . . . . . . . . . . VDD to 0.0 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating T emperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction T emperature . . . . . . . . . . . . . . . +175°C  
Maximum Case T emperature . . . . . . . . . . . . . . . . . . +150°C  
P in Num ber  
Nam e  
Function  
1
ENCODE  
Encode Clock for ADC (ADC  
Samples on Rising Edge of  
ENCODE).  
2
ENCODE  
Encode Clock Complement  
(ADC Samples on Falling Edge  
of ENCODE).  
3, 5, 15, 18, 28,  
30, 31, 36, 41  
VDD  
GND  
Power Supply (+5 V).  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
4, 6, 16, 17, 27,  
29, 32, 35, 37, 40  
14–7  
Ground.  
DA0DA7  
DB0DB7  
Digital Outputs of ADC Channel  
A. DA7 is the MSB, DA0 the LSB.  
Table I. O utput Coding  
19–26  
33  
Digital Outputs of ADC Channel  
B. DB7 is the MSB, DB0 the LSB.  
Step  
AIN–AIN  
Code  
Binary  
VREF OUT Internal Reference Output  
(+2.5 V typical); Bypass with  
0.1 µF to Ground.  
255  
254  
253  
0.512 V  
0.508 V  
0.504 V  
255  
254  
253  
1111 1111  
1111 1110  
1111 1101  
34  
38  
VREF IN  
Reference Input for ADC (+2.5 V  
typical, ±4%).  
AIN  
Analog Input—Complement.  
Connect to input signal midscale  
reference.  
129  
128  
127  
126  
0.006 V  
0.002 V  
–0.002 V  
–0.006 V  
129  
128  
127  
126  
1000 0001  
1000 0000  
0111 1111  
0111 1110  
39  
42  
AIN  
Analog Input—T rue.  
DEMUX  
Format Select. LOW = Dual.  
Channel Mode, HIGH = Single.  
Channel Mode (Channel A Only).  
43  
44  
DS  
Data Sync Complement.  
2
1
0
–0.504 V  
–0.508 V  
–0.512 V  
2
1
0
0000 0010  
0000 0001  
0000 0000  
DS  
Data Sync—Aligns output chan-  
nels in Dual-Channel Mode.  
P IN CO NFIGURATIO N  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
O ption*  
Model  
AD9054BST -200  
AD9054BST -135  
AD9054/PCB  
–40°C to +85°C  
–40°C to +85°C  
+25°C  
ST -44  
ST -44  
Evaluation Board  
DB  
DB  
DB  
VREF IN  
GND  
3
2
VDD  
GND  
AIN  
1
DB (LSB)  
0
*ST = Plastic T hin Quad Flatpack (T QFP).  
VDD  
GND  
GND  
VDD  
AD9054  
TOP VIEW  
(PINS DOWN)  
AIN  
GND  
VDD  
DEMUX  
DS  
DA (LSB)  
0
DA  
1
PIN 1  
IDENTIFIER  
DS  
DA  
2
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9054 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD9054  
SAMPLE N  
SAMPLE N+3  
SAMPLE N+4  
SAMPLE N–1  
AIN  
SAMPLE N+1  
SAMPLE N+2  
tA  
1/f  
S
tEH  
tEL  
ENCODE  
ENCODE  
tPD  
tV  
DATA N–1  
DATA N  
DATA N–5  
DATA N–4  
DATA N–3  
DATA N–2  
D –D  
7
0
Figure 1. Tim ing—Single Channel Mode  
SAMPLE N  
SAMPLE N+3  
SAMPLE N+4  
SAMPLE N+5  
SAMPLE N–1  
AIN  
SAMPLE N–2  
SAMPLE N+1  
SAMPLE N+2  
SAMPLE N+6  
tA  
tEH  
tEL  
1/f  
S
ENCODE  
ENCODE  
tHDS  
tHDS  
tSDS  
tSDS  
DS  
DS  
tPD  
tV  
tPWDS  
PORT A  
D –D  
DATA N–7  
OR N–8  
INVALID IF OUT OF SYNC  
DATA N–4 IF IN SYNC  
DATA N–7  
OR N–6  
DATA N  
DATA N–2  
7
0
PORT B  
D –D  
DATA N–8  
OR N–7  
DATA N–6  
OR N–7  
INVALID IF OUT OF SYNC  
DATA N–5 IF IN SYNC  
DATA N+1  
DATA N–3  
DATA N–1  
7
0
Figure 2. Tim ing—Dual Channel Mode  
REV. 0  
–5–  
AD9054  
EQ UIVALENT CIRCUITS  
V
V
DD  
DD  
17.5k  
300⍀  
300⍀  
DEMUX  
AIN  
AIN  
7.5k⍀  
Figure 3. Equivalent Analog Input Circuit  
Figure 6. Equivalent DEMUX Input Circuit  
V
DD  
V
DD  
VREF IN  
DIGITAL  
OUTPUTS  
Figure 7. Equivalent Digital Output Circuit  
Figure 4. Equivalent Reference Input Circuit  
V
DD  
V
DD  
17.5k  
300⍀  
300⍀  
ENCODE  
OR DS  
ENCODE  
OR DS  
VREF  
OUT  
7.5k⍀  
Figure 5. Equivalent ENCODE and Data Select Input Circuit  
Figure 8. Equivalent Reference Output Circuit  
–6–  
REV. 0  
Typical Performance Characteristics–  
AD9054  
55  
50  
45  
40  
35  
30  
45.4  
45.2  
50MHz  
20MHz  
45.0  
SNR  
44.8  
SINAD  
70MHz  
44.6  
NYQUIST  
FREQUENCY  
(100MHz)  
44.4  
44.2  
44.0  
0
20  
40  
60  
80  
100  
120  
140  
0
–45  
25  
؇C  
70  
90  
f
– MHz  
IN  
T
C
Figure 9. SNR vs. fIN: fS = 200 MSPS  
Figure 12. SNR vs. Tem perature, fS = 135 MSPS  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
46.0  
45.8  
45.6  
20MHz  
50MHz  
70MHz  
45.4  
45.2  
45.0  
SNR  
44.8  
44.6  
44.4  
44.2  
44.0  
SINAD  
25 50  
75 100 125 150 175 200 225 250 270 300  
– MSPS  
–60  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
f
T
S
C
Figure 10. SNR vs. fS: fIN = 19.7 MHz  
Figure 13. SNR vs. Tem perature, fS = 200 MSPS  
50  
50  
F
F
= 135MSPS  
= 10.3MHz  
S
48  
46  
44  
42  
40  
38  
36  
34  
32  
30  
SNR  
IN  
45  
40  
35  
30  
SINAD  
SNR  
SINAD  
25  
20  
50  
75 100 125 150 175 200 225 250 270 300  
– MSPS  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
25  
ENCODE PULSEWIDTH – ns  
f
S
Figure 14. SNR vs. Clock Pulsewidth, (tPWH): fS = 135 MSPS  
Figure 11. SNR vs. fS: fIN = 70.1 MHz  
REV. 0  
–7–  
AD9054  
–70  
–68  
–66  
–64  
–62  
–60  
–58  
50  
F
F
= 200MSPS  
= 10.3MHz  
S
48  
46  
44  
42  
40  
38  
2ND HARMONIC  
3RD HARMONIC  
IN  
SNR  
SINAD  
–56  
–54  
–52  
36  
34  
32  
30  
–50  
–48  
–46  
25 50  
75 100 125 150 175 200 225 250 270 300  
0.0 0.5 1.0 1.5 2.0 2.5  
3.0 3.5 4.0 4.5  
5.0  
ENCODE PULSEWIDTH – ns  
f
– MSPS  
S
Figure 15. SNR vs. Clock Pulsewidth, (tPWH): fS = 200 MSPS  
Figure 18. Harm onic Distortion vs. fS: fIN = 19.7 MHz  
46  
45  
–60  
–50  
44  
2ND HARMONIC  
–40  
20MHz  
43  
3RD HARMONIC  
70MHz  
42  
41  
40  
39  
38  
–30  
–20  
50MHz  
–10  
0
–60  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
25  
50 75 100 125 150 175 200 225 250 270  
fS – MSPS  
300  
T
C
Figure 16. SINAD vs. Tem perature: fS = 135 MSPS  
Figure 19. Harm onic Distortion vs. fS: fIN = 70.1 MHz  
46  
45  
–40  
–45  
–50  
44  
20MHz  
43  
50MHz  
42  
–55  
70MHz  
70MHz  
41  
40  
39  
38  
–60  
50MHz  
–65  
20MHz  
–70  
–60  
–60  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
T
T
C
C
Figure 17. SINAD vs. Tem perature: fS = 200 MSPS  
Figure 20. 2nd Harm onic vs. Tem perature: fS = 135 MSPS  
–8–  
REV. 0  
AD9054  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
0
–1  
–2  
–3  
–4  
–5  
–6  
70MHz  
NYQUIST FREQUENCY  
100MHz  
50MHz  
20MHz  
–60  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
0
50 100 150 200 250 300 350 400 450 500  
– MHz  
f
T
IN  
C
Figure 21. 2nd Harm onic vs. Tem perature: fS = 200 MSPS  
Figure 24. Frequency Response: fS = 200 MSPS  
–40  
–45  
0
FUNDAMENTAL = –0.5dBfs  
SNR = 45.8dB  
SINAD = 45.2dB  
2ND HARMONIC = 69.8dB  
3RD HARMONIC = 61.6dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
70MHz  
50MHz  
–55  
20MHz  
–60  
–65  
–70  
–60  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
MHz  
T
C
Figure 25. Spectrum : fS = 200 MSPS, fIN = 19.7 MHz  
Figure 22. 3rd Harm onic vs. Tem perature: fS = 135 MSPS  
0
–40  
FUNDAMENTAL = –0.5dBfs  
SNR = 44.6dB  
SINAD = 37.6dB  
2ND HARMONIC = –63.1dB  
3RD HARMONIC = –39.1dB  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–45  
70MHz  
–50  
50MHz  
–55  
20MHz  
–60  
–65  
–70  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
–60  
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
MHz  
T
C
Figure 26. Spectrum : fS = 200 MSPS, fIN = 70.1 MHz  
Figure 23. 3rd Harm onic vs. Tem perature: fS = 200 MSPS  
REV. 0  
–9–  
AD9054  
7
6
5
4
3
2
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
F1 = 55.0MHz  
F2 = 56.0MHz  
F1 = F2 = –7.0dBfs  
tPD  
tV  
0
–60  
–100  
0
–40  
–20  
0
20  
؇C  
40  
60  
80  
100  
10  
20  
30  
40  
50  
MHz  
60  
70  
80  
90 100  
T
C
Figure 27. Two Tone Interm odulation Distortion  
Figure 30. Output Delay vs. Tem perature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
0.0  
0.0 –1.0 –2.0 –3.0 –4.0 –5.0 –6.0 –7.0 –8.0 –9.0 –10.0  
–20 –18 –16 –14 –12 –10 –8  
–6  
–4 –2  
0
2
I
– mA  
IREF OUT – mA  
OH  
Figure 31. Reference Voltage vs. Reference Load  
Figure 28. Output Voltage HIGH vs. Output Current  
2.502  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
2.501  
2.500  
2.499  
2.498  
0.1  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
0.0  
1.0  
2.0  
3.0  
4.0  
– mA  
5.0  
6.0  
7.0  
8.0  
I
V
– Volts  
DD  
OL  
Figure 29. Output Voltage LOW vs. Output Current  
Figure 32. Reference Voltage vs. Power Supply Voltage  
–10–  
REV. 0  
AD9054  
2.502  
2.501  
2.500  
rapidly slewing signal. The AD9054s extremely wide bandwidth  
Track/Hold circuit processes these signals without difficulty.  
Using the AD 9054  
Good high speed design practices must be followed when using  
the AD9054. T o obtain maximum benefit, decoupling capaci-  
tors should be physically as close to the chip as possible. We  
recommend placing a 0.1 µF capacitor at each power-ground  
pin pair (9 total) for high frequency decoupling, and including  
one 10 µF capacitor for local low frequency decoupling. T he  
VREF IN pin should also be decoupled by a 0.1 µF capacitor.  
2.499  
2.498  
T he part should be located on a solid ground plane and output  
trace lengths should be short (<1 inch) to minimize transmis-  
sion line effects. T his avoids the need for termination resistors  
on the output bus and reduces the load capacitance that needs  
to be driven, which in turn minimizes on-chip noise due to  
heavy current flow in the outputs. We have obtained optimum  
performance on our evaluation board by tying all VDD pins to a  
quiet analog power supply system, and tying all GND pins to a  
quiet analog system ground.  
–40  
–20  
0
20  
T
40  
؇C  
60  
80  
100  
AMB  
Figure 33. Reference Voltage vs. Tem perature  
AP P LICATIO N NO TES  
TH EO RY O F O P ERATIO N  
T he AD9054 combines Analog Devices’ patented MagAmp bit-  
per-stage architecture with flash converter technology to create  
a high performance, low power ADC. For ease of use the part  
includes an onboard reference and input logic that accepts  
T T L, CMOS or PECL levels.  
Minim um Encode Rate  
T he minimum sampling rate for the AD9054 is 25 MHz. T o  
achieve very high sampling rates, the track/hold circuit employs  
a very small hold capacitor. When operated below the minimum  
guaranteed sampling rate, the T /H droop becomes excessive.  
T his is first observed as an increase in offset voltage, followed by  
degraded linearity at even lower frequencies.  
T he analog input signal is buffered by a high-speed differential  
amplifier and applied to a track-and-hold (T /H) circuit. T his  
T /H captures the value of the input at the sampling instant and  
maintains it for the duration of the conversion. T he sampling  
and conversion process is initiated by a rising edge on the  
ENCODE input. Once the signal is captured by the T /H, the  
four Most Significant Bits (MSBs) are sequentially encoded by  
the MagAmp string. T he residue signal is then encoded by a  
flash comparator string to generate the four Least Significant  
Bits (LSBs). T he comparator outputs are decoded and com-  
bined into the eight-bit result.  
Lower effective sampling rates may be easily supported by oper-  
ating the converter in dual port output mode and using only one  
output channel. A majority of the power dissipated by the AD9054  
is static (not related to conversion rate) so the penalty for clock-  
ing at twice the desired rate is not high.  
Refer ence  
T he AD9054 internal reference, VREF, provides a simple, cost  
effective reference for many applications. It exhibits reasonable  
accuracy and excellent stability over power supply and tempera-  
ture variations. T he VREF OUT pin can simply be strapped to  
the VREF IN pin. T he internal reference can be used to drive  
additional loads (up to several mA), including multiple A/D con-  
verters as might be required in a triple video converter application.  
If the user has selected Single Channel Mode (DEMUX =  
HIGH), the eight-bit data word is directed to the Channel A  
output bank. Data are strobed to the output on the rising edge  
of the ENCODE input with four pipeline delays. If the user has  
selected Dual Channel Mode (DEMUX = LOW) the data are  
alternately directed between the A and B output banks and have  
five pipeline delays. At power-up, the N sample data can ap-  
pear at either the A or B port. T o align the data in a known  
state the user must strobe DAT A SYNC (DS, DS) per the  
conditions described in the T iming section.  
When an external reference is desired for accuracy or other  
requirements, the AD9054 should be driven directly by the  
external reference source connected to pin VREF IN (VREF  
OUT can be left floating). T he external reference can be set to  
2.5 V ± 0.25 V. If VREF IN is raised by 10% (set to 2.75 V) the  
analog full-scale range will increase by 10% to 1.024 × 1.1 =  
1.1264 V. T he new input range will then be AIN ±0.5632 V.  
Gr aphics Applications  
T he high bandwidth and low power of the AD9054 make it  
very attractive for applications that require the digitization of  
presampled waveforms, wherein the input signal rapidly slews  
from one level to another and is relatively stable for a period of  
time. Examples of these include digitizing the output of com-  
puter graphic display systems and very high speed solid state  
imagers.  
D igital Inputs  
SNR performance is directly related to the sampling clock sta-  
bility in A/D converters, particularly for high input frequencies  
and wide bandwidths. A low jitter clock (<10 ps @ 100 MHz)  
is essential for optimum performance when digitizing signals  
that are not presampled.  
T hese applications require the converter to process inputs with  
frequency components well in excess of the sampling rate (often  
with subnanosecond rise times), after which the A/D must settle  
and sample the input in well under one pixel time. T he archi-  
tecture of the AD9054 is vastly superior to older flash architec-  
tures, which not only exhibit excessive input capacitance (which  
is very hard to drive) but can make major errors when fed a very  
ENCODE and Data Select (DS) can be driven differentially or  
single-ended. For single-ended operation, the complement  
inputs (ENCODE, DS) are internally biased to VDD/3 (~1.5 V)  
by a high impedance on-chip resistor divider (Figure 5), but  
they may be externally driven to establish an alternate threshold  
if desired. A 0.1 µF decoupling capacitor to ground is sufficient  
to maintain a threshold appropriate for T T L or CMOS logic.  
REV. 0  
–11–  
AD9054  
When driven differentially, ENCODE and DS will accommo-  
date differential signals centered between 1.5 V and 4.5 V with  
a total differential swing 800 mV (VID 400 mV).  
VREF OUT  
VREF IN  
AIN  
0.1F  
A PORT  
Note the 6-diode clock input protection circuitry in Figure 5.  
T his limits the differential input voltage to ~ ±2.1 V. When the  
diodes turn on, current is limited by the 300 series resistor.  
Exceeding 2.1 V across the differential inputs will have no im-  
pact on the performance of the converter, but be aware of the  
clock signal distortion that may be produced by the nonlinear  
impedance at the converter.  
AD9054  
1k⍀  
AIN  
VIN  
0.1F  
+5V  
DEMUX  
DS  
ENC ENC  
0.1F  
DS  
V
IH D  
IC M  
CLOCK  
ENC  
NC  
V
V
ID  
CLOCK  
ENC  
CLOCK  
NC = NO CONNECT  
V
IL D  
Figure 35. Single Port Mode—AC-Coupled InputSingle-  
Ended Encode  
a. Driving Differential Inputs Differentially  
D ual P or t Mode  
V
IH D  
CLOCK  
ENC  
In Dual Port Mode (DEMUX = LOW), the conversion results  
are alternated between the two output ports (Figure 2). T his  
limits the data output rate at either port to 1/2 the conversion  
rate (ENCODE), and supports conversion at up to 200 MSPS  
with T T L/CMOS compatible interfaces. Dual Channel Mode is  
required for guaranteed operation above 100 MSPS, but may be  
enabled at any specified conversion rate.  
V
ID  
V
IC M  
ENC  
0.1F  
V
IL D  
b. Driving Differential Inputs Single-Endedly  
Figure 34. Input Signal Level Definitions  
T he multiplexing is controlled internally via a clock divider,  
which introduces a degree of ambiguity in the port assignments.  
Figure 2 illustrates that, prior to synchronization, either Port A  
or Port B may produce the even or odd samples. T his is re-  
solved by exercising the Data Sync (DS) control, a differential  
input (identical to the ENCODE input), which facilitates opera-  
tion at high speed.  
Single P or t Mode  
When operated in a Single Port mode (DEMUX = HIGH), the  
timing of the AD9054 is similar to any high speed A/D Con-  
verter (Figure 1).  
A sample is taken on every rising edge of ENCODE, and the  
resulting data is produced on the output pins following the  
FOURT H rising edge of ENCODE after the sample was taken  
(four pipeline delays). T he output data are valid tPD after the  
rising edge of ENCODE, and remain valid until at least tV after  
the next rising edge of ENCODE.  
At least once after power-up, and prior to using the conversion  
data, the part needs to be synchronized by a falling edge (or a  
positive-going pulse) on DS (observing setup and hold times  
with respect to ENCODE). If the converter’s internal timing is  
in conflict with the DS signal when it is exercised, then two data  
samples (one on each port) are corrupted as the converter is  
resynchronized. T he converter then produces data with a  
known phase relationship from that point forward.  
T he maximum clock rate is specified as 100 MSPS. T his is  
recommended because the guaranteed output data valid time  
equals the Clock Period (1/fS) minus the Output Propagation  
Delay (tPD) plus the Output Valid T ime (tV), which comes to  
4.8 ns at 100 MHz. T his is about as fast as standard logic is able  
to capture the data with reasonable design margins. The AD9054  
will operate faster in single-channel mode if you are able to  
capture the data.  
Note that if the converter is already properly synchronized, the  
DS pulse has no effect on the output data. T his allows the con-  
verter to be continuously resynchronized by a pulse at 1/2 the  
ENCODE rate. T his signal is often available within a system, as  
it represents the master clock rate for the demultiplexed output  
data. Of course, a single DS signal may be used to synchronize  
multiple A/D converters in a multichannel system.  
When operating in Single-Channel Mode, the outputs at Port B  
are held static in a random state.  
Figure 35 shows the AD9054 used in single-channel output  
mode. The analog input (±0.5 V) is ac coupled and the ENCODE  
input is driven by a T T L level signal. T he chip’s internal refer-  
ence is used.  
Applications that call for the AD9054 to be synchronized at  
power-up or only periodically during calibration/reset (i.e., valid  
data is not required prior to synchronization), need only be  
concerned with the timing of the falling edge of DS. T he falling  
edge of DS must satisfy the setup time defined by Figure 2 and  
–12–  
REV. 0  
AD9054  
the specification table. In this case the DS hold time specifica-  
tion on the rising edge can be ignored.  
In Dual Channel Mode, the converted data is produced five  
clock cycles after the rising edge of ENCODE on which the  
sample is taken (five pipeline delays).  
Applications that will continuously update the synchronization  
command need to treat the DS signal as a pulse and satisfy  
timing requirements on both rising and falling edges. It is easiest  
to consider the DS signal in this case to be a pulse train at one  
half the encode rate, the positive pulse nominally bracketing the  
ENCODE falling edge on alternate cycles as shown in the tim-  
ing diagram (Figure 2). T he falling/rising edge of DS has to  
satisfy a minimum setup time (TSDS) before the rising/falling  
edge of ENCODE; similarly, the rising/falling edge of DS has to  
satisfy a minimum hold time (THDS) relative to the rising/falling  
edge of ENCODE. DS can fall a minimum of TH DS after  
ENCODE falls and a maximum of T SDS before the next  
ENCODE rises. DS can rise a minimum of TH DS after  
ENCODE rises and a maximum of TSDS before ENCODE  
falls. T his timing requirement produces a tight timing window  
at higher encode rates. Synchronization by a single reset edge  
results in a simpler timing solution in many applications. For  
example, synchronization may be provided at the beginning of  
each graphics line or frame.  
VREF OUT  
0.1F  
VREF IN  
A PORT  
AIN  
'573  
AD9054  
1k⍀  
AIN  
VIN  
0.1F  
B PORT  
DEMUX  
DS  
ENC ENC  
0.1F  
DS  
DS  
NC  
CLOCK  
'74  
DIVIDE  
BY 2  
T he data are presented at the output of the AD9054 in a ping-  
pong (alternating) fashion to optimize the performance of the  
converter. It may be aligned for presentation as sixteen bits in  
parallel by adding a register stage to the output.  
NC = NO CONNECT  
Figure 36. Dual Port Mode—Aligned Output Data  
In Figure 36, the converter is operating in Dual Port Mode,  
with data coming alternately out of Port A and Port B. T he  
figure illustrates how the output data may be aligned with an  
output latch to produce a 16-bit output at 1/2 the conversion  
clock rate. T he Data Sync input must be properly exercised to  
time the A Port with the synchronizing latch.  
REV. 0  
–13–  
AD9054  
EVALUATIO N BO ARD  
Voltage Refer ence  
T he AD9054 evaluation board offers an easy way to test the  
AD9054. It provides dc biasing for the analog input, generates  
the latch clocks for both full speed and demuxed modes, and in-  
cludes a reconstruction DAC. The board has several different  
modes of operation, and is shipped in the following configuration:  
T he AD9054 has an internal 2.5 V voltage reference. An exter-  
nal reference may be employed instead. T he evaluation board is  
configured for the internal reference. T o use an external refer-  
ence, connect it to the (VREF) pin on the power connector and  
move jumper S102.  
DC-Coupled Analog Input  
Demuxed Outputs  
Differential Clocks  
Single P or t Mode  
Single Port Mode sets the AD9054 to produce data on every  
clock cycle on output port A only. T o test in this mode, jumper  
S104 should be set to single channel and S106 and S107 must  
be set to F (for Full). T he maximum speed in single port mode  
is 100 MSPS.  
Internal Voltage Reference.  
VREF EXT  
DC BIAS  
S102  
D ual P or t Mode  
AIN  
S103  
VREF OUT  
VREF IN  
AIN  
Dual Port or half speed output mode sets the ADC to produce  
data alternately on Port A and Port B. In this mode, the reset  
function should be implemented. T o test in this mode, set  
jumper S104 to Dual Channel, and set S106 and S107 to D (for  
Dual Port). T he maximum speed in this mode is 200 MSPS.  
A PORT  
A PORT  
'574  
'574  
50⍀  
AD9054  
AIN  
RESET  
BUTTON  
5V  
RESET  
D
DEMUX  
RESET drives the AD9054’s Data Sync (DS) pins. When  
operating in Single Port Mode, RESET is not used. In Dual-  
Channel Mode it is needed for two reasons: to synchronize the  
timing of Port A data and Port B data with a known clock edge,  
as described in the data sheet, and to synchronize the evaluation  
boards latch clocks with the data coming out of the AD9054.  
Reset can be driven in two ways: by pushing the reset button on  
the board, or externally, with a T T L pulse through connector J5  
or J6.  
D FF  
C
S104  
CLK A  
DS  
ENC ENC  
DS  
S105  
CLK B  
DAC  
ENC  
50⍀  
50⍀  
ENC  
CLK A  
CLOCKING  
ENC  
CLK B  
D AC O ut  
ENC  
T he DAC output is a representation of the data on output Port  
A only. Output Port B is not reconstructed.  
Tr oubleshooting  
If the board does not seem to be working correctly, try the fol-  
lowing:  
Figure 37. PCB Block Diagram  
Analog Input  
T he evaluation board accepts a 1 V input signal centered at  
ground. T he boards input circuitry then biases this signal to  
+2.5 V in one of two ways:  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Push the reset button. T his will align the 9054’s data output  
with the half speed latch clocks.  
1. DC-coupled through an AD9631 op amp; this is the mode in  
which it is shipped. Potentiometer R7 provides adjustment  
of the bias voltage.  
Switch the jumper S105 from A-R to R-B or vice-versa, then  
push the reset button. In demuxed mode, this will have the  
effect of inverting the half speed latch clocks.  
2. AC-coupled through C1.  
T hese two modes are selected by jumpers S101 and S103. For  
dc coupling, the S101 jumper is connected between the two left  
pins and the S103 jumper is connected between the two lower  
pins. For ac coupling, the S101 jumper is connected between  
the two right pins and the S103 jumper is connected between  
the two upper pins.  
At high encode rates, the evaluation board’s clock generation  
circuitry is sensitive to the +5 V digital power supply. At  
high encode rates, the +5 V digital power should be kept  
below +5.2 V. T his is an evaluation board sensitivity and  
not an AD9054 sensitivity.  
T he AD9054 Evaluation Board is provided as a design example  
for customers of Analog Devices, Inc. ADI makes no warran-  
ties, express, statutory, or implied, regarding merchantability or  
fitness for a particular purpose.  
ENCO D E  
T he AD9054 ENCODE input can be driven two ways:  
1. Differential T T L, CMOS, or PECL; it is shipped in this  
mode.  
2. Single-ended T T L or CMOS. T o use in this mode, remove  
R11, the 50 chip resistor located next to the ENCODE  
input, and insert a 0.1 µF ceramic capacitor into the C5 slot.  
C5 is located between the ENC connector and the ENCODE  
input to the DUT and is marked on the back side of the  
board. In this mode, ENCODE is biased with internal resis-  
tors to 1.5 V, but it can be externally driven to any dc voltage.  
–14–  
REV. 0  
AD9054  
( L S B )  
D B 0  
S L E E P  
R E F L O  
D B 1  
D B 2  
D B 3  
D B 4  
D B 5  
D B 6  
D B 7  
D B 8  
D B 9  
R E F I O  
F S A D J  
C O M P 1  
C O M P 2  
A V D D  
D V D D  
D B 4  
D B 5  
D B 6  
D B 7  
D A 3  
D A 4  
D A 5  
D A 6  
D A 7  
G N D  
V D D  
G N D  
V D D  
V D D  
G N D  
G N D  
+ 5 V A  
G N D  
+ 5 V A  
+ 5 V A  
G N D  
G N D  
V D D  
G N D  
V D D  
G N D  
+ 5 V A  
G N D  
+ 5 V A  
Figure 38. Evaluation Board Schem atic  
–15–  
REV. 0  
AD9054  
Figure 39. Assem bly—Top View  
Figure 41. Conductors—Top View  
Figure 42. Conductors—Bottom View  
Figure 40. Assem bly—Bottom View  
–16–  
REV. 0  
AD9054  
BILL O F MATERIALS  
GS00104 REV. B  
ITEM  
QTY  
P ART NUMBER  
REFERENCE  
D ESCRIP TIO N  
MFG/D ISTRIBUTO R  
11  
30  
GRM40Z5U104M050BL  
C1, C2, C4, C6–8,  
C10–C22, C24–C29,  
C31–C35  
0.1 µF CER CHIP CAP 0805  
T T I  
12  
13  
14  
15  
16  
17  
18  
19  
10  
1
P10FBK-ND  
R5  
10 SURFACE MT RES 1206  
100 SURFACE MT RES 1206  
10 µF T ANT ALUM CHIP CAP  
140 SURFACE MT RES 1206  
1 kSURFACE MT RES 1206  
2 kSURFACE MT RES 1206  
1k T RIM POT T OP ADJ, 25 T URN  
37P D CONN RT ANG PCMT FEM  
49.9 SURFACE MT RES 1206  
DIGI-KEY  
DIGI-KEY  
T T I  
21  
4
P100FBK-ND  
T 491C106M016AS  
P140FBK-ND  
P1KFBK-ND  
P2KFBK-ND  
3296W-102-ND  
K44-C37S-QJ  
P49.9FBK-ND  
R3, R9, R21–R39  
C3, C9, C23, C30  
2
R2, R4  
DIGI-KEY  
DIGI-KEY  
DIGI-KEY  
DIGI-KEY  
CENT URY ELEC  
DIGI-KEY  
1
R12  
3
R6, R8, R14  
1
R7  
J6  
1
5
R1, R10, R11,  
R15, R16  
11  
1
CSC06A-01-511G  
51F54113  
RP1  
510 6P BUSED RES NET WORK  
8291Z 3-PIN T ERMINAL BLOCK  
8291Z 2-PIN T ERMINAL BLOCK  
BNC COAX CONN PCMT 5 LEAD  
DIP-16 DUAL D FLIP-FLOP  
DIP-16 QUAD ECL T O T T L T RANS  
SO-14 FAST T T L DUAL D FLIP-FLOP  
HEADER ST RIP 20P GOLD MALE  
40P HEADER  
T T I  
12  
1
T B1  
NEWARK  
13  
1
51F54112  
T B1  
NEWARK  
14  
4
AMP-227699-2  
MC10H131P  
MC10H125P  
74F74SC-ND  
T SW-120-08-G-S  
90F3987  
J1–J4  
T IME ELEC  
15  
1
U6  
HAMILT ON/HALLMARK  
HAMILT ON/HALLMARK  
DIGI-KEY  
16  
1
U7  
17  
1
U2  
18  
1
J5  
SAMT EC  
ALT :  
19  
1/2  
1
J5  
NEWARK  
AD96685BR  
S90F9280  
U3  
HIGH SPEED COMP SOIC-16  
SHORT ING JUMPER  
ANALOG DEVICES, INC.  
NEWARK  
20  
7
S101–S107  
S101–S107, GND  
21  
8
89F4700  
3-PIN HEADER (DIVIDE 1 OF T HE  
8 FOR 3 GND HOLES)  
NEWARK  
22  
23  
24  
25  
26  
2
1
1
1
1
MC74F574DW  
AD9631AR  
U4, U5  
U1  
SO-20 OCT AL D T YPE FLIP-FLOP  
SOIC-8 OP AMP  
HAMILT ON/HALLMARK  
ANALOG DEVICES, INC.  
ANALOG DEVICES, INC.  
ANALOG DEVICES, INC.  
DIGI-KEY  
AD9760AR  
U8  
10-BIT CMOS DAC SOIC-28  
T QFP-44 DUAL 8-BIT ADC  
AD9054ST  
UA1  
B1  
P8002SCT -ND  
SURFACE MOUNT MOMENT ARY  
PUSHBUT T ON  
27  
4
90F1533  
BUMPON PROT ECT IVE BUMPER  
NEWARK  
PART S NOT ON BILL OF MAT ERIALS, AND NO T T O BE INST ALLED: C5, C36, C37, R17–R20.  
REV. 0  
–17–  
AD9054  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
44-Lead P lastic Thin Quad Flatpack (TQFP )  
(ST-44)  
0.063 (1.60)  
MAX  
0.472 (12.00) SQ  
0.030 (0.75)  
0.018 (0.45)  
33  
23  
34  
22  
SEATING  
PLANE  
0.394  
(10.0)  
SQ  
TOP VIEW  
(PINS DOWN)  
44  
12  
1
11  
0.006 (0.15)  
0.002 (0.05)  
0.018 (0.45)  
0.012 (0.30)  
0.031 (0.80)  
BSC  
0.057 (1.45)  
0.053 (1.35)  
–18–  
REV. 0  
–19–  
–20–  

相关型号:

AD9054/PCB

8-Bit, 200 MSPS A/D Converter
ADI

AD9054A

8-Bit, 200 MSPS A/D Converter
ADI

AD9054A/PCB

8-Bit, 200 MSPS A/D Converter
ADI

AD9054ABST-135

8-Bit, 200 MSPS A/D Converter
ADI

AD9054ABST-135

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, LQFP-44
ROCHESTER

AD9054ABST-200

8-Bit, 200 MSPS A/D Converter
ADI

AD9054ABST-200

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, LQFP-44
ROCHESTER

AD9054ABSTZ-135

8-Bit, 200 MSPS/135 MSPS A/D Converter
ADI

AD9054ABSTZ-200

1-CH 8-BIT FLASH METHOD ADC, PARALLEL ACCESS, PQFP44, PLASTIC, LQFP-44
ROCHESTER

AD9054ABSTZ-200

8-Bit, 200 MSPS/135 MSPS A/D Converter
ADI

AD9054APCB

8-Bit, 200 MSPS A/D Converter
ADI

AD9054BST

IC-SM-8 BIT ADC
ETC