AD9106-EBZ [ADI]

Quad, Low Power, 12-Bit, 180 MSPS, Digital-to-Analog Converter and Waveform Generator; 四,低功耗, 12位, 180 MSPS ,数位类比转换器和波形发生器
AD9106-EBZ
型号: AD9106-EBZ
厂家: ADI    ADI
描述:

Quad, Low Power, 12-Bit, 180 MSPS, Digital-to-Analog Converter and Waveform Generator
四,低功耗, 12位, 180 MSPS ,数位类比转换器和波形发生器

转换器
文件: 总48页 (文件大小:851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, Low Power, 12-Bit, 180 MSPS, Digital-to-  
Analog Converter and Waveform Generator  
Data Sheet  
AD9106  
FEATURES  
GENERAL DESCRIPTION  
Highly integrated quad DAC  
On-chip 4096 × 12-bit pattern memory  
On-chip DDS  
Power dissipation at 3.3 V, 4 mA output  
315 mW at 180 MSPS  
Sleep mode: < 5 mW at 3.3 V  
Supply voltage: 1.8 V to 3.3 V  
SFDR to Nyquist  
86 dBc at 1 MHz output  
85 dBc at 10 MHz output  
Phase noise at 1 kHz offset, 180 MSPS, 8 mA: −140 dBc/Hz  
Differential current outputs: 8 mA maximum at 3.3 V  
Small footprint 32-lead, 5 mm × 5 mm with 3.5 mm ×  
3.6 mm exposed paddle LFCSP  
The AD9106 TxDAC® and waveform generator is a high perform-  
ance quad DAC integrating on-chip pattern memory for complex  
waveform generation with a direct digital synthesizer (DDS). The  
DDS is a 12-bit output, up to 180 MHz master clock sinewave  
generator with a 24-bit tuning word allowing 10.8 Hz/LSB  
frequency resolution. The DDS has a single frequency output  
for all four DACs and independent programmable phase shift  
outputs for each of the four DACs.  
SRAM data can include directly generated stored waveforms,  
amplitude modulation patterns applied to DDS outputs, or  
DDS frequency tuning words.  
An internal pattern control state machine allows the user to  
program the pattern period for all four DACs as well as the start  
delay within the pattern period for the signal output on each  
DAC channel.  
Pb-free package  
APPLICATIONS  
An SPI interface is used to configure the digital waveform  
generator and load patterns into the SRAM.  
Medical instrumentation  
Ultrasound transducer excitation  
Portable instrumentation  
There are gain adjustment factors and offset adjustments  
applied to the digital signals on their way into the four DACs.  
Signal generators, arbitrary waveform generators  
The AD9106 offers exceptional ac and dc performance and  
supports DAC sampling rates up to 180 MSPS. The flexible  
power supply operating range of 1.8 V to 3.3 V and low power  
dissipation of the AD9106 make it well suited for portable and low  
power applications.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
AD9106  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Analog Current Outputs ........................................................... 22  
Setting IOUTFSx, DAC Gain .......................................................... 22  
Automatic IOUTFSx Calibration ................................................... 23  
Clock Input.................................................................................. 23  
DAC Output Clock Edge........................................................... 24  
Generating Signal Patterns........................................................ 24  
Pattern Generator Programming ............................................. 25  
DACx Input Data Paths............................................................. 25  
DOUT Function......................................................................... 26  
Direct Digital Synthesizer (DDS)............................................. 26  
SRAM........................................................................................... 27  
Sawtooth Generator ................................................................... 27  
Pseudo-Random Signal Generator .......................................... 27  
DC Constant ............................................................................... 27  
Power Supply Notes ................................................................... 27  
Power-Down Capabilities.......................................................... 27  
Applications Information .............................................................. 28  
Signal Generation Examples..................................................... 28  
Register Map ................................................................................... 30  
Register Descriptions................................................................. 33  
Outline Dimensions....................................................................... 48  
Ordering Guide .......................................................................... 48  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
DC Specifications (3.3 V)............................................................ 4  
DC Specifications (1.8 V)............................................................ 5  
Digital Timing Specifications (3.3 V)........................................ 6  
Digital Timing Specifications (1.8 V)........................................ 6  
Input/Output Signal Specifications............................................ 7  
AC Specifications (3.3 V) ............................................................ 8  
AC Specifications (1.8 V) ............................................................ 8  
Power Supply Voltage Inputs and Power Dissipation.............. 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Terminology .................................................................................... 19  
Theory of Operation ...................................................................... 20  
SPI Port ........................................................................................ 21  
DAC Transfer Function ............................................................. 22  
REVISION HISTORY  
2/13—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Features Section............................................................ 1  
Changes to Figure 1.......................................................................... 3  
Deleted Figure 20; Renumbered Sequentially ............................ 16  
Changes to Figure 31...................................................................... 20  
Changes to Table 13........................................................................ 22  
Deleted Recommendations When Using an External  
Reference Section............................................................................ 23  
11/12—Revision 0: Initial Version  
Rev. A | Page 2 of 48  
 
Data Sheet  
AD9106  
FUNCTIONAL BLOCK DIAGRAM  
1V  
AD9106  
10kΩ  
SPI  
INTERFACE  
AGND  
STOP ADDR  
START ADDR  
START DLY  
R
R
SET2  
16kΩ  
SET1  
16kΩ  
DAC1 TO DAC2  
TRIGGER  
I
REF  
100µA  
GAIN1 OFFSET1  
TIMERS + STATE MACHINES  
ADDRESS 1, 2  
IOUTP1  
IOUTN1  
AVDD1  
IOUTP2  
IOUTN2  
DAC1  
DAC1  
GAIN2 OFFSET2  
GAIN3 OFFSET3  
DAC2  
DAC3  
DAC2  
DAC3  
BAND  
GAP  
DPRAM  
IOUTP3  
IOUTN3  
AVDD2  
IOUTP4  
IOUTN4  
DAC4  
GAIN4 OFFSET4  
PHASE2  
ADDRESS 3, 4  
DAC4  
R
SET4  
16kΩ  
DAC3 TO DAC4  
TIMERS + STATE MACHINES  
PHASE1  
DDS1  
DDS2  
START DLY  
START ADDR  
TUNING WORD  
DAC CLOCK  
R
SET3  
16kΩ  
STOP ADDR  
DDS  
1.8V  
LDO  
CLOCK  
DIST  
DDS3  
DDS4  
1.8V  
LDOs  
PHASE4  
PHASE3  
Figure 1.  
Rev. A | Page 3 of 48  
 
AD9106  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS (3.3 V)  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V; internal CLDO, DLDO1, and DLDO2; IOUTFS = 4 mA, maximum sample rate,  
unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
Bits  
ACCURACY at 3.3 V  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
±±.4  
±±.5  
LSB  
LSB  
DAC OUTPUTS  
Offset Error  
±.±±±25  
% of FSR  
% of FSR  
mA  
Gain Error Internal Reference—No Automatic IOUTFS Calibration  
Full-Scale Output Current1 at 3.3 V  
Output Resistance  
−1.±  
2
+1.±  
8
4
2±±  
MΩ  
Output Compliance Voltage  
Crosstalk, DAC to DAC (fOUT = 1± MHz)  
Crosstalk, DAC to DAC (fOUT = 6± MHz)  
−±.5  
+1.±  
V
96  
82  
dBC  
dBc  
DAC TEMPERATURE DRIFT  
Gain with Internal Reference  
Internal Reference Voltage  
REFERENCE OUTPUT  
±251  
±119  
ppm/°C  
ppm/°C  
Internal Reference Voltage with AVDD = 3.3 V  
Output Resistance  
±.8  
±.1  
1.±  
1±  
1.2  
V
kΩ  
REFERENCE INPUT  
Voltage Compliance  
1.25  
V
Input Resistance External, Reference Mode  
DAC MATCHING  
1
MΩ  
Gain Matching—No Automatic IOUTFS Calibration  
±±.75  
% of FSR  
1 Based on use of 8 kΩ external xRSET resistors.  
Rev. A | Page 4 of 48  
 
 
 
 
Data Sheet  
AD9106  
DC SPECIFICATIONS (1.8 V)  
TMIN to TMAX, AVDD = 1.8 V, DVDD = DLDO1 = DLDO2 = 1.8 V, CLKVDD = CLDO = 1.8 V, IOUTFS = 4 mA, maximum sample rate, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
Bits  
ACCURACY at 1.8 V  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
DAC OUTPUTS  
±±.4  
±±.4  
LSB  
LSB  
Offset Error  
±.±±±25  
% of FSR  
% of FSR  
mA  
Gain Error Internal Reference—No Automatic IOUTFS Calibration  
Full-Scale Output Current1 at 1.8 V  
Output Resistance  
−1.±  
2
+1.±  
4
4
2±±  
MΩ  
Output Compliance Voltage  
Crosstalk, DAC to DAC (fOUT = 3± MHz)  
Crosstalk, DAC to DAC (fOUT = 6± MHz)  
DAC TEMPERATURE DRIFT  
Gain  
−±.5  
+1.±  
V
94  
78  
dB  
dB  
±228  
±131  
ppm/°C  
ppm/°C  
Reference Voltage  
REFERENCE OUTPUT  
Internal Reference Voltage with AVDD = 1.8 V  
Output Resistance  
±.8  
±.1  
1.±  
1±  
1.2  
V
kΩ  
REFERENCE INPUT  
Voltage Compliance  
1.25  
V
Input Resistance External, Reference Mode  
DAC MATCHING  
1
MΩ  
Gain Matching—No Automatic IOUTFS Calibration  
1 Based on use of 8 kΩ external xRSET resistors.  
±±.75  
% of FSR  
Rev. A | Page 5 of 48  
 
 
 
AD9106  
Data Sheet  
DIGITAL TIMING SPECIFICATIONS (3.3 V)  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V; internal CLDO, DLDO1, and DLDO2; IOUTFS = 4 mA, maximum sample rate,  
unless otherwise noted.  
Table 3.  
Parameter  
Min  
18±  
8±  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKIN)  
Maximum Clock Rate  
MSPS  
SERIAL PERIPHERAL INTERFACE  
Maximum Clock Rate (SCLK)  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Setup Time SDIO to SCLK  
Hold Time SDIO to SCLK  
Output Data Valid SCLK to SDO or SDIO  
Setup Time CS to SCLK  
MHz  
ns  
ns  
ns  
ns  
6.25  
6.25  
4.±  
5.±  
6.2  
ns  
ns  
4.±  
DIGITAL TIMING SPECIFICATIONS (1.8 V)  
TMIN to TMAX, AVDD = 1.8 V, DVDD = DLDO1 = DLDO2 = 1.8 V, CLKVDD = CLDO = 1.8 V, IOUTFS = 4 mA, maximum sample rate, unless  
otherwise noted.  
Table 4.  
Parameter  
Min  
18±  
8±  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKIN)  
Maximum Clock Rate  
MSPS  
SERIAL PERIPHERAL INTERFACE  
Maximum Clock Rate (SCLK)  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Setup Time SDIO to SCLK  
Hold Time SDIO to SCLK  
Output Data Valid SCLK to SDO or SDIO  
Setup Time CS to SCLK  
MHz  
ns  
ns  
ns  
ns  
6.25  
6.25  
4.±  
5.±  
8.8  
ns  
ns  
4.±  
Rev. A | Page 6 of 48  
 
 
 
 
Data Sheet  
AD9106  
INPUT/OUTPUT SIGNAL SPECIFICATIONS  
Table 5.  
Parameter  
Test Conditions/ Comments  
Min  
Typ  
Max  
Unit  
CMOS INPUT LOGIC LEVEL (SCLK, CS, SDIO, SDO/SDI2/DOUT, RESET,  
TRIGGER)  
Input VIN Logic High  
DVDD = 1.8 V  
DVDD = 3.3 V  
DVDD = 1.8 V  
DVDD = 3.3 V  
1.53  
2.475  
V
V
V
V
Input VIN Logic Low  
±.27  
±.825  
CMOS OUTPUT LOGIC LEVEL (SDIO, SDO/SDI2/DOUT)  
Output VOUT Logic High  
DVDD = 1.8 V  
DVDD = 3.3 V  
DVDD = 1.8 V  
DVDD = 3.3 V  
1.79  
3.28  
V
V
V
V
Output VOUT Logic Low  
±.25  
±.625  
DAC CLOCK INPUT (CLKP, CLKN)  
Minimum Peak-to-Peak Differential Input Voltage, VCLKP/VCLKN  
Maximum Voltage at VCLKP or VCLKN  
Minimum Voltage at VCLKP or VCLKN  
15±  
mV  
V
V
VDVDD  
VDGND  
±.9  
Common-Mode Voltage Generated on Chip  
V
Rev. A | Page 7 of 48  
 
AD9106  
Data Sheet  
AC SPECIFICATIONS (3.3 V)  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V; internal CLDO, DLDO1, and DLDO2; IOUTFS = 4 mA, maximum sample rate,  
unless otherwise noted.  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
f
f
DAC = 18± MSPS, fOUT = 1± MHz  
DAC = 18± MSPS, fOUT = 5± MHz  
86  
73  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
f
f
DAC = 18± MSPS, fOUT = 1± MHz  
DAC = 18± MSPS, fOUT = 5± MHz  
92  
77  
dBc  
dBc  
NSD  
f
DAC = 18± MSPS, fOUT = 5± MHz  
−167  
−135  
dBm/Hz  
dBc/Hz  
PHASE NOISE at 1 kHz FROM CARRIER  
f
DAC = 18± MSPS, fOUT = 1± MHz  
DYNAMIC PERFORMANCE  
Output Settling Time, Full Scale Output Step (to ±.1%)1  
Trigger to Output Delay, fDAC = 18± MSPS2  
Rise Time, Full-Scale Swing1  
31.2  
96  
3.25  
3.26  
ns  
ns  
ns  
ns  
Fall Time, Full-Scale Swing1  
1 Based on the 85 Ω resistors from DAC output terminals to ground.  
2 Start delay = ± fDAC clock cycles.  
AC SPECIFICATIONS (1.8 V)  
TMIN to TMAX, AVDD = 1.8 V, DVDD = DLDO1 = DLDO2 = 1.8 V, CLKVDD = CLDO = 1.8 V, IOUTFS = 4 mA, maximum sample rate, unless  
otherwise noted.  
Table 7.  
Parameter  
Min  
Typ  
Max  
Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
f
f
DAC = 18± MSPS, fOUT = 1± MHz  
DAC = 18± MSPS, fOUT = 5± MHz  
83  
74  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
f
f
DAC = 18± MSPS, fOUT = 1± MHz  
DAC = 18± MSPS, fOUT = 5± MHz  
91  
83  
dBc  
dBc  
NSD  
fDAC = 18± MSPS, fOUT = 5± MHz  
PHASE NOISE at 1 kHz FROM CARRIER  
DAC = 18± MSPS, fOUT = 1± MHz  
−163  
−135  
dBm/Hz  
dBc/Hz  
f
DYNAMIC PERFORMANCE  
Output Settling Time (to ±.1%)1  
Trigger to Output Delay, fDAC = 18± MSPS2  
Rise Time1  
31.2  
96  
3.25  
3.26  
ns  
ns  
ns  
ns  
Fall Time1  
1 Based on the 85 Ω resistors from DAC output terminals to ground.  
2 Start delay = ± fDAC clock cycles.  
Rev. A | Page 8 of 48  
 
 
 
 
Data Sheet  
AD9106  
POWER SUPPLY VOLTAGE INPUTS AND POWER DISSIPATION  
Table 8.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
ANALOG SUPPLY VOLTAGES  
AVDD1, AVDD2  
CLKVDD  
1.7  
1.7  
1.7  
3.6  
3.6  
1.9  
V
V
V
CLDO  
On-chip LDO not in use  
On-chip LDO not in use  
DIGITAL SUPPLY VOLTAGES  
DVDD  
1.7  
1.7  
3.6  
1.9  
V
V
DLDO1, DLDO2  
POWER CONSUMPTION  
AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V, internal CLDO, DLDO1,  
and DLDO2  
fDAC = 18± MSPS, Pure CW Sine Wave  
12.5 MHz (DDS only), all four DACs  
315.25  
mW  
mA  
IAVDD  
28.51  
IDVDD  
DDS Only  
RAM Only  
DDS and RAM Only  
ICLKVDD  
CW sine wave output  
6±.3  
27.1  
39.75  
6.72  
4.73  
mA  
mA  
mA  
mA  
mW  
5±% duty cycle FS pulse output  
5±% duty cycle sine wave output  
Power-Down Mode  
REF_PDN = ±, DACs sleep, CLK power down, external CLK, and  
supplies on  
POWER CONSUMPTION  
AVDD = 1.8 V, DVDD = DLDO1 = DLDO2 = 1.8 V, CLKVDD = CLDO =  
1.8 V  
fDAC = 18± MSPS, Pure CW Sine Wave  
12.5 MHz (DDS only)  
167  
mW  
mA  
mA  
IAVDD  
28.14  
±.151  
IDVDD  
IDLDO2  
DDS Only  
RAM Only  
CW sine wave output  
53.75  
17.78  
35.4  
mA  
mA  
mA  
5±% duty cycle FS pulse output  
DDS and RAM Only—5±% Duty Cycle Sine  
Wave Output  
IDLDO1  
4.±  
mA  
mA  
mA  
mW  
ICLKVDD  
±.±±96  
6.6  
ICLDO  
Power-Down Mode  
REF_PDN = ±, DACs sleep, CLK power down, external CLK, and  
supplies on  
1.49  
Rev. A | Page 9 of 48  
 
 
AD9106  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 9.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a standard circuit board for surface-mount  
packages. θJC is measured from the solder side (bottom) of the  
package.  
Parameter  
Rating  
AVDD1, AVDD2, DVDD to AGND,  
DGND, CLKGND  
CLKVDD to AGND, DGND, CLKGND  
CLDO, DLDO1, DLDO2 to AGND,  
DGND, CLKGND  
AGND to DGND, CLKGND  
DGND to AGND, CLKGND  
CLKGND to AGND, DGND  
CS, SDIO, SCLK, SDO/SDI2/DOUT,  
RESET, TRIGGER to DGND  
−±.3 V to +3.9 V  
−±.3 V to +3.9 V  
−±.3 V to +2.2 V  
Table 10. Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
Unit  
οC/W  
−±.3 V to +±.3V  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
−±.3 V to DVDD + ±.3 V  
32-Lead LFCSP with  
Exposed Paddle  
3±.18 6.59  
3.84  
ESD CAUTION  
CLKP, CLKN to CLKGND  
REFIO to AGND  
IOUTP1, IOUTN1, IOUTP2, IOUTN2,  
IOUTP3, IOUTN3, IOUTP4, IOUTN4 to  
AGND  
−±.3 V to CLKVDD + ±.3 V  
−1.± V to AVDD + ±.3 V  
−±.3 V to DVDD + ±.3 V  
FSADJ1, FSADJ2/CAL_SENSE, F4DJ3,  
FSADJ4 to AGND  
Junction Temperature  
Storage Temperature  
−±.3 V to AVDD + ±.3 V  
125 οC  
−65 οC to +15± οC  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 1± of 48  
 
 
 
 
Data Sheet  
AD9106  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
SCLK  
SDIO  
DGND  
DLDO2  
DVDD  
1
2
3
4
5
6
7
8
24 FSADJ2/CAL_SENSE  
23  
22 CLDO  
21 CLKP  
CLKVDD  
AD9106  
TOP VIEW  
20  
19  
CLKN  
CLKGND  
(Not to Scale)  
DLDO1  
SDO/SDI2/DOUT  
CS  
18 REFIO  
17 FSADJ4  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO DGND.  
Figure 2. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin No. Mnemonic Description  
SPI Clock Input.  
1
2
3
4
SCLK  
SDIO  
DGND  
DLDO2  
SPI Data Input/Output. Primary bidirectional data line for the SPI port.  
Digital Ground.  
1.8 V Internal Digital LDO1 Output. When the internal digital LDO1 is enabled, this pin should be bypassed  
with a ±.1 µF capacitor.  
5
6
7
DVDD  
3.3 V External Digital Power Supply. DVDD defines the level of the digital interface of the AD91±6 (SPI  
interface).  
1.8 V Internal Digital LDO2 Outputs. When the internal digital LDO2 is enabled, this pin should be bypassed  
with a ±.1 µFcapacitor.  
DLDO1  
SDO/SDI2/DOUT  
Digital I/O Pin.  
In 4-wire SPI mode, this pin outputs the data from the SPI.  
In double SPI mode, this pin is a second data input line, SDI2, for the SPI port used to write to the SRAM.  
In data output mode, this terminal is a programmable pulse output.  
8
CS  
SPI Port Chip Select, Active Low.  
9
RESET  
IOUTP4  
IOUTN4  
AVDD2  
IOUTN3  
IOUTP3  
AGND  
FSADJ3  
FSADJ4  
REFIO  
Active Low Reset Pin. Resets registers to their default values.  
DAC4 Current Output, Positive Side.  
DAC4 Current Output, Negative Side.  
1.8 V to 3.3 V Power Supply Input for DAC3 and DAC4.  
DAC3 Current Output, Negative Side.  
DAC3 Current Output, Positive Side.  
Analog Ground.  
External Full-Scale Current Output Adjust for DAC3.  
External Full-Scale Current Output Adjust for DAC4.  
DAC Voltage Reference Input/Output.  
Clock Ground.  
1±  
11  
12  
13  
14  
15  
16  
17  
18  
19  
2±  
21  
22  
CLKGND  
CLKN  
CLKP  
Clock Input, Negative Side.  
Clock Input, Positive Side.  
Clock Power Supply Output (Internal Regulator in Use), Clock Power Supply Input (Internal Regulator  
Bypassed).  
CLDO  
23  
24  
25  
CLKVDD  
Clock Power Supply Input.  
FSADJ2/CAL_SENSE External Full-Scale Current Output Adjust for DAC2 or Sense Input for Automatic IOUTFS Calibration.  
FSADJ1  
External Full-Scale Current Output Adjust for DAC1 or Full-Scale Current Output Adjust Reference for  
Automatic IOUTFS Calibration.  
26  
27  
AGND  
IOUTP1  
Analog Ground.  
DAC1 Current Output, Positive Side.  
Rev. A | Page 11 of 48  
 
AD9106  
Data Sheet  
Pin No. Mnemonic  
Description  
28  
29  
3±  
31  
32  
IOUTN1  
AVDD1  
IOUTN2  
IOUTP2  
TRIGGER  
EPAD  
DAC1 Current Output, Negative Side.  
1.8 V to 3.3 V Power Supply Input for DAC1 and DAC2.  
DAC2 Current Output, Negative Side.  
DAC2 Current Output, Positive Side.  
Pattern Trigger Input.  
Exposed Pad. The exposed pad must be connected to DGND.  
Rev. A | Page 12 of 48  
Data Sheet  
AD9106  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 3.3 V, DVDD = 3.3 V, CLKVDD = 3.3 V, internal CLDO, DLDO1, and DLDO2.  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
8mA  
SFDR  
THIRD (dBc)  
2mA  
4mA  
SECOND (dBc)  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
F
(MHz)  
F
(MHz)  
OUT  
OUT  
Figure 3. SFDR, 2nd and 3rd Harmonics at IOUTFS = 8 mA vs. FOUT  
Figure 6. SFDR at Three IOUTFS vs. FOUT  
–50  
–55  
–60  
–65  
–70  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
SFDR  
–75  
–40°C  
–80  
–85  
–90  
+85°C  
+25°C  
10  
SECOND (dBc)  
THIRD (dBc)  
–95  
–100  
0
10  
20  
30  
40  
50  
60  
70  
0
20  
30  
40  
50  
60  
70  
F
(MHz)  
F
(MHz)  
OUT  
OUT  
Figure 4. SFDR, 2nd and 3rd Harmonics at IOUTFS = 4 mA vs. FOUT  
Figure 7. SFDR at Three Temperatures vs. FOUT  
–50  
–55  
–60  
–65  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
100MHz  
180MHz  
50MHz  
SFDR  
–70  
–75  
–80  
–85  
SECOND (dBc)  
–90  
THIRD (dBc)  
–95  
–100  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
F
(MHz)  
F
(MHz)  
OUT  
OUT  
Figure 5. SFDR, 2nd and 3rd Harmonics at IOUTFS = 2 mA vs. FOUT  
Figure 8. SFDR at Three FDAC vs. FOUT  
Rev. A | Page 13 of 48  
 
AD9106  
Data Sheet  
MKR3 41.73MHz  
–90.031dBm  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
REF –5dBm  
ATTEN 18dB  
1
DAC4  
DAC2  
DAC3  
DAC1  
2
3
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
80  
F
OUT  
START 0Hz  
VBW 5.6kHz  
X-AXIS  
STOP 80MHz  
SWEEP 3.076s (601PTS)  
MARKER TRACE TYPE  
AMPLITUDE  
1
2
3
(1)  
(1)  
(1)  
FREQ  
FREQ  
FREQ  
13.87MHz –11.13dBm  
27.87MHz –88.70dBm  
41.73MHz –90.03dBm  
Figure 12. IMD vs. FOUT, All Four DACs  
Figure 9. Output Spectrum FOUT = 13.87 MHz  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
100MHz  
180MHz  
50MHz  
8mA  
4mA  
2mA  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
80  
F
(MHz)  
F
OUT  
OUT  
Figure 10. IMD vs. FOUT, Three FDAC Values  
Figure 13. NSD vs. FOUT, Three IOUTFS Values  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
8mA  
2mA  
4mA  
–40°C  
+25°C  
+85°C  
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
F
F
(MHz)  
OUT  
OUT  
Figure 11. IMD vs. FOUT, Three IOUTFS Values  
Figure 14. NSD vs. FOUT at Three Temperatures  
Rev. A | Page 14 of 48  
Data Sheet  
AD9106  
0.4  
0.3  
0.2  
0.1  
0
–80  
–100  
–120  
–140  
–160  
–180  
F
F
F
= 175MHz, 10MHz  
= 175MHz, 10.9375MHz  
= 175MHz, 20MHz  
S
S
S
–0.1  
–0.2  
2mA  
4mA  
8mA  
–0.3  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
100  
1k  
10k  
100k  
1M  
10M  
CODE  
OFFSET (Hz)  
Figure 15. DNL, Three IOUTFS Values  
Figure 17. Phase Noise  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
2mA  
4mA  
8mA  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
Figure 16. INL, Three IOUTFS Values  
Rev. A | Page 15 of 48  
AD9106  
Data Sheet  
AVDD = 1.8 V, DVDD = DLDO1 = DLDO2 = 1 . 8 V, CLKVDD = CLDO = 1.8 V.  
–50  
–55  
–60  
–65  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
+85°C  
–70  
SFDR  
–75  
–80  
–40°C  
+25°C  
THIRD (dBc)  
–85  
–90  
SECOND (dBc)  
–95  
–100  
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
F
(MHz)  
F
OUT  
OUT  
Figure 18. SFDR, 2nd and 3rd Harmonics at IOUTFS = 4 mA vs. FOUT  
Figure 21. SFDR at Three Temperatures vs. FOUT  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–50  
–55  
–60  
–65  
180MHz  
50MHz  
SFDR  
180MHz  
–70  
–75  
–80  
SECOND (dBc)  
–85  
–90  
THIRD (dBc)  
–95  
–100  
0
10  
20  
30  
F
40  
50  
60  
70  
0
10  
20  
30  
F
40  
50  
60  
70  
(MHz)  
(MHz)  
OUT  
OUT  
Figure 22. SFDR at Three FDAC vs. FOUT  
Figure 19. SFDR, 2nd and 3rd Harmonics at IOUTFS = 2 mA vs. FOUT  
MKR3 41.73MHz  
–88.255dBm  
–50  
–55  
–60  
–65  
REF –5dBm  
ATTEN 18dB  
1
2mA  
–70  
–75  
–80  
4mA  
–85  
–90  
–95  
3
2
–100  
0
10  
20  
30  
40  
50  
60  
70  
F
(MHz)  
OUT  
START 0Hz  
MARKER TRACE TYPE  
VBW 5.6kHz  
X-AXIS  
13.87MHz –11.13dBm  
27.87MHz –89.05dBm  
41.73MHz –88.25dBm  
STOP 80MHz  
SWEEP 3.076s (601PTS)  
AMPLITUDE  
1
2
3
(1)  
(1)  
(1)  
FREQ  
FREQ  
FREQ  
Figure 20. SFDR at Two IOUTFS vs. FOUT  
Figure 23. Output Spectrum FOUT = 13.87 MHz  
Rev. A | Page 16 of 48  
Data Sheet  
AD9106  
–60  
–65  
–70  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
100MHz  
180MHz  
–75  
50MHz  
–80  
–85  
4mA  
–90  
2mA  
–95  
–100  
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
F
F
(MHz)  
OUT  
OUT  
Figure 27. NSD vs. FOUT, Two IOUTFS Values  
Figure 24. IMD vs. FOUT, Three FOUT Values  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
–170  
4mA  
+85°C  
+25°C  
2mA  
–40°C  
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
F
F
(MHz)  
OUT  
OUT  
Figure 25. IMD vs. FOUT, Two IOUTFS Values  
Figure 28. NSD vs. FOUT at Three Temperatures  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2mA  
4mA  
DAC4  
DAC3  
DAC2  
DAC1  
–0.1  
–0.2  
0
10  
20  
30  
40  
(MHz)  
50  
60  
70  
80  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
F
OUT  
Figure 26. IMD vs. FOUT, All Four DACs  
Figure 29. DNL, Three IOUTFS Values  
Rev. A | Page 17 of 48  
AD9106  
Data Sheet  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
2mA  
4mA  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
CODE  
Figure 30. INL, Two IOUTFS Values  
Rev. A | Page 18 of 48  
Data Sheet  
AD9106  
TERMINOLOGY  
Power Supply Rejection  
Linearity Error (Integral Nonlinearity or INL)  
INL is defined as the maximum deviation of the actual analog  
output from the ideal output, determined by a straight line  
drawn from zero to full scale.  
Power supply rejection is the maximum change in the full-scale  
output as the supplies are varied from nominal to minimum  
and maximum specified voltages.  
Settling Time  
Differential Nonlinearity (DNL)  
Settling time is the time required for the output to reach and  
remain within a specified error band about its final value,  
measured from the start of the output transition.  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Monotonicity  
Glitch Impulse  
A digital-to-analog converter is monotonic if the output either  
increases or remains constant as the digital input increases.  
Asymmetrical switching times in a DAC give rise to undesired  
output transients that are quantified by a glitch impulse. It is  
specified as the net area of the glitch in picovolt-seconds (pV-s).  
Offset Error  
Offset error is the deviation of the output current from the ideal of  
zero. For IOUTPx, 0 mA output is expected when the inputs are all  
0s. For IOUTNz, 0 mA output is expected when all inputs are set to 1.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the rms  
amplitude of the output signal and the peak spurious signal  
over the specified bandwidth.  
Gain Error  
Gain error is the difference between the actual and ideal output  
span. The actual span is determined by the output when all inputs  
are set to 1, minus the output when all inputs are set to 0. The  
ideal gain is calculated using the measured VREF. Therefore,  
the gain error does not include effects of the reference.  
Noise Spectral Density (NSD)  
Noise spectral density is the average noise power normalized to  
a 1 Hz bandwidth, with the DAC converting and producing an  
output tone.  
Output Compliance Voltage  
Output compliance voltage is the range of allowable voltage  
at the output of a current output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
Temperature Drift  
Temperature drift is specified as the maximum change from  
the ambient (25°C) value to the value at either TMIN or TMAX  
.
For offset and gain drift, the drift is reported in ppm of full-  
scale range (FSR) per °C. For reference drift, the drift is  
reported in ppm per °C.  
Rev. A | Page 19 of 48  
 
AD9106  
Data Sheet  
THEORY OF OPERATION  
1V  
AD9106  
10kΩ  
SPI  
INTERFACE  
AGND  
STOP ADDR  
START ADDR  
START DLY  
R
R
SET1  
16kΩ  
SET2  
16kΩ  
DAC1 TO DAC2  
TRIGGER  
I
REF  
100µA  
GAIN1 OFFSET1  
TIMERS + STATE MACHINES  
ADDRESS 1, 2  
IOUTP1  
IOUTN1  
AVDD1  
IOUTP2  
IOUTN2  
DAC1  
DAC1  
GAIN2 OFFSET2  
GAIN3 OFFSET3  
DAC2  
DAC3  
DAC2  
DAC3  
BAND  
GAP  
DPRAM  
IOUTP3  
IOUTN3  
AVDD2  
IOUTP4  
IOUTN4  
DAC4  
GAIN4 OFFSET4  
PHASE2  
ADDRESS 3, 4  
DAC4  
R
16kΩ  
SET4  
DAC3 TO DAC4  
TIMERS + STATE MACHINES  
PHASE1  
DDS1  
DDS2  
START DLY  
START ADDR  
TUNING WORD  
DAC CLOCK  
R
16kΩ  
SET3  
STOP ADDR  
DDS  
1.8V  
LDO  
CLOCK  
DIST  
DDS3  
DDS4  
1.8V  
LDOs  
PHASE4  
PHASE3  
Figure 31. AD9106 Block Diagram  
Figure 31 is a block diagram of the AD9106. The AD9106 has  
four 12-bit current output DACs.  
be connected to DVDD, with the on-chip LDOs disabled. All  
three supplies are provided externally in this case. This also  
applies to CLKVDD and CLDO if CLKVDD = 1.8 V.  
The DACs use a single common voltage reference. An on-chip  
band gap reference is provided. Optionally, an off-chip voltage  
reference may be used. Full-scale DAC output current, also  
known as gain, is governed by the current, IREF. IREF is the  
current that flows through each IREF resistor. Each DAC has its  
own IREF set resistor. These resistors may be on or off chip at  
the discretion of the user. When on-chip RSET resistors are in  
use DAC gain accuracy can be improved by employing the  
product’s built in automatic gain calibration capability. Auto-  
matic calibration may be used with the on-chip reference or  
an external REFIO voltage. A procedure for automatic gain  
calibration is presented in this section.  
Digital signals input to the four DACs are generated by on-chip  
digital waveform generation resources. Twelve-bit samples are  
input to each DAC at the CLKP/CLKN sample rate from a  
dedicated digital data path. Each DACs data path includes gain  
and offset corrections and a digital waveform source selection  
multiplexer. Waveform sources are SRAM, direct digital  
synthesizer (DDS), DDS output amplitude modulated by SRAM  
data, a sawtooth generator, dc constant, and a pseudo-random  
sequence generator. The waveforms output by the source  
selection multiplexer have programmable pattern character-  
istics. The waveforms can be set up to be continuous,  
continuous pulsed (fixed pattern period and start delay within  
each pattern period), or finite pulsed (a set number of pattern  
periods are output, then the pattern stops).  
The power supply rails for the AD9106 are AVDD for analog  
circuits, CLKVDD/CLDO for clock input receiver and  
DVDD/DLDO1/DLDO2 for digital I/O and for the on-chip  
digital data path. AVDD, DVDD, and CLKVDD can range from  
1.8 V to 3.3 V nominal. DLDO1, DLDO2, and CLDO run at  
1.8 V. If DVDD = 1.8 V, then DLDO1 and DLDO2 should both  
Pulsed waveforms (finite or continuous) have a programmed  
pattern period and start delay. The waveform is present in each  
Rev. A | Page 2± of 48  
 
 
Data Sheet  
AD9106  
pulse period following the global (applies to all four DACs)  
programmed pattern period start and each DACs start delay.  
W
When the first bit of this command byte is a logic low (R  
bit = 0), the SPI command is a write operation. In this case,  
SDIO remains an input (see Figure 32).  
An SPI port enables loading of data into SRAM and program-  
ming of all the control registers inside the device.  
COMMAND CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
SPI PORT  
The AD9106 provides a flexible, synchronous serial communi-  
cations (SPI) port that allows easy interfacing to ASICs, FPGAs,  
and industry standard microcontrollers. The interface allows  
read/write access to all registers that configure the AD9106 and  
to the on-chip SRAM. Its data rate can be up to the SCLK clock  
speed shown in Table 3 and Table 4.  
Figure 32. Serial Register Interface Timing, MSB First Write, 3-Wire SPI  
W
When the first bit of this command byte is a logic high (R  
bit = 1), the SPI command is a read operation. In this case, data  
is driven out of the SPI port as shown in Figure 33 and Figure 34.  
The SPI interface operates as a standard synchronous serial  
CS  
CS  
communication port.  
is a low true chip select. When  
CS  
The SPI communication finishes after the  
pin goes high.  
goes true, SPI address and data transfer begins. The first bit  
coming from the SPI master on SDIO is a read/write indicator  
(high for read, low for write). The next 15-bits are the initial  
register address. The SPI port automatically increments the  
COMMAND CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
CS  
register address if  
stays low beyond the first data word  
allowing writes to or reads from a set of contiguous addresses.  
SDIO  
Table 12. Command Word  
Figure 33. Serial Register Interface Timing, MSB First Read, 3-Wire SPI  
MSB  
DB15  
RW  
LSB  
DB14 DB13 DB12  
A14 A13 A12  
DB2 DB1 DB0  
A2  
A1  
A±  
WRITE  
READ  
CS  
SCLK  
SDIO  
SDO/  
SDI2/  
DOUT  
Figure 34. Serial Register Interface Timing, MSB First Read, 4-Wire SPI  
Rev. A | Page 21 of 48  
 
 
 
 
AD9106  
Data Sheet  
Writing to On-Chip SRAM  
I
OUTFSx = 32 × IIREFx  
where:  
REFx = VREFIO/xRSET  
(3)  
The AD9106 includes an internal 4096 × 12 SRAM. The SRAM  
address space is 0x6000 to 0x6FFF of the AD9106 SPI address map.  
I
(4)  
Double SPI for Write for SRAM  
IREFx is the current that flows through each IREFx resistor. Each  
DAC has its own IREF set resistor. IREF resistors may be on or off  
chip at the users’ discretion. When on-chip xRSET resistors are  
in use, DAC gain accuracy can be improved by employing the  
product’s built in automatic gain calibration capability.  
The time to write data to the entire SRAM can be halved using  
the SPI access mode shown in Figure 35. The SDO/SDI2/  
DOUT line becomes a second serial data input line, doubling  
the achievable update rate of the on-chip SRAM. SDO/SDI2/  
DOUT is write-only in this mode. The entire SRAM can be  
written in (2 + 2 × 4096) × 8/(2 × FSCLK)seconds.  
SET WAVEFORM ADDRESS  
ANALOG CURRENT OUTPUTS  
Optimum linearity and noise performance of DAC outputs  
can be achieved when they are connected differentially to an  
amplifier or a transformer. In these configurations, common-  
mode signals at the DAC outputs are rejected.  
TO BE READ/WRITTEN  
WAVEFORM DATA TO BE WRITTEN  
CS  
SCLK  
The output compliance voltage specifications shown in  
Table 1 and Table 2 must be adhered to for the performance  
specifications in these tables to be met.  
SDIO  
WAVEFORM PATTERN  
ADDRESS1 = N  
WAVEFORM  
PATTERN DATA  
SETTING IOUTFSx, DAC GAIN  
As expressed in Equation 3 and Equation 4, DAC gain (IOUTFSx  
is a function of the reference voltage at the REFIO terminal and  
xRSET for each DAC.  
)
SDO/  
SDI2/  
DOUT  
WAVEFORM PATTERN  
ADDRESS2 = M  
WAVEFORM  
PATTERN DATA  
Voltage Reference  
Figure 35. Double SPI Write of SRAM Data  
The AD9106 contains an internal 1.0 V nominal band gap  
reference. The internal reference may be used. Alternatively,  
it can be replaced by a more accurate off-chip reference. An  
external reference can provide tighter reference voltage  
tolerances and/or lower temperature drift than the on-chip  
band gap.  
Configuration Register Update Procedure  
Most SPI accessible registers are double buffered. An active  
register set controls operation of the AD9106 during pattern  
generation. A set of shadow registers stores updated register  
values. Register updates can be written at any time and when  
the configuration update is complete, a 1 is written to the  
UPDATE bit in the RAMUPDATE register. The UPDATE bit  
arms the register set for transfer from shadow registers to active  
registers. The AD9106 will perform this transfer automatically  
the next time the pattern generator is off. This procedure does  
not apply to the 4K × 12 SRAM. Refer to the SRAM section for  
the SRAM update procedure.  
By default, the on-chip reference is powered up and ready to be  
used. When using the on-chip reference, the REFIO terminal  
needs to be decoupled to AGND using a 0.1 μF capacitor as  
shown in Figure 36.  
AD9106  
V
1.0V  
BG  
DACx  
DAC TRANSFER FUNCTION  
REFIO  
+
FSADJx  
The AD9106 DACs provide four differential current outputs:  
IOUTP1/IOUTN1, IOUTP2/IOUTN2, IOUTP3/IOUTN3, and  
IOUTP4/IOUTN4.  
CURRENT  
SCALING  
x32  
0.1µF  
I
OUTFSx  
xR  
SET  
I
The DAC output current equations are as follows:  
REFx  
AVSS  
IOUTPx= IOUTFSx × xDAC INPUT CODE/212  
IOUTNx = IOUTFSx × ((212 − 1) − xDAC INPUT CODE)/212  
(2)  
(1)  
Figure 36. On-Chip Reference with External xRSET Resistor  
Table 13 summarizes reference connections and programming.  
Table 13. Reference Operation  
where:  
xDAC INPUT CODE = 0 to 212 − 1.  
OUTFSx = full-scale current or DAC gain set independently for  
each DAC.  
Reference Mode  
REFIO Pin  
Internal  
Connect ±.1 µF capacitor  
Connect off-chip reference  
I
External  
Rev. A | Page 22 of 48  
 
 
 
 
 
 
Data Sheet  
AD9106  
Programming Internal VREFIO  
chosen by the CAL_CLK_DIV bits of Register 0x0D. Each  
calibration cycle is between 4 and 512 DAC clock cycles,  
depending on the value of CAL_CLK_DIV[2:0]. The frequency  
of the calibration clock should be less than 500 kHz.  
The internal REFIO voltage level is programmable.  
When the internal voltage reference is in use, the BGDR field in  
the lower six bits in Register 0x03 adjusts the VREFIO level. This  
adds or subtracts up to 20% from the nominal band gap voltage  
on REFIO. The voltage across the FSADJx resistors tracks this  
change. As a result, IREFx varies by the same amount. Figure 37  
shows VREFIO vs. BGDR code for an on-chip reference with a  
default voltage (BGDR = 0x00) of 1.04 V.  
To perform an automatic calibration, follow these steps:  
1. Set the calibration ranges in Registers 0x08[7:0] and  
0x0D[5:4] to their minimum values to allow best  
calibration.  
2. Enable the calibration clock bit, CAL_CLK_EN, in  
Register 0x0D.  
1.30  
3. Set the divider ratio for the calibration clock by setting  
CAL_CLK_DIV[2:0] bits in Register 0x0D. The default is  
512.  
4. Set the CAL_MODE_EN bit in Register 0x0D to Logic 1.  
5. Set the START_CAL bit in Register 0x000E to Logic 1. This  
begins the calibration of the comparator, xRSET and gain.  
6. The CAL_MODE flag in Register 0x000D will go to  
Logic 1 while the part is calibrating. The CAL_FIN flag in  
Register 0x0E will go to Logic 1 when the calibration is  
complete.  
7. Set the START_CAL bit in Register 0x0E to Logic 0.  
8. After calibration, verify that the overflow and underflow  
flags in Register 0x0D are not set (Bits[14:8]). If they are,  
change the corresponding calibration range to the next  
larger range and begin again at Step 5.  
9. If no flag is set, read the DACx_RSET_CAL and  
DACx_AGAIN_CAL values in the DACxRSET[12:8] and  
DACxGAIN[14:8] registers, respectively, and write them  
into their corresponding DACxRSET and DACxAGAIN  
registers.  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
0
8
16  
24  
32  
40  
48  
56  
CODE  
Figure 37. Typical VREF Voltage vs. BGDR  
xRSET Resistors  
xRSET in Equation 4 for each DAC can be an internal resistor or  
a board level resistor of the users choosing connected to the  
appropriate FSADJx terminal.  
To make use of on-chip xRSET resistors, Bit15 of Register 0x0C,  
Register 0x0B, Register 0x0A, and Register 0x09 for DAC1,  
DAC2, DAC3, and DAC4, respectively, are set to Logic 1.  
Bits[4:0] of Register 0x0C, Register 0x0B, Register 0x0A, and  
Register 0x09 are used to manually program values for the on-chip  
xRSET associated with DAC1, DAC2, DAC3, and DAC4,  
respectively.  
10. Reset the CAL_MODE_EN bit and the calibration clock bit  
CAL_CLK_EN in Register 0x0D to Logic 0 to disable the  
calibration clock.  
11. Set the CAL_MODE_EN bit in Register 0x0D to Logic 0.  
This sets the RSET and gain control muxes towards the  
regular registers.  
12. Disable the calibration clock bit, CAL_CLK_EN, in  
Register 0x0D.  
AUTOMATIC IOUTFSX CALIBRATION  
Many applications require tight DAC gain control. The AD9106  
provides an automatic IOUTFSx calibration procedure used with  
on-chip xRSET resistors only. The voltage reference VREFIO can be  
the on-chip reference or an off-chip reference. The automatic  
calibration procedure does a fine adjustment of each internal  
To reset the calibration, pulse the CAL_RESET bit in Register 0x0D  
RESET  
to Logic 1 and Logic 0, pulse the  
in the SPICONFIG register.  
pin, or pulse the RESET bit  
CLOCK INPUT  
xRSET value and each current IREFx  
.
For optimum DAC performance, the AD9106 clock input signal  
pair (CLKP/CLKN) should be a very low jitter, fast rise time  
differential signal. The clock receiver generates its own common-  
mode voltage requiring these two inputs to be ac-coupled.  
When using automatic calibration the following board-level  
connections are required:  
1. Connect FSADJ1 and FSADJ2/CAL_SENSE together.  
2. A resistor should be installed between FSADJ2/  
CAL_SENSE and ground. The value of this resistor should  
be RCAL_SENSE = 32 × VREFIO/IOUTFS where IOUTFS is the target  
full-scale current for all four DACs.  
Figure 38 shows the recommended interface to a number of  
Analog Devices, Inc., LVDS clock drivers that work well with the  
AD9106. A 100 Ω termination resistor and two 0.1 µF coupling  
capacitors are used. Figure 40 shows an interface to an Analog  
Devices differential PECL driver. Figure 41 shows a single-ended-  
to-differential converter using a balun driving CLKP/CLKN, the  
preferred methods for clocking the AD9106.  
Automatic calibration uses an internal clock. This calibration  
clock is equal to the DAC clock divided by the division factor  
Rev. A | Page 23 of 48  
 
 
 
AD9106  
Data Sheet  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
AD9516/AD9518  
GENERATING SIGNAL PATTERNS  
The AD9106 can generate three types of signal patterns under  
control of its programmable pattern generator.  
0.1µF  
0.1µF  
CLK+  
CLK  
CLKP  
100Ω  
AD9106  
LVDS DRIVER  
CLK  
Continuous waveforms  
0.1µF  
0.1µF  
CLK–  
CLKN  
Periodic pulse train waveforms that repeat indefinitely  
Periodic pulse train waveforms that repeat a finite number  
of times  
50Ω*  
50Ω*  
*50Ω RESISTORS ARE OPTIONAL.  
Run Bit  
Figure 38. Differential LVDS Clock Input  
Setting the RUN bit in the PAT_STATUS register to 1 arms the  
AD9106 for pattern generation. Clearing this bit shuts down the  
pattern generator as shown in Figure 45.  
In applications where the analog output signals are at low  
frequencies, it is acceptable to drive the AD9106 clock input  
with a single-ended CMOS signal. Figure 39 shows such an  
interface. CLKP is driven directly from a CMOS gate, and the  
CLKN pin is bypassed to ground with a 0.1 μF capacitor in  
parallel with a 39 kΩ resistor. The optional resistor is a series  
termination.  
Trigger Terminal  
A falling edge on the trigger terminal starts the generation of a  
pattern. If RUN is set, the falling edge of trigger starts pattern  
generation. As shown in Figure 43, the pattern generator state  
goes to “pattern on” a number of CLKP/CLKN clock cycles  
following the falling edge of trigger. This delay is programmed  
in the PATTERN_DELAY bit field.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
0.1µF  
AD9516/AD9518  
CLK+  
CLK  
50Ω  
CMOS DRIVER  
CLK  
CLKP  
The rising edge on the trigger terminal is a request for the  
termination of pattern generation (see Figure 44).  
OPTIONAL  
100Ω  
AD9106  
CLKN  
0.1µF  
Pattern Bit (Read Only)  
0.1µF  
39kΩ  
The read-only PATTERN bit in the PAT_STATUS register  
indicates, when set to 1, that the pattern generator is in the  
“pattern on” state. A 0 indicates that the pattern generator is in  
the “pattern off ” state.  
Figure 39. Single-Ended 1.8 V CMOS Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515/  
0.1µF  
AD9516/AD9518  
0.1µF  
CLK+  
CLK–  
CLK  
CLKP  
100Ω  
AD9106  
PECL DRIVER  
0.1µF  
0.1µF  
CLKN  
CLK  
240Ω  
240Ω  
50Ω*  
50Ω*  
*50Ω RESISTORS ARE OPTIONAL.  
Figure 40. Differential PECL Sample Clock  
®
Mini-Circuits  
ADT1-1WT, 1:1Z  
0.1µF  
0.1µF  
XFMR  
CLK+  
CLKP  
50Ω  
AD9106  
0.1µF  
CLKN  
SCHOTTKY  
DIODES:  
HSM2812  
Figure 41. Transformer Coupled Clock  
DAC OUTPUT CLOCK EDGE  
Each of the four DACs can be configured independently to  
output samples on the rising or falling edge of the CLKP/CLKN  
clock input by configuring the DACx_INV_CLK bits in the  
CLOCKCONFIG register. This functionality sets the DAC  
output timing resolution at 1/(2 × FCLKP/CLKN).  
Rev. A | Page 24 of 48  
 
 
 
 
 
 
Data Sheet  
AD9106  
Pattern Types  
Setting Waveform Start Delay Base  
The waveform start delay base is programmed in the  
Continuous waveforms are output by some or all DACx for  
START_DELAY_BASE field of the PAT_TIMEBASE register.  
Each DACx has a START_DLYx register described in  
the DACX Input Data Paths section. The start delay base  
determines how many CLKP/CLKN clock cycles there are  
per START_DELAYx LSB.  
the duration of the pattern on state of the pattern  
generator. Continuous waveforms ignore pattern periods.  
Periodic pulse trains that repeat indefinitely are waveforms  
that are output once during each pattern period. Pattern  
periods occur one after the other as long as the pattern  
generator is in the pattern on state.  
Periodic pulse trains that repeat a finite number of times  
are just like those that repeat indefinitely except that the  
waveforms are output during a finite number of  
consecutive pattern periods.  
RUN BIT  
tDLY = PATTERN_DELAY VALUE + 1  
tSU  
PATTERN  
STARTS  
TRIGGER  
TRIGGER  
CLKP/  
CLKN  
PATTERN  
EXECUTED  
PATTERN  
EXECUTED  
PATTERN  
EXECUTED  
PATTERN_PERIOD  
PATTERN  
GENERATOR  
STATE  
PATTERN  
GENERTAOR OFF  
PATTERN  
GENERTAOR ON  
START_DLY1  
DAC1  
Figure 43. Trigger Initiated Pattern Start with Pattern Delay  
tSU  
DATA @  
STOP_ADDR.1  
DATA @  
START_ADDR.1  
TRIGGER  
START_DLY2  
DAC2  
DATA @  
STOP_ADDR.2  
DATA @  
START_ADDR.2  
CLKP/  
CLKN  
START_DLY3  
PATTERN  
GENERATOR  
STATE  
DAC3  
PATTERN ON  
PATTERN OFF  
PATTERN  
STOPS  
DATA @  
STOP_ADDR.3  
DATA @  
START_ADDR.3  
START_DLY4  
DAC4  
Figure 44. Trigger Rising Edge Initiated Pattern Stop  
DATA @  
STOP_ADDR.4  
DATA @  
START_ADDR.4  
Figure 42. Periodic Pulse Trains output on all DACx  
RUN  
BIT  
PATTERN GENERATOR PROGRAMMING  
Figure 44 shows periodic pulse train waveforms as seen at  
the output to each of the four DACx. The four waveforms are  
generated in each pattern period. Each has its own start delay  
(START_DLYx), a delay between the start of each pattern  
period and the start of the waveform. The four DACx  
waveforms are the same digital signal stored in SRAM and  
multiplied by the DACx digital gain factor. The SRAM data  
is read using each DACx address counter simultaneously.  
CLKP/  
CLKN  
PATTERN  
GENERATOR  
STATE  
PATTERN ON  
PATTERN OFF  
PATTERN  
STOPS  
Figure 45. RUN Bit Driven Pattern Stop  
DACx INPUT DATA PATHS  
Setting Pattern Period  
Each of the four DACx has its own digital data path. Timing  
in the DACx data paths is governed by the pattern generator.  
Each DACx data path includes a waveform selector, a waveform  
repeat controller, RAM output and DDS output multiplier  
(RAM output can amplitude modulate DDS output), DDSx  
cycle counter, DACx digital gain multiplier, and a DACx digital  
offset summer.  
Two register bit fields are used to set the pattern period. The  
PAT_PERIOD_BASE field in the PAT_TIMEBASE register sets  
the number of CLKP/N clock per PATTERN_PERIOD LSB.  
The PATTERN_PERIOD is programmed in the PAT_PERIOD  
register. The longest pattern period available is 65535 ×  
16/FCLKP/CLKN  
.
Rev. A | Page 25 of 48  
 
 
 
 
 
AD9106  
Data Sheet  
Manually Controlled DOUT  
DACx Digital Gain Multiplier  
If DOUT_MODE = 0 in the DOUT_CONFIG register, DOUT can  
be turned on or off using the DOUT_VAL bit of that same register.  
On its way into each DACx, the samples are multiplied by a  
12-bit gain factor that has a range of 2.0. These gain values are  
programmed in the DACx_DGAIN registers.  
Pattern Generator Controlled DOUT  
DACx Digital Offset Summer  
Figure 46 depicts the rising edge of a pattern generator  
controlled DOUT pulse. Figure 47 shows the falling edge.  
Pattern generator controlled DOUT is set by setting  
DOUT_MODE = 1. Then, the start delay is programmed in the  
DOUT_START_DLY register and the stop delay is programmed  
into the DOUT_STOP field of the DOUT_CONFIG register.  
DACx input samples are summed with a 12-bit dc offset  
value as well. The dc offset values are programmed in the  
DACxDOF registers.  
DACx Waveform Selectors  
Waveform selector inputs are  
DOUT goes high DOUT_START[15:0] CLKP/CLKN cycles  
after the falling edge of the signal input to the trigger terminal.  
DOUT stays high as long as a pattern is being generated. DOUT  
goes low DOUT_STOP[3:0] CLKP/CLKN cycles after the clock  
edge that causes pattern generation to stop.  
DACx sawtooth generator output  
DACx pseudo random sequence generator output  
DACx dc constant generator output  
DACx pulsed, phase shifted DDS sine wave output  
RAM output  
DACx pulsed, phase shifted DDS sine wave output  
amplitude modulated by ram output  
DOUT DELAY=  
DOUT_START[15:0] CLKP/CLKN CYCLES  
tSU  
Waveform selection for each DACx is made by programming  
the WAVEx_yCONFIG registers.  
TRIGGER  
DACx Pattern Period Repeat Controller  
CLKP/  
CLKN  
The PATTERN_RPT bit in the PAT_TYPE register controls  
whether the pattern output auto repeats (periodic pulse train  
repeats indefinitely) or repeats a number of consecutive times  
defined by the DACx_REPEAT_CYCLE fields. The latter are  
periodic pulse trains that repeat a finite number of times.  
DOUT  
Figure 46. DOUT Start Sequence  
PATTERN  
STOPS  
DACx, Number of DDS Cycles  
Each DACx input data path establishes the pulse width of the  
sine wave output from the single common DDS in number  
of sine wave cycles. The cycle counts are programmed in  
DDS_CYCx registers.  
PATTERN  
GENERATOR  
STATE  
PATTERN ON  
PATTERN OFF  
CLKP/CLKN  
DACx DDS Phase Shift  
DOUT DELAY = DOUT_STOP[3:0]  
CLKP/CLKN CYCLES  
Each DACx input data path shifts the phase of the output of the  
single common DDS. The phase shift is programmed using the  
DDSx_PHASE fields.  
DOUT  
Figure 47. DOUT Stop Sequence  
DIRECT DIGITAL SYNTHESIZER (DDS)  
DOUT FUNCTION  
The direct digital synthesizer generates a sine wave that can be  
output on any of the four DACx. The DDS is a global shared  
signal resource. It can generate one sinusoid at a frequency  
determined by its tuning word input. The tuning word is 24 bits  
wide. The resolution of DDS tuning is FCLKP/CLKN/224. The DDS  
output frequency is DDS_TW × FCLKP/CLKN/224.  
In applications where AD9106 DACs drive high voltage  
amplifiers, such as in ultrasound transducer array element  
driver signal chains, it can be useful to turn on and off each  
amplifier at precise times relative to the waveform generated by  
each AD9106 DAC. The SDO/SDI2/DOUT terminal, can be  
configured to provide this function. One amplifier on/off strobe  
can be provided for all four DACs.  
The DDS tuning word is programmed using one of two  
methods. For a fixed frequency, DDSTW_MSB and  
DDSTW_LSB are programmed with a constant. When the  
frequency of the DDS needs to change within each pattern  
period, a sequence of values stored in SRAM is combined with  
a selection of DDSTW_MSB bits to form the tuning word.  
The SPI interface needs to be configured in 3-wire mode (see  
Figure 32 and Figure 33). This is accomplished by setting the  
SPI3WIRE or SPI3WIREM bits in the SPICONFIG register.  
When SPID_RV or SPI_DRVM of the SPICONFIG register is  
set to Logic 1, the SDO/SDI2/DOUT terminal provides the  
DOUT function.  
Rev. A | Page 26 of 48  
 
 
 
 
Data Sheet  
AD9106  
SRAM  
POSITIVE  
SAWTOOTH  
The AD9106 4K × 12 SRAM can contain signal samples,  
amplitude modulation patterns, lists of DDS tuning words, or  
lists of DDS output phase offset words. Data is written to and  
read from the memory via the SPI port as long as the SRAM is  
not actively engaged in pattern generation (RUN = 0). To write  
to SRAM, set up the PAT_STATUS register as follows:  
NEGATIVE  
SAWTOOTH  
TRIANGLE  
WAVE  
BUF_READ = 0  
MEM_ACCESS = 1  
RUN = 0  
Figure 48. Sawtooth Patterns  
PSEUDO-RANDOM SIGNAL GENERATOR  
To read data from SRAM, set up the PAT_STATUS as follows:  
The pseudo-random noise generator generates a noise signal on  
each DACx output if “Pseudo-Random Sequence” is selected in  
any of the PRESTORE_SELx fields in the WAV4_3CONFIG or  
WAV2_1 CONFIG registers. The pseudo-random noise signals  
are generated as continuous waveforms only.  
BUF_READ = 1  
MEM_ACCESS = 1  
RUN = 0  
The SPI port address space for SRAM is location 0x6000  
through 0x6FFF.  
DC CONSTANT  
A programmable dc current between 0.0 and IOUTFSx can be  
generated on each DACx if the “Constant Value” in selected in  
any of the PRESTORE_SELx fields of the WAV4_3CONFIG  
or WAV2_1 CONFIG registers. DC constant currents are  
generated as continuous waveforms only. The dc current level is  
programmed by writing to the DACx_CONST field in the  
appropriate DACx_CST register.  
SRAM can be accessed using any of the SPI operating modes  
shown in Figure 32 through Figure 35. Using the SPI modes of  
operation shown in Figure 33 and Figure 34, the entire SRAM  
can be written in (2 + 2 × 4096) × 8/FSCLK seconds. The SRAM is  
a shared signal generation resource. Data from this one 4K × 12  
memory can be used to generate signals for all four DAC.  
When the PAT_STATUS register RUN bit = 1 (pattern  
generation enabled), each DACx data path has its own  
SRAM address counter. Each address counter has its own  
START_ADDRx and STOP_ADDRx. During each pattern  
period, data is read from RAM after the START_DELAYx  
period and while the each address counter is incrementing.  
SRAM is read simultaneously by all four DACx data paths.  
POWER SUPPLY NOTES  
The AD9106 supply rails are specified in Table 9. The AD9106  
includes three on-chip linear regulators. The supply rails driven  
by these regulators are run at 1.8 V. Two usage rules for these  
regulators follow.  
When CLKVDD is 2.5 V or higher, the 1.8 V on-chip  
CLDO regulator may be used. If CLKVDD = 1.8 V, then  
the CLDO regulator must be disabled by setting the  
PDN_LDO_CLK bit in the POWERCONFIG register.  
CLKVDD and CLDO are connected together.  
Incrementing Pattern Generation Mode SRAM Address  
Counters  
Each of the SRAM address counters can be programmed to be  
incremented by CLKP/CLKN (default) or by the rising edge of  
the DDSx MSB. DDSx[11:0] are the DDS output samples for a  
given DACx. The DDS_MSB_ENx bits in the DDSx_CONFIG  
register make this selection.  
When DVDD is 2.5 V or higher, the 1.8 V on-chip DLDO1  
and DLDO2 regulators may be used. If DVVD is 1.8 V, t h e  
DLDO1 and DLDO2 regulators must be disabled by setting  
the PDN_LDO_DIG1 and PDN_LDO_DIG2 bits in the  
POWERCONFIG register. DVDD, DLDO1, and DLDO2  
are connected together.  
As an example, DDSx MSB could be used to clock the address  
counter when generating a chirp waveform from the DDS using  
a list of tuning words in SRAM. Each frequency setting dwells  
for one DDS output sinewave cycle.  
POWER-DOWN CAPABILITIES  
SAWTOOTH GENERATOR  
The POWERCONFIG register allows the user to place the  
AD9106 in a reduced power dissipation configuration while the  
CLKP/CLKN input is running and the power supplies are on.  
DAC1, DAC2, DAC3, and DAC4 can all be put to sleep by setting  
the DACx_SLEEP bits in the POWERCONFIG register.  
There is a separate sawtooth signal generator for each DACx.  
When the sawtooth is selected in any of the PRESTORE_SELx  
fields in the WAV4_3CONFIG or WAV2_1 CONFIG registers,  
the appropriate sawtooth generator is connected to the desired  
DACx digital data path.  
Clocking of the waveform generator and the DACs can be turned  
off by setting the CLK_PDN bit in the CLOCKCONFIG register.  
Taking these actions places the AD9106 in the power-down mode  
specified in Table 8.  
Sawtooth types, shown in Figure 48, are selected using the  
SAW_TYPEx fields in the SAWx_yCONFIG registers. The  
number of samples per sawtooth waveform step is programmed  
in each SAW_STEPx field.  
Rev. A | Page 27 of 48  
 
 
 
 
 
 
 
AD9106  
Data Sheet  
APPLICATIONS INFORMATION  
SIGNAL GENERATION EXAMPLES  
PATTERN_PERIOD  
START_DLY1 #CYCLES1  
AD9106 waveform and pattern generation examples are  
provided in this section.  
DAC1  
Figure 49 shows a different waveform being generated by each  
DACx. The waveforms are all stored in the 4K × 12 SRAM in  
different segments. DACx path address counters access the  
SRAM simultaneously. Each waveform is repeated once during  
each pattern period. In each pattern period a start delay is  
executed, then the pattern is read from SRAM.  
START_DLY2 #CYCLES2  
DAC2  
#CYCLES3  
START_DLY3  
TRIGGER  
PATTERN  
PATTERN  
EXECUTED  
PATTERN  
EXECUTED  
DAC3  
DAC4  
EXECUTED  
#CYCLES4  
START_DLY4  
PATTERN_PERIOD  
START_DLY1  
DAC1  
DATA @  
STOP_ADDR1  
DATA @  
START_ADDR1  
Figure 50. Pulsed Sine Waves in Pattern Periods  
START_DLY2  
DAC2  
Figure 51 shows a pulsed sinewave generated by DAC1 and each  
of the three available sawtooth wave shapes generated by DAC2,  
DAC3, and DAC4 in successive pattern periods with start delay.  
PATTERN_PERIOD  
DATA @  
STOP_ADDR2  
DATA @  
START_ADDR2  
START_DLY3  
DAC3  
START_DLY1 #CYCLES1  
DATA @  
STOP_ADDR3  
DATA @  
START_ADDR3  
DAC1  
START_DLY4  
DAC4  
START_DLY2  
DATA @  
STOP_ADDR4  
DATA @  
START_ADDR4  
Figure 49. Pattern Using Different Waveforms Stored in SRAM  
DAC2  
Figure 50 shows pulsed sine waves generated by each DACx.  
The DDS generates a sine wave at a programmed frequency.  
Each DACx channel is programmed with a start delay and a  
number of sine wave cycles to output.  
START_DLY3  
DAC3  
START_DLY4  
DAC4  
Figure 51. Pulsed SineWaves and Sawtooth Waveforms in Pattern Periods  
Rev. A | Page 28 of 48  
 
 
 
 
 
Data Sheet  
AD9106  
START_DLY1  
Figure 52 shows all DACx outputting sine waves modulated by  
an amplitude envelope. The sine wave is generated by the DDS  
and the amplitude envelope is stored in SRAM. Different start  
delays and digital gain multipliers are applied by each DACx  
input data path.  
DAC1  
DAC2  
DAC3  
START_DLY2  
PATTERN_PERIOD  
START_DLY1  
START_DLY3  
DAC1  
DATA @  
START_ADDR1  
DATA @  
STOP_ADDR1  
START_DLY2  
DAC2  
START_DLY4  
DATA @  
START_ADDR2  
START_DLY3  
DATA @  
STOP_ADDR2  
DAC4  
Figure 53. Waveforms with Start Delays  
DAC3  
DATA @  
START_ADDR3  
DATA @  
STOP_ADDR3  
DAC1  
DAC2  
DAC3  
START_DLY4  
DAC4  
DATA @  
START_ADDR4  
DATA @  
STOP_ADDR4  
Figure 52. DDS Output Amplitude Modulated by RAM Envelope  
Figure 53 and Figure 54 show the four DACs generating  
continuous waveforms. One with start delays, one without.  
DAC4  
Figure 54. Waveforms Without Start Delays  
Rev. A | Page 29 of 48  
 
 
 
AD9106  
Data Sheet  
REGISTER MAP  
Table 14. Register Summary  
Addr Register  
(Hex) Name  
W
R
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
LSBFIRST  
SPI3WIRE  
RESET  
DOUBLESPI  
SPI_DRV  
DOUT_EN  
RESERVED[3:2]  
±x±± SPICONFIG  
[15:8]  
[7:±]  
±x±±  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
R
R
R
R
R
R
R
R
R
R
R
R
R
R
RESERVED[1:±]  
DOUT_ENM  
SPI_DRVM  
REF_EXT  
EPS  
DOUBLESPIM  
RESETM  
SPI3WIREM  
LSBFIRSTM  
RESERVED  
CLK_LDO_STAT  
DAC1_SLEEP  
DIG1_LDO_STAT  
DAC2_SLEEP  
DIG2_LDO_STAT PDN_LDO_CLK  
±x±1 POWERCONFIG [15:8]  
[7:±]  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
PDN_LDO_DIG1 PDN_LDO_DIG2 REF_PDN  
RESERVED[15:12]  
DAC3_SLEEP  
DAC4_SLEEP  
DIS_CLK1  
DIS_CLK2  
DIS_CLK3  
DIS_CLK4  
±x±2 CLOCKCONFIG [15:8]  
[7:±]  
DIS_DCLK  
CLK_SLEEP  
CLK_PDN  
DAC1_INV_CLK  
DAC2_INV_CLK  
DAC3_INV_CLK  
DAC4_INV_CLK  
RESERVED[9:2]  
±x±3 REFADJ  
[15:8]  
[7:±]  
RESERVED[1:±]  
BGDR  
RESERVED  
RESERVED  
DAC4_GAIN_CAL  
DAC4_GAIN  
±x±4 DAC4AGAIN  
±x±5 DAC3AGAIN  
±x±6 DAC2AGAIN  
±x±7 DAC1AGAIN  
±x±8 DACxRANGE  
±x±9 DAC4RSET  
±x±A DAC3RSET  
±x±B DAC2RSET  
±x±C DAC1RSET  
±x±D CALCONFIG  
[15:8]  
[7:±]  
RESERVED  
RESERVED  
DAC3_GAIN_CAL  
DAC3_GAIN  
[15:8]  
[7:±]  
RESERVED  
RESERVED  
DAC2_GAIN_CAL  
DAC2_GAIN  
[15:8]  
[7:±]  
RESERVED  
RESERVED  
DAC1_GAIN_CAL  
DAC1_GAIN  
[15:8]  
[7:±]  
RESERVED  
[15:8]  
[7:±]  
DAC4_GAIN_RNG  
DAC4_RSET_EN  
DAC3_GAIN_RNG  
DAC2_GAIN_RNG  
DAC1_GAIN_RNG  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DAC4_RSET_CAL  
DAC4_RSET  
[15:8]  
[7:±]  
±x  
±±±A  
DAC3_RSET_EN  
DAC2_RSET_EN  
DAC1_RSET_EN  
RESERVED  
DAC3_RSET_CAL  
DAC3_RSET  
[15:8]  
[7:±]  
±x  
±±±A  
DAC2_RSET_CAL  
DAC2_RSET  
[15:8]  
[7:±]  
±x  
±±±A  
DAC1_RSET_CAL  
DAC1_RSET  
[15:8]  
[7:±]  
±x  
±±±A  
COMP_OFFSET  
_OF  
COMP_OFFSET  
_UF  
RSET_CAL_OF  
RSET_CAL_UF  
GAIN_CAL_OF  
GAIN_CAL_UF  
CAL_CLK_DIV  
CAL_RESET  
[15:8]  
[7:±]  
±x±±  
CAL_MODE  
RESERVED  
CAL_MODE_EN  
COMP_CAL_RNG  
CAL_CLK_EN  
COMP_OFFSET_CAL  
±x±E COMPOFFSET  
±x1D RAMUPDATE  
±x1E PAT_STATUS  
±x1F PAT_TYPE  
[15:8]  
[7:±]  
±x±±  
±x±±  
±x±±  
±x±±  
W
W
W
W
W
W
W
W
W
W
W
R
R
R
R
R
R
R
R
R
R
R
RESERVED  
CAL_FIN  
START_CAL  
RAMUPDATE  
RUN  
RESERVED[14:7]  
RESERVED[6:±]  
RESERVED[12:5]  
BUF_READ  
RESERVED[14:7]  
RESERVED[6:±]  
[15:8]  
[7:±]  
[15:8]  
[7:±]  
RESERVED[3:±]  
MEM_ACCESS  
PATTERN  
[15:8]  
[7:±]  
PATTERN_RPT  
PATTERN_DELAY[15:8]  
PATTERN_DELAY[7:±]  
±x2± PATTERN_DLY [15:8]  
[7:±]  
±x  
±±±E  
DAC4_DIG_OFFSET[11:4]  
DAC3_DIG_OFFSET[11:4]  
DAC2_DIG_OFFSET[11:4]  
DAC1_DIG_OFFSET[11:4]  
±x22 DAC4DOF  
±x23 DAC3DOF  
±x24 DAC2DOF  
±x25 DAC1DOF  
[15:8]  
[7:±]  
±x±±  
±x±±  
±x±±  
±x±±  
±±±±  
±x±±  
DAC4_DIG_OFFSET[3:±]  
DAC3_DIG_OFFSET[3:±]  
DAC2_DIG_OFFSET[3:±]  
DAC1_DIG_OFFSET[3:±]  
RESERVED  
[15:8]  
[7:±]  
RESERVED  
RESERVED  
RESERVED  
[15:8]  
[7:±]  
[15:8]  
[7:±]  
RESERVED  
PRESTORE_SEL4  
PRESTORE_SEL3  
RESERVED  
RESERVED  
WAVE_SEL4  
±x26 WAV4_3CONFIG [15:8]  
[7:±]  
RESERVED  
WAVE_SEL3  
RESERVED  
RESERVED  
PRESTORE_SEL2  
PRESTORE_SEL1  
MASK_DAC4  
MASK_DAC3  
CH2_ADD  
CH1_ADD  
WAVE_SEL2  
WAVE_SEL1  
±x27 WAV2_1CONFIG [15:8]  
[7:±]  
Rev. A | Page 3± of 48  
 
Data Sheet  
AD9106  
Addr Register  
(Hex) Name  
W
R
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RESERVED  
HOLD  
±x28 PAT_TIMEBASE [15:8]  
[7:±]  
±x±111  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
PAT_PERIOD_BASE  
START_DELAY_BASE  
PATTERN_PERIOD[15:8]  
PATTERN_PERIOD[7:±]  
±x29 PAT_PERIOD  
±x2A DAC4_3PATx  
±x2B DAC2_1PATx  
[15:8]  
[7:±]  
±x8±±±  
±x±1±1  
±x±1±1  
±x±±±3  
±x±±  
DAC4_REPEAT_CYCLE  
DAC3_REPEAT_CYCLE  
[15:8]  
[7:±]  
DAC2_REPEAT_CYCLE  
DAC1_REPEAT_CYCLE  
[15:8]  
[7:±]  
DOUT_START[15:8]  
DOUT_START[7:±]  
±x2C DOUT_START  
_DLY  
[15:8]  
[7:±]  
RESERVED[9:2]  
±x2D DOUT_CONFIG [15:8]  
[7:±]  
RESERVED[1:±]  
DOUT_VAL  
DOUT_MODE  
DOUT_STOP  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DAC4_CONST[11:4]  
DAC3_CONST[11:4]  
DAC2_CONST[11:4]  
DAC1_CONST[11:4]  
DAC4_DIG_GAIN[11:4]  
DAC3_DIG_GAIN[11:4]  
DAC2_DIG_GAIN[11:4]  
DAC1_DIG_GAIN[11:4]  
±x2E DAC4_CST  
±x2F DAC3_CST  
±x3± DAC2_CST  
±x31 DAC1_CST  
±x32 DAC4_DGAIN  
±x33 DAC3_DGAIN  
±x34 DAC2_DGAIN  
±x35 DAC1_DGAIN  
[15:8]  
[7:±]  
±x±±  
DAC4_CONST[3:±]  
DAC3_CONST[3:±]  
DAC2_CONST[3:±]  
DAC1_CONST[3:±]  
DAC4_DIG_GAIN[3:±]  
DAC3_DIG_GAIN[3:±]  
DAC2_DIG_GAIN[3:±]  
DAC1_DIG_GAIN[3:±]  
[15:8]  
[7:±]  
±x±±  
[15:8]  
[7:±]  
±x±±  
[15:8]  
[7:±]  
±x±±  
[15:8]  
[7:±]  
±x±±  
[15:8]  
[7:±]  
±x±±  
[15:8]  
[7:±]  
±x±±  
[15:8]  
[7:±]  
±x±±  
SAW_STEP4  
SAW_STEP3  
SAW_TYPE4  
SAW_TYPE3  
±x36 SAW4_3CONFIG [15:8]  
[7:±]  
±x±±  
SAW_STEP2  
SAW_STEP1  
SAW_TYPE2  
SAW_TYPE1  
±x37 SAW2_1CONFIG [15:8]  
[7:±]  
±x±±  
RESERVED  
±x38 RESERVED  
to  
±x3D  
DDSTW_MSB[15:8]  
DDSTW_MSB[7:±]  
±x3E DDS_TW32  
±x3F DDS_TW1  
±x4± DDS4_PW  
±x41 DDS3_PW  
±x42 DDS2_PW  
±x43 DDS1_PW  
±x44 TRIG_TW_SEL  
[15:8]  
[7:±]  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
W
W
W
W
W
W
W
W
W
R
R
R
R
R
R
R
R
R
DDSTW_LSB  
RESERVED  
[15:8]  
[7:±]  
DDS4_PHASE[15:8]  
DDS4_PHASE[7:±]  
[15:8]  
[7:±]  
DDS3_PHASE[15:8]  
DDS3_PHASE[7:±]  
[15:8]  
[7:±]  
DDS2_PHASE[15:8]  
DDS2_PHASE[7:±]  
[15:8]  
[7:±]  
DDS1_PHASE[15:8]  
DDS1_PHASE[7:±]  
[15:8]  
[7:±]  
RESERVED[13:6]  
[15:8]  
[7:±]  
RESERVED[5:±]  
TRIG_DELAY_EN RESERVED  
RESERVED  
DDS_COS_EN4 DDS_MSB_EN4  
DDS_COS_EN2 DDS_MSB_EN2  
RESERVED  
RESERVED  
DDS_COS_EN3  
DDS_COS_EN1  
DDS_MSB_EN3  
DDS_MSB_EN1  
±x45 DDSx_CONFIG [15:8]  
[7:±]  
RESERVED  
RESERVED  
TW_MEM_SHIFT  
TW_MEM_EN  
RESERVED  
RESERVED  
±x47 TW_RAM  
_CONFIG  
[15:8]  
[7:±]  
Rev. A | Page 31 of 48  
AD9106  
Data Sheet  
Addr Register  
(Hex) Name  
W
R
Bits Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
START_DELAY4[15:8]  
±x5± START_DLY4  
[15:8]  
±x±±  
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
START_DELAY4[7:±]  
START_ADDR4[11:4]  
[7:±]  
±x51 START_ADDR4 [15:8]  
[7:±]  
±x±±  
START_ADDR4[3:±]  
STOP_ADDR4[3:±]  
RESERVED  
STOP_ADDR4[11:4]  
±x52 STOP_ADDR4  
±x53 DDS_CYC4  
±x54 START_DLY3  
[15:8]  
[7:±]  
±x±±  
RESERVED  
DDS_CYC4[15:8]  
DDS_CYC4[7:±]  
[15:8]  
[7:±]  
±x±±±1  
±x±±  
START_DELAY3[15:8]  
START_DELAY3[7:±]  
[15:8]  
[7:±]  
START_ADDR3[11:4]  
±x55 START_ADDR3 [15:8]  
[7:±]  
±x±±  
START_ADDR3[3:±]  
STOP_ADDR3[3:±]  
RESERVED  
RESERVED  
STOP_ADDR3[11:4]  
±x56 STOP_ADDR3  
±x57 DDS_CYC3  
±±58 START_DLY2  
[15:8]  
[7:±]  
±x±±  
DDS_CYC3[15:8]  
DDS_CYC3[7:±]  
[15:8]  
[7:±]  
±x±±±1  
±x±±  
START_DELAY2[15:8]  
START_DELAY2[7:±]  
[15:8]  
[7:±]  
START_ADDR2[11:4]  
±x59 START_ADDR2 [15:8]  
[7:±]  
±x±±  
START_ADDR2[3:±]  
STOP_ADDR2[3:±]  
RESERVED  
RESERVED  
STOP_ADDR2[11:4]  
±x5A STOP_ADDR2  
±x5B DDS_CYC2  
±x5C START_DLY1  
[15:8]  
[7:±]  
±x±±  
DDS_CYC2[15:8]  
DDS_CYC2[7:±]  
[15:8]  
[7:±]  
±x±±±1  
±x±±  
START_DELAY1[15:8]  
START_DELAY1[7:±]  
[15:8]  
[7:±]  
START_ADDR1[11:4]  
±x5D START_ADDR1 [15:8]  
[7:±]  
±x±±  
START_ADDR1[3:±]  
STOP_ADDR1[3:±]  
RESERVED  
RESERVED  
STOP_ADDR1[11:4]  
±x5E STOP_ADDR1  
±±5F DDS_CYC1  
±±6± CFG_ERROR  
[15:8]  
[7:±]  
±x±±  
DDS_CYC1[15:8]  
DDS_CYC1[7:±]  
[15:8]  
[7:±]  
±x±±±1  
±x±±  
ERROR_CLEAR  
CFG_ERROR[1:±]  
CFG_ERROR[8:2]  
DOUT_START_LG PAT_DLY_SHORT DOUT_START  
[15:8]  
[7:±]  
PERIOD  
_SHORT_ERR  
ODD_ADDR  
_ERR  
MEM_READ  
_ERR  
_ERR  
_ERR  
_SHORT_ERR  
RESERVED  
SRAM_DATA[11:8]  
N/A  
±x6±±± SRAM_DATA  
to  
±x6FFF  
[15:8]  
[7:±]  
W
R
SRAM_DATA[7:±]  
Rev. A | Page 32 of 48  
Data Sheet  
AD9106  
REGISTER DESCRIPTIONS  
SPI Control Register (SPICONFIG, Address 0x00)  
Table 15. Bit Descriptions for SPICONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
15  
LSBFIRST  
LSB first selection.  
±
±
±
RW  
±
1
MSB first per SPI standard (default).  
LSB first per SPI standard.  
Selects if SPI is using 3-wire or 4-wire interface.  
4-wire SPI.  
14  
13  
SPI3WIRE  
RESET  
RW  
RW  
±
1
3-wire SPI.  
Executes software reset of SPI and controllers, reloads default register  
values, except for Register ±x±±.  
±
1
Normal status.  
Resets whole register map, except for Register ±x±±.  
Double SPI data line.  
12  
DOUBLESPI  
±
RW  
±
1
The SPI port has only 1 data line and can be used as a 3-wire or 4-wire  
interface.  
The SPI port has 2 data lines: both bidirectional defining a pseudo dual  
3-wire interface where CS and SCLK are shared between the two ports.  
This mode is only available for RAM data read or write.  
11  
1±  
SPI_DRV  
Double-drive ability for SPI output.  
Single SPI output drive ability.  
Two-time drive ability on SPI output.  
±
±
RW  
RW  
±
1
DOUT_EN  
RESERVED  
Enables DOUT signal on SDO/SDI2/DOUT pin.  
SDO/SDI2 function input/output.  
DOUT function output.  
±
1
[9:6]  
RW  
RW  
RW  
RW  
RW  
5
4
3
2
DOUT_ENM1  
F
Enable DOUT signal on SDO/SDI2/DOUT pin.  
Double-drive ability for SPI output.  
Double SPI data line.  
SPI_DRVM1  
DOUBLESPIM1  
RESETM1  
±
±
±
Executes software reset of SPI and controllers, reloads default register  
values, except for Register ±x±±.  
1
±
SPI3WIREM1  
LSBFIRSTM1  
Selects if SPI is using 3-wire or 4-wire interface.  
LSB first selection.  
±
±
RW  
RW  
1 SPICONFIG[1±:15] should always be set to the mirror of SPICONFIG[5:±] to allow easy recovery of the SPI operation when the LSBFIRST bit is set incorrectly. Bit[15] =  
Bit[±], Bit[14] = Bit[1], Bit[13] = Bit[2], Bit[12] = Bit[3], Bit[11] = Bit[4] and Bit[1±] = Bit[5].  
Rev. A | Page 33 of 48  
 
 
AD9106  
Data Sheet  
Power Status Register (POWERCONFIG, Address 0x01)  
Table 16. Bit Descriptions for POWERCONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
RW  
R
[15:12] RESERVED  
±x±±  
11  
1±  
9
CLK_LDO_STAT  
Read-only flag indicating CLKVDD_1P8 LDO is on.  
Read-only flag indicating DVDD1 LDO is on.  
±
±
±
±
±
±
±
DIG1_LDO_STAT  
DIG2_LDO_STAT  
PDN_LDO_CLK  
PDN_LDO_DIG1  
PDN_LDO_DIG2  
REF_PDN  
R
Read-only flag indicating DVDD2 LDO is on.  
R
8
Disables the CLKVDD_1P8 LDO. An external supply is required.  
Disables the DVDD1 LDO. An external supply is required.  
Disables the DVDD2 LDO. An external supply is required.  
RW  
RW  
RW  
RW  
7
6
5
Disables 1± kΩ resistor that creates REFIO voltage. User can drive with  
external voltage or provide external BG resistor.  
4
3
2
1
±
REF_EXT  
Power down main BG reference including DAC bias.  
Disables DAC1 output current.  
±
±
±
±
±
RW  
RW  
RW  
RW  
RW  
DAC1_SLEEP  
DAC2_SLEEP  
DAC3_SLEEP  
DAC4_SLEEP  
Disables DAC2 output current.  
Disables DAC3 output current.  
Disables DAC4 output current.  
Clock Control Register (CLOCKCONFIG, Address 0x02)  
Table 17. Bit Descriptions for CLOCKCONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
RW  
[15:12] RESERVED  
±x±±±  
11  
1±  
9
DIS_CLK1  
DIS_CLK2  
DIS_CLK3  
DIS_CLK4  
DIS_DCLK  
CLK_SLEEP  
CLK_PDN  
Disables the analog clock to DAC1 out of the clock distribution block.  
Disables the analog clock to DAC2 out of the clock distribution block.  
Disables the analog clock to DAC3 out of the clock distribution block.  
Disables the analog clock to DAC4 out of the clock distribution block.  
Disables the clock to core digital block.  
±
±
±
±
±
±
±
RW  
RW  
RW  
8
RW  
7
RW  
6
Enables a very low power clock mode.  
RW  
5
Disables and powers down main clock receiver. No clocks will be active in  
the part.  
RW  
4
EPS  
Enables Power Save (EPS) enables a low power option for the clock  
receiver, but maintains low jitter performance on DAC clock rising edge.  
The DAC clock falling edge is substantially degraded.  
±
RW  
3
2
1
±
DAC1_INV_CLK  
DAC2_INV_CLK  
DAC3_INV_CLK  
DAC4_INV_CLK  
Cannot use EPS while using this bit. Inverts the clock inside DAC Core 1  
allowing 18±° phase shift in DAC1 update timing.  
±
±
±
±
RW  
RW  
RW  
RW  
Cannot use EPS while using this bit. Inverts the clock inside DAC Core 2  
allowing 18±° phase shift in DAC2 update timing.  
Cannot use EPS while using this bit. Inverts the clock inside DAC Core 3  
allowing 18±° phase shift in DAC3 update timing.  
Cannot use EPS while using this bit. Inverts the clock inside DAC Core 4  
allowing 18±° phase shift in DAC4 update timing.  
Reference Resistor Register (REFADJ, Address 0x03)  
Table 18. Bit Descriptions for REFADJ  
Bits  
Bit Field Name  
RESERVED  
BGDR  
Settings  
Description  
Reset  
Access  
RW  
[15:6]  
[5:±]  
±x±±±  
±x±±  
Adjusts the BG 1± kΩ resistor (nominal) to 8 kΩ to 12 kΩ, changes BG  
voltage from 8±± mV to 1.2 V, respectively.  
RW  
Rev. A | Page 34 of 48  
Data Sheet  
AD9106  
DAC4 Analog Gain Register (DAC4AGAIN, Address 0x04)  
Table 19. Bit Descriptions for DAC4AGAIN  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±
Access  
RW  
R
15  
RESERVED  
[14:8]  
7
DAC4_GAIN_CAL  
RESERVED  
DAC4 analog gain calibration output—read only.  
±x±±  
±
RW  
RW  
[6:±]  
DAC4_GAIN  
DAC4 analog gain control while not in calibration mode—twos  
complement.  
±x±±  
DAC3 Analog Gain Register (DAC3AGAIN, Address 0x05)  
Table 20. Bit Descriptions for DAC3AGAIN  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±
Access  
RW  
R
15  
RESERVED  
[14:8]  
7
DAC3_GAIN_CAL  
RESERVED  
DAC3 analog gain calibration output—read only.  
±x±±  
±
RW  
RW  
[6:±]  
DAC3_GAIN  
DAC3 analog gain control while not in calibration mode—twos  
complement.  
±x±±  
DAC2 Analog Gain Register (DAC2AGAIN, Address 0x06)  
Table 21. Bit Descriptions for DAC2AGAIN  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±
Access  
RW  
R
15  
RESERVED  
[14:8]  
7
DAC2_GAIN_CAL  
RESERVED  
DAC2 analog gain calibration output—read only.  
±x±±  
±
RW  
RW  
[6:±]  
DAC2_GAIN  
DAC2 analog gain control while not in calibration mode—twos  
complement.  
±x±±  
DAC1 Analog Gain Register (DAC1AGAIN, Address 0x07)  
Table 22. Bit Descriptions for DAC1AGAIN  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±
Access  
RW  
R
15  
RESERVED  
[14:8]  
7
DAC1_GAIN_CAL  
RESERVED  
DAC1 analog gain calibration output—read only.  
±x±±  
±
RW  
RW  
[6:±]  
DAC1_GAIN  
DAC1 analog gain control while not in calibration mode—twos  
complement.  
±x±±  
DAC Analog Gain Range Register (DACxRANGE, Address 0x08)  
Table 23. Bit Descriptions for DACxRANGE  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±x±±  
±x±  
Access  
RW  
[15:8]  
[7:6]  
[5:4]  
[3:2]  
[1:±]  
RESERVED  
DAC4_GAIN_RNG  
DAC3_GAIN_RNG  
DAC2_GAIN_RNG  
DAC1_GAIN_RNG  
DAC4 gain range control.  
DAC3 gain range control.  
DAC2 gain range control.  
DAC1 gain range control.  
RW  
±x±  
RW  
±x±  
RW  
±x±  
RW  
Rev. A | Page 35 of 48  
AD9106  
Data Sheet  
FSADJ4 Register (DAC4RSET, Address 0x09)  
Table 24. Bit Descriptions for DAC4RSET  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
15  
DAC4_RSET_EN  
For write, enable the internal RSET resistor for DAC4; for read, RSET for  
DAC4 is enabled during calibration mode.  
±x±±  
RW  
[14:13] RESERVED  
±x±±  
±x±±  
±x±±  
±x±A  
RW  
R
[12:8]  
[7:5]  
[4:±]  
DAC4_RSET_CAL  
Digital control value of RSET resistor for DAC4 after calibration—read only.  
Digital control to set the value of RSET resistor in DAC4.  
RESERVED  
RW  
RW  
DAC4_RSET  
FSADJ3 Register (DAC3RSET, Address 0x0A)  
Table 25. Bit Descriptions for DAC3RSET  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
15  
DAC3_RSET_EN  
For write, enable the internal RSET resistor for DAC3; for read, RSET for  
DAC3 is enabled during calibration mode.  
±
RW  
[14:13] RESERVED  
±x±  
RW  
R
[12:8]  
[7:5]  
[4:±]  
DAC3_RSET_CAL  
Digital control value of RSET resistor for DAC3 after calibration—read only.  
Digital control to set the value of RSET resistor in DAC3.  
±x±±  
±x±  
RESERVED  
RW  
RW  
DAC3_RSET  
±x±A  
FSADJ2 Register (DAC2RSET, Address 0x0B)  
Table 26. Bit Descriptions for DAC2RSET  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
15  
DAC2_RSET_EN  
For write, enable the internal RSET resistor for DAC2; for read, RSET for  
DAC2 is enabled during calibration mode.  
±
RW  
[14:13] RESERVED  
±x±  
RW  
R
[12:8]  
[7:5]  
[4:±]  
DAC2_RSET_CAL  
Digital control value of RSET resistor for DAC2 after calibration—read only.  
Digital control to set the value of RSET resistor in DAC2.  
±x±±  
±x±  
RESERVED  
RW  
RW  
DAC2_RSET  
±xA  
FSADJ1 Register (DAC1RSET, Address 0x0C)  
Table 27. Bit Descriptions for DAC1RSET  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
15  
DAC1_RSET_EN  
For write, enable the internal RSET resistor for DAC1; for read, RSET for DAC1  
is enabled during calibration mode.  
±x±±  
RW  
[14:13] RESERVED  
±x±±  
±x±±  
±x±  
RW  
R
[12:8]  
[7:5]  
[4:±]  
DAC1_RSET_CAL  
Digital control value of RSET resistor for DAC1 after calibration—read only.  
Digital control to set the value of RSET resistor in DAC1.  
RESERVED  
RW  
RW  
DAC1_RSET  
±x±A  
Rev. A | Page 36 of 48  
Data Sheet  
AD9106  
Calibration Register (CALCONFIG, Address 0x0D)  
Table 28. Bit Descriptions for CALCONFIG  
Bits  
15  
14  
13  
12  
11  
1±  
9
Bit Field Name  
Settings  
Description  
Reset  
Access  
RW  
R
RESERVED  
±
COMP_OFFSET_OF  
COMP_OFFSET_UF  
RSET_CAL_OF  
RSET_CAL_UF  
GAIN_CAL_OF  
GAIN_CAL_UF  
CAL_RESET  
Compensation offset calibration value overflow.  
Compensation offset calibration value underflow.  
RSET calibration value overflow.  
±
±
R
±
R
RSET calibration value underflow.  
±
R
Gain calibration value overflow.  
±
R
Gain calibration value underflow.  
±
R
8
71  
61  
Pulse this bit high and low to reset the calibration results.  
Read-only flag indicating calibration is being used.  
Enables the gain calibration circuitry.  
±
RW  
R
CAL_MODE  
±
CAL_MODE_EN  
COMP_CAL_RNG  
CAL_CLK_EN  
±
RW  
RW  
RW  
RW  
[5:4]  
3
Offset calibration range.  
±x±  
±
Enables the calibration clock to calibration circuitry.  
Sets divider from DAC clock to calibration clock.  
[2:±]  
CAL_CLK_DIV  
±x±  
1 Change of location  
Comp Offset Register (COMPOFFSET, Address 0x0E)  
Table 29. Bit Descriptions for COMPOFFSET  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
Access  
RW  
R
15  
RESERVED  
[14:8]  
[7:2]  
1
COMP_OFFSET_CAL  
RESERVED  
The result of the offset calibration for the comparator.  
RW  
R
CAL_FIN  
Read-only flag indicating calibration is completed.  
Start a calibration cycle.  
±
START_CAL  
RW  
Update Pattern Register (RAMUPDATE, Address 0x1D)  
Table 30. Bit Descriptions for RAMUPDATE  
Bits  
[15:1]  
±
Bit Name  
Settings  
Description  
Reset  
±x±±  
±
Access  
RW  
RESERVED  
RAMPUPDATE  
Update all SPI setting with new configuration (self clearing).  
RW  
Command/Status Register (PAT_STATUS, Address 0x1E)  
Table 31. Bit Descriptions for PAT_STATUS  
Bits  
Bit Field Name  
RESERVED  
BUF_READ  
MEM_ACCESS  
PAT TERN  
Settings  
Description  
Reset  
Access  
RW  
RW  
RW  
R
[15:4]  
±x±±±  
3
2
1
±
Read back from updated buffer.  
±
±
±
±
Memory SPI access enable.  
Status of pattern being played, read only.  
Allows the pattern generation and stop pattern after trigger.  
RUN  
RW  
Rev. A | Page 37 of 48  
 
AD9106  
Data Sheet  
Command/Status Register (PAT_TYPE, Address 0x1F)  
Table 32. Bit Descriptions for PAT_TYPE  
Bits  
[15:1]  
±
Bit Field Name  
Settings  
Description  
Reset  
±x±±±±  
±
Access  
RW  
RESERVED  
PATTERN_RPT  
Setting this bit allows the pattern to repeat the number of times  
defined in DAC4_3PATx and DAC2_1PATx.  
RW  
±
1
Pattern continuously runs.  
Pattern repeats the number of times defined in DAC4_3PATx and  
DAC2_1PATx.  
Trigger Start to Real Pattern Delay Register (PATTERN_DLY, Address 0x20)  
Table 33. Bit Descriptions for PATTERN_DLY  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
PATTERN_DELAY  
Time between trigger low and pattern start in number of DAC clock  
cycles + 1.  
±x±±±E RW  
DAC4 Digital Offset Register (DAC4DOF, Address 0x22)  
Table 34. Bit Descriptions for DAC4DOF  
Bits  
Bit Field Name  
DAC4_DIG_OFFSET  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±±  
Access  
[15:4]  
[3:±]  
DAC4 digital offset.  
RW  
RW  
DAC3 Digital Offset Register (DAC3DOF, Address 0x23)  
Table 35. Bit Descriptions for DAC3DOF  
Bits  
Bit Field Name  
DAC3_DIG_OFFSET  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
DAC3 digital offset.  
RW  
DAC2 Digital Offset Register (DAC2DOF, Address 0x24)  
Table 36. Bit Descriptions for DAC2DOF  
Bits  
Bit Field Name  
DAC2_DIG_OFFSET  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±±  
Access  
RW  
[15:4]  
[3:±]  
DAC2 digital offset.  
RW  
DAC1 Digital Offset Register (DAC1DOF, Address 0x25)  
Table 37. Bit Descriptions for DAC1DOF  
Bits  
Bit Field Name  
DAC1_DIG_OFFSET  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±±  
Access  
RW  
[15:4]  
[3:±]  
DAC1 digital offset.  
RW  
Rev. A | Page 38 of 48  
Data Sheet  
AD9106  
Wave3/Wave4 Select Register (WAV4_3CONFIG, Address 0x26)  
Table 38. Bit Descriptions for WAV4_3CONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
RW  
[15:14] RESERVED  
±x±±  
±x±±  
[13:12] PRESTORE_SEL4  
RW  
±
1
Constant value held into DAC4 constant value MSB/LSB register.  
Sawtooth defined in DAC4 sawtooth configuration register  
(SAW4_3CONFIG).  
2
3
Pseudo-random sequence.  
DDS4 output.  
[11:1±] RESERVED  
±x±±  
±x1  
RW  
RW  
[9:8]  
WAVE_SEL4  
±
1
2
3
Waveform read from RAM between START_ADDR4 and STOP_ADDR4.  
Prestored waveform.  
Prestored waveform using START_DELAY4 and PATTERN_PERIOD.  
Prestored waveform modulated by waveform from RAM.  
[7:6]  
[5:4]  
RESERVED  
±x±±  
±x±±  
RW  
RW  
PRESTORE_SEL3  
±
1
Constant value held into DAC3 constant value MSB/LSB register.  
Sawtooth defined in DAC3 sawtooth configuration register  
(SAW4_3CONFIG).  
2
3
Pseudo-random sequence.  
DDS3 output.  
[3:2]  
[1:±]  
RESERVED  
±x±±  
±x1  
RW  
RW  
WAVE_SEL3  
±
1
2
3
Waveform read from RAM between START_ADDR3 and STOP_ADDR3.  
Prestored waveform.  
Prestored waveform using START_DELAY3 and PATTERN_PERIOD.  
Prestored waveform modulated by waveform from RAM.  
Wave1/Wave2 Select Register (WAV2_1CONFIG, Address 0x27)  
Table 39. Bit Descriptions for WAV2_1CONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±x±  
Access  
RW  
[15:14] RESERVED  
[13:12] PRESTORE_SEL2  
±x±  
RW  
±
1
Constant value held into DAC2 constant value MSB/LSB register.  
Sawtooth defined in DAC2 sawtooth configuration register  
(SAW2_1CONFIG).  
2
3
Pseudo-random sequence.  
DDS2 output.  
11  
1±  
MASK_DAC4  
CH2_ADD  
Mask DAC4 to DAC4_CONST value.  
±
±
RW  
RW  
Add DAC2 and DAC4, output at DAC2.  
Normal operation for DAC2/DAC4.  
Add DAC2 and DAC4, output from DAC2.  
±
1
[9:8]  
[7:6]  
WAVE_SEL2  
RESERVED  
±x1  
±x±  
RW  
RW  
±
1
2
3
Waveform read from RAM between START_ADDR2 and STOP_ADDR2.  
Prestored waveform.  
Prestored waveform using START_DELAY2 and PATTERN_PERIOD.  
Prestored waveform modulated by waveform from RAM.  
Rev. A | Page 39 of 48  
AD9106  
Data Sheet  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[5:4]  
PRESTORE_SEL1  
±x±  
RW  
±
1
Constant value held into DAC1 constant value MSB/LSB register.  
Sawtooth defined in DAC1 sawtooth configuration register  
(SAW2_1CONFIG).  
2
3
Pseudo-random sequence.  
DDS1 output.  
3
2
MASK_DAC3  
CH1_ADD  
Mask DAC3 to DAC3_CONST value.  
±
±
RW  
RW  
Add DAC1 and DAC3, output at DAC1.  
Normal operation for DAC1/DAC3.  
Add DAC1 and DAC3, and output at DAC1. In this start_delay case, DAC3  
output remains unchanged.  
±
1
[1:±]  
WAVE_SEL1  
±x1  
RW  
±
1
2
3
Waveform read from RAM between START_ADDR1 and STOP_ADDR1.  
Prestored waveform.  
Prestored waveform using START_DELAY1 and PATTERN_PERIOD.  
Prestored waveform modulated by waveform from RAM.  
DAC Time Control Register (PAT_TIMEBASE, Address 0x28)  
Table 40. Bit Descriptions for PAT_TIMEBASE  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±x±±  
±x1  
Access  
RW  
[15:12] RESERVED  
[11:8]  
[7:4]  
[3:±]  
HOLD  
Number of times the DAC value holds the sample (± = DAC holds for 1  
sample).  
RW  
PAT_PERIOD_BASE  
START_DELAY_BASE  
Number of DAC clock period per PATTERN_PERIOD LSB  
(± = PATTERN_PERIOD LSB = 1 DAC clock period).  
±x1  
±x1  
RW  
RW  
Number of DAC clock period per START_DELAYx LSB  
(± = START_DELAYx LSB = 1 DAC clock period).  
Pattern Period Register (PAT_PERIOD, Address 0x029)  
Table 41. Bit Descriptions for PAT_PERIOD  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
PATTERN_PERIOD  
Pattern period register.  
±x8±±± RW  
DAC3/DAC4 Pattern Repeat Cycles Register (DAC4_3PATx, Address 0x2A)  
Table 42. Bit Descriptions for DAC4_3PATx  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:8]  
[7:±]  
DAC4_REPEAT_CYCLE  
DAC3_REPEAT_CYCLE  
±x±1  
±x±1  
RW  
RW  
Number of DAC4 pattern repeat cycles + 1, (± repeat 1 pattern).  
Number of DAC3 pattern repeat cycles + 1, (± repeat 1 pattern).  
DAC1/DAC2 Pattern Repeat Cycles Register (DAC2_1PATx, Address 0x2B)  
Table 43. Bit Descriptions for DAC2_1PATx  
Bits  
[15:8]  
[7:±]  
Bit Field Name  
DAC2_REPEAT_CYCLE  
DAC1_REPEAT_CYCLE  
Settings  
Description  
Reset  
±x±1  
±x±1  
Access  
RW  
Number of DAC2 pattern repeat cycles + 1, (± repeat 1 pattern).  
Number of DAC1 pattern repeat cycles + 1, (± repeat 1 pattern).  
RW  
Rev. A | Page 4± of 48  
Data Sheet  
AD9106  
Trigger Start to DOUT Signal Register (DOUT_START_DLY, Address 0x2C)  
Table 44. Bit Descriptions for DOUT_START_DLY  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DOUT_START  
Time between trigger low and DOUT signal high in number of DAC  
clock cycles.  
±x±±±3 RW  
DOUT CONFIG Register (DOUT_CONFIG, Address 0x2D)  
Table 45. Bit Descriptions for DOUT_CONFIG  
Bits  
[15:6]  
5
Bit Field Name  
Settings  
Description  
Reset  
Access  
RESERVED  
±x±±±± RW  
DOUT_VAL  
Manually sets DOUT signal value, only valid when DOUT_MODE = ±  
(manual mode).  
±
±
RW  
RW  
4
DOUT_MODE  
DOUT_STOP  
Sets different enable signal mode.  
±x±  
±x1  
DOUT pin is output from SDO/SDI2/DOUT pin and is manually controlled  
by Bit 5, DOUT_EN in Register ±x±± which must be set to use this feature.  
DOUT pin is output from SDO/SDI2/DOUT. The pin is controlled by  
DOUT_START and DOUT_STOP. DOUT_EN in Register ±x±± must be set to  
use this feature.  
[3:±]  
Time between pattern end and DOUT signal low in number of DAC clock  
cycles.  
±x±  
RW  
DAC4 Constant Value Register (DAC4_CST, Address 0x2E)  
Table 46. Bit Descriptions for DAC4_CST  
Bits  
Bit Field Name  
DAC4_CONST  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
Most significant byte of DAC4 constant value.  
RW  
DAC3 Constant Value Register (DAC3_CST, Address 0x2F)  
Table 47. Bit Descriptions for DAC3_CST  
Bits  
Bit Field Name  
DAC3_CONST  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
Most significant byte of DAC3 constant value.  
RW  
DAC2 Constant Value Register (DAC2_CST, Address 0x30)  
Table 48. Bit Descriptions for DAC2_CST  
Bits  
Bit Field Name  
DAC2_CONST  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
Most significant byte of DAC2 constant value.  
RW  
DAC1 Constant Value Register (DAC1_CST, Address 0x31)  
Table 49. Bit Descriptions for DAC1_CST  
Bits  
Bit Field Name  
DAC1_CONST  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
Most significant byte of DAC1 constant value.  
RW  
Rev. A | Page 41 of 48  
AD9106  
Data Sheet  
DAC4 Digital Gain Register (DAC4_DGAIN, Address 0x32)  
Table 50. Bit Descriptions for DAC4_DGAIN  
Bits  
Bit Field Name  
DAC4_DIG_GAIN  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
DAC4 digital gain range of +2 to −2.  
RW  
DAC3 Digital Gain Register (DAC3_DGAIN, Address 0x33)  
Table 51. Bit Descriptions for DAC3_DGAIN  
Bits  
Bit Field Name  
DAC3_DIG_GAIN  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
DAC3 digital gain. Range of +2 to −2.  
RW  
DAC2 Digital Gain Register (DAC2_DGAIN, Address 0x34)  
Table 52. Bit Descriptions for DAC2_DGAIN  
Bits  
Bit Field Name  
DAC2_DIG_GAIN  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
DAC2 digital gain. Range of +2 to −2.  
RW  
DAC1 Digital Gain Register (DAC1_DGAIN, Address 0x35)  
Table 53. Bit Descriptions for DAC1_DGAIN  
Bits  
Bit Field Name  
DAC1_DIG_GAIN  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
DAC1 digital gain. Range of +2 to −2.  
RW  
DAC3/4 Sawtooth Configuration Register (SAW4_3CONFIG, Address 0x36)  
Table 54. Bit Descriptions for SAW4_3CONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±x±1  
±x±  
Access  
RW  
[15:1±] SAW_STEP4  
Number of samples per step for DAC4.  
[9:8]  
SAW_TYPE4  
The type of sawtooth (positive, negative, or triangle) for DAC4.  
Ramp up saw wave.  
Ramp down saw wave.  
Triangle saw wave.  
No wave, zero.  
RW  
±
1
2
3
[7:2]  
[1:±]  
SAW_STEP3  
SAW_TYPE3  
Number of samples per step for DAC3.  
±x±1  
±x±  
RW  
RW  
The type of sawtooth (positive, negative, or triangle) for DAC3.  
Ramp up saw wave.  
Ramp down saw wave.  
Triangle saw wave.  
No wave, zero.  
±
1
2
3
DAC1/2 Sawtooth Configuration Register (SAW2_1CONFIG, Address 0x37)  
Table 55. Bit Descriptions for SAW2_1CONFIG  
Bits  
[15:1±] SAW_STEP2  
[9:8] SAW_TYPE2  
Bit Field Name  
Settings  
Description  
Reset  
±x±1  
±x±  
Access  
RW  
Number of samples per step for DAC2.  
The type of sawtooth (positive, negative, or triangle) for DAC2.  
Ramp up saw wave.  
Ramp down saw wave.  
Triangle saw wave.  
No wave, zero.  
RW  
±
1
2
3
Rev. A | Page 42 of 48  
Data Sheet  
AD9106  
Bits  
[7:2]  
[1:±]  
Bit Field Name  
Settings  
Description  
Reset  
Access  
RW  
SAW_STEP1  
SAW_TYPE1  
Number of samples per step for DAC1.  
±x±1  
±x±  
The type of sawtooth (positive, negative, or triangle) for DAC1.  
Ramp up saw wave.  
Ramp down saw wave.  
Triangle saw wave.  
No wave, zero.  
RW  
±
1
2
3
DDS Tuning Word MSB Register (DDS_TW32, Address 0x3E)  
Table 56. Bit Descriptions for DDS_TW32  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDSTW_MSB  
DDS tuning word MSB.  
±x±±±± RW  
DDS Tuning word LSB Register (DDS_TW1, Address 0x3F)  
Table 57. Bit Descriptions for DDS_TW1  
Bits  
Bit Field Name  
DDSTW_LSB  
RESERVED  
Settings  
Description  
Reset  
Access  
[15:8]  
[7:±]  
DDS tuning word LSB.  
±x±±  
±x±±  
RW  
RW  
DDS4 Phase Offset Register (DDS4_PW, Address 0x40)  
Table 58. Bit Descriptions for DDS4_PW  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS4_PHASE  
DDS4 phase offset.  
±x±±±± RW  
DDS3 Phase Offset Register (DDS3_PW, Address 0x41)  
Table 59. Bit Descriptions for DDS3_PW  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS3_PHASE  
DDS3 phase offset.  
±x±±±± RW  
DDS2 Phase Offset Register (DDS2_PW, Address 0x42)  
Table 60. Bit Descriptions for DDS2_PW  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS2_PHASE  
DDS2 phase offset.  
±x±±±± RW  
DDS1 Phase Offset Register (DDS1_PW, Address 0x43)  
Table 61. Bit Descriptions for DDS1_PW  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS1_PHASE  
DDS1 phase offset.  
±x±±±± RW  
Rev. A | Page 43 of 48  
AD9106  
Data Sheet  
Pattern Control 1 Register (TRIG_TW_SEL, Address 0x44)  
Table 62. Bit Descriptions for TRIG_TW_SEL  
Bits  
[15:2]  
1
Bit Field Name  
Settings  
Description  
Reset  
±x±±±±  
±
Access  
RW  
RESERVED  
TRIG_DELAY_EN  
Enable start delay as trigger delay for all four channels.  
Delay repeats for all patterns.  
Delay is only at the start of first pattern.  
RW  
±
1
±
RESERVED  
±
RW  
Pattern Control 2 Register (DDSx_CONFIG, Address 0x45)  
Table 63. Bit Descriptions for DDSx_CONFIG  
Bits  
Bit Field Name  
DDS_COS_EN4  
DDS_MSB_EN4  
Settings  
Description  
Reset  
Access  
RW  
15  
Enable DDS4 cosine output of DDS instead of sine wave.  
±
±
14  
Enable the clock for the RAM address. Increment is coming from the  
DDS4 MSB. Default is coming from DAC clock.  
RW  
13  
12  
11  
1±  
RESERVED  
±
±
±
±
RW  
RW  
RW  
RW  
RESERVED  
DDS_COS_EN3  
DDS_MSB_EN3  
Enable DDS3 cosine output of DDS instead of sine wave.  
Enable the clock for the RAM address. Increment is coming from the  
DDS3 MSB. Default is coming from DAC clock.  
9
PHASE_MEM_EN3  
Enable DDS3 phase offset input coming from RAM reading  
START_ADDR3. Since phase word is 8 bits and RAM data is 14 bits, only  
8 MSB of RAM are taken into account. Default is coming from SPI map,  
DDS3_PHASE.  
±
RW  
8
7
6
RESERVED  
±
±
±
RW  
RW  
RW  
DDS_COS_EN2  
DDS_MSB_EN2  
Enable DDS2 cosine output of DDS instead of sine wave.  
Enable the clock for the RAM address. Increment is coming from the  
DDS2 MSB. Default is coming from DAC clock.  
5
4
3
2
RESERVED  
±
±
±
±
RW  
RW  
RW  
RW  
RESERVED  
DDS_COS_EN1  
DDS_MSB_EN1  
Enable DDS1 cosine output of DDS instead of sine wave.  
Enable the clock for the RAM address. Increment is coming from the  
DDS1 MSB. Default is coming from DAC clock.  
1
±
RESERVED  
±
±
RW  
RW  
TW_MEM_EN  
Enable DDS tuning word input coming from RAM reading using  
START_ADDR1. Since tuning word is 24 bits and RAM data is 14 bits,  
1± bits are set to ±s depending on the value of the TW_MEM_SHIFT bits in  
the TW_RAM_CONFIG register. Default is coming from SPI map, DDSTW.  
TW_RAM_CONFIG Register (TW_RAM_CONFIG, Address 0x47)  
Table 64. Bit Descriptions for TW_RAM_CONFIG  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±x±±±  
±x±±  
Access  
RW  
[15:5]  
[4:±]  
RESERVED  
TW_MEM_SHIFT  
TW_MEM_EN1 must be set = 1 to use this bit field.  
DDS1TW = {RAM[11:±],12'b±}  
RW  
±x±±  
±x±1  
±x±2  
±x±3  
±x±4  
±x±5  
±x±6  
DDS1TW = {DDS1TW[23],RAM[11:±],11'b±}  
DDS1TW = {DDS1TW[23:22],RAM[11:±],1±'b±}  
DDS1TW = {DDS1TW[23:21],RAM[11:±],9'b±}  
DDS1TW = {DDS1TW[23:2±],RAM[11:±],8'b±}  
DDS1TW = {DDS1TW[23:19],RAM[11:±],7'b±}  
DDS1TW = {DDS1TW[23:18],RAM[11:±],6'b±}  
Rev. A | Page 44 of 48  
Data Sheet  
AD9106  
Bits  
Bit Field Name  
Settings  
±x±7  
±x±8  
±x±9  
±x±A  
±x±B  
±x±C  
±x±D  
±x±E  
±x±F  
±x1±  
x
Description  
Reset  
Access  
DDS1TW = {DDS1TW[23:17],RAM[11:±],5'b±}  
DDS1TW = {DDS1TW[23:16],RAM[11:±],3'b±}  
DDS1TW = {DDS1TW[23:15],RAM[11:±],4'b±}  
DDS1TW = {DDS1TW[23:14],RAM[11:±],2’b±}  
DDS1TW = {DDS1TW[23:13],RAM[11:±],1’b±}  
DDS1TW = {DDS1TW[23:12],RAM[11:±]}  
DDS1TW = {DDS1TW[23:11],RAM[11:1]}  
DDS1TW = {DDS1TW[23:1±],RAM[11:2]}  
DDS1TW = {DDS1TW[23:9],RAM[11:3]}  
DDS1TW = {DDS1TW[23:8],RAM[11:4]}  
Reserved  
Start Delay4 Register (START_DLY4, Address 0x50)  
Table 65. Bit Descriptions for START_DLY4  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
START_DELAY4  
Start delay of DAC4.  
±x±±±±  
RW  
Start Address4 Register (START_ADDR4, Address 0x51)  
Table 66. Bit Descriptions for START_ADDR4  
Bits  
Bit Field Name  
START_ADDR4  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±±  
Access  
RW  
[15:4]  
[3:±]  
RAM address where DAC4 starts to read waveform.  
RW  
Stop Address4 Register (STOP_ADDR4, Address 0x52)  
Table 67. Bit Descriptions for STOP_ADDR4  
Bits  
Bit Field Name  
STOP_ADDR4  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±±  
Access  
RW  
[15:4]  
[3:±]  
RAM address where DAC4 stops to read waveform.  
RW  
DDS Cycle4 Register (DDS_CYC4, Address 0x53)  
Table 68. Bit Descriptions for DDS_CYC4  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS_CYC4  
Number of sine wave cycles when DDS prestored waveform with  
start and stop delays is selected for DAC4 output.  
±x±±±1  
RW  
Start Delay3 Register (START_DLY3, Address 0x54)  
Table 69. Bit Descriptions for START_DLY3  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
START_DELAY3  
Start delay of DAC3.  
±x±±±±  
RW  
Start Address3 Register (START_ADDR3, Address 0x55)  
Table 70. Bit Descriptions for START_ADDR3  
Bits  
Bit Field Name  
START_ADDR3  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
RAM address where DAC3 starts to read waveform.  
RW  
Rev. A | Page 45 of 48  
AD9106  
Data Sheet  
Stop Address3 Register (STOP_ADDR3, Address 0x56)  
Table 71. Bit Descriptions for STOP_ADDR3  
Bits  
Bit Field Name  
STOP_ADDR3  
RESERVED  
Settings  
Description  
Reset  
Access  
[15:4]  
[3:±]  
RAM address where DAC3 stops to read waveform.  
±x±±±±  
±x±  
RW  
RW  
DDS Cycles3 Register (DDS_CYC3, Address 0x57)  
Table 72. Bit Descriptions for DDS_CYC3  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS_CYC3  
Number of sine wave cycles when DDS prestored waveform with start and ±x±±±1 RW  
stop delays is selected for DAC3 output.  
Start Delay2 Register (START_DLY2, Address 0x58)  
Table 73. Bit Descriptions for START_DLY2  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
START_DELAY2  
Start delay of DAC2.  
±x±±±± RW  
Start Address2 Register (START_ADDR2, Address 0x59)  
Table 74. Bit Descriptions for START_ADDR2  
Bits  
Bit Field Name  
START_ADDR2  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
[15:4]  
[3:±]  
RAM address where DAC2 starts to read waveform.  
RW  
RW  
Stop Address2 Register (STOP_ADDR2, Address 0x5A)  
Table 75. Bit Descriptions for STOP_ADDR2  
Bits  
Bit Field Name  
STOP_ADDR2  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
RAM address where DAC2 stops to read waveform.  
RW  
DDS Cycle2 Register (DDS_CYC2, Address 0x5B)  
Table 76. Bit Descriptions for DDS_CYC2  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS_CYC2  
Number of sine wave cycles when DDS prestored waveform with  
start and stop delays is selected for DAC2 output.  
±x±±±1  
RW  
Start Delay1 Register (START_DLY1, Address 0x5C)  
Table 77. Bit Descriptions for START_DLY1  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
START_DELAY1  
Start delay of DAC1.  
±x±±±±  
RW  
Rev. A | Page 46 of 48  
Data Sheet  
AD9106  
Start Address1 Register (START_ADDR1, Address 0x5D)  
Table 78. Bit Descriptions for START_ADDR1  
Bits  
Bit Field Name  
START_ADDR1  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
RAM address where DAC1 starts to read waveform.  
RW  
Stop Address1 Register (STOP_ADDR1, Address 0x5E)  
Table 79. Bit Descriptions for STOP_ADDR1  
Bits  
Bit Field Name  
STOP_ADDR1  
RESERVED  
Settings  
Description  
Reset  
±x±±±  
±x±  
Access  
RW  
[15:4]  
[3:±]  
RAM address where DAC1 stops to read waveform.  
RW  
DDS Cycle1 Register (DDS_CYC1, Address 0x5F)  
Table 80. Bit Descriptions for DDS_CYC1  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
Access  
[15:±]  
DDS_CYC1  
Number of sine wave cycles when DDS prestored waveform with  
start and stop delays is selected for DAC1 output.  
±x±±±1  
RW  
CFG Error Register (CFG_ERROR, Address 0x60)  
Table 81. Bit Descriptions for CFG_ERROR  
Bits  
Bit Field Name  
Settings  
Description  
Reset  
±
Access  
15  
ERROR_CLEAR  
Writing this bit clears all errors.  
R
R
R
[14:6]  
5
CFG_ERROR  
±x±±  
±
DOUT_START_LG_ERR  
When DOUT_START is larger than pattern delay, this error  
is toggled.  
4
3
2
1
±
PAT_DLY_SHORT_ERR  
DOUT_START_SHORT_ERR  
PERIOD_SHORT_ERR  
ODD_ADDR_ERR  
When pattern delay value is smaller than default value,  
this error is toggled.  
±
±
±
±
±
R
R
R
R
R
When DOUT_START value is smaller than default value,  
this error is toggled.  
When period register setting value is smaller than pattern  
play cycle, this error is toggled.  
When memory pattern play is not even in length in trigger  
delay mode, this error flag is toggled.  
MEM_READ_ERR  
When there is a memory read conflict, this error flag is  
toggled.  
Rev. A | Page 47 of 48  
AD9106  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 55. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
F
Temperature Range  
Package Description  
32-Lead LFCSP_WQ  
32-Lead LFCSP_WQ  
Evaluation Board  
Package Option  
AD91±6BCPZ  
AD91±6BCPZRL7  
AD91±6-EBZ  
−4±°C to +85°C  
−4±°C to +85°C  
CP-32-12  
CP-32-12  
1 Z = RoHS Compliant Part.  
©2012–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11121-0-2/13(A)  
Rev. A | Page 48 of 48  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY