AD9115-DPG2-EBZ [ADI]

Dual Low Power Digital-to-Analog Converters;
AD9115-DPG2-EBZ
型号: AD9115-DPG2-EBZ
厂家: ADI    ADI
描述:

Dual Low Power Digital-to-Analog Converters

文件: 总52页 (文件大小:1688K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Low Power, 8-/10-/12-/14-Bit  
TxDAC Digital-to-Analog Converters  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
FEATURES  
GENERAL DESCRIPTION  
Power dissipation @ 3.3 V, 20 mA output  
191 mW @ 10 MSPS  
The AD9114/AD9115/AD9116/AD9117 are pin-compatible  
dual, 8-/10-/12-/14-bit, low power digital-to-analog converters  
(DACs) that provide a sample rate of 125 MSPS. These TxDAC®  
converters are optimized for the transmit signal path of commu-  
nication systems. All the devices share the same interface, package,  
and pinout, providing an upward or downward component  
selection path based on performance, resolution, and cost.  
232 mW @ 125 MSPS  
Sleep mode: <3 mW @ 3.3 V  
Supply voltage: 1.8 V to 3.3 V  
SFDR to Nyquist  
86 dBc @ 1 MHz output  
85 dBc @ 10 MHz output  
The AD9114/AD9115/AD9116/AD9117 offer exceptional ac and  
dc performance and support update rates up to 125 MSPS.  
AD9117 NSD @ 1 MHz output, 125 MSPS, 20 mA: −162 dBc/Hz  
Differential current outputs: 2 mA to 20 mA  
2 on-chip auxiliary DACs  
The flexible power supply operating range of 1.8 V to 3.3 V and  
low power dissipation of the AD9114/AD9115/AD9116/AD9117  
make them well suited for portable and low power applications.  
CMOS inputs with single-port operation  
Output common mode: adjustable 0 V to 1.2 V  
Small footprint 40-lead LFCSP RoHS-compliant package  
PRODUCT HIGHLIGHTS  
1. Low Power. DACs operate on a single 1.8 V to 3.3 V supply;  
total power consumption reduces to 225 mW at 100 MSPS.  
Sleep and power-down modes are provided for low power  
idle periods.  
APPLICATIONS  
Wireless infrastructures  
Picocell, femtocell base stations  
Medical instrumentation  
2. CMOS Clock Input. High speed, single-ended CMOS clock  
input supports a 125 MSPS conversion rate.  
Ultrasound transducer excitation  
Portable instrumentation  
3. Easy Interfacing to Other Components. Adjustable output  
common mode from 0 V to 1.2 V allows for easy interfacing  
to other components that accept common-mode levels  
greater than 0 V.  
Signal generators, arbitrary waveform generators  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2008–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Register Descriptions .............................................................. 36  
Digital Interface Operation........................................................... 40  
Digital Data Latching and Retimer Section............................ 41  
Estimating the Overall DAC Pipeline Delay........................... 42  
Reference Operation.................................................................. 43  
Reference Control Amplifier .................................................... 43  
DAC Transfer Function............................................................. 43  
Analog Output............................................................................ 44  
Self-Calibration........................................................................... 44  
Coarse Gain Adjustment........................................................... 45  
Using the Internal Termination Resistors............................... 46  
Applications Information .............................................................. 47  
Output Configurations.............................................................. 47  
Differential Coupling Using a Transformer ............................... 47  
Single-Ended Buffered Output Using an Op Amp................ 47  
Differential Buffered Output Using an Op Amp .................. 48  
Auxiliary DACs........................................................................... 48  
DAC-to-Modulator Interfacing................................................ 49  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
Functional Block Diagram .............................................................. 4  
Specifications..................................................................................... 5  
DC Specifications ......................................................................... 5  
Digital Specifications ................................................................... 7  
AC Specifications.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 18  
Terminology .................................................................................... 31  
Theory of Operation ...................................................................... 32  
Serial Peripheral Interface (SPI) ................................................... 33  
General Operation of the Serial Interface ............................... 33  
Instruction Byte .......................................................................... 33  
Serial Interface Port Pin Descriptions ..................................... 33  
MSB/LSB Transfers..................................................................... 34  
Serial Port Operation ................................................................. 34  
Pin Mode ..................................................................................... 34  
SPI Register Map............................................................................. 35  
Correcting for Nonideal Performance of Quadrature  
Modulators on the IF-to-RF Conversion ................................ 49  
I/Q Channel Gain Matching..................................................... 49  
LO Feedthrough Compensation .............................................. 50  
Results of Gain and Offset Correction.................................... 50  
Outline Dimensions....................................................................... 51  
Ordering Guide .......................................................................... 52  
Rev. D | Page 2 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
REVISION HISTORY  
3/2009—Rev. 0 to Rev. A  
12/2017—Rev. C to Rev. D  
Changes to Product Title and General Description Section.......1  
Changes to Figure 1 ..........................................................................4  
Changes to Figure 94 ......................................................................41  
Changes to Estimating the Overall DAC Pipeline Delay Section ..42  
Updated Outline Dimensions........................................................51  
Changes to Ordering Guide...........................................................52  
Changed I  
OUTFS = 2 mA to IxOUTFS = 20 mA ....................................5  
Changes to Table 1 ............................................................................6  
Changed IOUTFS = 2 mA to IxOUTFS = 20 mA ....................................7  
Changes to Table 2 ............................................................................7  
Changed DVDDIO = 1.8 V to DVDDIO = 3.3 V, Table 3 and  
CVDD = 3.3 V to CVDD = 1.8 V, Table 4 .....................................8  
Changes to Table 5 and Table 6 .......................................................9  
Changes to Table 7 ..........................................................................10  
Changes to Table 8 ..........................................................................12  
Changes to Table 9 ..........................................................................14  
Changes to Table 10 ........................................................................16  
Changes to Typical Performance Characteristics Section .........18  
Changes to Theory of Operation Section and Figure 84 ...........32  
Added Figure 85 to Figure 88; Renumbered Sequentially.........34  
Changes to Table 13 ........................................................................35  
Changes to Table 14 ........................................................................36  
Changes to Digital Interface Operation Section and Figure 89,  
Figure 90, Figure 91, Figure 92, and Figure 93............................40  
Changes to Figure 94, Digital Data Latching Section, and  
3/2013—Rev. B to Rev. C  
Change to Features Section..............................................................1  
Change to Endnote 1, Table 1 ..........................................................6  
Changes to Figure 86 and Figure 88 .............................................34  
Change to Table 13 ..........................................................................35  
Change to Version Register Description, Table 14 .....................39  
Changes to Table 17 and Reference Control Amplifier  
Section ..............................................................................................43  
Changes to Using the Internal Termination Resistors  
Section ..............................................................................................46  
Changes to Single-Ended Buffered Output Using an Op Amp  
Section ..............................................................................................47  
Changes to Differential Buffered Output Using an Op Amp  
Section ..............................................................................................48  
Updated Outline Dimensions........................................................51  
5/2012—Rev. A to Rev. B  
Retimer Section ...............................................................................41  
Added Reference Operation Section, Reference Control  
Changes to Table 1 ............................................................................5  
Changes to Table 2 ............................................................................7  
Changes to Table 3 and Table 4 .......................................................8  
Changes to Theory of Operation Section ....................................32  
Changes to SCLK—Serial Clock Section .....................................33  
Changes to Pin Mode Section........................................................34  
Changes to Table 14 ........................................................................37  
Changes to Self-Calibration Section.............................................44  
Deleted Modifying the Evaluation Board to Use the ADL5370  
On-Board Quadrature Modulator Section.......................................... 51  
Deleted Evaluation Board Schematics and Artwork Section and  
Figure 111 to Figure 133, Renumbered Sequentially..................52  
Updated Outline Dimensions........................................................51  
Changes to Ordering Guide...........................................................52  
Deleted Bill of Materials Section and Table 18............................75  
Amplifier Section, DAC Transfer Function Section, Figure 96,  
and Table 17 .....................................................................................43  
Added Analog Output Section......................................................44  
Changes to Auxiliary DACs Section.............................................48  
Changes to DAC to Modulator Interfacing Section, Figure 107,  
and Figure 108 .................................................................................49  
Added Figure 111 to Figure 133....................................................52  
Added Table 18................................................................................75  
8/2008—Revision 0: Initial Version  
Rev. D | Page 3 of 52  
AD9114/AD9115/AD9116/AD9117  
FUNCTIONAL BLOCK DIAGRAM  
Data Sheet  
1V  
AD9117  
SPI  
INTERFACE  
DB11  
QR  
IR  
SET  
SET  
2kΩ  
2kΩ  
IR  
CM  
DB10  
60Ω TO  
260Ω  
RLIN  
62.5Ω  
62.5Ω  
10kΩ  
DB9  
DB8  
IOUTN  
IOUTP  
I
I DAC  
REF  
100µA  
BAND  
GAP  
RLIP  
AUX1DAC  
AUX2DAC  
DVDDIO  
1 INTO 2  
AVDD  
AVSS  
RLQP  
INTERLEAVED  
I DATA  
DATA  
INTERFACE  
DVSS  
62.5Ω  
62.5Ω  
DVDD  
DB7  
1.8V  
LDO  
QOUTP  
QOUTN  
Q DATA  
Q DAC  
RLQN  
CLOCK  
DIST  
DB6  
QR  
CM  
60Ω TO  
260Ω  
DB5  
Figure 1.  
Rev. D | Page 4 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IxOUTFS = 20 mA, maximum sample rate, unless otherwise noted.  
Table 1.  
AD9114  
AD9115  
Typ  
AD9116  
Typ  
AD9117  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
8
10  
12  
14  
Bits  
ACCURACY, AVDD = DVDDIO =  
CVDD = 3.3 V  
Differential Nonlinearity (DNL)  
Precalibration  
0.02  
0.02  
0.06  
0.04  
0.4  
0.2  
1.4  
0.6  
LSB  
LSB  
Postcalibration  
Integral Nonlinearity (INL)  
Precalibration  
0.03  
0.03  
0.19  
0.07  
0.68  
0.42  
1.2  
0.6  
LSB  
LSB  
Postcalibration  
ACCURACY, AVDD = DVDDIO =CVDD =  
1.8 V  
Differential Nonlinearity (DNL)  
Precalibration  
0.02  
0.01  
0.08  
0.06  
0.5  
0.2  
1.8  
1.0  
LSB  
LSB  
Postcalibration  
Integral Nonlinearity (INL)  
Precalibration  
0.04  
0.02  
0.2  
0.1  
0.5  
0.3  
1.8  
1.1  
LSB  
LSB  
Postcalibration  
MAIN DAC OUTPUTS  
Offset Error  
−1  
−2  
+1  
+2  
−1  
−2  
+1  
+2  
−1  
−2  
+1  
+2  
−1  
−2  
+1  
+2  
mV  
Gain Error Internal Reference  
Full-Scale Output Current1  
AVDD = 3.3 V  
% of FSR  
2
8
0
20  
8
2
8
0
20  
8
2
8
0
20  
8
2
8
0
20  
8
mA  
mA  
V
AVDD = 1.8 V  
2
2
2
2
Output Common-Mode Level  
(8 mA CMLx Pin)  
−0.5  
+1.2  
−0.5  
+1.2  
−0.5  
+1.2  
−0.5  
+1.2  
Output Compliance Range  
AVDD = 3.3 V, 8 mA Output  
Common Mode Level = −0.5  
Common Mode Level = 0  
Common Mode Level = +1.2  
Output Resistance  
−0.9  
−0.4  
0.8  
−0.1  
+0.4  
1.5  
−0.9  
−0.4  
0.8  
−0.1  
+0.4  
1.5  
−0.9  
−0.4  
0.8  
−0.1  
+0.4  
1.5  
−0.9  
−0.4  
0.8  
−0.1  
+0.4  
1.5  
V
V
V
200  
95  
200  
95  
200  
95  
200  
95  
MΩ  
dB  
Crosstalk, Q DAC to I DAC  
(fOUT = 30 MHz)  
Crosstalk, Q DAC to I DAC  
(fOUT = 60 MHz)  
76  
76  
76  
76  
dB  
MAIN DAC TEMPERATURE DRIFT  
Offset  
0
0
0
0
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
40  
25  
40  
25  
40  
25  
40  
25  
Reference Voltage  
Rev. D | Page 5 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
AD9114  
AD9115  
Typ  
AD9116  
Typ  
AD9117  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Min  
Typ  
Max  
Unit  
AUXDAC OUTPUTS  
Resolution  
10  
10  
10  
10  
Bits  
µA  
Full-Scale Output Current  
(Current Sourcing Mode)  
125  
125  
125  
125  
Voltage Output Mode  
Output Compliance Range  
(Sourcing 1 mA)  
VSS  
VDD  
0.25  
VSS  
VDD  
0.25  
VSS  
VDD  
0.25  
VSS  
VDD  
0.25  
V
Output Compliance Range  
(Sinking 1 mA)  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
V
Output Resistance in Current  
Output Mode AVSS to 1 V  
1
1
1
1
MΩ  
Bits  
AUXDAC Monotonicity  
Guaranteed  
10  
10  
10  
10  
REFERENCE OUTPUT  
Internal Reference Voltage  
Output Resistance  
REFERENCE INPUT  
Voltage Compliance  
AVDD = 3.3 V  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
V
kΩ  
0.1  
0.1  
1.25  
1.0  
0.1  
0.1  
1.25  
1.0  
0.1  
0.1  
1.25  
1.0  
0.1  
0.1  
1.25  
1.0  
V
AVDD = 1.8 V  
V
Input Resistance External  
Reference Mode  
1
1
1
1
MΩ  
DAC MATCHING  
Gain Matching  
ANALOG SUPPLY VOLTAGES  
AVDD  
−1  
+1  
−1  
+1  
−1  
+1  
−1  
+1  
% of FSR  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
V
V
CVDD  
DIGITAL SUPPLY VOLTAGES  
DVDD  
1.7  
1.7  
1.9  
3.5  
1.7  
1.7  
1.9  
3.5  
1.7  
1.7  
1.9  
3.5  
1.7  
1.7  
1.9  
3.5  
V
V
DVDDIO  
POWER CONSUMPTION, AVDD =  
DVDDIO = CVDD = 3.3 V  
fDAC = 125 MSPS, IF = 12.5 MHz  
IAVDD  
220  
55  
220  
55  
220  
55  
220  
55  
mW  
mA  
IDVDD + IDVDDIO  
10  
10  
10  
10  
mA  
ICVDD  
3
3
3
3
mA  
Power-Down Mode with Clock  
Power-Down Mode No Clock  
Power Supply Rejection Ratio  
8.5  
3
8.5  
3
8.5  
3
8.5  
3
mW  
mW  
% FSR/V  
−0.009  
−0.009  
−0.009  
−0.009  
POWER CONSUMPTION, AVDD =  
DVDDIO = CVDD = 1.8 V  
fDAC = 125 MSPS, IF = 12.5 MHz  
IAVDD  
58  
58  
58  
58  
mW  
mA  
24  
24  
24  
24  
IDVDD + IDVDDIO  
8
8
8
8
mA  
ICVDD  
2
2
2
2
mA  
Power-Down Mode with Clock  
Power-Down Mode No Clock  
Power Supply Rejection Ratio  
OPERATING RANGE  
12  
12  
12  
12  
mW  
µW  
850  
−0.007  
+25  
850  
−0.007  
+25  
850  
−0.007  
+25  
850  
−0.007  
+25  
% FSR/V  
°C  
−40  
+85  
−40  
+85  
−40  
+85  
−40  
+85  
1 Based on a 1.6 kΩ external resistor for 20 mA full-scale current.  
Rev. D | Page 6 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IxOUTFS = 20 mA, maximum sample rate, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKIN)  
VIH  
2.1  
3
0
V
VIL  
0.9  
V
Maximum Clock Rate  
125  
MSPS  
SERIAL PERIPHERAL INTERFACE  
Maximum Clock Rate (SCLK)  
25  
20  
20  
10  
5
MHz  
ns  
Minimum Pulse Width High  
Minimum Pulse Width Low  
ns  
Minimum SDIO and to SCLK Setup, tDS  
ns  
Minimum SCLK to SDIO Hold, tDH  
ns  
Maximum SCLK to Valid SDIO, tDV  
20  
5
ns  
Minimum SCLK to Invalid SDIO, tDNV  
ns  
INPUT DATA  
1.8 V Q Channel or DCLKIO Falling Edge  
Setup  
0.25  
1.2  
ns  
ns  
Hold  
1.8 V I Channel or DCLKIO Rising Edge  
Setup  
0.13  
1.1  
ns  
ns  
Hold  
3.3 V Q Channel or DCLKIO Falling Edge  
Setup  
−0.2  
1.5  
ns  
ns  
Hold  
3.3 V I Channel or DCLKIO Rising Edge  
Setup  
−0.2  
1.6  
ns  
ns  
Hold  
DVDDIO = 3.3 V  
VIH  
2.1  
1.2  
3
0
V
V
VIL  
0.9  
0.5  
DVDDIO = 1.8 V  
VIH  
VIL  
1.8  
0
V
V
Rev. D | Page 7 of 52  
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IxOUTFS = 20 mA, maximum sample rate, unless otherwise noted.  
Table 3.  
AD9114  
Min Typ  
AD9115  
Max Min Typ  
AD9116  
Max Min Typ  
AD9117  
Max Min Typ  
Parameter  
Max Unit  
DYNAMIC PERFORMANCE  
Output Settling Time (tST) to 0.1%  
Output Rise Time (10% to 90%)  
Output Fall Time (90% to 10%)  
Output Noise (IOUTFS = 20mA)  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
11.5  
0.27  
0.27  
1471  
11.5  
0.27  
0.27  
465  
11.5  
0.27  
0.27  
117  
11.5  
0.27  
0.27  
37  
ns  
ns  
ns  
pA/√Hz  
76  
55  
85  
55  
85  
55  
85  
55  
dBc  
dBc  
TWO TONE INTERMODULATION  
DISTORTION (IMD)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
81  
60  
81  
60  
81  
60  
82  
61  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD),  
EIGHT-TONE, 500 kHz TONE SPACING  
fDAC = 125 MSPS, fOUT = 1 MHz  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
−131  
−132  
−128  
−141  
−143  
−138  
−153  
−153  
−146  
−163  
−157  
−149  
dBc/Hz  
dBc/Hz  
dBc/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 61.44 MSPS, fOUT = 20 MHz  
fDAC = 122.88 MSPS, fOUT = 30 MHz  
−78  
−80  
−78  
−80  
−78  
−80  
−78  
−80  
dBc  
dBc  
TMIN to TMAX, AVDD = 1.8 V, DVDD = 1.8 V, DVDDIO = 1.8 V, CVDD = 1.8 V, IxOUTFS = 8 mA, maximum sample rate, unless otherwise noted.  
Table 4.  
AD9114  
Min Typ  
AD9115  
Max Min Typ  
AD9116  
Max Min Typ  
AD9117  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
73  
48  
76  
48  
76  
48  
76  
48  
dBc  
dBc  
TWO TONE INTERMODULATION  
DISTORTION (IMD)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
76  
50  
76  
50  
76  
50  
76  
50  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD),  
EIGHT-TONE, 500 kHz TONE SPACING  
fDAC = 125 MSPS, fOUT = 1 MHz  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
−131  
−132  
−128  
−143  
−143  
−138  
−152  
−151  
−140  
−158  
−152  
−141  
dBc/Hz  
dBc/Hz  
dBc/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 61.44 MSPS, fOUT = 20 MHz  
fDAC = 122.88 MSPS, fOUT = 30 MHz  
−69  
−72  
−69  
−72  
−69  
−72  
−69  
−72  
dBc  
dBc  
Rev. D | Page 8 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
Parameter  
Rating  
Table 6.  
AVDD, DVDDIO, CVDD to AVSS,  
DVSS, CVSS  
−0.3 V to +3.9 V  
1
1
Package Type  
θJA  
θJB  
θJC  
Unit  
DVDD to DVSS  
−0.3 V to +2.1 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to AVDD + 0.3 V  
40-Lead LFCSP (with No Airflow  
Movement)  
1 These calculations are intended to represent the thermal performance of the  
indicated packages using a JEDEC multilayer test board. Do not assume the  
same level of thermal performance in actual applications without a careful  
inspection of the conditions in the application to determine that they are  
similar to those assumed in these calculations.  
29.8 19.0 3.4  
°C/W  
AVSS to DVSS, CVSS  
DVSS to AVSS, CVSS  
CVSS to AVSS, DVSS  
REFIO, FSADJQ, FSADJI, CMLQ,  
CMLI to AVSS  
QOUTP, QOUTN, IOUTP, IOUTN,  
RLQP, RLQN, RLIP, RLIN to AVSS  
−1.0 V to AVDD + 0.3 V  
DBn1 (MSB) to D0 (LSB), CS, SCLK,  
−0.3 V to DVDDIO + 0.3 V  
ESD CAUTION  
SDIO, RESET to DVSS  
CLKIN to CVSS  
−0.3 V to CVDD + 0.3 V  
125°C  
Junction Temperature  
Storage Temperature Range  
−65°C to +150°C  
1 n stands for 7 for the AD9114, 9 for the AD9115, 11 for the AD9116, and 13  
for the AD9117.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. D | Page 9 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
DB5  
DB4  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB3  
DB2  
AD9114  
DVDDIO  
DVSS  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
DVDD  
DB1  
(Not to Scale)  
DB0 (LSB)  
NC 10  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 2. AD9114 Pin Configuration  
Table 7. AD9114 Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1 to 4  
DB[5:2]  
DVDDIO  
DVSS  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage Input (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage Output (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD  
with a 1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8
9
DB1  
Digital Inputs  
DB0 (LSB)  
NC  
Digital Input (LSB).  
10 to  
15  
No Connect. These pins are not connected to the chip.  
16  
17  
18  
19  
20  
DCLKIO  
CVDD  
CLKIN  
CVSS  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage Input (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
Sampling Clock Supply Voltage Common.  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on-chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (QRCML) is  
disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a resistor, see  
the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
21  
RLQN  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage Input (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
IOUTP  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Rev. D | Page 10 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Pin No. Mnemonic  
Description  
29  
30  
IOUTN  
RLIN  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
31  
CMLI  
I DAC Output Common-Mode Level. When the internal on-chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (IRCML) is  
disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor, see  
the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
32  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-scale  
current output adjust for Q DAC and must be connected to AVSS through a resistor, see the Theory of Operation  
section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on-chip (QRSET) is enabled, this pin is the auxiliary Q DAC output.  
33  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on-chip (IRSET) is disabled, this pin is the full-scale  
current output adjust for I DAC and must be connected to AVSS through a resistor, see the Theory of Operation  
section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on-chip (IRSET) is enabled, it is the auxiliary I DAC output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 µF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retimer, see  
the Retimer section.  
SDIO/FORMAT Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low (pull-down  
to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the twos complement  
input data format.  
CS/PWRDN  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for  
the SPI port.  
39  
40  
DB7 (MSB)  
DB6  
Digital Input (MSB).  
Digital Input.  
EP (EPAD)  
The exposed pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. D | Page 11 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
PIN 1  
DB7  
DB6  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB5  
DB4  
AD9115  
DVDDIO  
DVSS  
DVDD  
DB3  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB2  
DB1 10  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 3. AD9115 Pin Configuration  
Table 8. AD9115 Pin Function Description  
Pin No. Mnemonic  
Description  
1 to 4  
DB[7:4]  
DVDDIO  
DVSS  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage Input (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage Output (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD  
with a 1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8 to 10  
11  
DB[3:1]  
Digital Inputs.  
DB0 (LSB)  
Digital Input (LSB).  
12 to 15 NC  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage Input (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
16  
17  
18  
19  
20  
DCLKIO  
CVDD  
CLKIN  
CVSS  
Sampling Clock Supply Voltage Common.  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on-chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (QRCML) is  
disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a resistor, see  
the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
21  
RLQN  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage Input (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. D | Page 12 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Pin No. Mnemonic  
Description  
31  
CMLI  
I DAC Output Common-Mode Level. When the internal on-chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (IRCML) is  
disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor,  
see the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
32  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor, see the Theory of  
Operation section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on-chip (QRSET) is enabled, this pin is the auxiliary Q DAC output.  
33  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on-chip (IRSET) is disabled, this pin is the full-scale  
current output adjust for I DAC and must be connected to AVSS through a resistor, see the Theory of Operation  
section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on-chip (IRSET) is enabled, it is the auxiliary I DAC output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 µF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retime, see  
the Retimer section.  
SDIO/FORMAT Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low (pull-down  
to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the twos complement  
input data format.  
CS/PWRDN  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for the  
SPI port.  
39  
40  
DB9 (MSB)  
DB82  
Digital Input (MSB).  
Digital Input.  
EP (EPAD)  
The exposed pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. D | Page 13 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
PIN 1  
DB9  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB8  
DB7  
DB6  
AD9116  
DVDDIO  
DVSS  
DVDD  
DB5  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB4  
DB3 10  
NOTES  
1. NC = NO CONNECT  
2. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 4. AD9116 Pin Configuration  
Table 9. AD9116 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB[9:6]  
DVDDIO  
DVSS  
Description  
1 to 4  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage Input (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage Output (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD  
with a 1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8 to 12  
13  
DB[5:1]  
DB0 (LSB)  
NC  
Digital Inputs.  
Digital Input (LSB).  
14, 15  
16  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage Input (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
DCLKIO  
CVDD  
CLKIN  
CVSS  
17  
18  
19  
Sampling Clock Supply Voltage Common.  
20  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on-chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (QRCML) is  
disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a resistor,  
see the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
21  
RLQN  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage Input (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. D | Page 14 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Pin No.  
Mnemonic  
CMLI  
Description  
31  
I DAC Output Common-Mode Level. When the internal on-chip (IRCML) is enabled, this pin is connected to the  
on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (IRCML) is  
disabled, this pin is the common mode load for I DAC and must be connected to AVSS through a resistor, see  
the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
32  
33  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor, see the Theory of  
Operation section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on-chip (QRSET) is enabled, this pin is the auxiliary Q DAC output.  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on-chip (IRSET) is disabled, this pin is the full-scale  
current output adjust for I DAC and must be connected to AVSS through a resistor, see the Theory of Operation  
section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on-chip (IRSET) is enabled, it is the auxiliary I DAC output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 µF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retime, see  
the Retimer section.  
SDIO/FORMAT Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low  
(pull-down to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the  
twos complement input data format.  
CS/PWRDN  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for  
the SPI port.  
39  
40  
DB11 (MSB)  
DB10  
Digital Input (MSB).  
Digital Input.  
EP (EPAD)  
The exposed pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. D | Page 15 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
PIN 1  
DB11  
DB10  
DB9  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB8  
AD9117  
DVDDIO  
DVSS  
DVDD  
DB7  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB6  
DB5 10  
NOTES  
1. THE EXPOSED PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 5. AD9117 Pin Configuration  
Table 10. AD9117 Pin Function Descriptions  
Pin No.  
Mnemonic  
DB[11:8]  
DVDDIO  
DVSS  
Description  
1 to 4  
Digital Inputs.  
5
6
7
Digital I/O Supply Voltage Input (1.8 V to 3.3 V Nominal).  
Digital Common.  
DVDD  
Digital Core Supply Voltage Output (1.8 V). Strap DVDD to DVDDIO at 1.8 V. If DVDDIO > 1.8 V, bypass DVDD  
with a 1.0 µF capacitor; however, do not otherwise connect it. The LDO should not drive external loads.  
8 to 14  
15  
DB[7:1]  
DB0 (LSB)  
DCLKIO  
CVDD  
Digital Inputs.  
Digital Input (LSB).  
16  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage Input (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
17  
18  
CLKIN  
19  
CVSS  
Sampling Clock Supply Voltage Common.  
20  
CMLQ  
Q DAC Output Common-Mode Level. When the internal on-chip (QRCML) is enabled, this pin is connected to  
the on-chip QRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (QRCML) is  
disabled, this pin is the common-mode load for Q DAC and must be connected to AVSS through a resistor,  
see the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
21  
RLQN  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTN externally.  
22  
23  
24  
QOUTN  
QOUTP  
RLQP  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin. For the internal load resistor to be used, this pin should be tied to  
QOUTP externally.  
25  
26  
27  
AVSS  
AVDD  
RLIP  
Analog Common.  
Analog Supply Voltage Input (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTP externally.  
28  
29  
30  
IOUTP  
IOUTN  
RLIN  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Load Resistor (62.5 Ω) to the CMLI Pin. For the internal load resistor to be used, this pin should be tied to  
IOUTN externally.  
Rev. D | Page 16 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Pin No.  
Mnemonic  
CMLI  
Description  
31  
I DAC Output Common-Mode Level. When the internal on-chip (IRCML) is enabled, this pin is connected to  
the on-chip IRCML resistor. It is recommended to leave this pin unconnected. When the internal on-chip (IRCML  
is disabled, this pin is the common-mode load for I DAC and must be connected to AVSS through a resistor,  
)
see the Using the Internal Termination Resistors section. Recommended value for this external resistor is 0 Ω.  
32  
33  
FSADJQ/AUXQ Full-Scale Current Output Adjust (FSADJQ). When the internal on chip (QRSET) is disabled, this pin is the full-  
scale current output adjust for Q DAC and must be connected to AVSS through a resistor, see the Theory of  
Operation section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary Q DAC Output (AUXQ). When the internal on-chip (QRSET) is enabled, this pin is the auxiliary Q DAC output.  
FSADJI/AUXI  
Full-Scale Current Output Adjust (FSADJI). When the internal on-chip (IRSET) is disabled, this pin is the full-scale  
current output adjust for I DAC and must be connected to AVSS through a resistor, see the Theory of Operation  
section. Nominal value for this external resistor is 4 kΩ for 8 mA output current.  
Auxiliary I DAC Output (AUXI). When the internal on-chip (IRSET) is enabled, it is the auxiliary I DAC output.  
34  
35  
REFIO  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 µF capacitor to AVSS is required).  
RESET/PINMD  
This pin defines the operation mode of the part. A logic low (pull-down to DVSS) sets the part in SPI mode.  
Pulse RESET high to reset the SPI registers to their default values.  
A logic high (pull-up to DVDDIO) puts the device into pin mode (PINMD).  
36  
37  
38  
SCLK/CLKMD  
Clock Input for Serial Port (SCLK). In SPI mode, this pin is the clock input for the serial port.  
Clock Mode (CLKMD). In pin mode, CLKMD determines the phase of the internal retiming clock. When  
DCLKIO = CLKIN, tie it to 0. When DCLKIO ≠ CLKIN, pulse 0 to 1 to edge trigger the internal retime, see  
the Retimer section.  
SDIO/FORMAT Serial Port Input/Output (SDIO). In SPI mode, this pin is the bidirectional data line for the serial port.  
Format Pin (FORMAT). In pin mode, FORMAT determines the data format of digital data. A logic low  
(pull-down to DVSS) selects the binary input data format. A logic high (pull-up to DVDDIO) selects the  
twos complement input data format.  
CS/PWRDN  
Active Low Chip Select (CS). In SPI mode, this pin serves as the active low chip select.  
Power-Down (PWRDN). In pin mode, a logic high (pull-up to DVDDIO) powers down the device, except for  
the SPI port.  
39  
40  
DB13 (MSB)  
DB12  
Digital Input (MSB).  
Digital Input.  
EP (EPAD)  
The exposed pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at the  
package corners is connected to this pad.  
Rev. D | Page 17 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD, DVDD, DVDDIO, CVDD = 1.8 V, IxOUTFS = 8 mA, maximum sample rate (125 MSPS), unless otherwise noted.  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 6. AD9117 Precalibration INL at 1.8 V, 8 mA (DVDD = 1.8 V)  
Figure 9. AD9117 Postcalibration INL at 1.8 V, 8 mA (DVDD = 1.8 V)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 7. AD9117 Precalibration DNL at 1.8 V, 8 mA (DVDD = 1.8 V)  
Figure 10. AD9117 Postcalibration DNL at 1.8 V, 8 mA (DVDD = 1.8 V)  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 8. AD9117 Precalibration INL at 3.3 V, 20 mA (DVDD = 1.8 V)  
Figure 11. AD9117 Postcalibration INL at 3.3 V, 20 mA (DVDD = 1.8 V)  
Rev. D | Page 18 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 12. AD9117 Precalibration DNL at 3.3 V, 20 mA  
Figure 15. AD9117 Postcalibration DNL at 3.3 V, 20 mA  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 13. AD9116 Precalibration INL at 1.8 V, 8 mA  
Figure 16. AD9116 Postcalibration INL at 1.8 V, 8 mA  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 14. AD9116 Precalibration DNL at 1.8 V, 8 mA  
Figure 17. AD9116 Postcalibration DNL at 1.8 V, 8 mA  
Rev. D | Page 19 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
4096  
1024  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
4096  
1024  
CODE  
CODE  
Figure 18. AD9116 Precalibration INL at 3.3 V, 20 mA  
Figure 21. AD9116 Postcalibration INL at 3.3 V, 20 mA  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
CODE  
CODE  
Figure 19. AD9116 Precalibration DNL at 3.3 V, 20 mA  
Figure 22. AD9116 Postcalibration DNL at 3.3 V, 20 mA  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
CODE  
CODE  
Figure 20. AD9115 Precalibration INL at 1.8 V, 8 mA  
Figure 23. AD9115 Postcalibration INL at 1.8 V, 8 mA  
Rev. D | Page 20 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.02  
–0.04  
–0.06  
–0.08  
0
0
0
128  
256  
384  
512  
640  
768  
896  
1024  
1024  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
1024  
1024  
CODE  
CODE  
Figure 24. AD9115 Precalibration DNL at 1.8 V, 8 mA  
Figure 27. AD9115 Postcalibration DNL at 1.8 V, 8 mA  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
CODE  
CODE  
Figure 25. AD9115 Precalibration INL at 3.3 V, 20 mA  
Figure 28. AD9115 Postcalibration INL at 3.3 V, 20 mA  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.02  
–0.04  
–0.06  
–0.08  
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
CODE  
CODE  
Figure 26. AD9115 Precalibration DNL at 3.3 V, 20 mA  
Figure 29. AD9115 Postcalibration DNL at 3.3 V, 20 mA  
Rev. D | Page 21 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
0.035  
0.025  
0.015  
0.005  
0
0.035  
0.025  
0.015  
0.005  
0
–0.005  
–0.015  
–0.025  
–0.035  
–0.005  
–0.015  
–0.025  
–0.035  
0
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
CODE  
CODE  
Figure 30. AD9114 Precalibration INL at 1.8 V, 8 mA  
Figure 33. AD9114 Postcalibration INL at 1.8 V, 8 mA  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
32  
64  
96  
128  
160  
192  
224  
0
32  
64  
96  
128  
160  
192  
224  
CODE  
CODE  
Figure 31. AD9114 Precalibration DNL at 1.8 V, 8 mA  
Figure 34. AD9114 Postcalibration DNL at 1.8 V, 8 mA  
0.03  
0.02  
0.01  
0
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.01  
–0.02  
–0.03  
0
32  
64  
96  
128  
160  
192  
224  
0
32  
64  
96  
128  
160  
192  
224  
CODE  
CODE  
Figure 32. AD9114 Precalibration INL at 3.3 V, 20 mA  
Figure 35. AD9114 Postcalibration INL at 3.3 V, 20 mA  
Rev. D | Page 22 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE  
CODE  
Figure 36. AD9114 Precalibration DNL at 3.3 V, 20 mA  
Figure 39. AD9114 Postcalibration DNL at 3.3 V, 20 mA  
–124  
–130  
–136  
–142  
–148  
–154  
–160  
–166  
–124  
–130  
–136  
–142  
–148  
–154  
–160  
AD9114  
AD9115  
AD9114  
AD9116  
AD9117  
AD9115  
AD9116  
AD9117  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
10  
20  
30  
40  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 37. NSD at 8 mA vs. fOUT, 1.8 V  
Figure 40. NSD at 20 mA vs. fOUT, 3.3 V  
–136  
–139  
–142  
–145  
–148  
–151  
–154  
–157  
–160  
–136  
–139  
–142  
–145  
–148  
–151  
–154  
–157  
–160  
+85°C  
+85°C  
+25°C  
+25°C  
–40°C  
–40°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
fOUT (MHz)  
fOUT (MHz)  
Figure 38. AD9117 NSD at Three Temperatures 8 mA vs. fOUT, 1.8 V  
Figure 41. AD9117 NSD at Three Temperatures 8 mA vs. fOUT, 3.3 V  
Rev. D | Page 23 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
–130  
–130  
–136  
–142  
–148  
–154  
–160  
–166  
–136  
–142  
–148  
–154  
–160  
–166  
1.8V, 4mA  
1.8V, 8mA  
3.3V, 4mA  
3.3V, 8mA  
3.3V, 20mA  
0
5
1
0
15  
20  
25  
30  
35  
40  
45  
50  
55  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
fOUT (MHz)  
f
(MHz)  
OUT  
Figure 42. AD9117 NSD at Two Output Currents vs. fOUT, 1.8 V  
Figure 45. AD9117 NSD at Three Output Currents vs. fOUT, 3.3 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
START 1MHz  
1.5MHz/DIV  
STOP 16MHz  
START 1MHz  
1.5MHz/DIV  
STOP 16MHz  
Figure 43. AD9117 Two Tone Spectrum at 1.8 V  
Figure 46. AD9117 Two Tone Spectrum at 3.3 V  
90  
80  
70  
60  
50  
96  
90  
84  
78  
72  
66  
60  
54  
AD9117  
AD9116  
AD9115  
AD9114  
AD9117  
AD9116  
AD9115  
AD9114  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 44. All IMD 8 mA vs. fOUT, 1.8 V  
Figure 47. All IMD 20 mA vs. fOUT, 3.3 V  
Rev. D | Page 24 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
84  
78  
72  
66  
60  
54  
48  
90  
87  
84  
81  
78  
75  
72  
69  
66  
63  
–40°C  
–40°C  
+25°C  
+25°C  
+85°C  
+85°C  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 48. AD9117 IMD at Three Temperatures 8 mA vs. fOUT, 1.8 V  
Figure 51. AD9117 IMD at Three Temperatures 20 mA vs. fOUT, 3.3 V  
90  
85  
80  
75  
90  
85  
80  
–6dB  
75  
70  
–6dB  
–3dB  
65  
70  
–3dB  
0dB  
60  
65  
60  
55  
0dB  
55  
50  
45  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fIN (MHz)  
Figure 49. AD9117 IMD at Three Digital Signal Levels vs. fOUT, 1.8 V  
Figure 52. AD9117 IMD at Three Digital Signal Levels vs. fOUT, 3.3 V  
86  
80  
92  
8mA  
86  
4mA  
74  
80  
4mA  
20mA  
74  
68  
8mA  
62  
68  
62  
56  
56  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fOUT (MHz)  
fOUT (MHz)  
Figure 50. AD9117 IMD at Two Output Currents vs. fOUT, 1.8 V  
Figure 53. AD9117 IMD at Three Output Currents vs. fOUT, 3.3 V  
Rev. D | Page 25 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
START 1MHz  
1.5MHz/DIV  
STOP 16MHz  
START 1MHz  
1.5MHz/DIV  
STOP 16MHz  
Figure 54. AD9117 Singe Tone Spectrum, 1.8 V  
Figure 57. AD9117 Singe Tone Spectrum, 3.3 V  
90  
80  
70  
60  
50  
40  
96  
90  
84  
78  
72  
66  
60  
54  
AD9117  
AD9116  
AD9115  
AD9114  
AD9117  
AD9116  
AD9115  
AD9114  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 55. SFDR at 8 mA vs. fOUT, 1.8 V  
Figure 58. AD9117 SFDR at 20 mA vs. fOUT, 3.3 V  
90  
84  
78  
72  
66  
60  
54  
48  
42  
98  
92  
86  
80  
74  
68  
62  
56  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
Figure 56. AD9117 SFDR at Three Temperatures 8 mA vs. fOUT, 1.8 V  
Figure 59. AD9117 SFDR at Three Temperatures 8 mA vs. fOUT, 3.3 V  
Rev. D | Page 26 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
98  
90  
82  
74  
66  
58  
50  
42  
98  
90  
82  
74  
66  
58  
50  
–6dB  
–6dB  
–3dB  
–3dB  
0dB  
0dB  
0
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
0
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
Figure 60. AD9117 SFDR at Three Digital Signal Levels vs. fOUT, 1.8 V  
Figure 63. AD9117 SFDR at Three Digital Signal Levels vs. fOUT., 3.3 V  
96  
90  
84  
78  
96  
90  
20mA  
8mA  
84  
4mA  
78  
4mA  
72  
72  
66  
60  
54  
48  
42  
66  
8mA  
60  
54  
48  
42  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
fOUT (MHz)  
fOUT (MHz)  
Figure 61. AD9117 SFDR at Two Currents vs. fOUT, 1.8 V  
Figure 64. AD9117 SFDR at Three Currents vs. fOUT, 3.3V  
AC COUPLED: UNSPECIFIED  
BELOW 20MHz  
AC COUPLED: UNSPECIFIED  
BELOW 20MHz  
INPUT ATT  
8.00dB  
INPUT ATT  
8.00dB  
STEP  
2dB  
STEP  
2dB  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
VBW 300kHz  
VBW 300kHz  
SWEEP 126ms (601pts)  
SWEEP 126ms (601pts)  
TOTAL CARRIER POWER –12.17dBm/7.87420MHz  
REF CARRIER POWER –12.17dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
TOTAL CARRIER POWER –12.17dBm/7.87420MHz  
REF CARRIER POWER –12.17dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc  
1. –12.17dBm 5.000MHz 3.840MHz –77.40 –89.56 –78.68 –90.84  
2. –80.85dBm 10.00MHz 3.840MHz –78.90 –91.06 –78.27 –90.43  
15.00MHz 3.840MHz –78.02 –90.18 –70.99 –83.15  
1. –12.17dBm 5.000MHz 3.840MHz –77.40 –89.56 –78.68 –90.84  
2. –80.85dBm 10.00MHz 3.840MHz –78.90 –91.06 –78.27 –90.43  
15.00MHz 3.840MHz –78.02 –90.18 –70.99 –83.15  
Figure 62. AD9117 ACLR One-Carrier, 1.8 V  
Figure 65. AD9117 ACLR One-Carrier, 3.3 V  
Rev. D | Page 27 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
–60  
–60  
–66  
–72  
–78  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
16mA PRECAL  
16mA POSTCAL  
–66  
–72  
–78  
15  
20  
25  
30  
35  
40  
45  
15  
20  
25  
30  
35  
40  
45  
fOUT (MHz)  
fOUT (MHz)  
Figure 66. AD9117 One-Carrier W-CDMA First ACLR vs. fOUT, 1.8 V  
Figure 69. AD9117 One-Carrier W-CDMA First ACLR vs. fOUT, 3.3 V  
–62  
–62  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
16mA PRECAL  
–68  
–74  
–80  
–68  
16mA POSTCAL  
–74  
–80  
15  
20  
25  
30  
35  
40  
45  
15  
25  
35  
45  
fOUT (MHz)  
fOUT (MHz)  
Figure 70. AD9117 One-Carrier W-CDMA Second ACLR vs. fOUT, 3.3 V  
Figure 67. AD9117 One-Carrier W-CDMA Second ACLR vs. fOUT, 1.8 V  
–62  
–62  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
16mA PRECAL  
–68  
–68  
–74  
–80  
16mA POSTCAL  
–74  
–80  
20  
25  
30  
35  
40  
45  
20  
25  
30  
35  
40  
45  
fOUT (MHz)  
fOUT (MHz)  
Figure 71. AD9117 One-Carrier W-CDMA Third ACLR vs. fOUT, 3.3 V  
Figure 68. AD9117 One-Carrier W-CDMA Third ACLR vs. fOUT, 1.8 V  
Rev. D | Page 28 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
AC COUPLED: UNSPECIFIED  
BELOW 20MHz  
AC COUPLED: UNSPECIFIED  
BELOW 20MHz  
INPUT ATT  
8.00dB  
INPUT ATT  
8.00dB  
STEP  
2dB  
STEP  
2dB  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
CENTER 22.90MHz  
RES BW 30kHz  
SPAN 38.84MHz  
VBW 300kHz  
VBW 300kHz  
SWEEP 126ms (601pts)  
SWEEP 126ms (601pts)  
TOTAL CARRIER POWER –15.23dBm/7.87420MHz  
REF CARRIER POWER –18.09dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
TOTAL CARRIER POWER –15.23dBm/7.87420MHz  
REF CARRIER POWER –18.09dBm/4.03420MHz  
RCC FILTER: OFF FILTER ALPHA 0.22  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
OFFSET INTEG  
FREQ BW  
LOWER  
dBc dBm  
UPPER  
dBc dBm  
1. –18.09dBm 5.000MHz 3.840MHz –72.11 –90.24 –71.97 –90.09  
2. –18.40dBm 10.00MHz 3.840MHz –72.98 –91.10 –72.55 –90.68  
15.00MHz 3.840MHz –69.93 –88.05 –72.30 –90.42  
1. –18.09dBm 5.000MHz 3.840MHz –72.11 –90.24 –71.97 –90.09  
2. –18.40dBm 10.00MHz 3.840MHz –72.98 –91.10 –72.55 –90.68  
15.00MHz 3.840MHz –69.93 –88.05 –72.30 –90.42  
Figure 72. AD9117 ACLR Two-Carrier, 1.8 V  
Figure 75. AD9117 ACLR Two-Carrier, 3.3 V  
–50  
4mA PRECAL  
–50  
4mA POSTCAL  
8mA PRECAL  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
–56  
16mA PRECAL  
–56  
–62  
–68  
–74  
8mA POSTCAL  
16mA POSTCAL  
–62  
–68  
–74  
15  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 73. AD9117 Two-Carrier W-CDMA First ACLR vs. fOUT, 1.8 V  
Figure 76. AD9117 Two-Carrier W-CDMA First ACLR vs. fOUT, 3.3 V  
–50  
–50  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
16mA PRECAL  
16mA POSTCAL  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
–56  
–62  
–68  
–74  
–56  
–62  
–68  
–74  
15  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 74. AD9117 Two-Carrier W-CDMA Second ACLR vs. fOUT, 1.8 V  
Figure 77. AD9117 Two-Carrier W-CDMA Second ACLR vs. fOUT, 3.3 V  
Rev. D | Page 29 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
–50  
–50  
–56  
–62  
–68  
–74  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
8mA POSTCAL  
16mA PRECAL  
16mA POSTCAL  
4mA PRECAL  
4mA POSTCAL  
8mA PRECAL  
–56  
–62  
–68  
–74  
8mA POSTCAL  
20  
25  
30  
35  
40  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 78. AD9117 Two-Carrier W-CDMA Third ACLR vs. fOUT, 1.8 V  
Figure 81. AD9117 Two-Carrier W-CDMA Third ACLR vs. fOUT, 3.3 V  
0.4  
0.3  
1.0  
0.8  
0.6  
0.2  
0.4  
0.1  
0.2  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 79. AD9114/AD9115/AD9116/AD9117 AUXDAC DNL  
Figure 82. AD9114/AD9115/AD9116/AD9117 AUXDAC INL  
40  
80  
70  
60  
50  
40  
30  
20  
10  
0
TOTAL CURRENT @ 20mA OUT  
AVDD @ 20mA OUT  
TOTAL CURRENT @ 8mA OUT  
AVDD @ 8mA OUT  
TOTAL CURRENT @ 4mA OUT  
AVDD @ 4mA OUT  
30  
20  
10  
0
TOTAL CURRENT @ 8mA OUT  
AVDD @ 8mA OUT  
CVDD  
TOTAL CURRENT @ 4mA OUT  
DVDD  
CVDD  
AVDD @ 4mA OUT  
DVDD  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
fDAC (MHz)  
fDAC (MHz)  
Figure 80. AD9114/AD9115/AD9116/AD9117 Supply Current vs. fDAC, 1.8 V  
Figure 83. AD9114/AD9115/AD9116/AD9117Supply Current vs. fDAC, 3.3 V  
Rev. D | Page 30 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
TERMINOLOGY  
Linearity Error or Integral Nonlinearity (INL)  
Linearity error is defined as the maximum deviation of the  
actual analog output from the ideal output, determined by  
a straight line drawn from zero scale to full scale.  
Power Supply Rejection  
Power supply rejection is the maximum change in the full-scale  
output as the supplies are varied from minimum to maximum  
specified voltages.  
Differential Nonlinearity (DNL)  
Settling Time  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Settling time is the time required for the output to reach and  
remain within a specified error band around its final value,  
measured from the start of the output transition.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the peak  
amplitude of the output signal and the peak spurious signal  
between dc and the frequency equal to half the input data rate.  
Offset Error  
Offset error is the deviation of the output current from the ideal  
of zero. For IOUTP, the 0 mA output is expected when the inputs  
are all 0. For IOUTN, the 0 mA output is expected when all inputs  
are set to 1.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic  
components to the rms value of the measured fundamental.  
It is expressed as a percentage (%) or in decibels (dB).  
Gain Error  
Gain error is the difference between the actual and the ideal  
output span. The actual span is determined by the difference  
between the output when all inputs are set to 1 and the output  
when all inputs are set to 0.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels (dB).  
Output Compliance Range  
The output compliance range is the range of allowable voltage at  
the output of a current output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
Adjacent Channel Leakage Ratio (ACLR)  
ACLR is the ratio in decibels relative to the carrier (dBc)  
between the measured power within a channel relative to  
its adjacent channel.  
Temperature Drift  
Complex Image Rejection  
Temperature drift is specified as the maximum change from  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images have the effect  
of wasting transmitter power and system bandwidth. By placing  
the real part of a second complex modulator in series with the  
first complex modulator, either the upper or lower frequency  
image near the second IF can be rejected.  
the ambient value (25°C) to the value at either TMIN or TMAX  
.
For offset and gain drift, the drift is reported in ppm of full-  
scale range per degree Celsius (ppm FSR/°C). For reference  
drift, the drift is reported in parts per million per degree  
Celsius (ppm/°C).  
Rev. D | Page 31 of 52  
AD9114/AD9115/AD9116/AD9117  
THEORY OF OPERATION  
Data Sheet  
1V  
AD9117  
SPI  
INTERFACE  
DB11  
QR  
IR  
SET  
SET  
2k  
2kΩ  
IR  
CM  
60TO  
260Ω  
DB10  
RLIN  
62.5Ω  
62.5Ω  
10kΩ  
DB9  
DB8  
IOUTN  
IOUTP  
I
I DAC  
REF  
100µA  
BAND  
GAP  
RLIP  
AUX1DAC  
AUX2DAC  
DVDDIO  
1 INTO 2  
AVDD  
AVSS  
RLQP  
INTERLEAVED  
DATA  
INTERFACE  
I DATA  
DVSS  
62.5Ω  
62.5Ω  
DVDD  
DB7  
1.8V  
LDO  
QOUTP  
QOUTN  
Q DATA  
Q DAC  
RLQN  
CLOCK  
DIST  
DB6  
QR  
CM  
60TO  
260Ω  
DB5  
Figure 84. Simplified Block Diagram  
Figure 84 shows a simplified block diagram of the AD9114/  
AD9115/AD9116/AD9117 that consists of two DACs, digital  
control logic, and a full-scale output current control. Each DAC  
contains a PMOS current source array capable of providing a  
maximum of 20 mA. The arrays are divided into 31 equal currents  
that make up the five most significant bits (MSBs). The next four  
bits, or middle bits, consist of 15 equal current sources whose  
value is 1/16 of an MSB current source. The remaining LSBs are  
binary weighted fractions of the current sources of the middle  
bits. Implementing the middle and lower bits with current sources,  
instead of an R-2R ladder, enhances its dynamic performance for  
multitone or low amplitude signals and helps maintain the high  
output impedance of the main DACs (that is, >200 MΩ).  
LDO is provided for DVDDIO supplies greater than 1.8 V, or the  
1.8 V can be supplied directly through DVDD. A 1.0 μF bypass  
capacitor at DVDD (Pin 7) is required when using the LDO.  
The core is capable of operating at a rate of up to 125 MSPS. It  
consists of edge-triggered latches and the segment decoding logic  
circuitry. The analog section includes PMOS current sources,  
associated differential switches, a 1.0 V band gap voltage  
reference, and a reference control amplifier.  
Each DAC full-scale output current is regulated by the reference  
control amplifier and can be set from 4 mA to 20 mA via an external  
resistor, xRSET, connected to its full-scale adjust pin (FSADJx).  
The external resistor, in combination with both the reference control  
amplifier and voltage reference, VREFIO, sets the reference current,  
IxREF, which is replicated to the segmented current sources with the  
The current sources are switched to one or the other of the two  
output nodes (IOUTP or IOUTN) via PMOS differential current  
switches. The switches are based on the architecture that was  
pioneered in the AD976x family, with further refinements to  
reduce distortion contributed by the switching transient. This  
switch architecture also reduces various timing errors and provides  
matching complementary drive signals to the inputs of the  
differential current switches.  
proper scaling factor. The full-scale current, IxOUTFS, is 32 × IxREF  
.
Optional on-chip xRSET resistors are provided that can be pro-  
grammed between a nominal value of 1.6 kΩ to 8 kΩ (20 mA to  
4 mA IxOUTFS, respectively).  
The AD9114/AD9115/AD9116/AD9117 provide the option of  
setting the output common mode to a value other than AGND via  
the output common-mode pin (CMLI and CMLQ). This facilitates  
directly interfacing the output of the AD9114/AD9115/AD9116/  
AD9117 to components that require common-mode levels greater  
than 0 V.  
The analog and digital I/O sections of the AD9114/AD9115/  
AD9116/AD9117 have separate power supply inputs (AVDD and  
DVDDIO) that can operate independently over a 1.8 V to 3.3 V  
range. The core digital section requires 1.8 V. An optional on-chip  
Rev. D | Page 32 of 52  
 
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
SERIAL PERIPHERAL INTERFACE (SPI)  
The serial port of the AD9114/AD9115/AD9116/AD9117 is a  
flexible, synchronous serial communications port that allows easy  
interfacing to many industry-standard microcontrollers and micro-  
processors. The serial I/O is compatible with most synchronous  
transfer formats, including both the Motorola SPI and Intel® SSR  
protocols. The interface allows read/write access to all registers  
that configure the AD9114/AD9115/AD9116/AD9117. Single or  
multiple byte transfers are supported, as well as MSB first or  
LSB first transfer formats. The serial interface port of the AD9114/  
AD9115/AD9116/AD9117 is configured as a single I/O pin on  
the SDIO pin.  
N1 and N0 (Bit 6 and Bit 5 of the instruction byte) determine the  
number of bytes to be transferred during the data transfer cycle.  
The bit decodes are shown in Table 12.  
Table 12. Byte Transfer Count  
N1  
0
N0  
0
Description  
Transfer 1 byte  
Transfer 2 bytes  
Transfer 3 bytes  
Transfer 4 bytes  
0
1
1
0
1
1
A4, A3, A2, A1, and A0 (Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0 of the  
instruction byte) determine which register is accessed during the  
data transfer portion of the communications cycle. For multi-  
byte transfers, this address is the starting byte address. The  
following register addresses are generated internally by the  
AD9114/AD9115/AD9116/AD9117 based on the LSBFIRST bit  
(Register 0x00, Bit 6).  
GENERAL OPERATION OF THE SERIAL INTERFACE  
There are two phases to a communication cycle on the AD9114/  
AD9115/AD9116/AD9117. Phase 1 is the instruction cycle, which  
is the writing of an instruction byte into the AD9114/AD9115/  
AD9116/AD9117, coinciding with the first eight SCLK rising  
edges. In Phase 2, the instruction byte provides the serial port  
controller of the AD9114/AD9115/AD9116/AD9117 with infor-  
mation regarding the data transfer cycle. The Phase 1 instruction  
byte defines whether the upcoming data transfer is a read or write,  
the number of bytes in the data transfer, and the starting register  
address for the first byte of the data transfer. The first eight SCLK  
rising edges of each communication cycle are used to write the  
instruction byte into the AD9114/AD9115/AD9116/AD9117.  
SERIAL INTERFACE PORT PIN DESCRIPTIONS  
SCLK—Serial Clock  
The serial clock pin is used to synchronize data to and from the  
AD9114/AD9115/AD9116/AD9117 and to run the internal state  
machines. The SCLK maximum frequency is 25 MHz. All data  
input to the AD9114/AD9115/AD9116/AD9117 is registered on  
the rising edge of SCLK. This is shown in Figure 85 and Figure 87  
for write instructions where the SCLK rising edges are lined up in  
the middle of the data. All data is driven out of the AD9114/AD9115/  
AD9116/AD9117 on the falling edge of SCLK. This is shown in  
Figure 86 and Figure 88 for read cycles where the SCLK falling  
edges line up in the middle of the data in the data transfer cycle.  
A Logic 1 on Pin 35 (RESET/PINMD), followed by a Logic 0,  
resets the SPI port timing to the initial state of the instruction  
cycle. This is true regardless of the present state of the internal  
registers or the other signal levels present at the inputs to the  
SPI port. If the SPI port is in the midst of an instruction cycle  
or a data transfer cycle, none of the present data is written.  
CS  
—Chip Select  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD9114/  
AD9115/AD9116/AD9117 and the system controller. Phase 2  
of the communication cycle is a transfer of one, two, three, or  
four data bytes, as determined by the instruction byte. Using a  
multibyte transfer is the preferred method. Single byte  
data transfers are useful to reduce CPU overhead when register  
access requires one byte only. Registers change immediately  
upon writing to the last bit of each transfer byte.  
An active low input starts and gates a communications cycle. It  
allows more than one device to be used on the same serial commu-  
nications lines. The SDIO/FORMAT pin reaches a high impedance  
state when this input is high. Chip select should stay low during  
the entire communication cycle.  
SDIO—Serial Data I/O  
The SDIO pin is used as a bidirectional data line to transmit  
and receive data.  
INSTRUCTION BYTE  
The instruction byte contains the information shown in Table 11.  
Table 11.  
MSB  
DB7  
R/W  
LSB  
DB6  
DB5  
DB4 DB3 DB2 DB1 DB0  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
W
R/ (Bit 7 of the instruction byte) determines whether a read or a  
write data transfer occurs after the instruction byte write. Logic 1  
indicates a read operation. Logic 0 indicates a write operation.  
Rev. D | Page 33 of 52  
 
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
MSB/LSB TRANSFERS  
CS  
SCLK  
SDIO  
The serial port of the AD9114/AD9115/AD9116/AD9117 can  
support both most significant bit (MSB) first or least significant  
bit (LSB) first data formats. This functionality is controlled by the  
LSBFIRST bit (Register 0x00, Bit 6). The default is MSB first  
(LSBFIRST = 0).  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
N
0
Figure 86. Serial Register Interface Timing, MSB First Read  
When LSBFIRST = 0 (MSB first), the instruction and data bytes  
must be written from the most significant bit to the least significant  
bit. Multibyte data transfers in MSB first format start with an  
instruction byte that includes the register address of the most  
significant data byte. Subsequent data bytes should follow in  
order from a high address to a low address. In MSB first mode,  
the serial port internal byte address generator decrements for  
each data byte of the multibyte communications cycle.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
A0 A1 A2 A3 A4 N0 N1 R/W D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
N
Figure 87. Serial Register Interface Timing, LSB First Write  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
When LSBFIRST = 1 (LSB first), the instruction and data bytes  
must be written from the least significant bit to the most significant  
bit. Multibyte data transfers in LSB first format start with an  
instruction byte that includes the register address of the least  
significant data byte followed by multiple data bytes. The serial  
port internal byte address generator increments for each byte of  
the multibyte communication cycle.  
SCLK  
SDIO  
A0 A1 A2 A3 A4 N0 N1 R/W D00 D10 D20  
D4N D5N D6N D7N  
Figure 88. Serial Register Interface Timing, LSB First Read  
PIN MODE  
If the MSB first mode is active, the serial port controller data  
address of the AD9114/AD9115/AD9116/AD9117 decrements  
from the data address written toward 0x00 for multibyte I/O  
operations. If the LSB first mode is active, the serial port controller  
address increments from the data address written toward 0x1F  
for multibyte I/O operations.  
The AD9114/AD9115/AD9116/AD9117 can also be operated  
without ever writing to the serial port. With RESET/PINMD  
(Pin 35) tied high, the SCLK pin becomes CLKMD to provide  
for clock mode control (see the Retimer section), the SDIO  
pin becomes FORMAT and selects the input data format, and  
CS  
the /PWRDN pin serves to power down the device. The  
pins are not latched at power up. If you change the format, it  
should change with about a 1µs delay.  
SERIAL PORT OPERATION  
The serial port configuration of the AD9114/AD9115/AD9116/  
AD9117 is controlled by Register 0x00. It is important to note  
that the configuration changes immediately upon writing to the  
last bit of the register. For multibyte transfers, writing to this  
register can occur during the middle of the communications  
cycle. Care must be taken to compensate for this new configu-  
ration for the remaining bytes of the current communications cycle.  
Operation is otherwise exactly as defined by the default register  
values in Table 13; therefore, external resistors at FSADJI and  
FSADJQ are needed to set the DAC currents, and both DACs  
are active. This is also a convenient quick checkout mode. DAC  
currents can be externally adjusted in pin mode by sourcing or  
sinking currents at the FSADJI/AUXI and FSADJQ/AUXQ  
pins, as desired, with the fixed resistors installed. An op amp  
output with appropriate series resistance is one of many  
possibilities. This has the same effect as changing the resistor  
value. Place at least 10 kΩ resistors in series right at the DAC  
to guard against accidental short circuits and noise  
The same considerations apply to setting the software reset bit  
(Register 0x00, Bit 5). All registers are set to their default values  
except Register 0x00, which remains unchanged.  
Use of single-byte transfers or initiating a software reset is  
recommended when changing serial port configurations to  
prevent unexpected device behavior.  
modulation. The REFIO pin can be adjusted 25% in a similar  
manner, if desired.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0 0  
N
N
N
Figure 85. Serial Register Interface Timing, MSB First Write  
Rev. D | Page 34 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
SPI REGISTER MAP  
Table 13.  
Name  
Addr Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reserved  
Bit 0  
SPI Control  
Power-Down  
Data Control  
I DAC Gain  
IRSET  
0x00 0x00  
0x01 0x40  
0x02 0x34  
0x03 0x00  
0x04 0x00  
0x05 0x00  
0x06 0x00  
0x07 0x00  
0x08 0x00  
0x09 0x00  
0x0A 0x00  
0x0B 0x00  
0x0C 0x00  
Reserved  
LDOOFF  
TWOS  
LSBFIRST Reset  
LDOSTAT PWRDN  
Reserved IFIRST  
LNGINS  
Q DACOFF I DACOFF QCLKOFF  
ICLKOFF EXTREF  
DCOSGL DCODBL  
IRISING  
SIMULBIT DCI_EN  
I DACGAIN[5:0]  
IRSET[5:0]  
Reserved  
IRSETEN  
Reserved  
Reserved  
IRCML  
IRCMLEN  
IRCML[5:0]  
Q DAC Gain  
QRSET  
Reserved  
Q DACGAIN[5:0]  
QRSET[5:0]  
QRSETEN  
Reserved  
QRCML  
QRCMLEN Reserved  
QRCML[5:0]  
AUXDAC Q  
AUX CTLQ  
AUXDAC I  
AUX CTLI  
QAUXDAC[7:0]  
QAUXOFS[2:0]  
IAUXDAC[7:0]  
IAUXOFS[2:0]  
RREF[5:0]  
CALCLK  
CALMEMQ[1:0]  
QAUXEN  
QAUXRNG[1:0]  
IAUXRNG[1:0]  
QAUXDAC[9:8]  
IAUXDAC[9:8]  
IAUXEN  
Reference Resistor 0x0D 0x00  
Reserved  
PRELDQ PRELDI  
Cal Control  
Cal Memory  
Memory Address  
Memory Data  
Memory R/W  
CLKMODE  
0x0E 0x00  
0x0F 0x00  
0x10 0x00  
0x11 0x34  
0x12 0x00  
0x14 0x00  
0x1F 0x0A  
CALSELQ CALSELI  
Reserved  
DIVSEL[2:0]  
CALSTATQ CALSTATI  
Reserved  
CALMEMI[1:0]  
MEMADDR[5:0]  
MEMDATA[5:0]  
Reserved  
CALRSTQ  
CALRSTI  
CALEN  
SMEMWR SMEMRD  
UNCALQ UNCALI  
CLKMODEI[1:0]  
CLKMODEQ[1:0]  
Searching Reacquire CLKMODEN  
Version[7:0]  
Version  
Rev. D | Page 35 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
SPI REGISTER DESCRIPTIONS  
Reading these registers returns previously written values for all defined register bits, unless otherwise noted.  
Table 14.  
Register  
Address Bit Name  
Description  
SPI Control  
0x00  
6
5
LSBFIRST  
Reset  
0 (default): MSB first per SPI standard.  
1: LSB first per SPI standard.  
Note that the user must always change the LSB/MSB order in single-byte  
instructions to avoid erratic behavior due to bit order errors.  
Executes software reset of SPI and controllers, reloads default register values,  
except Register 0x00.  
1: set software reset; write 0 on the next (or any following) cycle to release reset.  
0 (default): the SPI instruction word uses a 5-bit address.  
1: the SPI instruction word uses a 13-bit address.  
0 (default): LDO voltage regulator on.  
4
7
6
5
4
3
2
1
0
7
5
4
3
2
LNGINS  
LDOOFF  
LDOSTAT  
PWRDN  
Q DACOFF  
I DACOFF  
QCLKOFF  
ICLKOFF  
EXTREF  
Power Down  
0x01  
1: turns core LDO voltage regulator off.  
0: indicates that the core LDO voltage regulator is off.  
1 (default): indicates that the core LDO voltage regulator is on.  
0 (default): all analog, digital circuitry and SPI logic are powered on.  
1: powers down all analog and digital circuitry, except for SPI logic.  
0 (default): turns on Q DAC output current.  
1: turns off Q DAC output current.  
0 (default): turns on I DAC output current.  
1: turns off I DAC output current.  
0 (default): turns on Q DAC clock.  
1: turns off Q DAC clock.  
0 (default): turns on I DAC clock.  
1: turns off I DAC clock.  
0 (default): turns on internal voltage reference.  
1: powers down the internal voltage reference (external reference required).  
0 (default): Unsigned binary input data format.  
1: twos complement input data format.  
Data Control  
0x02  
TWOS  
IFIRST  
0: pairing of data—Q first of pair on data input pads.  
1(default): pairing of data—I first of pair on data input pads (default).  
0: Q data latched on DCLKIO rising edge.  
IRISING  
1(default): I data latched on DCLKIO rising edge (default).  
0 (default): allows simultaneous input and output enable on DCLKIO.  
1: disallows simultaneous input and output enable on DCLKIO.  
Controls the use of the DCLKIO pad for the data clock input.  
0: data clock input disabled.  
SIMULBIT  
DCI_EN  
1(default): data clock input enabled.  
1
0
DCOSGL  
DCODBL  
Controls the use of the DCLKIO pad for the data clock output.  
0 (default): data clock output disabled.  
1: data clock output enabled; regular strength driver.  
Controls the use of the DCLKIO pad for the data clock output.  
0 (default): DCODBL data clock output disabled.  
1: DCODBL data clock output enabled; paralleled with DCOSGL for 2× drive current.  
I DAC Gain  
0x03  
5:0 I DACGAIN[5:0]  
DAC I fine gain adjustment; alters the full-scale current, as shown in Figure 99.  
Default IDACGAIN = 0x00.  
Rev. D | Page 36 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Register  
Address Bit Name  
0x04 IRSETEN  
Description  
IRSET  
7
0 (default): IRSET resistor value for I channel is set by an external resistor connected  
to the FADJI/AUXI pin. Nominal value for this external resistor is 4 kΩ.  
1: enables the on-chip IRSET value to be changed for I channel.  
5:0 IRSET[5:0]  
Changes the value of the on-chip IRSET resistor; this scales the full-scale current of  
the DAC in ~0.25 dB steps twos complement (nonlinear), see Figure 98.  
000000 (default): IRSET = 2 kΩ.  
011111: IRSET = 8 kΩ.  
100000: IRSET = 1.6 kΩ.  
111111: IRSET = 2 kΩ.  
IRCML  
0x05  
7
IRCMLEN  
0 (default): IRCML resistor value for the I channel is set by an external resistor  
connected to CMLI pin. Recommended value for this external resistor is 0 Ω.  
1: enables on-chip IRCML adjustment for I channel.  
5:0 IRCML[5:0]  
Changes the value of the on-chip IRCML resistor for I channel; this adjusts the  
common-mode level of the DAC output stage.  
000000 (default): IRCML = 60 Ω.  
100000: IRCML = 160 Ω.  
111111: IRCML = 260 Ω.  
Q DAC Gain  
QRSET  
0x06  
0x07  
5:0 Q DACGAIN[5:0] DAC Q fine gain adjustment; alters the full-scale current, as shown in Figure 99.  
Default QDACGAIN = 0x00.  
7
QRSETEN  
0 (default): QRSET resistor value for Q channel is set by an external resistor  
connected to FADJI/AUXI pin. Nominal value for this external resistor is 4 kΩ.  
1: enables on-chip QRSET adjustment for Q channel.  
5:0 QRSET[5:0]  
Changes the value of the on-chip QRSET resistor; this scales the full-scale current of  
the DAC in ~0.25 dB steps twos complement (nonlinear).  
000000 (default): QRSET = 2 kΩ.  
011111: QRSET = 8 kΩ.  
100000: QRSET = 1.6 kΩ.  
111111: QRSET = 2 kΩ.  
QRCML  
0x08  
7
QRCMLEN  
0 (default): QRCML resistor value for the Q channel is set by an external resistor  
connected to CMLQ pin. Recommended value for this external resistor is 0 Ω.  
1: enables on-chip QRCML adjustment.  
5:0 QRCML[5:0]  
Changes the value of the on-chip QRCML resistor for Q channel; this adjusts the  
common-mode level of the DAC output stage.  
000000 (default): QRCML = 60 Ω.  
100000: QRCML = 160 Ω.  
111111: QRCML = 260 Ω.  
AUXDAC Q  
AUX CTLQ  
0x09  
0x0A  
7:0 QAUXDAC[7:0]  
AUXDAC Q output voltage adjustment word LSBs.  
0x3FF: sets AUXDAC Q output to full scale.  
0x200: sets AUXDAC Q output to midscale.  
0x000 (default): sets AUXDAC Q output to bottom of scale.  
0 (default): AUXDAC Q output disabled.  
7
QAUXEN  
1: enables AUXDAC Q output.  
6:5 QAUXRNG[1:0]  
00 (default): sets AUXDAC Q output voltage range to 2 V.  
01: sets AUXDAC Q output voltage range to 1.5 V.  
10: sets AUXDAC Q output voltage range to 1.0 V.  
11: sets AUXDAC Q output voltage range to 0.5 V.  
000 (default): sets AUXDAC Q top of range to 1.0 V.  
001: sets AUXDAC Q top of range to 1.5 V.  
010: sets AUXDAC Q top of range to 2.0 V.  
011: sets AUXDAC Q top of range to 2.5 V.  
100: sets AUXDAC Q top of range to 2.9 V.  
AUXDAC Q output voltage adjustment word MSBs (default = 00).  
4:2 QAUXOFS[2:0]  
1:0 QAUXDAC[9:8]  
Rev. D | Page 37 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
Register  
Address Bit Name  
Description  
AUXDAC I  
0x0B  
7:0 IAUXDAC[7:0]  
AUXDAC I output voltage adjustment word LSBs.  
0x3FF: sets AUXDAC I output to full scale.  
0x200: sets AUXDAC I output to midscale.  
0x000 (default): sets AUXDAC I output to bottom of scale.  
0 (default): AUXDAC I output disabled.  
AUX CTLI  
0x0C  
7
IAUXEN  
1: enables AUXDAC I output.  
6:5 IAUXRNG[1:0]  
00 (default): sets AUXDAC I output voltage range to 2 V.  
01: sets AUXDAC I output voltage range to 1.5 V.  
10: sets AUXDAC I output voltage range to 1.0 V.  
11: sets AUXDAC I output voltage range to 0.5 V.  
000 (default): sets AUXDAC I top of range to 1.0 V.  
001: sets AUXDAC I top of range to 1.5 V.  
010: sets AUXDAC I top of range to 2.0 V.  
011: sets AUXDAC I top of range to 2.5 V.  
100: sets AUXDAC I top of range to 2.9 V.  
AUX DAC I output voltage adjustment word MSBs (default = 00).  
4:2 IAUXOFS[2:0]  
1:0 IAUXDAC[9:8]  
5:0 RREF[5:0]  
Reference  
Resistor  
0x0D  
0x0E  
Permits an adjustment of the on-chip reference voltage and output at REFIO (see  
Figure 97) twos complement.  
000000 (default): sets the value of RREF to 10 kΩ, VREF = 1.0 V.  
011111: sets the value of RREF to 12 kΩ, VREF = 1.2 V.  
100000: sets the value of RREF to 8 kΩ, VREF = 0.8 V.  
111111: sets the value of RREF to 10 kΩ, VREF = 1.0 V.  
0 (default): preloads Q DAC calibration reference set to 32.  
1: preloads Q DAC calibration reference set by user (Cal Address 1).  
0 (default): preloads I DAC calibration reference set to 32.  
1: preloads I DAC calibration reference set by user (Cal Address 1).  
0 (default): Q DAC self-calibration done.  
1: selects Q DAC self-calibration.  
Cal Control  
7
6
5
4
3
PRELDQ  
PRELDI  
CALSELQ  
CALSELI  
CALCLK  
0 (default): I DAC self-calibration done.  
1: selects I DAC self-calibration.  
0 (default): calibration clock disabled.  
1: calibrates clock enabled.  
2:0 DIVSEL[2:0]  
Calibration clock divide ratio from DAC clock rate.  
000 (default): divide by 256.  
001: divide by 128.  
110: divide by 4.  
111: divide by 2.  
Cal Memory  
0x0F  
7
6
CALSTATQ  
CALSTATI  
0 (default): Q DAC calibration in progress.  
1: calibration of Q DAC complete.  
0 (default): I DAC calibration in progress.  
1: calibration of I DAC complete.  
3:2 CALMEMQ[1:0]  
Status of Q DAC calibration memory.  
00 (default): uncalibrated.  
01: self-calibrated.  
10: user-calibrated.  
1:0 CALMEMI[1:0]  
Status of I DAC calibration memory.  
00 (default): uncalibrated.  
01: self-calibrated.  
10: user-calibrated.  
Memory Address 0x10  
Memory Data 0x11  
5:0 MEMADDR[5:0]  
5:0 MEMDATA[5:0]  
Address of static memory to be accessed.  
Data for static memory access.  
Rev. D | Page 38 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Register  
Address Bit Name  
Description  
Memory R/W  
0x12  
7
6
4
3
2
1
0
CALRSTQ  
CALRSTI  
CALEN  
0 (default): no action.  
1: clears CALSTATQ.  
0 (default): no action.  
1: clears CALSTATI.  
0 (default): no action.  
1: initiates device self-calibration.  
SMEMWR  
SMEMRD  
UNCALQ  
UNCALI  
0 (default): no action.  
1: writes to static memory (calibration coefficients).  
0 (default): no action.  
1: reads from static memory (calibration coefficients).  
0 (default): no action.  
1: resets Q DAC calibration coefficients to default (uncalibrated).  
0 (default): no action.  
1: resets I DAC calibration coefficients to default (uncalibrated).  
CLKMODE  
0x14  
7:6 CLKMODEQ[1:0] Depending on CLKMODEN bit setting, these two bits reflect the phase relationship  
between DCLKIO and CLKIN, as described in Table 16.  
If CLKMODEN = 0, read only; reports the clock phase chosen by the retime.  
If CLKMODEN = 1, read/write; value in this register sets Q clock phases; force if  
needed to better synchronize the DACs (see the Retimer section).  
4
Searching  
Datapath retimer status bit.  
0 (default): clock relationship established.  
1: indicates that the internal datapath retimer is searching for clock relationship  
(device output is not usable while this bit is high).  
3
2
Reacquire  
Edge triggered, 0 to 1 causes the retimer to reacquire the clock relationship.  
CLKMODEN  
0 (default): CLKMODEI/CLKMODEQ values computed by the two retimers and read  
back in CLKMODEI[1:0] and CLKMODEQ[1:0].  
1: CLKMODE values set in CLKMODEI[1:0] override both I and Q retimers.  
1:0 CLKMODEI[1:0]  
7:0 Version[7:0]  
Depending on CLKMODEN bit setting, these two bits reflect the phase relationship  
between DCLKIO and CLKIN, as described in Table 16.  
If CLKMODEN = 0, read only; reports the clock phase chosen by the retimer.  
If CLKMODEN = 1, read/write; value in this register sets I clock phases; force if  
needed to better synchronize the DACs (see the Retimer section).  
Version  
0x1F  
Hardware version of the device. This register is set to 0x0A for the latest version of  
the device.  
Rev. D | Page 39 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
DIGITAL INTERFACE OPERATION  
Digital data for the I and Q DACs is supplied over a single  
parallel bus (DB[n:0], where n is 7 for the AD9114, is 9 for the  
AD9115, is 11 for the AD9116, and 13 for the AD9117)  
accompanied by a qualifying clock (DCLKIO). The I and Q  
data are provided to the chip in an interleaved double data rate  
(DDR) format. The maximum guaranteed data rate is 250 MSPS  
with a 125 MHz clock. The order of data pairing and the sampling  
edge selection is user programmable using the IFIRST and  
IRISING data control bits, resulting in four possible timing  
diagrams. These timing diagrams are shown in Figure 89,  
Figure 90, Figure 91, and Figure 92.  
DCLKIO  
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Z
B
D
F
Q DATA  
NOTES:  
A
C
E
G
1. DB[n:0], WHERE n IS 7 FOR THE AD9114, 9 FOR THE AD9115, 11 FOR THE  
AD9116, AND 13 FOR THE AD9117.  
Figure 91. Timing Diagram with IFIRST = 1, IRISING = 0  
DCLKIO  
DCLKIO  
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Z
B
D
F
E
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Q DATA  
NOTES:  
Y
A
C
Y
A
C
E
F
1. DB[n:0], WHERE n IS 7 FOR THE AD9114, 9 FOR THE AD9115, 11 FOR THE  
AD9116, AND 13 FOR THE AD9117.  
Q DATA  
NOTES:  
Z
B
D
Figure 89. Timing Diagram with IFIRST = 0, IRISING = 0  
1. DB[n:0], WHERE n IS 7 FOR THE AD9114, 9 FOR THE AD9115, 11 FOR THE  
AD9116, AND 13 FOR THE AD9117.  
Figure 92. Timing Diagram with IFIRST = 1, IRISING = 1  
DCLKIO  
Ideally, the rising and falling edges of the clock fall in the center  
of the keep-in window formed by the setup and hold times, tS  
and tH. Refer to Table 2 for setup and hold times. A detailed  
timing diagram is shown in Figure 93.  
DB[n:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Y
A
C
E
D
DCLKIO  
Q DATA  
NOTES:  
X
Z
B
tS tH  
tS tH  
1. DB[n:0], WHERE n IS 7 FOR THE AD9114, 9 FOR THE AD9115, 11 FOR THE  
AD9116, AND 13 FOR THE AD9117.  
Figure 90. Timing Diagram with IFIRST = 0, IRISING = 1  
DB[n:0]  
NOTES:  
1. DB[n:0], WHERE n IS 7 FOR THE AD9114, 9 FOR THE  
AD9115, 11 FOR THE AD9116, AND 13 FOR THE AD9117.  
Figure 93. Setup and Hold Times for All Input Modes  
In addition to the different timing modes listed in Table 2, the  
input data can also be presented to the device in either unsigned  
binary or twos complement format. The format type is chosen  
via the TWOS data control bit.  
Rev. D | Page 40 of 52  
 
 
 
 
 
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
OR  
RETIMER-CLK  
D-FF  
D-FF  
D-FF  
1
D-FF  
2
D-FF  
3
D-FF  
5
0
4
TO DAC CORE  
CLKIN-INT  
I
OUT  
DB[n:0]  
(INPUT)  
DCLKIO-INT  
I
OUT  
NOTES  
D-FFs:  
0: RISING OR FALLING EDGE  
TRIGGERED FOR I OR Q DATA.  
1, 2, 3, 4: RISING EDGE TRIGGERED.  
IE  
IE  
OE  
DELAY2  
DCLKIO  
(INPUT/OUTPUT)  
CLKIN  
(INPUT)  
Figure 94. Simplified Diagram of AD9114/AD9115/AD9116/AD9117 Timing  
Setting Bit 1 or Bit 0 of SPI Address 0x02, DCOSGL or DCODBL,  
to logic high allows the user to get a DCLKIO output from the  
CLKIN input for use in the users PCB system.  
DIGITAL DATA LATCHING AND RETIMER SECTION  
The AD9114/AD9115/AD9116/AD9117 have two clock inputs,  
DCLKIO and CLKIN. The CLKIN is the analog clock whose  
jitter affects DAC performance, and the DCLKIO is a digital clock  
from an FPGA that needs to have a fixed relationship with the  
input data to ensure that the data is sampled correctly by the  
flip-flops on the pads.  
It is strongly recommended that DCI_EN = DCOSGL = high,  
or DCI_EN = DCODBL = high not be used, even though the  
device may appear to function correctly. Similarly, DCOSGL  
and DCODBL should not be set to logic high simultaneously.  
Retimer  
Figure 94 is a simplified diagram of the entire data capture  
system in the AD9114/AD9115/AD9116/AD9117. The double  
data rate input data (DB[n:0], where n is 7 for the AD9114, is 9  
for the AD9115, is 11 for the AD9116, and 13 for the AD9117) is  
latched at the pads/pins either on the rising edge or the falling edge  
of the DCLKIO-INT clock, as determined by IRISING, Bit 4 of  
SPI Address 0x02. Bit 5 of SPI Address 0x02, IFIRST, determines  
which channel data is latched first (that is, I or Q). The captured  
data is then retimed to the internal clock (CLKIN-INT) in the  
retimer block before being sent to the final analog DAC core  
(D-FF 4), which controls the current steering output switches. All  
delay blocks depicted in Figure 94 are non-inverting, and any wires  
without an explicit delay block can be assumed to have no delay.  
The AD9114/AD9115/AD9116/AD9117 have an internal data  
retimer circuit that compares the CLKIN-INT and DCLKIO-INT  
clocks and, depending on their phase relationship, selects a  
retimer clock (RETIMER-CLK) to safely transfer data from the  
DCLKIO used at the chip’s input interface to the CLKIN used to  
clock the analog DAC cores (D-FF 4).  
The retimer selects one of the three phases shown in Figure 95.  
The retimer is controlled by the CLKMODE SPI bits as is  
shown in Table 15.  
RETIMER-CLKs  
1/2 PERIOD  
DATA  
CLOCK  
180°  
90°  
270°  
Only one channel is shown in Figure 94 with the data pads  
(DB[n:0], where n is 7 for the AD9114, is 9 for the AD9115, is  
11 for the AD9116, and 13 for the AD9117) serving as double  
data rate pads for both channels.  
1/4 PERIOD 1/2 PERIOD  
Figure 95. RETIMER-CLK Phases  
Note that, in most cases, more than one retimer phase works  
and, in such cases, the retimer arbitrarily picks one phase that  
works. The retimer cannot pick the best or safest phase. If the  
user has a working knowledge of the exact phase relationship  
between DCLKIO and CLKIN (and thus DCLKIO-INT and  
CLKIN-INT because the delay is approximately the same for  
both clocks and equal to DELAY1), then the retimer can be  
forced to this phase with CLKMODEN = 1, as described in  
Table 15 and the following paragraphs.  
The default PINMD and SPI settings are IE = high (closed) and  
OE = low (open). These settings are enabled when RESET/PINMD  
(Pin 35) is held high. In this mode, the user has to supply both  
DCLKIO and CLKIN. In PINMD, it is also recommended that the  
DCLKIO and the CLKIN be in phase for proper functioning of  
the DAC, which can easily be ensured by tying the pins together  
on the PCB. If the user can access the SPI, setting Bit 2 of SPI  
Address 0x02, DCI_EN, to logic low causes the CLKIN to be  
used as the DCLKIO also.  
Rev. D | Page 41 of 52  
 
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
Table 15. Timer Register List  
Bit Name  
Description  
CLKMODEQ[1:0] Q datapath retimer clock selected output. Valid after the searching bit goes low.  
Searching  
Reacquire  
CLKMODEN  
High indicates that the internal datapath retimer is searching for the clock relationship (DAC is not usable until it is low again).  
Changing this bit from 0 to 1 causes the datapath retimer circuit to reacquire the clock relationship.  
0: Uses the CLKMODEI/CLKMODEQ values (as computed by the two internal retimers) for I and Q clocking.  
1: Uses the CLKMODE value set in CLKMODEI[1:0] to override the bits for both the I and Q retimers (that is, force the retimer).  
CLKMODEI[1:0]  
I datapath retimer clock selected output. Valid after searching goes low. If CLKMODEN = 1, a value written to this  
register overrides both I and Q automatic retimer values.  
Table 16. CLKMODEI/CLKMODEQ Details  
CLKMODEI[1:0]/CLKMODEQ[1:0] DCLKIO-to-CLKIN Phase Relationship  
RETIMER-CLK Selected  
Phase 2  
00  
01  
10  
11  
0° to 90°  
90° to 180°  
180° to 270°  
270° to 360°  
Phase 3  
Phase 3  
Phase 1  
When RESET is pulsed high and then returns low (the part is in  
SPI mode), the retimer runs and automatically selects a suitable  
clock phase for the RETIMER-CLK within 128 clock cycles. The  
SPI searching bit, Bit 4 of SPI Address 0x14, returns to low,  
indicating that the retimer has locked and the part is ready for  
use. The reacquire bit, Bit 3 of SPI Address 0x14, can be used to  
reinitiate phase detection in the I and Q retimers at any time.  
CLKMODEQ[1:0] and CLKMODEI[1:0] bits of SPI Address 0x14  
provide readback for the values picked by the internal phase  
detectors in the retimer (see Table 16).  
ESTIMATING THE OVERALL DAC PIPELINE DELAY  
DAC pipeline latency is affected by the phase of the RETIMER-  
CLK that is selected. If latency is critical to the system and must be  
constant, the retimer should be forced to a particular phase and  
not be allowed to automatically select a phase each time.  
Consider the case in which DCLKIO = CLKIN (that is, in  
phase), and the RETIMER-CLK is forced to Phase 2. Assume  
that IRISING is 1 (that is, I data is latched on the rising edge  
and Q data is latched on the falling edge). Then the latency to the  
output for the I channel is four clock cycles total; one clock cycle  
from the input interface (D-FF 1, not D-FF0 as it latches data  
on either edge and does not cause any delay), two clock cycles  
from the retimer (D-FF 2 and D-FF 4, but not D-FF 3 because it  
is latched on the half clock cycle or 180°), and one clock cycle  
going through the analog core (D-FF 5). The latency to the output  
for the Q channel from the time the falling edge latches it at the  
pads in D-FF 0 is 3.5 clock cycles (no delay due to D-FF0, 1 clock  
cycle due to D-FF 1, ½ clock cycle to D-FF 2, 1 clock cycle to  
D-FF 4, and 1 clock cycle to D-FF 5). This latency for the AD9714/  
AD9715/AD9716/AD9717 is case specific and needs to be calcu-  
lated based on the RETIMER-CLK phase that is automatically  
selected or manually forced.  
To force the two retimers (I and Q) to pick a particular phase  
for the retimer clock (they must both be forced to the same value),  
CLKMODEN, Bit 2 of the SPI Address 0x14, should be set high  
and the required phase value is written into CLKMODEI[1:0].  
For example, if the DCLKIO and the CLKIN are in phase to first  
order, the user could safely force the retimers to pick Phase 2 for  
the RETIMER-CLK. This forcing function may be useful for  
synchronizing multiple devices.  
In pin mode, it is expected that the user tie CLKIN and DCLKIO  
together. The device has a small amount of programmable func-  
CS  
tionality using the now unused SPI pins (SCLK, SDIO, and ).  
If the two chip clocks are tied together, the SCLK pin can be  
tied to ground, and the chip uses a clock for the retimer that is  
180° out of phase with the two input clocks (that is, Phase 2,  
which is the safest and best option). The chip has an additional  
option in pin mode when the redefined SCLK pin is high. Use  
this mode if using pin mode, but CLKIN and DCLKIO are not  
tied together (that is, not in phase). Holding SCLK high causes  
the internal clock detector to use the phase detector output to  
determine which clock to use in the retimer (that is, select a  
suitable RETIMER-CLK phase). The action of taking SCLK  
high causes the internal phase detector to reexamine the two  
clocks and determine the relative phase. Whenever the user  
wants to reevaluate the relative phase of the two clocks, the  
SCLK pin can be taken low and then high again.  
Rev. D | Page 42 of 52  
 
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
REFERENCE OPERATION  
REFERENCE CONTROL AMPLIFIER  
The AD9114/AD9115/AD9116/AD9117 contains an internal  
1.0 V band gap reference. The internal reference can be disabled by  
setting Bit 0 (EXTREF) of the power-down register (Address 0x01)  
through the SPI interface. To use the internal reference, decouple  
the REFIO pin to AVSS with a 0.1 μF capacitor, enable the  
internal reference, and clear Bit 0 of the power-down register  
(Address 0x01) through the SPI interface. Note that this is the  
default configuration. The internal reference voltage is present  
at REFIO. If the voltage at REFIO is to be used anywhere else in  
the circuit, an external buffer amplifier with an input bias current of  
less than 100 nA must be used to avoid loading the reference. An  
example of the use of the internal reference is shown in Figure 96.  
The AD9114/AD9115/AD9116/AD9117 contains a control  
amplifier that regulates the full-scale output current, IxOUTFS  
The control amplifier is configured as a V-I converter, as shown  
in Figure 96. The output current, IxREF, is determined by the ratio of  
the VREFIO and an external resistor, xRSET, as stated in Equation 4 (see  
the DAC Transfer Function section). IxREF is mirrored to the  
segmented current sources with the proper scale factor to set  
.
I
xOUTFS, as stated in Equation 3 (see the DAC Transfer Function  
section).  
The control amplifier allows a 10:1 adjustment span of IxOUTFS  
from 2 mA to 20 mA by setting IxREF between 62.5 µA and 625 µA  
(xRSET between 1.6 kΩ and 16 kΩ). When using a resistor larger  
than 4 kΩ, split the resistor with 4 kΩ plus the additional  
resistance needed, for example, 16 kΩ made of a 4 kΩ + 12 kΩ  
combination, and add a 1 µF capacitor from 4 kΩ to ground.  
The wide adjustment span of IxOUTFS provides several benefits.  
The first relates directly to the power dissipation of the  
AD9114/AD9115/  
AD9116/AD9117  
I DAC  
OR  
V
BG  
1.0V  
Q DAC  
REFIO  
+
FSADJx  
CURRENT  
SCALING  
x32  
0.1µF  
AD9114/AD9115/AD9116/AD9117, which is proportional to  
IxOUTFS  
xR  
SET  
I
xOUTFS (see the DAC Transfer Function section). The second  
benefit relates to the ability to adjust the output over a 8 dB  
range with 0.25 dB steps, which is useful for controlling the  
transmitted power. The small signal bandwidth of the reference  
control amplifier is approximately 500 kHz. This allows the  
device to be used for low frequency, small signal multiplying  
applications.  
I
xREF  
AVSS  
Figure 96. Internal Reference Configuration  
REFIO serves as either an input or an output, depending on  
whether the internal or an external reference is used. Table 17  
summarizes the reference operation.  
DAC TRANSFER FUNCTION  
Table 17. Reference Operation  
The AD9114/AD9115/AD9116/AD9117 provides two differential  
current outputs, IOUTP/IOUTN and QOUTP/ QOUTN. IOUTP  
Reference Mode  
REFIO Pin  
Register Setting  
Internal  
Connect 0.1 µF  
capacitor  
Register 0x01, Bit 0 = 0  
(default)  
and QOUTP provide a near full-scale current output, IxOUTFS  
,
when all bits are high (that is, DAC CODE = 2N − 1, where N = 8,  
10, 12, or 14 for the AD9114, AD9115, AD9116, and AD9117,  
respectively), while IOUTN and QOUTN, the complementary  
outputs, provide no current. The current outputs appearing at the  
positive DAC outputs, IOUTP and QOUTP, and at the negative  
DAC outputs, IOUTN and QOUTN, are a function of both the  
input code and IxOUTFS and can be expressed as follows:  
External  
Apply external  
reference  
Register 0x01, Bit 0 = 1  
(for power saving)  
An external reference can be used in applications requiring tighter  
gain tolerances or lower temperature drift. In addition, a variable  
external voltage reference can be used to implement a method  
for gain control of the DAC output.  
IOUTP = (IDAC CODE/2N) × IIOUTFS  
(1)  
Recommendations When Using an External Reference  
Apply the external reference to the REFIO pin. The internal  
reference can be directly overdriven by the external reference,  
or the internal reference can be powered down to save power  
consumption.  
QOUTP = (QDAC CODE/2N) × IQOUTFS  
IOUTN = ((2N − 1) − IDAC CODE)/2N × IIOUTFS  
QOUTN = ((2N − 1) − QDAC CODE)/2N × IQOUTFS  
(2)  
where:  
IDAC CODE and QDAC CODE = 0 to 2N − 1 (that is, decimal  
representation).  
The external 0.1 µF compensation capacitor on REFIO is not  
required unless specified by the external voltage reference  
manufacturer. The input impedance of REFIO is 10 kΩ when  
the internal reference is powered up and 1 MΩ when it is  
powered down.  
I
IOUTFS and IQOUTFS are functions of the reference currents, IIREF  
and IQREF, respectively, which are nominally set by a reference  
voltage, VREFIO, and external resistors, IRSET and QRSET, respectively.  
IIOUTFS and IQOUTFS can be expressed as follows:  
IIOUTFS = 32 × IIREF  
IQOUTFS = 32 × IQREF  
(3)  
Rev. D | Page 43 of 52  
 
 
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
where:  
AD9114/AD9115/AD9116/AD9117 can be enhanced when it is  
configured for differential operation. The common-mode error  
sources of both IOUTP/IOUTN and QOUTP/QOUTN can be  
significantly reduced by the common-mode rejection of a  
transformer or differential amplifier. These common-mode error  
sources include even-order distortion products and noise.  
IIREF = VREFIO/IRSET  
IQREF = VREFIO/QRSET  
(4)  
(5)  
or  
IIOUTFS = 32 × VREFIO/IRSET  
IQOUTFS = 32 × VREFIO/QRSET  
The enhancement in distortion performance becomes more  
significant as the frequency content of the reconstructed waveform  
increases and/or its amplitude increases. This is due to the first-  
order cancellation of various dynamic common-mode distortion  
mechanisms, digital feedthrough, and noise. Performing a  
differential-to-single-ended conversion via a transformer also  
provides the ability to deliver twice the reconstructed signal  
power to the load (assuming no source termination). Because  
the output currents of IOUTP/IOUTN and QOUTP/QOUTN  
are complementary, they become additive when processed  
differentially.  
A differential pair (IOUTP/IOUTN or QOUTP/QOUTN)  
typically drives a resistive load directly or via a transformer. If  
dc coupling is required, the differential pair (IOUTP/IOUTN or  
QOUTP/QOUTN) should be connected to matching resistive  
loads, xRLOAD, that are tied to analog common, AVSS. The single-  
ended voltage output appearing at the positive and negative nodes is  
VIOUTP = IOUTP × IRLOAD  
VQOUTP = QOUTP × QRLOAD  
VIOUTN = IOUTN × IRLOAD  
VQOUTN = QOUTN × QRLOAD  
(6)  
(7)  
SELF-CALIBRATION  
To achieve the maximum output compliance of 1 V at the nominal  
20 mA output current, IRLOAD = QRLOAD must be set to 50 Ω.  
The AD9114/AD9115/AD9116/AD9117 have a self-calibration  
feature that improves the DNL of the device. Performing a self-  
calibration on the device improves device performance in low  
frequency applications. The device performance in applications  
where the analog output frequencies are above 5 MHz are generally  
influenced more by dynamic device behavior than by DNL and,  
in these cases, self-calibration is unlikely to produce measurable  
benefits. The calibration clock frequency is equal to the DAC clock  
divided by the division factor chosen by the DIVSEL value. There  
is a fixed pre-divider of 16 and it is multiplied by the DIVSEL,  
which has a range of divide by 2 -256. Each calibration clock  
cycle is between 32 and 2048 DAC input clock cycles, depending  
on the value of DIVSEL[2:0] (Register 0x0E, Bits[2:0]). The  
frequency of the calibration clock should be between 0.5 MHz  
and 4 MHz for reliable calibrations. Best results are obtained by  
setting DIVSEL[2:0] to produce a calibration clock frequency  
between these values. Separate self-calibration hardware is  
included for each DAC. The DACs can be self-calibrated  
individually or simultaneously.  
Substituting the values of IOUTP, IOUTN, IxREF, and VIDIFF can  
be expressed as  
VIDIFF = {(2 × IDAC CODE − (2N − 1))/2N} ×  
(32 × VREFIO/IRSET) × IRLOAD  
(8)  
Equation 8 highlights some of the advantages of operating the  
AD9114/AD9115/AD9116/AD9117 differentially. First, the  
differential operation helps cancel common-mode error sources  
associated with IOUTP and IOUTN, such as noise, distortion,  
and dc offsets. Second, the differential code-dependent current and  
subsequent voltage, VIDIFF, is twice the value of the single-ended  
voltage output (that is, VIOUTP or VIOUTB), thus providing twice the  
signal power to the load. Note that the gain drift temperature  
performance for a single-ended output (VIOUTP and VIOUTN) or  
differential output of the AD9114/AD9115/AD9116/ AD9117  
can be enhanced by selecting temperature tracking resistors for  
xRLOAD and xRSET because of their ratiometric relationship, as  
shown in Equation 8.  
To perform a device self-calibration, use the following procedure:  
ANALOG OUTPUT  
1. Write 0x00 to Register 0x12. This ensures that the UNCALI  
and UNCALQ bits (Bit 1 and Bit 0) are reset.  
The complementary current outputs in each DAC, IOUTP/  
IOUTN and QOUTP/QOUTN, can be configured for single-  
ended or differential operation. IOUTP/IOUTN and QOUTP/  
QOUTN can be converted into complementary single-ended  
voltage outputs, VIOUTP and VIOUTN as well as VQOUTP and VQOUTN via  
a load resistor, xRLOAD, as described in the DAC Transfer Function  
section by Equation 6 through Equation 8. The differential  
2. Set up a calibration clock between 0.5 MHz and 4 MHz  
using DIVSEL[2:0], and then enable the calibration clock  
by setting the CALCLK bit (Register 0x0E, Bit 3).  
3. Select the DAC(s) to self-calibrate by setting either Bit 4  
(CALSELI) for the I DAC and/or Bit 5 (CALSELQ) for  
the Q DAC in Register 0x0E. Note that each DAC contains  
independent calibration hardware so that they can be  
calibrated simultaneously.  
voltages, VIDIFF and VQDIFF, existing between VIOUTP and VIOUTN  
,
and VQOUTP and VQOUTN, can also be converted to a single-ended  
voltage via a transformer or a differential amplifier configuration.  
The ac performance of the AD9114/AD9115/AD9116/AD9117 is  
optimum and is specified using a differential transformer-coupled  
output in which the voltage swing at IOUTP and IOUTN is  
limited to 0.5 V. The distortion and noise performance of the  
4. Start self-calibration by setting Bit 4 (CALEN) in Register 0x12.  
Wait approximately 300 calibration clock cycles.  
Rev. D | Page 44 of 52  
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
5. Check if the self-calibration has completed by reading  
Bit 6 (CALSTATI) and Bit 7 (CALSTATQ) in Register 0x0F.  
Logic 1 indicates that the calibration has completed.  
6. When the self-calibration has completed, write 0x00 to  
Register 0x12.  
effect to changing the REFIO voltage is that the full-scale voltage in  
the AUXDAC also changes by the same magnitude. The register  
uses twos complement format, in which 011111 maximizes the  
voltage on the REFIO node and 100000 minimizes the voltage.  
1.30  
7. Disable the calibration clock by clearing Bit 3 (CALCLK)  
in Register 0x0E.  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
The AD9114/AD9115/AD9116/AD9117 allow reading and  
writing of the calibration coefficients. There are 32 coefficients  
in total. The read/write feature of the coefficients can be useful for  
improving the results of the self-calibration routine by averaging  
the results of several self-calibration cycles and loading the  
averaged results back into the device.  
To read the calibration coefficients, use the following steps:  
1. Select which DAC core to read by setting either Bit 4  
(CALSELI) for the I DAC or Bit 5 (CALSELQ) for the  
Q DAC in Register 0x0E. Write the address of the first  
coefficient (0x01) to Register 0x10.  
0
8
16  
24  
32  
40  
48  
56  
CODE  
Figure 97. Typical VREF Voltage vs. Code  
2. Set Bit 2 (SMEMRD) in Register 0x12 by writing 0x04 to  
Register 0x12.  
Option 2  
While using the internal FSADJx resistors, each main DAC can  
achieve independently controlled coarse gain using the lower six  
bits of Register 0x04 (IRSET[5:0]) and Register 0x07 (QRSET[5:0]).  
Unlike Coarse Gain Option 1, this impacts only the main DAC  
full-scale output current. The register uses twos complement  
format and allows the output current to be changed in  
approximately 0.25 dB steps.  
3. Read the 6-bit value of the first coefficient by reading the  
contents of Register 0x11.  
4. Clear the SMEMRD bit by writing 0x00 to Register 0x12.  
5. Repeat Step 2 through Step 4 for each of the remaining 31  
coefficients by incrementing the address by 1 for each read.  
6. Deselect the DAC core by clearing either Bit 4 (CALSELI)  
for the I DAC and/or Bit 5 (CALSELQ) for the Q DAC in  
Register 0x0E.  
22  
20  
18  
To write the calibration coefficients to the device, use the  
following steps:  
V
OR V  
16  
14  
12  
10  
8
OUT_Q OUT_I  
1. Select which DAC core to write to by setting either Bit 4  
(CALSELI) for the I DAC or Bit 5 (CALSELQ) for the  
Q DAC in Register 0x0E.  
2. Set Bit 3 (SMEMWR) in Register 0x12 by writing 0x08 to  
Register 0x12.  
3. Write the address of the first coefficient (0x01) to  
Register 0x10.  
6
4
4. Write the value of the first coefficient to Register 0x11.  
5. Repeat Step 2 through Step 4 for each of the remaining 31  
coefficients by incrementing the address by one for each write.  
6. Clear the SMEMWR bit by writing 0x00 to Register 0x12.  
7. Deselect the DAC core by clearing either Bit 4 (CALSELI)  
for the I DAC or Bit 5 (CALSELQ) for the Q DAC in  
Register 0x0E.  
2
0
10  
20  
30  
40  
50  
60  
xR  
CODE  
SET  
Figure 98. Effect of xRSET Code  
Option 3  
Even when the device is in pin mode, full-scale values can be  
adjusted by sourcing or sinking current from the FSADJx pins.  
Any noise injected here appears as amplitude modulation of the  
output. Thus, a portion of the required series resistance (at least  
20 kΩ) must be installed right at the pin. A range of 10% is  
quite practical using this method.  
COARSE GAIN ADJUSTMENT  
Option 1  
A coarse full-scale output current adjustment can be achieved  
using the lower six bits in Register 0x0D. This adds or subtracts  
up to 20% from the band gap voltage on Pin 34 (REFIO), and  
the voltage on the FSADJx resistors tracks this change. As a result,  
the DAC full-scale current varies by the same amount. A secondary  
Option 4  
As in Option 3, when the device is in pin mode, both full-scale  
values can be adjusted by sourcing or sinking current from the  
Rev. D | Page 45 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
CML  
REFIO pin. Noise injected here appears as amplitude modulation  
of the output; therefore, a portion of the required series resistance  
(at least 10 kΩ) must be installed at the pin. A range of 25% is  
quite practical when using this method.  
xR  
CM  
RLIN  
62.5  
IOUTN  
IOUTP  
RLIP  
I DAC  
OR  
Q DAC  
Fine Gain  
Each main DAC has independent fine gain control using the  
lower six bits in Register 0x03 (I DACGAIN[5:0]) and Register  
0x06 (Q DACGAIN[5:0]). Unlike Coarse Gain Option 1, this  
impacts only the main DAC full-scale output current. These  
registers use straight binary format. One application in which  
straight binary format is critical is for side-band suppression  
while using a quadrature modulator. This is described in more  
detail in the Applications Information section.  
62.5Ω  
Figure 100. Simplified Internal Load Options  
Using the Internal Common-Mode Resistor  
These devices contain an adjustable internal common-mode  
resistor that can be used to increase the dc bias of the DAC  
outputs. By default, the common-mode resistor is not connected.  
When enabled, it can be adjusted from ~60 Ω to ~260 Ω. Each  
main DAC has an independent adjustment using the lower six bits  
in Register 0x05 (IRCML[5:0]) and Register 0x08 (QRCML[5:0]).  
260  
11.10  
3.3V DAC1  
3.3V DAC2  
1.8V DAC1  
1.8V DAC2  
11.00  
10.90  
10.80  
240  
220  
200  
180  
160  
140  
120  
100  
80  
10.70  
10.60  
10.50  
0
8
16  
24  
32  
40  
48  
56  
64  
GAIN DAC CODE  
Figure 99. Typical DAC Gain Characteristics  
60  
0
8
16  
24  
32  
40  
48  
56  
USING THE INTERNAL TERMINATION RESISTORS  
CODE  
The AD9117/AD9116/AD9115/AD9114 have four 62.5 Ω  
termination internal resistors (two for each DAC output).  
To use these resistors to convert the DAC output current to a  
voltage, connect each DAC output pin to the adjacent load pin.  
For example, on the I DAC, IOUTP must be shorted to RLIP  
and IOUTN must be shorted to RLIN. In addition, the CMLI  
or CMLQ pin must be connected to ground directly or through  
a resistor. If the output current is at the nominal 20 mA and the  
CMLI or CMLQ pin is tied directly to ground, this produces a  
dc common-mode bias voltage on the DAC output equal to  
0.625 V. If the DAC dc bias must be higher than 0.625 V, an  
external resistor can be connected between the CMLI or CMLQ  
pin and ground. This part also has an internal common-mode  
resistor that can be enabled. This is explained in the Using the  
Internal Common-Mode Resistor section.  
Figure 101. Typical CML Resistor Value vs. Register Code  
Using the CMLx Pins for Optimal Performance  
The CMLx pins also serve to change the DAC bias voltages in  
the parts allowing them to run at higher dc output bias voltages.  
When running the bias voltage below 0.9 V and an AVDD of  
3.3 V, the parts perform optimally when the CMLx pins are tied  
to ground. When the dc bias increases above 0.9 V, set the CMLx  
pins at 0.5 V for optimal performance. The maximum dc bias  
on the DAC output should be kept at or below 1.2 V when the  
supply is 3.3 V. When the supply is 1.8 V, keep the dc bias close  
to 0 V and connect the CMLx pins directly to ground.  
Rev. D | Page 46 of 52  
 
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
APPLICATIONS INFORMATION  
OUTPUT CONFIGURATIONS  
A differential resistor, RDIFF, can be inserted in applications in  
which the output of the transformer is connected to the load,  
RLOAD, via a passive reconstruction filter or cable. RDIFF, as  
reflected by the transformer, is chosen to provide a source  
termination that results in a low voltage standing wave ratio  
(VSWR). Note that approximately half the signal power is  
The following sections illustrate some typical output configu-  
rations for the AD9114/AD9115/AD9116/AD9117. Unless  
otherwise noted, it is assumed that IxOUTFS is set to a nominal  
20 mA. For applications requiring the optimum dynamic  
performance, a differential output configuration is suggested.  
A differential output configuration can consist of either an RF  
transformer or a differential op amp configuration. The trans-  
former configuration provides the optimum high frequency  
performance and is recommended for any application that  
allows ac coupling. The differential op amp configuration is  
suitable for applications requiring dc coupling, signal gain,  
and/or a low output impedance.  
dissipated across RDIFF  
.
SINGLE-ENDED BUFFERED OUTPUT USING  
AN OP AMP  
An op amp, such as the ADA4899-1, can be used to perform a single-  
ended current-to-voltage conversion, as shown in Figure 103.  
Figure 103 is a simplified schematic. The REFIO pin must be  
buffered to keep the load current less than 100 nA. The AD9114/  
AD9115/AD9116/AD9117 are configured with a pair of series  
resistors, RS, off each output. For best distortion performance, RS  
should be set to 0 Ω. The feedback resistor, RFB, determines the  
peak-to-peak signal swing by the formula  
A single-ended output is suitable for applications in which low  
cost and low power consumption are primary concerns.  
DIFFERENTIAL COUPLING USING A TRANSFORMER  
An RF transformer can be used to perform a differential-to-  
single-ended signal conversion, as shown in Figure 102. The  
distortion performance of a transformer typically exceeds  
that available from standard op amps, particularly at higher  
frequencies. Transformer coupling provides excellent rejection  
of common-mode distortion (that is, even-order harmonics)  
over a wide frequency range. It also provides electrical isolation  
and can deliver voltage gain without adding noise. Transformers  
with different impedance ratios can also be used for impedance  
matching purposes. The main disadvantages of transformer  
coupling are low frequency roll-off, lack of power gain, and  
high output impedance.  
VOUT = RFB × IFS  
The common-mode voltage of the output is determined by the  
formula  
RFB ×IFS  
RFB  
RB  
VCM =VREF × 1+  
2
The maximum and minimum voltages out of the amplifier are,  
respectively,  
RFB  
RB  
VMAX =VREF × 1+  
VMIN = VMAX IFS × RFB  
29  
IOUTN  
C
F
AD9114/AD9115/  
AD9116/AD9117  
R
R
FB  
B
R
LOAD  
+5V  
AD9114/AD9115/  
AD9116/AD9117  
R
S
28  
IOUTP  
28  
IOUTP  
OPTIONAL R  
DIFF  
ADA4899-1  
+
V
OUT  
34  
REFIO  
Figure 102. Differential Output Using a Transformer  
C
R
–5V  
S
29  
25  
IOUTN  
AVSS  
The center tap on the primary side of the transformer must be  
connected to a voltage that keeps the voltages on IOUTP and  
IOUTN within the output common-mode voltage range of the  
device. Note that the dc component of the DAC output current  
is equal to IIOUTFS and flows out of both IOUTP and IOUTN.  
The center tap of the transformer should provide a path for this  
dc current. In most applications, AGND provides the most  
convenient voltage for the transformer center tap. The comple-  
mentary voltages appearing at IOUTP and IOUTN (that is,  
VIOUTP and VIOUTN) swing symmetrically around AGND and  
should be maintained with the specified output compliance  
range of the AD9114/AD9115/AD9116/AD9117.  
Figure 103. Single-Supply, Single-Ended Buffer  
Rev. D | Page 47 of 52  
 
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
To keep the pin count reasonable, these auxiliary DACs each  
share a pin with the corresponding FSADJx resistor. They are,  
therefore, usable only when enabled and when that DAC is  
operated on its internal full-scale resistors. A simple I-to-V  
converter is implemented on-chip with selectable shunt resistors  
(3.2 kΩ to 16 kΩ) such that if REFIO is set to exactly 1 V, REFIO/2  
equals 0.5 V and the following equation describes the no load  
output voltage:  
DIFFERENTIAL BUFFERED OUTPUT  
USING AN OP AMP  
A dual op amp (see the circuit shown in Figure 104) can be  
used in a differential version of the single-ended buffer shown  
in Figure 103. Figure 104 is a simplified schematic. The REFIO  
pin must be buffered to keep the load current less than 100 nA.  
The same RC network is used to form a one-pole differential,  
low-pass filter to isolate the op amp inputs from the high  
frequency images produced by the DAC outputs. The feedback  
resistors, RFB, determine the differential peak-to-peak signal swing  
by the formula  
1.5  
VOUT = 0.5 V IDAC  
16 kΩ  
RS  
Figure 105 illustrates the function of all the SPI bits controlling  
these DACs with the exception of the QAUXEN (Register 0x0A)  
and IAUXEN (Register 0x0C) bits and gating to prohibit  
RS < 3.2 kΩ.  
VOUT = 2 × RFB × IFS  
The maximum and minimum single-ended voltages out of the  
amplifier are, respectively,  
AVDD  
RNG0  
RNG1  
RFB  
RB  
VMAX = VREF × 1+  
RNG: 00 = 125µA fS  
01 = 62µA fS  
AUXDAC  
[9:0]  
10 = 31µA fS  
11 = 16µA fS  
VMIN = VMAX RFB × IFS  
(OFS > 4 = 4)  
The common-mode voltage of the differential output is  
determined by the formula  
OFS2  
OFS1  
OFS0  
16kΩ  
AUX  
PIN  
VCM = VMAX RFB × IFS  
4kΩ 8kΩ 16kΩ 16kΩ  
C
F
OP AMP  
+
R
R
FB  
B
REFIO  
AD9114/AD9115/  
AD9116/AD9117  
IOUTP  
2
R
S
28  
34  
ADA4841-2  
+
Figure 105. AUXDAC Simplified Circuit Diagram  
REFIO  
V
C
OUT  
The SPI speed limits the update rate of the auxiliary DACs. The  
data is inverted such that IAUXDAC is full scale at 0x000 and zero  
at 0x1FF, as shown in Figure 106.  
AVSS  
25  
29  
+
R
S
IOUTN  
ADA4841-2  
3.0  
OP AMP OUTPUT VOLTAGE vs.  
2.8  
CHANGES IN R  
AND DAC CURRENT IN µA  
OFFSET  
C
F
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
R
R
R
R
= 3.3kΩ  
= 4kΩ  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
OFFSET  
R
R
FB  
B
= 5.3kΩ  
= 8kΩ  
Figure 104. Single-Supply Differential Buffer  
= 16kΩ  
AUXILIARY DACs  
The DACs of the AD9114/AD9115/AD9116/AD9117 feature  
two versatile and independent 10-bit auxiliary DACs suitable  
for dc offset correction and similar tasks.  
Because the AUXDACs are driven through the SPI port, they  
should never be used in timing-critical applications, such as  
inside analog feedback loops.  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
DAC CURRENT (µA)  
Figure 106. AUXDAC Op Amp Output vs. Current, AVDD = 3.3 V No Load,  
AUXDAC 0x1FF to 0x000  
Rev. D | Page 48 of 52  
 
 
 
 
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
Two registers are assigned to each DAC with 10 bits for the  
actual DAC current to be generated, a 3-bit offset (and gain)  
adjustment, a 2-bit current range adjustment, and an enable/  
disable bit. Setting the QAUXOFS (Register 0x0A) and  
IAUXOFS (Register 0x0C) bits to all 1s disables the respective  
op amp and routes the DAC current directly to the respective  
FSADJI/AUXI or FSADJQ/AUXQ pins. This is especially useful  
when the loads to be driven are beyond the limited capability of  
the on-chip amplifier.  
OPTIONAL  
LOW- PASS  
FILTERING  
AD9114/AD9115/  
AD9116/AD9117  
I OR Q DAC  
ADL5370  
FAMILY  
I OR Q INPUTS  
100  
50Ω  
50Ω  
AD9114/AD9115/  
AD9116/AD9117  
AUXDAC  
5kΩ  
Figure 108. Typical Use of Auxiliary DACs When DC Coupling to Quadrature  
Modulator ADL537x Family  
CORRECTING FOR NONIDEAL PERFORMANCE OF  
QUADRATURE MODULATORS ON THE IF-TO-RF  
CONVERSION  
When not enabled (QAUXEN or IAUXEN = 0), the respective  
DAC output is in open circuit.  
DAC-TO-MODULATOR INTERFACING  
Analog quadrature modulators make it very easy to realize  
single sideband radios. These DACs are most often used to make  
radio transmitters, such as in cell phone towers. However, there  
are several nonideal aspects of quadrature modulator performance.  
Among these analog degradations are gain mismatch and LO  
feedthrough.  
The auxiliary DACs can be used for local oscillator (LO)  
cancellation when the DAC output is followed by a quadrature  
modulator. This LO feedthrough is caused by the input referred  
dc offset voltage of the quadrature modulator (and the DAC  
output offset voltage mismatch) and can degrade system  
performance. Typical DAC-to-quadrature modulator interfaces  
are shown in Figure 107 and Figure 108, with the series resistor  
value chosen to give an appropriate adjustment range. Figure 107  
also shows external load resistors in use. Often, the input common-  
mode voltage for the modulator is much higher than the output  
compliance range of the DAC, so that ac coupling or a dc level  
shift is necessary. If the required common-mode input voltage  
on the quadrature modulator matches that of the DAC, the dc  
blocking capacitors in Figure 107 can be removed and the on-chip  
resistors can be connected.  
Gain Mismatch  
The gain in the real and imaginary signal paths of the quadrature  
modulator may not be matched perfectly. This leads to less than  
optimal image rejection because the cancellation of the negative  
frequency image is less than perfect.  
LO Feedthrough  
The quadrature modulator has a finite dc referred offset, as well  
as coupling from its LO port to the signal inputs. These can lead  
to a significant spectral spur at the frequency of the quadrature  
modulator LO.  
MODULATOR V+  
The AD9114/AD9115/AD9116/AD9117 have the capability to  
correct for both of these analog degradations. However, understand  
that these degradations drift over temperature; therefore, if close to  
optimal single sideband performance is desired, a scheme for  
sensing these degradations over temperature and correcting  
them may be necessary.  
0.1µF  
OPTIONAL  
PASSIVE  
FILTERING  
AD9114/AD9115/  
AD9116/AD9117  
I DAC  
QUADRATURE  
MODULATOR  
I
OR Q  
INPUTS  
0.1µF  
AD9114/AD9115/  
AD9116/AD9117  
AUXDAC1  
5k  
TO  
100kΩ  
50Ω  
50Ω  
I/Q CHANNEL GAIN MATCHING  
Fine gain matching is achieved by adjusting the values in the DAC  
fine gain adjustment registers. For the I DAC, these values are in  
the I DAC Gain register (Register 0x03, I DACGAIN[5:0]). For the  
Q DAC, these values are in the Q DAC gain register (Register 0x06,  
Q DACGAIN[5:0]). These are 6-bit values that cover 2% of full  
scale. To perform gain compensation by starting from the default  
values of zero, raise the value of one of these registers a few steps  
until it can be determined if the amplitude of the unwanted  
image is increased or decreased. If the unwanted image increases in  
amplitude, remove the step and try the same adjustment on the  
other DAC control register. Iterate register changes until the  
rejection cannot be improved further. If the fine gain adjustment  
range is not sufficient to find a null (that is, the register goes full  
scale with no null apparent), adjust the course gain settings of the  
two DACs accordingly and try again. Variations on this simple  
method are possible.  
Figure 107. Typical Use of Auxiliary DACs  
Figure 108 shows a greatly simplified circuit that takes full  
advantage of the internal components supplied in the DAC.  
A low-pass or band-pass passive filter is recommended when  
spurious signals from the DAC (distortion and DAC images) at the  
quadrature modulator inputs can affect the system performance. In  
the example shown in Figure 108, the filter must be able to pass dc  
to properly bias the modulator. Placing the filter at the location  
shown in Figure 107 and Figure 108 allows easy design of the filter,  
because the source and load impedances can easily be designed  
close to 50 ꢀ for a 20 mA full-scale output. When the resistance  
at the modulator inputs is known, an optimum value for the  
series resistor can be calculated from the modulator input  
offset voltage ratings.  
Rev. D | Page 49 of 52  
 
 
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
Note that LO feedthrough compensation is independent of  
phase compensation. However, gain compensation can affect  
the LO compensation because the gain compensation may change  
the common-mode level of the signal. The dc offset of some  
modulators is common-mode level dependent. Therefore, it is  
recommended that the gain adjustment be performed prior to  
LO compensation.  
Note that gain matching improves the negative frequency  
image rejection, but it is also related to the phase mismatch in  
the quadrature modulator. It can be improved by adjusting the  
relative phase between the two quadrature signals at the digital side  
or properly designing the low-pass filter between the DACs and  
quadrature modulators. Phase mismatch is frequency dependent;  
therefore, routines must be developed to adjust it if wideband  
signals are desired.  
LO FEEDTHROUGH COMPENSATION  
5
0
–5  
To achieve LO feedthrough compensation in a circuit, each  
output of the two AUXDACs must be connected through a  
10 kΩ resistor to one side of the differential DAC output. See  
the Auxiliary DACs section for details of how to use AUXDACs.  
The purpose of these connections is to drive a very small amount  
of current into the nodes at the quadrature modulator inputs,  
thereby adding a slight dc bias to one or the other of the  
quadrature modulator signal inputs.  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
To achieve LO feedthrough compensation, the user should start  
with the default conditions of the AUXDAC registers and then  
increment the magnitude of one or the other AUXDAC output  
voltages. While this is being done, the amplitude of the LO  
feedthrough at the quadrature modulator output should be  
sensed. If the LO feedthrough amplitude increases, try either  
decreasing the output voltage of the AUXDAC being adjusted  
or try adjusting the output voltage of the other AUXDAC. It  
may take practice before an effective algorithm is achieved. The  
AD9114/AD9115/AD9116/ AD9117 evaluation board can be  
used to adjust the LO feedthrough down to the noise floor,  
although this is not stable over temperature.  
447.5  
449.0  
450.0  
451.0  
452.5  
FREQUENCY (MHz)  
Figure 109. AD9114/AD9115/AD9116/AD9117 and ADL5370 with a Single-  
Tone Signal at 450 MHz, No Gain or LO Compensation  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
RESULTS OF GAIN AND OFFSET CORRECTION  
The results of gain and offset correction can be seen in Figure 109  
and Figure 110. Figure 109 shows the output spectrum of the  
quadrature demodulator before gain and offset correction.  
Figure 110 shows the output spectrum after correction. The  
LO feedthrough spur at 450 MHz has been suppressed to the  
noise level. This result can be achieved by applying the correction,  
but the correction must be repeated after a large change in  
temperature.  
447.5  
449.0  
450.0  
451.0  
452.5  
FREQUENCY (MHz)  
Figure 110. AD9114/AD9115/AD9116/AD9117 and ADL5370 with a Single-  
Tone Signal at 450 MHz, Gain and LO Compensation Optimized  
Rev. D | Page 50 of 52  
 
 
Data Sheet  
AD9114/AD9115/AD9116/AD9117  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
30  
40  
1
5.85  
5.75 SQ  
5.65  
0.50  
BSC  
PIN 1  
INDICATOR  
4.25  
4.10 SQ  
3.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
10  
11  
21  
20  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
4.50 REF  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
0.30  
0.23  
0.18  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 111. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm and 0.85 mm Package Height  
(CP-40-1)  
Dimensions shown in millimeters  
DETAIL A  
(JEDEC 95)  
6.10  
6.00 SQ  
5.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDIC ATOR AREA OPTIONS  
(SEE DETAIL A)  
31  
30  
40  
1
0.50  
BSC  
4.25  
EXPOSED  
PAD  
4.10 SQ  
3.95  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-5.  
Figure 112. 40-Lead Lead Frame Chip Scale Package [LFCSP]  
6 mm × 6 mm and 0.75 mm Package Height  
(CP-40-9)  
Dimensions shown in millimeters  
Rev. D | Page 51 of 52  
AD9114/AD9115/AD9116/AD9117  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
40-Lead LFCSP  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
AD9114BCPZ  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-9  
CP-40-9  
AD9114BCPZRL7  
AD9115BCPZ  
AD9115BCPZRL7  
AD9116BCPZ  
AD9116BCPZRL7  
AD9117BCPZ  
AD9117BCPZRL7  
AD9117BCPZN  
AD9117BCPZNRL7  
AD9114-DPG2-EBZ  
AD9115-DPG2-EBZ  
AD9116-DPG2-EBZ  
AD9117-DPG2-EBZ  
1 Z = RoHS Compliant Part.  
©2008–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07466-0-12/17(D)  
Rev. D | Page 52 of 52  

相关型号:

AD9115-EBZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9115BCPZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9115BCPZ

SERIAL, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40
ROCHESTER

AD9115BCPZRL7

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9115BCPZRL7

SERIAL, PARALLEL, WORD INPUT LOADING, 10-BIT DAC, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40
ROCHESTER

AD9116

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9116-DPG2-EBZ

Dual Low Power Digital-to-Analog Converters
ADI

AD9116-EBZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9116BCPZ

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9116BCPZ

SERIAL, PARALLEL, WORD INPUT LOADING, 12-BIT DAC, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40
ROCHESTER

AD9116BCPZRL7

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI

AD9117

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
ADI