AD9115BCPZ [ADI]

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters; 双通道, 8位/ 10位/ 12位/ 14位低功耗数字 - 模拟转换器
AD9115BCPZ
型号: AD9115BCPZ
厂家: ADI    ADI
描述:

Dual, 8-/10-/12-/14-Bit Low Power Digital-to-Analog Converters
双通道, 8位/ 10位/ 12位/ 14位低功耗数字 - 模拟转换器

转换器 数模转换器 PC
文件: 总48页 (文件大小:1232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 8-/10-/12-/14-Bit Low  
Power Digital-to-Analog Converters  
AD9114/AD9115/AD9116/AD9117  
FEATURES  
GENERAL DESCRIPTION  
Power dissipation @ 3.3 V, 20 mA output  
191 mW @ 10 MSPS  
232 mW @ 125 MSPS  
Sleep mode: <3 mW @ 3.3 V  
Supply voltage: 1.8 V to 3.3 V  
SFDR to Nyquist  
86 dBc @ 1 MHz output  
85 dBc @ 10 MHz output  
AD9117 NSD @ 1 MHz output, 125 MSPS, 20mA: −162 dBc/Hz  
Differential current outputs: 4 mA to 20 mA  
Two on-chip auxiliary DACs  
CMOS inputs with single-port operation  
Output common mode: adjustable 0 V to 1.2 V  
Small footprint 40-lead LFCSP Pb-free package  
The AD9114/AD9115/AD9116/AD9117 are pin-compatible  
dual, 8-/10-/12-/14-bit, low power digital-to-analog converters  
(DACs) that provide a sample rate of 125 MSPS. These TxDAC®  
converters are optimized for the transmit signal path of commu-  
nication systems. All the devices share the same interface, LFCSP,  
and pinout, providing an upward or downward component  
selection path based on performance, resolution, and cost.  
The AD9114/AD9115/AD9116/AD9117 offer exceptional ac and  
dc performance and support update rates up to 125 MSPS.  
The flexible power supply operating range of 1.8 V to 3.6 V and  
low power dissipation of the AD9114/AD9115/AD9116/AD9117  
make them well-suited for portable and low power applications.  
PRODUCT HIGHLIGHTS  
APPLICATIONS  
1. Low Power.  
DACs operate on a single 1.8 V to 3.3 V supply; total power  
consumption reduces to 225 mW at 100 MSPS. Sleep and  
power-down modes are provided for low power idle  
periods.  
Wireless infrastructures  
Picocell, femtocell base stations  
Medical instrumentation  
Ultrasound transducer excitation  
Portable instrumentation  
2. CMOS Clock Input.  
High speed, single-ended CMOS clock input supports  
125 MSPS conversion rate.  
Signal generators, arbitrary waveform generators  
3. Easy Interfacing to Other Components.  
Adjustable output common mode from 0 V to 1.2 V allows  
for easy interfacing to other components that accept common-  
mode levels greater than 0 V.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
 
 
AD9114/AD9115/AD9116/AD9117  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Register Map ............................................................................ 33  
SPI Register Descriptions.............................................................. 34  
Digital Interface Operation........................................................... 37  
Digital Data Latching and Retimer Section............................ 38  
Estimating the Overall DAC Pipeline Delay........................... 39  
Self-Calibration........................................................................... 40  
Coarse Gain Adjustment........................................................... 41  
Using the Internal Termination Resistors............................... 42  
Applications Information.............................................................. 43  
Output Configurations.............................................................. 43  
Differential Coupling Using a Transformer ............................... 43  
Single-Ended Buffered Output Using an Op Amp................ 43  
Differential Buffered Output Using an Op Amp ................... 44  
Auxiliary DACs........................................................................... 44  
DAC-to-Modulator Interfacing................................................ 45  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
Digital Specifications ................................................................... 6  
AC Specifications.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 17  
Terminology .................................................................................... 29  
Theory of Operation ...................................................................... 30  
Serial Peripheral Interface (SPI) ................................................... 31  
General Operation of the Serial Interface............................... 31  
Instruction Byte .......................................................................... 31  
Serial Interface Port Pin Descriptions ..................................... 31  
MSB/LSB Transfers..................................................................... 32  
Serial Port Operation................................................................. 32  
Pin Mode ..................................................................................... 32  
Correcting for Nonideal Performance of Quadrature  
Modulators on the IF-to-RF Conversion ................................ 45  
I/Q Channel Gain Matching..................................................... 45  
LO Feedthrough Compensation .............................................. 46  
Results of Gain and Offset Correction .................................... 46  
Modifying the Evaluation Board to Use the ADL5370  
On-Board Quadrature Modulator ........................................... 47  
Outline Dimensions....................................................................... 48  
Ordering Guide .......................................................................... 48  
REVISION HISTORY  
8/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 48  
 
AD9114/AD9115/AD9116/AD9117  
FUNCTIONAL BLOCK DIAGRAM  
AD9114/AD9115/  
AD9116/AD9117  
1V  
SPI  
INTERFACE  
DB11  
DB10  
DB9  
R
R
SET  
8.5k  
SET  
8.5kΩ  
R
CM  
60TO  
260Ω  
RLIN  
62.5Ω  
62.5Ω  
10kΩ  
IOUTN  
IOUTP  
I
I DAC  
REF  
100µA  
DB8  
BAND  
GAP  
RLIP  
AUX1DAC  
AUX2DAC  
DVDDIO  
DVSS  
DVDD  
DB7  
AVDD  
AVSS  
RLQP  
1 INTO 2  
INTERLEAVED  
DATA  
I DATA  
INTERFACE  
62.5Ω  
62.5Ω  
1.8V  
LDO  
QOUTP  
QOUTN  
Q DATA  
Q DAC  
RLQN  
CLOCK  
DIST  
DB6  
R
CM  
60TO  
260Ω  
DB5  
Figure 1.  
Rev. 0 | Page 3 of 48  
 
AD9114/AD9115/AD9116/AD9117  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IOUTFS = 2 mA, maximum sample rate, unless  
otherwise noted.  
Table 1.  
AD9114  
AD9115  
Typ  
AD9116  
Typ  
AD9117  
Typ  
Parameter  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
8
10  
12  
14  
Bits  
ACCURACY @ 3.3 V  
Differential Nonlinearity (DNL)  
Precalibration  
0.02  
0.02  
0.06  
0.04  
0.4  
0.2  
1.4  
0.6  
LSB  
LSB  
Postcalibration  
Integral Nonlinearity (INL)  
Precalibration  
0.03  
0.03  
0.19  
0.07  
0.68  
0.42  
1.2  
0.6  
LSB  
LSB  
Postcalibration  
ACCURACY @ 1.8 V  
Differential Nonlinearity (DNL)  
Precalibration  
0.02  
0.01  
0.08  
0.06  
0.5  
0.2  
1.8  
1.0  
LSB  
LSB  
Postcalibration  
Integral Nonlinearity (INL)  
Precalibration  
0.04  
0.02  
0.2  
0.1  
0.5  
0.3  
1.8  
1.1  
LSB  
LSB  
Postcalibration  
MAIN DAC OUTPUTS  
Offset Error  
−1  
−2  
+1  
+2  
−1  
−2  
+1  
+2  
−1  
−2  
+1  
+2  
−1  
−2  
+1  
+2  
mV  
Gain Error Internal Reference  
% of  
FSR  
Full-Scale Output Current1  
VCC = 3.3 V  
4
4
8
8
0
20  
4
8
8
0
20  
4
8
8
0
20  
4
8
8
0
20  
mA  
mA  
V
VCC = 1.8 V  
16  
4
16  
4
16  
4
16  
Output Common-Mode Level −0.5  
(8 mA CML Pin)  
+1.2  
−0.5  
+1.2  
−0.5  
+1.2  
−0.5  
+1.2  
Output Compliance Range  
(8 mA CML Pin)  
−0.5  
0
+1.2  
−0.5  
0
+1.2  
−0.5  
0
+1.2  
−0.5  
0
+1.2  
V
Output Resistance  
200  
95  
200  
95  
200  
95  
200  
95  
MΩ  
dB  
Crosstalk, Q DAC to I DAC  
(fOUT = 30 MHz)  
Crosstalk, Q DAC to I DAC  
(fOUT = 60 MHz)  
76  
76  
76  
76  
dB  
MAIN DAC TEMPERATURE DRIFT  
Offset  
0
0
0
0
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
40  
25  
40  
25  
40  
25  
40  
25  
Reference Voltage  
AUXDAC OUTPUTS  
Resolution  
10  
10  
10  
10  
Bits  
μA  
Full-Scale Output Current  
(Current Sourcing Mode)  
125  
125  
125  
125  
Voltage Output Mode  
Output Compliance Range  
(Sourcing 1 mA)  
VSS  
VDD  
0.25  
VSS  
VDD  
0.25  
VSS  
VDD  
0.25  
VSS  
VDD  
0.25  
V
Output Compliance Range  
(Sinking 1 mA)  
VSS  
0.25  
+
VDD  
VSS +  
0.25  
VDD  
VSS +  
0.25  
VDD  
VSS  
0.25  
+
VDD  
V
Output Resistance in Current  
Output Mode VSS to +1 V  
1
1
1
1
MΩ  
Bits  
AUXDAC Monotonicity  
Guaranteed  
10  
10  
10  
10  
Rev. 0 | Page 4 of 48  
 
AD9114/AD9115/AD9116/AD9117  
AD9114  
Typ  
AD9115  
Typ  
AD9116  
Typ  
AD9117  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
REFERENCE OUTPUT  
Internal Reference Voltage  
Output Resistance  
REFERENCE INPUT  
Voltage Compliance  
Input Resistance Ext Ref Mode  
DAC MATCHING  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
0.98  
1.025  
10  
1.08  
V
kΩ  
0.1  
−1  
1.25  
+1  
0.1  
−1  
1.25  
+1  
0.1  
−1  
1.25  
+1  
0.1  
−1  
1.25  
+1  
V
1
1
1
1
MΩ  
Gain Matching  
% of  
FSR  
ANALOG SUPPLY VOLTAGES  
AVDD  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
V
V
CVDD  
DIGITAL SUPPLY VOLTAGES  
DVDD  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
1.7  
1.7  
3.5  
3.5  
V
V
DVDDIO  
POWER CONSUMPTION @ 3.3 V  
fDAC = 125 MSPS, IF = 12.5 MHz  
IAVDD  
220  
55  
220  
55  
220  
55  
220  
55  
mW  
mA  
IDVDDIO  
10  
10  
10  
10  
mA  
ICVDD  
3
3
3
3
mA  
Power-Down Mode with Clock  
Power-Down Mode No Clock  
8.5  
3
8.5  
3
8.5  
3
8.5  
3
mW  
mW  
% FSR/V  
Power Supply Rejection  
Ratio, AVDD = 3.3 V  
−0.009  
−0.009  
−0.009  
−0.009  
POWER CONSUMPTION @ 1.8 V  
fDAC = 125 MSPS, IF = 12.5 MHz  
58  
58  
58  
58  
mW  
mA  
IAVDD  
24  
24  
24  
24  
IDVDD  
8
8
8
8
mA  
ICVDD  
2
2
2
2
mA  
Power-Down Mode with Clock  
Power-Down Mode No Clock  
12  
12  
12  
12  
mW  
μW  
850  
−0.007  
850  
−0.007  
850  
−0.007  
850  
−0.007  
Power Supply Rejection Ratio,  
AVDD = 1.8 V  
% FSR/V  
OPERATING RANGE  
–40  
+25  
+85  
–40  
+25  
+85  
–40  
+25  
+85  
–40  
+25  
+85  
°C  
1 Based on a 10 kΩ external resistor.  
Rev. 0 | Page 5 of 48  
AD9114/AD9115/AD9116/AD9117  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 3.3 V, CVDD = 3.3 V, IOUTFS = 2 mA, maximum sample rate, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKIN)  
VIH  
VIL  
2.1  
3
0
mV  
mV  
0.9  
Maximum Clock Rate  
125  
MSPS  
SERIAL PERIPHERAL INTERFACE  
Maximum Clock Rate (SCLK)  
Minimum Pulse Width High  
Minimum Pulse Width Low  
25  
20  
20  
MHz  
ns  
ns  
INPUT DATA TIMING  
1.8 V Q-Channel or DCLKIO Falling Edge  
Setup  
Hold  
0.25  
1.2  
ns  
ns  
I-Channel or DCLKIO Rising Edge  
Setup  
Hold  
0.13  
1.1  
ns  
ns  
3.3 V Q-Channel or DCLKIO Falling Edge  
Setup  
Hold  
−0.2  
1.5  
ns  
ns  
I-Channel or DCLKIO Rising Edge  
Setup  
Hold  
VIH  
−0.2  
1.6  
3
ns  
ns  
V
2.1  
VIL  
0
0.9  
Rev. 0 | Page 6 of 48  
 
 
AD9114/AD9115/AD9116/AD9117  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD = 3.3 V, DVDD = 1.8 V, DVDDIO = 1.8 V, CVDD = 3.3 V, IOUTFS = 20 mA, maximum sample rate, unless  
otherwise noted.  
Table 3.  
AD9114  
Min Typ  
AD9115  
Max Min Typ  
AD9116  
Max Min Typ  
AD9117  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR) 3.3 V  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
76  
55  
85  
55  
85  
55  
85  
55  
dBc  
dBc  
TWO-TONE INTERMODULATION  
DISTORTION (IMD)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
81  
60  
81  
60  
81  
60  
82  
61  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD) EIGHT-  
TONE, 500 kHz TONE SPACING  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
−132  
−128  
−143  
−138  
−153  
−146  
−157  
−149  
dBc/Hz  
dBc/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 61.44 MSPS, fOUT = 20 MHz  
fDAC = 122.88 MSPS, fOUT = 30 MHz  
dBc  
dBc  
78  
−80  
78  
−80  
78  
−80  
78  
−80  
TMIN to TMAX, AVDD = 1.8 V, DVDD = 1.8 V, DVDDIO = 1.8 V, CVDD = 3.3 V, IOUTFS = 8 mA, maximum sample rate, unless  
otherwise noted.  
Table 4.  
AD9114  
Min Typ  
AD9115  
Max Min Typ  
AD9116  
Max Min Typ  
AD9117  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR) 3.3 V  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
73  
48  
76  
48  
76  
48  
76  
48  
dBc  
dBc  
TWO-TONE INTERMODULATION  
DISTORTION (IMD)  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
76  
50  
76  
50  
76  
50  
76  
50  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD) EIGHT-  
TONE, 500 kHz TONE SPACING  
fDAC = 125 MSPS, fOUT = 10 MHz  
fDAC = 125 MSPS, fOUT = 50 MHz  
−125  
−117  
−136  
−127  
−146  
−135  
−150  
−138  
dBc/Hz  
dBc/Hz  
W-CDMA ADJACENT CHANNEL LEAKAGE  
RATIO (ACLR), SINGLE CARRIER  
fDAC = 61.44 MSPS, fOUT = 20 MHz  
fDAC = 122.88 MSPS, fOUT = 30 MHz  
−69  
−72  
−69  
−72  
−69  
−72  
−69  
−72  
dBc  
dBc  
Rev. 0 | Page 7 of 48  
 
AD9114/AD9115/AD9116/AD9117  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
AVDD, DVDDIO, CVDD to AVSS, DVSS, CVSS  
DVDD to DVSS  
−0.3 V to +3.9 V  
−0.3 V to +2.1 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
−0.3 V to AVDD + 0.3 V  
−1.0 V to AVDD + 0.3 V  
AVSS to DVSS, CVSS  
DVSS to AVSS, CVSS  
CVSS to AVSS, DVSS  
VREF, FSADJQ, FSADJI, CMLQ, CMLI to AVSS  
QOUTP, QOUTN, IOUTP, IOUTN, RLQP, RLQN,  
RLIP, RLIN to AVSS  
THERMAL RESISTANCE  
−0.3 V to DVDD + 0.3 V  
D13 to D0, CS, SCLK, SDIO, SDO, RESET to DVSS  
CLKIN to CVSS  
Table 6.  
−0.3 V to CVDD + 0.3 V  
–0.3 V to DVDD + 0.3 V  
Package Type  
θJA  
Unit  
CS, SCLK, SDIO, SDO to DVSS  
40-Lead LFCSP (With No Airflow Movement)  
29.8  
°C/W  
Junction Temperature  
125°C  
Storage Temperature Range  
−65°C to +150°C  
ESD CAUTION  
Rev. 0 | Page 8 of 48  
 
 
 
AD9114/AD9115/AD9116/AD9117  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
DB11  
DB10  
DB9  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB8  
AD9117  
DVDDIO  
DVSS  
DVDD  
DB7  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB6  
DB5 10  
NOTES  
1. THE HEAT SINK PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 2. AD9117 Pin Configuration  
Table 7. AD9117 Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1 to 4  
DB[11:8]  
DVDDIO  
DVSS  
Digital Inputs.  
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
5
6
7
DVDD  
Digital Core Supply Voltage (1.8 V).  
8 to 14 DB[7:1]  
Digital Inputs.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DB0 (LSB)  
DCLKIO  
CVDD  
CLKIN  
CVSS  
CMLQ  
RLQN  
QOUTN  
QOUTP  
RLQP  
AVSS  
AVDD  
RLIP  
IOUTP  
IOUTN  
RLIN  
Digital Input (LSB).  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
Sampling Clock Supply Voltage Common.  
Q DAC Output Common-Mode Level.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
Analog Common.  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLI Pin.  
CMLI  
I DAC Output Common-Mode Level.  
FSADJQ/AUXQ Full-Scale Current Output Adjust for Q DAC. Connect to AVSS through a resistor.  
Auxiliary Q DAC Output When Internal On-Chip, RSET, is Enabled.  
33  
34  
35  
FSADJI/AUXI  
Full-Scale Current Output Adjust for I DAC. Connect to AVSS through a resistor.  
Auxiliary I DAC Output When Internal On-Chip, RSET, is Enabled.  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 ꢀF capacitor to AVSS is required).  
Reset. In SPI mode, pulse RESET high to reset SPI registers to default values.  
Pin Mode. A constant Logic 1 puts the device into pin mode.  
REFIO  
RESET/PINMD  
Rev. 0 | Page 9 of 48  
 
AD9114/AD9115/AD9116/AD9117  
Pin No. Mnemonic  
Description  
36  
SCLK/CLKMD  
Clock Input for Serial Port in SPI Mode.  
Clock mode. In pin mode, CLKMD determines phase of internal retiming clock.  
DCLKIO = CLKIN: Tie to 0.  
DCLKIO ≠ CLKIN: Pulse 0 to 1 to edge trigger the internal retimer (see the Retimer section).  
37  
38  
SDIO/FORMAT Bidirectional Data Line for Serial Port in SPI mode.  
Data Format. In pin mode, FORMAT determines data format of digital data.  
Active Low Chip Select in SPI Mode.  
CS/PWRDN  
Power Down. In pin mode, PWRDN powers down the device except for the SPI port.  
39  
40  
DB13 (MSB)  
DB12  
Digital Input (MSB).  
Digital Input.  
Heat Sink Pad  
The heat sink pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at package  
corners is connected to this pad.  
Rev. 0 | Page 10 of 48  
AD9114/AD9115/AD9116/AD9117  
PIN 1  
DB9  
DB8  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTN  
28 IOUTP  
27 RLIP  
DB7  
DB6  
AD9116  
DVDDIO  
DVSS  
DVDD  
DB5  
26 AVDD  
25 AVSS  
24 RLQP  
23 QOUTP  
22 QOUTN  
21 RLQN  
TOP VIEW  
(Not to Scale)  
DB4  
DB3 10  
NC = NO CONNECT  
NOTES  
1. THE HEAT SINK PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 3. AD9116 Pin Configuration  
Table 8. AD9116 Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1 to 4  
DB[9:6]  
DVDDIO  
DVSS  
Digital Inputs.  
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
Digital Core Supply Voltage (1.8 V to 3.3 V).  
Digital Inputs.  
5
6
7
DVDD  
8 to 12 DB[5:1]  
13  
14, 15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
DB0 (LSB)  
NC  
DCLKIO  
CVDD  
CLKIN  
CVSS  
CMLQ  
RLQN  
QOUTN  
QOUTP  
RLQP  
AVSS  
AVDD  
RLIP  
IOUTP  
IOUTN  
RLIN  
Digital Input (LSB).  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
Sampling Clock Supply Voltage Common.  
Q DAC Output Common-Mode Level.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
Analog Common.  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin.  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLI Pin.  
CMLI  
I DAC Output Common-Mode Level.  
FSADJQ/AUXQ Full-Scale Current Output Adjust for Q DAC. Connect to AVSS through a resistor.  
Auxiliary Q DAC Output When Internal On-Chip, RSET, is Enabled.  
33  
34  
35  
FSADJI/AUXI  
Full-Scale Current Output Adjust for I DAC. Connect to AVSS through a resistor.  
Auxiliary I DAC Output When Internal On-Chip, RSET, is Enabled.  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 ꢀF capacitor to AVSS is required).  
Reset. In SPI mode, pulse RESET high to reset SPI registers to default values.  
Pin Mode. A constant Logic 1 puts the device into pin mode.  
REFIO  
RESET/PINMD  
Rev. 0 | Page 11 of 48  
AD9114/AD9115/AD9116/AD9117  
Pin No. Mnemonic  
Description  
36  
SCLK/CLKMD  
Clock Input for Serial Port in SPI Mode.  
Clock Mode. In pin mode, determines phase of internal retiming clock.  
DCLKIO = CLKIN: Tie to 0.  
DCLKIO ≠ CLKIN: Pulse 0 to 1 to edge trigger the internal retimer (see the Retimer section).  
37  
38  
SDIO/FORMAT Bidirectional Data Line for Serial Port in SPI Mode.  
Data Format. In pin mode, determines data format of digital data.  
CS/PWRDN  
Active Low Chip Select in SPI Mode.  
Power Down. In pin mode, powers down the device except for SPI port.  
Digital Input (MSB).  
39  
40  
DB11 (MSB)  
DB10  
Digital Input.  
Heat Sink Pad  
The heat sink pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at package  
corners is connected to this pad.  
Rev. 0 | Page 12 of 48  
AD9114/AD9115/AD9116/AD9117  
PIN 1  
DB7  
DB6  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTP  
28 IOUTN  
27 RL2N  
26 AVDD  
25 AVSS  
24 RL1P  
23 QOUTP  
22 QOUTN  
21 RL1N  
DB5  
DB4  
AD9115  
DVDDIO  
DVSS  
DVDD  
DB3  
TOP VIEW  
(Not to Scale)  
DB2  
DB1 10  
NC = NO CONNECT  
NOTES  
1. THE HEAT SINK PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 4. AD9115 Pin Configuration  
Table 9. AD9115 Pin Function Description  
Pin No.  
1 to 4  
5
Mnemonic  
DB[7:4]  
DVDDIO  
DVSS  
Description  
Digital Inputs.  
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
6
7
DVDD  
DB[3:1]  
DB0 (LSB)  
NC  
DCLKIO  
CVDD  
CLKIN  
CVSS  
Digital Core Supply Voltage (1.8 V to 3.3 V).  
Digital Inputs.  
Digital Input (LSB).  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
8 to 10  
11  
12 to 15  
16  
17  
18  
19  
Sampling Clock Supply Voltage Common.  
20  
21  
CMLQ  
RL1N  
Q DAC Output Common-Mode Level.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
22  
23  
24  
QOUTN  
QOUTP  
RL1P  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
25  
AVSS  
Analog Common.  
26  
27  
AVDD  
RL2N  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin.  
28  
29  
30  
IOUTN  
IOUTP  
RLIN  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLI Pin.  
31  
CMLI  
I DAC Output Common-Mode Level.  
32  
FSADJQ/AUXQ Full-Scale Current Output Adjust for Q DAC. Connect to AVSS through a resistor.  
Auxiliary Q DAC Output When Internal On-Chip, RSET, is Enabled.  
33  
34  
35  
FSADJI/AUXI  
Full-Scale Current Output Adjust for I DAC. Connect to AVSS through a resistor.  
Auxiliary I DAC Output When Internal On-Chip, RSET, is Enabled.  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 ꢀF capacitor to AVSS is required).  
Reset. In SPI mode, pulse RESET high to reset SPI registers to default values.  
Pin Mode. A constant Logic 1 puts the device into pin mode.  
REFIO  
RESET/PINMD  
Rev. 0 | Page 13 of 48  
AD9114/AD9115/AD9116/AD9117  
Pin No.  
Mnemonic  
Description  
36  
SCLK/CLKMD  
Clock Input for Serial Port in SPI Mode.  
Clock Mode. In pin mode, determines phase of internal retiming clock.  
DCLKIO = CLKIN: Tie to 0.  
DCLKIO ≠ CLKIN: Pulse 0 to 1 to edge trigger the internal retimer (see the Retimer section).  
Bidirectional Data Line for Serial Port in SPI Mode.  
Data Format. In pin mode, determines data format of digital data.  
Active Low Chip Select in SPI Mode.  
37  
38  
SDIO/FORMAT  
CS/PWRDN  
Power Down. In pin mode, powers down the device except for SPI port.  
Digital Input (MSB).  
Digital Input.  
39  
40  
DB9  
DB8  
Heat Sink Pad  
The heat sink pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at package  
corners is connected to this pad.  
Rev. 0 | Page 14 of 48  
AD9114/AD9115/AD9116/AD9117  
PIN 1  
DB5  
DB4  
1
2
3
4
5
6
7
8
9
30 RLIN  
INDICATOR  
29 IOUTP  
28 IOUTN  
27 RL2N  
26 AVDD  
25 AVSS  
24 RL1P  
23 QOUTP  
22 QOUTN  
21 RL1N  
DB3  
DB2  
AD9114  
DVDDIO  
DVSS  
TOP VIEW  
DVDD  
DB1  
(Not to Scale)  
(LSB) DB0  
NC 10  
NC = NO CONNECT  
NOTES  
1. THE HEAT SINK PAD IS CONNECTED TO AVSS AND  
MUST BE SOLDERED TO THE GROUND PLANE.  
EXPOSED METAL AT PACKAGE CORNERS IS  
CONNECTED TO THIS PAD.  
Figure 5. AD9114 Pin Configuration  
Table 10. AD9114 Pin Function Descriptions  
Pin No.  
1 to 4  
5
Mnemonic  
DB[5:2]  
DVDDIO  
DVSS  
Description  
Digital Inputs.  
Digital I/O Supply Voltage (1.8 V to 3.3 V Nominal).  
Digital Common.  
6
7
8
DVDD  
DB1  
Digital Core Supply Voltage (1.8 V to 3.3 V).  
Digital Inputs.  
9
DB0 (LSB)  
NC  
DCLKIO  
CVDD  
CLKIN  
CVSS  
Digital Input (LSB).  
10 to 15  
16  
17  
18  
19  
No Connect. These pins are not connected to the chip.  
Data Input/Output Clock. Clock used to qualify input data.  
Sampling Clock Supply Voltage (1.8 V to 3.3 V). CVDD must be ≥ DVDD.  
LVCMOS Sampling Clock Input.  
Sampling Clock Supply Voltage Common.  
20  
21  
CMLQ  
RL1N  
Q DAC Output Common-Mode Level.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
22  
23  
24  
QOUTN  
QOUTP  
RL1P  
Complementary Q DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
Q DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLQ Pin.  
25  
AVSS  
Analog Common.  
26  
27  
AVDD  
RL2N  
Analog Supply Voltage (1.8 V to 3.3 V).  
Load Resistor (62.5 Ω) to the CMLI Pin.  
28  
29  
30  
IOUTN  
IOUTP  
RLIN  
Complementary I DAC Current Output. Full-scale current is sourced when all data bits are 0s.  
I DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Load Resistor (62.5 Ω) to the CMLI Pin.  
31  
CMLI  
I DAC Output Common-Mode Level.  
32  
FSADJQ/AUXQ Full-Scale Current Output Adjust for Q DAC. Connect to AVSS through a resistor.  
Auxiliary Q DAC Output When Internal On-Chip, RSET, is Enabled.  
33  
34  
35  
FSADJI/AUXI  
Full-Scale Current Output Adjust for I DAC. Connect to AVSS through a resistor.  
Auxiliary I DAC Output When Internal On-Chip, RSET, is Enabled.  
Reference Input/Output. Serves as a reference input when the internal reference is disabled. Provides a 1.0 V  
reference output when in internal reference mode (a 0.1 ꢀF capacitor to AVSS is required).  
Reset. In SPI mode, pulse RESET high to reset SPI registers to default values.  
Pin Mode. A constant Logic 1 puts the device into pin mode.  
REFIO  
RESET/PINMD  
Rev. 0 | Page 15 of 48  
AD9114/AD9115/AD9116/AD9117  
Pin No.  
Mnemonic  
Description  
36  
SCLK/CLKMD  
Clock Input for Serial Port in SPI Mode.  
Clock Mode. In pin mode, determines phase of internal retiming clock.  
DCLKIO = CLKIN: Tie to 0.  
DCLKIO ≠ CLKIN: Pulse 0 to 1 to edge trigger the internal retimer (see the Retimer section).  
Bidirectional Data Line for Serial Port in SPI Mode.  
Data Format. In pin mode, determines data format of digital data.  
Active Low Chip Select in SPI Mode.  
37  
38  
SDIO/FORMAT  
CS/PWRDN  
Power Down. In pin mode, powers down the device except for SPI port.  
Digital Input (MSB).  
Digital Input.  
39  
40  
DB7  
DB6  
Heat Sink Pad  
The heat sink pad is connected to AVSS and must be soldered to the ground plane. Exposed metal at package  
corners is connected to this pad.  
Rev. 0 | Page 16 of 48  
AD9114/AD9115/AD9116/AD9117  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD, DVDD, DVDDIO, CVDD = 1.8 V, IOUTFS = 8 mA, maximum sample rate (125 MSPS), unless otherwise noted.  
2.0  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
0
0
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
Figure 6. AD9117 Precalibration INL at 1.8 V, 8 mA  
Figure 9. AD9117 Postcalibration INL at 1.8 V, 8 mA  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
Figure 7. AD9117 Precalibration DNL at 1.8 V, 8 mA  
Figure 10. AD9117 Postcalibration DNL at 1.8 V, 8 mA  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
Figure 8. AD9117 Precalibration INL at 3.3 V, 20 mA  
Figure 11. AD9117 Postcalibration INL at 3.3 V, 20 mA  
Rev. 0 | Page 17 of 48  
 
AD9114/AD9115/AD9116/AD9117  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
Figure 12. AD9117 Precalibration DNL at 3.3 V, 20 mA  
Figure 15. AD9117 Postcalibration DNL at 3.3 V, 20 mA  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 13. AD9116 Precalibration INL at 1.8 V, 8 mA  
Figure 16. AD9116 Postcalibration INL at 1.8 V, 8 mA  
0.6  
0.4  
0.6  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
CODE  
CODE  
Figure 14. AD9116 Precalibration DNL at 1.8 V, 8 mA  
Figure 17. AD9116 Postcalibration DNL at 1.8 V, 8 mA  
Rev. 0 | Page 18 of 48  
AD9114/AD9115/AD9116/AD9117  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
4096  
1024  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
4096  
1024  
CODE  
CODE  
Figure 18. AD9116 Precalibration INL at 3.3 V, 20 mA  
Figure 21. AD9116 Postcalibration INL at 3.3 V, 20 mA  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
CODE  
CODE  
Figure 19. AD9116 Precalibration DNL at 3.3 V, 20 mA  
Figure 22. AD9116 Postcalibration DNL at 3.3 V, 20 mA  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
CODE  
CODE  
Figure 20. AD9115 Precalibration INL at 1.8 V, 8 mA  
Figure 23. AD9115 Postcalibration INL at 1.8 V, 8 mA  
Rev. 0 | Page 19 of 48  
AD9114/AD9115/AD9116/AD9117  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.02  
–0.04  
–0.06  
–0.08  
0
0
0
128  
256  
384  
512  
640  
768  
896  
1024  
1024  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
1024  
1024  
CODE  
CODE  
Figure 24. AD9115 Precalibration DNL at 1.8 V, 8 mA  
Figure 27. AD9115 Postcalibration DNL at 1.8 V, 8 mA  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
CODE  
CODE  
Figure 25. AD9115 Precalibration INL at 3.3 V, 20 mA  
Figure 28. AD9115 Postcalibration INL at 3.3 V, 20 mA  
0.08  
0.06  
0.04  
0.02  
0
0.08  
0.06  
0.04  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.02  
–0.04  
–0.06  
–0.08  
128  
256  
384  
512  
640  
768  
896  
0
128  
256  
384  
512  
640  
768  
896  
CODE  
CODE  
Figure 26. AD9115 Precalibration DNL at 3.3 V, 20 mA  
Figure 29. AD9115 Postcalibration DNL at 3.3 V, 20 mA  
Rev. 0 | Page 20 of 48  
AD9114/AD9115/AD9116/AD9117  
0.035  
0.025  
0.015  
0.005  
0
0.035  
0.025  
0.015  
0.005  
0
–0.005  
–0.015  
–0.025  
–0.035  
–0.005  
–0.015  
–0.025  
–0.035  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
CODE  
CODE  
Figure 30. AD9114 Precalibration INL at 1.8 V, 8 mA  
Figure 33. AD9114 Postcalibration INL at 1.8 V, 8 mA  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
CODE  
CODE  
Figure 31. AD9114 Precalibration DNL at 1.8 V, 8 mA  
Figure 34. AD9114 Postcalibration DNL at 1.8 V, 8 mA  
0.03  
0.02  
0.01  
0
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.01  
–0.02  
–0.03  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
CODE  
CODE  
Figure 32. AD9114 Precalibration INL at 3.3 V, 20 mA  
Figure 35. AD9114 Postcalibration INL at 3.3 V, 20 mA  
Rev. 0 | Page 21 of 48  
AD9114/AD9115/AD9116/AD9117  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.025  
0.020  
0.015  
0.010  
0.005  
0
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE  
CODE  
Figure 36. AD9114 Precalibration DNL at 3.3 V, 20 mA  
Figure 39. AD9114 Postcalibration DNL at 3.3 V, 20 mA  
1.0  
0.8  
0.4  
0.3  
0.6  
0.2  
0.4  
0.1  
0.2  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
128  
256  
384  
512  
640  
768  
896  
1024  
0
128  
256  
384  
512  
640  
768  
896  
1024  
CODE  
CODE  
Figure 37. AUXDAC INL  
Figure 40. AUXDAC DNL  
–60  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
THIRD ADJ CH  
–65  
–70  
–75  
FIRST ADJ CH  
4mA  
8mA  
SECOND ADJ CH  
25  
15  
20  
25  
30  
35  
40  
45  
15  
20  
30  
35  
40  
45  
fOUT (MHz)  
fOUT (MHz)  
Figure 41. AD9117 1-Carrier W-CDMA First Adjacent Channel ACLR 1.8 V  
Figure 38. AD9117 Close In ACLR at 3.3 V, 20 mA  
Rev. 0 | Page 22 of 48  
AD9114/AD9115/AD9116/AD9117  
–65  
–70  
–75  
–80  
–60  
–65  
–70  
–75  
4mA  
8mA  
8mA  
4mA  
16mA  
15  
20  
25  
30  
35  
40  
45  
15  
20  
25  
30  
35  
40  
45  
fOUT (MHz)  
fOUT (MHz)  
Figure 42. AD9117 1-Carrier W-CDMA Second Adjacent Channel ACLR 1.8 V  
Figure 45. AD9117 1-Carrier W-CDMA Second Adjacent Channel ACLR 3.3 V  
–60  
–65  
4mA  
8mA  
–65  
–70  
8mA  
–70  
–75  
4mA  
16mA  
–75  
20  
–80  
20  
25  
30  
35  
40  
45  
25  
30  
35  
40  
45  
fOUT (MHz)  
fOUT (MHz)  
Figure 43. AD9117 1-Carrier W-CDMA Third Adjacent Channel ACLR 1.8 V  
Figure 46. AD9117 1-Carrier W-CDMA Third Adjacent Channel ACLR 3.3 V  
–65  
–55  
4mA  
8mA  
–70  
–60  
4mA  
8mA  
16mA  
–75  
–65  
–80  
15  
–70  
15  
20  
25  
30  
35  
40  
45  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 44. AD9117 1-Carrier W-CDMA Third Adjacent Channel ACLR 3.3 V  
Figure 47. AD9117 2-Carrier W-CDMA First Adjacent Channel ACLR 1.8 V  
Rev. 0 | Page 23 of 48  
AD9114/AD9115/AD9116/AD9117  
–55  
–60  
4mA  
–60  
65  
8mA  
8mA  
–65  
–7  
0
16mA  
4mA  
–70  
15  
–75  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 48. AD9117 2-Carrier W-CDMA Second Adjacent Channel ACLR 1.8 V  
Figure 51. AD9117 2-Carrier W-CDMA Second Adjacent Channel ACLR 3.3 V  
–60  
–60  
8mA  
–62  
–65  
–70  
–75  
4mA  
8mA  
–64  
16mA  
4mA  
–66  
–68  
20  
25  
30  
35  
40  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
fOUT (MHz)  
Figure 49. AD9117 2-Carrier W-CDMA Third Adjacent Channel ACLR 1.8 V  
Figure 52. AD9117 2-Carrier W-CDMA Third Adjacent Channel ACLR 3.3 V  
90  
85  
80  
75  
–60  
–65  
70  
4mA  
–6dB  
65  
8mA  
–3dB  
60  
–70  
0dB  
55  
16mA  
50  
45  
–75  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
20  
25  
30  
(MHz)  
35  
40  
fOUT (MHz)  
F
OUT  
Figure 50. AD9117 2-Carrier W-CDMA First Adjacent Channel ACLR 3.3 V  
Figure 53. IMD at Three Digital Signal Levels, 1.8 V  
Rev. 0 | Page 24 of 48  
AD9114/AD9115/AD9116/AD9117  
90  
85  
80  
75  
70  
65  
60  
55  
84  
90  
84  
81  
78  
75  
72  
69  
66  
63  
–6dB  
–3dB  
0dB  
–40°C  
+25°C  
+85°C  
5
5
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
50  
50  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
fIN (MHz)  
fOUT (MHz)  
Figure 54. IMD at Three Digital Signal Levels, 3.3 V  
Figure 57. IMD Over Temperature at 8 mA, 3.3 V  
98  
90  
82  
74  
66  
58  
50  
42  
86  
80  
74  
68  
62  
56  
50  
4mA  
8mA  
–6dB  
–3dB  
0dB  
0
5
10 15 20 25 30 35 40 45 50 55 60  
fIN (MHz)  
10  
15  
20  
25  
30  
35  
40  
45  
fOUT (MHz)  
Figure 55. IMD at 1.8 V  
Figure 58. SFDR vs. Digital Signal Level 1.8 V  
98  
90  
82  
74  
66  
58  
50  
84  
78  
72  
66  
60  
54  
48  
–40°C  
+25°C  
–6dB  
–3dB  
0dB  
+85°C  
30  
0
5
10 15 20 25 30 35 40 45 50 55 60  
fIN (MHz)  
10  
15  
20  
25  
35  
40  
45  
fOUT (MHz)  
Figure 56. IMD Over Temperature at 8 mA, 1.8 V  
Figure 59. SFDR vs. Digital Signal Level 3.3 V  
Rev. 0 | Page 25 of 48  
AD9114/AD9115/AD9116/AD9117  
90  
–124  
–130  
–136  
–142  
–148  
–154  
–160  
–166  
AD9114  
AD9115  
84  
78  
4mA  
8mA  
72  
AD9116  
AD9117  
66  
60  
54  
0
0
0
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
0
0
0
5
5
5
10  
15  
20  
25  
30  
35  
40  
45  
45  
45  
50  
50  
50  
55  
55  
55  
fOUT (MHz)  
Figure 60. SFDR at 1.8 V  
Figure 63. NSD at 20 mA, 3.3 V  
90  
84  
78  
72  
66  
60  
54  
–136  
–139  
–142  
–145  
–148  
–151  
–154  
–157  
–160  
+25°C  
+85°C  
+85°C  
+25°C  
–40°C  
–40°C  
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
10  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
Figure 61. SFDR Over Temperature 8 mA, 1.8 V  
Figure 64. NSD at 8 mA, 1.8 V  
98  
92  
86  
80  
74  
68  
62  
–136  
–139  
–142  
–145  
–148  
–151  
–154  
–157  
–160  
+85°C  
+85°C  
+25°C  
+25°C  
–40°C  
–40°C  
5
10 15 20 25 30 35 40 45 50 55 60  
fOUT (MHz)  
10  
15  
20  
25  
30  
35  
40  
fOUT (MHz)  
Figure 62. SFDR Over Temperature at 8 mA, 3.3 V  
Figure 65. NSD at 8 mA, 3.3 V  
Rev. 0 | Page 26 of 48  
AD9114/AD9115/AD9116/AD9117  
CENTER 22.90MHz  
SPAN 38.84MHz  
CENTER 22.90MHz  
SPAN 38.84MHz  
VBW 300kHz  
VBW 300kHz  
Figure 66. AD9117 ACLR 1-Carrier 1.8 V  
Figure 69. AD9117 ACLR 2-Carrier 3.3 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 22.92MHz  
SPAN 38.84MHz  
VBW 300kHz  
START 1MHz  
1.5MHz/  
STOP 16MHz  
Figure 67. AD9117 ACLR 1-Carrier 3.3 V  
Figure 70. AD9117 Singe Tone at 1.8 V  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
CENTER 22.90MHz  
SPAN 38.84MHz  
VBW 300kHz  
START 1MHz  
1.5MHz/  
STOP 16MHz  
Figure 68. AD9117 ACLR 2-Carrier 1.8 V  
Figure 71. AD9117 Singe Tone at 3.3 V  
Rev. 0 | Page 27 of 48  
AD9114/AD9115/AD9116/AD9117  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
TOTAL CURRENT @ 8mA OUT  
AVDD @ 8mA OUT  
TOTAL CURRENT @ 4mA OUT  
AVDD @ 4mA OUT  
DVDD  
CVDD  
0
20  
40  
60  
80  
100  
120  
140  
fOUT (MHz)  
START 1MHz  
1.5MHz/  
STOP 16MHz  
Figure 72. AD9117 Two Tones at 1.8 V  
Figure 74. Supply Current vs. fOUT  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
START 1MHz  
1.5MHz/  
STOP 16MHz  
Figure 73. AD9117 Two Tones at 3.3 V  
Rev. 0 | Page 28 of 48  
AD9114/AD9115/AD9116/AD9117  
TERMINOLOGY  
Linearity Error or Integral Nonlinearity (INL)  
Linearity error is defined as the maximum deviation of the  
actual analog output from the ideal output, determined by  
a straight line drawn from zero scale to full scale.  
Power Supply Rejection  
Power supply rejection is the maximum change in the full-scale  
output as the supplies are varied from minimum to maximum  
specified voltages.  
Differential Nonlinearity (DNL)  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Settling Time  
Settling time is the time required for the output to reach and  
remain within a specified error band around its final value,  
measured from the start of the output transition.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Spurious Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels (dB), between the peak  
amplitude of the output signal and the peak spurious signal  
between dc and the frequency equal to half the input data rate.  
Offset Error  
Offset error is the deviation of the output current from the  
ideal of zero. For IOUTP, 0 mA output is expected when the  
inputs are all 0. For IOUTN, 0 mA output is expected when all  
inputs are set to 1.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic  
components to the rms value of the measured fundamental.  
It is expressed as a percentage (%)or in decibels (dB).  
Gain Error  
Gain error is the difference between the actual and ideal output  
span. The actual span is determined by the difference between  
the output when all inputs are set to 1 and the output when all  
inputs are set to 0.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
Output Compliance Range  
Output compliant range is the range of allowable voltage at  
the output of a current-output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
Adjacent Channel Leakage Ratio (ACLR)  
ACLR is the ratio in decibels relative to the carrier (dBc)  
between the measured power within a channel relative to  
its adjacent channel.  
Temperature Drift  
Complex Image Rejection  
Temperature drift is specified as the maximum change from  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images have the effect  
of wasting transmitter power and system bandwidth. By placing  
the real part of a second complex modulator in series with the  
first complex modulator, either the upper or lower frequency  
image near the second IF can be rejected.  
the ambient value (25°C) to the value at either TMIN or TMAX  
.
For offset and gain drift, the drift is reported in ppm of full-  
scale range per degree Celsius (ppm FSR/°C). For reference  
drift, the drift is reported in parts per million per degree  
Celsius (ppm/°C).  
Rev. 0 | Page 29 of 48  
 
AD9114/AD9115/AD9116/AD9117  
THEORY OF OPERATION  
AD9114/AD9115/  
AD9116/AD9117  
1V  
SPI  
INTERFACE  
DB11  
R
R
SET  
8.5kΩ  
SET  
8.5kΩ  
R
CM  
DB10  
60TO  
260Ω  
RLIN  
62.5Ω  
62.5Ω  
10kΩ  
DB9  
DB8  
IOUTN  
IOUTP  
I
I DAC  
REF  
100µA  
BAND  
GAP  
RLIP  
AUX1DAC  
AUX2DAC  
DVDDIO  
1 INTO 2  
AVDD  
AVSS  
RLQP  
INTERLEAVED  
DATA  
INTERFACE  
I DATA  
DVSS  
62.5Ω  
62.5Ω  
DVDD  
DB7  
1.8V  
LDO  
QOUTP  
QOUTN  
Q DATA  
Q DAC  
RLQN  
CLOCK  
DIST  
DB6  
R
CM  
60TO  
260Ω  
DB5  
Figure 75. Simplified Block Diagram  
Figure 75 shows a simplified block diagram of the AD9114/  
AD9115/AD9116/AD9117 that consists of two main DACs,  
digital control logic, and a full-scale output current control. The  
DAC contains a PMOS current source array capable of providing  
a maximum of 20 mA. The array is divided into 31 equal currents  
that make up the five most significant bits (MSBs). The next four  
bits, or middle bits, consist of 15 equal current sources whose  
value is 1/16 of an MSB current source. The remaining LSBs are  
binary weighted fractions of the current sources of the middle  
bits. Implementing the middle and lower bits with current sources,  
instead of an R-2R ladder, enhances its dynamic performance for  
multitone or low amplitude signals and helps maintain the high  
output impedance of the DAC (that is, >200 MΩ).  
The analog and digital sections of the AD9114/AD9115/AD9116/  
AD9117 have separate power supply inputs (AVDD and DVDD)  
that can operate independently over a 1.7 V to 3.5 V range. The  
digital section, which is capable of operating at a rate of up to  
125 MSPS, consists of edge-triggered latches and segment decoding  
logic circuitry. The analog section includes the PMOS current  
sources, the associated differential switches, a 1.0 V band gap  
voltage reference, and a reference control amplifier.  
Each DAC full-scale output current is regulated by the reference  
control amplifier and can be set from 4 mA to 20 mA via an exter-  
nal resistor, RSET, connected to its full-scale adjust pin (FSADJ).  
The external resistor, in combination with both the reference  
control amplifier and voltage reference, VREFIO, sets the reference  
current, IREF, which is replicated to the segmented current sources  
with the proper scaling factor. The full-scale current, IOUTFS, is  
All of these current sources are switched to one or the other  
of the two output nodes (IOUTP or IOUTN) via PMOS differential  
current switches. The switches are based on the architecture  
that was pioneered in the AD976x family, with further refine-  
ments to reduce distortion contributed by the switching transient.  
This switch architecture also reduces various timing errors and  
provides matching complementary drive signals to the inputs of  
the differential current switches.  
32 × IREF  
.
Optional on-chip RSET resistors are provided that can be  
programmed between an nominal value of 1.5 kΩ to 8.5 kΩ  
(4 mA to 20 mA IOUTFS).  
The AD9114/AD9115/AD9116/AD9117 provide the option of  
setting the output common mode to a value other than ACOM  
via the output common-mode pin (CMLI). This facilitates directly  
interfacing the output of the AD9114/AD9115/ AD9116/AD9117  
to components that require common-mode levels greater than 0 V.  
Rev. 0 | Page 30 of 48  
 
 
AD9114/AD9115/AD9116/AD9117  
SERIAL PERIPHERAL INTERFACE (SPI)  
The serial port of the AD9114/AD9115/AD9116/AD9117 is a  
flexible, synchronous serial communications port allowing easy  
interfacing to many industry-standard microcontrollers and micro-  
processors. The serial I/O is compatible with most synchronous  
transfer formats, including both the Motorola SPI® and Intel®  
SSR protocols. The interface allows read/write access to all  
registers that configure the AD9114/AD9115/AD9116/AD9117.  
Single or multiple byte transfers are supported, as well as MSB  
first or LSB first transfer formats. The serial interface port of the  
AD9114/ AD9115/AD9116/AD9117 is configured as a single I/O  
pin on the SDIO pin.  
INSTRUCTION BYTE  
The instruction byte contains the information shown in Table 11.  
Table 11.  
MSB  
DB7  
R/W  
LSB  
DB6  
DB5  
DB4 DB3 DB2 DB1 DB0  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
W
R/ (Bit 7 of the instruction byte) determines whether a read or a  
write data transfer occurs after the instruction byte write. Logic 1  
indicates a read operation. Logic 0 indicates a write operation.  
N1 and N0 (Bit 6 and Bit 5 of the instruction byte) determine the  
number of bytes to be transferred during the data transfer cycle.  
The bit decodes are shown in Table 12.  
GENERAL OPERATION OF THE SERIAL INTERFACE  
There are two phases to a communication cycle on the AD9114/  
AD9115/AD9116/AD9117. Phase 1 is the instruction cycle, which  
is the writing of an instruction byte into the AD9114/AD9115/  
AD9116/AD9117, coinciding with the first eight SCLK rising  
edges. In Phase 2, the instruction byte provides the serial port  
controller of the AD9114/AD9115/AD9116/AD9117 with infor-  
mation regarding the data transfer cycle. The Phase 1 instruction  
byte defines whether the upcoming data transfer is a read or write,  
the number of bytes in the data transfer, and the starting register  
address for the first byte of the data transfer. The first eight SCLK  
rising edges of each communication cycle are used to write the  
instruction byte into the AD9114/AD9115/AD9116/AD9117.  
Table 12. Byte Transfer Count  
N1  
N0  
Description  
0
0
Transfer 1 byte  
Transfer 2 bytes  
Transfer 3 bytes  
Transfer 4 bytes  
0
1
1
0
1
1
A4, A3, A2, A1, and A0 (Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0 of the  
instruction byte) determine which register is accessed during the  
data transfer portion of the communications cycle. For multi-  
byte transfers, this address is the starting byte address. The  
remaining register addresses are generated by the AD9114/  
AD9115/AD9116/AD9117, based on the LSBFIRST bit  
(Register 0x00, Bit 6).  
A Logic 1 on Pin 35 (RESET/PINMD), followed by a Logic 0,  
resets the SPI port timing to the initial state of the instruction  
cycle. This is true regardless of the present state of the internal  
registers or the other signal levels present at the inputs to the  
SPI port. If the SPI port is in the midst of an instruction cycle  
or a data transfer cycle, none of the present data is written.  
SERIAL INTERFACE PORT PIN DESCRIPTIONS  
SCLK—Serial Clock  
The serial clock pin is used to synchronize data to and from the  
AD9114/AD9115/AD9116/AD9117 and to run the internal state  
machines. The SCLK maximum frequency is 20 MHz. All data  
input to the AD9114/AD9115/AD9116/AD9117 is registered on  
the rising edge of SCLK. All data is driven out of the AD9114/  
AD9115/AD9116/AD9117 on the falling edge of SCLK.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD9114/  
AD9115/AD9116/AD9117 and the system controller. Phase 2  
of the communication cycle is a transfer of one, two, three, or  
four data bytes, as determined by the instruction byte. Using  
one multibyte transfer is the preferred method. Single byte  
data transfers are useful to reduce CPU overhead when register  
access requires one byte only. Registers change immediately  
upon writing to the last bit of each transfer byte.  
CS  
—Chip Select  
An active low input starts and gates a communication cycle. It  
allows more than one device to be used on the same serial commu-  
nications lines. The SDIO/FORMAT pin reaches a high impedance  
state when this input is high. Chip select should stay low during  
the entire communication cycle.  
SDIO—Serial Data I/O  
The SDIO pin is used as a bidirectional data line to transmit  
and receive data.  
Rev. 0 | Page 31 of 48  
 
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
MSB/LSB TRANSFERS  
SERIAL PORT OPERATION  
The serial port of the AD9114/AD9115/AD9116/AD9117 can  
support both most significant bit (MSB) first or least significant  
bit (LSB) first data formats. This functionality is controlled by the  
LSBFIRST bit (Register 0x00, Bit 6). The default is MSB first  
(LSBFIRST = 0).  
The serial port configuration of the AD9114/AD9115/AD9116/  
AD9117 is controlled by Register 0x00. It is important to note  
that the configuration changes immediately upon writing to the  
last bit of the register. For multibyte transfers, writing to this  
register can occur during the middle of the communications  
cycle. Care must be taken to compensate for this new configu-  
ration for the remaining bytes of the current communications cycle.  
When LSBFIRST = 0 (MSB first), the instruction and data bytes  
must be written from the most significant bit to the least significant  
bit. Multibyte data transfers in MSB first format start with an  
instruction byte that includes the register address of the most  
significant data byte. Subsequent data bytes should follow in  
order from a high address to a low address. In MSB first mode,  
the serial port internal byte address generator decrements for  
each data byte of the multibyte communications cycle.  
The same considerations apply to setting the software reset,  
RESET (Register 0x00, Bit 5). All registers are set to their default  
values except Register 0x00, which remains unchanged.  
Use of single-byte transfers or initiating a software reset is  
recommended when changing serial port configurations to  
prevent unexpected device behavior.  
When LSBFIRST = 1 (LSB first), the instruction and data bytes  
must be written from the least significant bit to the most signif-  
icant bit. Multibyte data transfers in LSB first format start with  
an instruction byte that includes the register address of the least  
significant data byte followed by multiple data bytes. The serial  
port internal byte address generator increments for each byte  
of the multibyte communication cycle.  
PIN MODE  
The AD9114/AD9115/AD9116/AD9117 can also be operated  
without ever writing to the serial port. With RESET/PINMD  
(Pin 35) tied high, the SCLK pin becomes CLKMD to provide  
for clock mode control (see the Retimer section), the SDIO  
pin becomes FORMAT and selects the input data format, and  
CS  
the former  
pin serves to power down the device.  
The serial port controller data address of the AD9114/AD9115/  
AD9116/AD9117 decrements from the data address written  
toward 0x00 for multibyte I/O operations if the MSB first mode  
is active. The serial port controller address increments from the  
data address written toward 0x1F for multibyte I/O operations  
if the LSB first mode is active.  
Operation is otherwise exactly as defined by the default  
register values in Table 14, so external resistors at FSADJI  
and FSADJQ are needed to set the DAC currents, and both  
DACs are active. This is also a convenient quick checkout mode.  
DAC currents can be externally adjusted in pin mode by sourcing  
or sinking currents at the FSADJI/AUXI and FASDJQ/AUXQ  
pins as desired with the fixed resistors installed. An op amp  
output with appropriate series resistance would be one of  
many possibilities. This has the same effect as changing the  
resistor value. Place at least 10 kΩ resistors in series right at  
the DAC to guard against accidental short circuits and noise  
modulation. The REFIO pin can be adjusted 25% in a similar  
manner, if desired.  
Rev. 0 | Page 32 of 48  
 
 
AD9114/AD9115/AD9116/AD9117  
SPI REGISTER MAP  
Table 13.  
Name  
Addr Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI Control  
Power Down  
Data Control  
I DAC Gain  
IRSET  
0x00 0x00  
0x01 0x40  
0x02 0x34  
0x03 0x00  
0x04 0x00  
0x05 0x00  
0x06 0x00  
0x07 0x00  
0x08 0x00  
0x09 0x00  
0x0A 0x00  
0x0B 0x00  
0x0C 0x00  
0x0D 0x00  
LSBFIRST RESET  
LDOSTAT PWRDN  
IFIRST  
LNGINS  
LDOOFF  
TWOS  
Q DACOFF I DACOFF  
IRISING SIMULBIT  
QCLKOFF  
DCI_EN  
ICLKOFF EXTREF  
DCOSGL DCODBL  
I DACGAIN[5:0]  
IRSETEN  
IRSET[5:0]  
IRCML[5:0]  
IRCML  
IRCMLEN  
Q DAC Gain  
QRSET  
Q DACGAIN[5:0]  
QRSET[5:0]  
QRSETEN  
QRCMLEN  
QRCML  
QRCML[5:0]  
AUXDAC Q  
AUX CTLQ  
AUXDAC I  
AUX CTLI  
QAUXDAC[7:0]  
QAUXOFS[2:0]  
IAUXDAC[7:0]  
IAUXOFS[2:0]  
RREF[5:0]  
QAUXEN  
IAUXEN  
QAUXRNG[1:0]  
IAUXRNG[1:0]  
QAUXDAC[9:8]  
IAUXDAC[9:8]  
Reference  
Resistor  
Cal Control  
Cal Memory  
0x0E 0x00  
0x0F 0x00  
PRELDQ  
PRELDI  
CALSELQ CALSELI  
CALCLK  
CALMEMQ[1:0]  
MEMADDR[5:0]  
MEMDATA[5:0]  
SMEMWR SMEMRD  
DIVSEL[2:0]  
CALSTATQ CALSTATI  
CALMEMI[1:0]  
Memory Address 0x10 0x00  
Memory Data  
Memory R/W  
CLKMODE  
Version  
0x11 0x34  
0x12 0x00  
0x14 0x00  
0x1F N/A  
CALRSTQ  
CALRSTI  
CALEN  
UNCALQ UNCALI  
CLKMODEQ[1:0]  
Searching Reacquire  
VERSION[7:0]  
CLKMODEN CLKMODEI[1:0]  
Rev. 0 | Page 33 of 48  
 
AD9114/AD9115/AD9116/AD9117  
SPI REGISTER DESCRIPTIONS  
Reading these registers returns previously written values for all defined register bits, unless otherwise noted.  
Table 14.  
Register  
Address Bit Name  
Function  
SPI Control  
0x00  
6
LSBFIRST  
0: MSB first per SPI standard  
1: LSB first per SPI standard  
Note that the user must always change the LSB/MSB order in single-byte instructions  
to avoid erratic behavior due to bit order errors  
5
4
RESET  
Execute software reset of SPI and controllers, reload default register values except  
Register 0x00  
1: Set software reset; write 0 on the next (or any following) cycle to release the reset  
0: The SPI instruction word utilizes a 5-bit address  
LNGINS  
1: The SPI instruction word utilizes a 13-bit address  
0x01  
Power Down  
7
6
LDOOFF  
LDOSTAT  
1: Turn core LDO voltage regulator off  
0: Indicates core LDO voltage regulator is off  
1: Indicates core LDO voltage regulator is on  
1: Powers down all analog and digital circuitry except for SPI logic  
1: Turns off Q DAC output current  
1: Turns off I DAC output current  
1: Turns off Q DAC clock  
5
4
3
2
1
0
7
PWRDN  
Q DACOFF  
I DACOFF  
QCLKOFF  
ICLKOFF  
EXTREF  
1: Turns off I DAC clock  
1: Powers down internal voltage reference (external reference required)  
Data Control 0x02  
TWOS  
0: Unsigned binary input data format  
1: Twos complement input data format  
5
4
3
2
IFIRST  
0: Pairing of data—Q first of pair on data input pads  
1: Pairing of data—I first of pair on data input pads (default)  
0: Q data latched on DCLKIO rising edge  
1: I data latched on DCLKIO falling edge (default)  
0: Allows simultaneous input and output enable on DCLKIO  
1: Disallows simultaneous input and output enable on DCLKIO  
Controls the use of DCLKIO pad for data clock input  
0: Data clock input disabled  
IRISING  
SIMULBIT  
DCI_EN  
1: Data clock input enabled (default)  
1
0
DCOSGL  
DCODBL  
Controls the use of DCLKIO pad for data clock output  
0: Data clock output disabled  
1: Data clock output enabled; regular strength driver  
Controls the use of DCLKIO pad for data clock output  
0: DCOBL data clock output disabled  
1: DCOBL data clock output enabled; paralleled with DCOSGL for 2× drive current  
I DAC Gain  
IRSET  
0x03  
0x04  
5:0 I DACGAIN[5:0]  
IRSETEN  
5:0 IRSET[5:0]  
DAC I fine gain adjustment; alters the full-scale current as shown in Figure 85  
1: Enables the on-chip RSET value to be changed  
Changes the value of the on-chip RSET resistor; this scales the full-scale current of the  
7
DAC in ~0.25 dB steps (nonlinear); see Figure 84  
000000: RSET = 5 kΩ  
100000: RSET = 1.5 kΩ  
111111: RSET = 8.5 kΩ  
Rev. 0 | Page 34 of 48  
 
 
AD9114/AD9115/AD9116/AD9117  
Register  
Address Bit Name  
Function  
IRCML  
0x05  
7
IRCMLEN  
1: Enables on-chip RCML adjustment  
5:0 IRCML[5:0]  
Changes the value of the on-chip RCML resistor; this adjusts the common-mode level of  
the DAC output stage  
000000: RSET = 60 Ω  
100000: RSET = 160 Ω  
111111: RSET = 260 Ω  
Q DAC Gain  
QRSET  
0x06  
0x07  
5:0 Q DACGAIN[5:0]  
DAC Q fine gain adjustment; alters the full-scale current as shown in Figure 85  
1: Enables on-chip RCML adjustment  
7
QRSETEN  
5:0 QRSET[5:0]  
Changes the value of the on-chip RSET resistor; this scales the full-scale current of the  
DAC in ~0.25 dB steps (nonlinear), see Figure 84  
000000: RSET = 5 kΩ  
100000: RSET = 1.5 kΩ  
111111: RSET = 8 kΩ  
QRCML  
0x08  
7
QRCMLEN  
1: Enables on-chip RCML adjustment  
5:0 QRCML[5:0]  
Changes the value of the on-chip RCML resistor; this adjusts the common-mode level of  
the DAC output stage  
000000: RSET = 60 Ω  
100000: RSET = 160 Ω  
111111: RSET = 1260 Ω  
AUXDAC Q  
AUX CTLQ  
0x09  
0x0A  
7:0 QAUXDAC[7:0]  
AUXDAC Q output voltage adjustment word LSBs  
0x3FF: Sets AUXDAC Q output to full scale  
0x200: Sets AUXDAC Q output to midscale  
0x000: Sets AUXDAC Q output to bottom of scale  
7
QAUXEN  
1: Enables AUXDAC Q  
6:5 QAUXRNG[1:0]  
00: Sets AUXDAC Q output voltage range to 2 V  
01: Sets AUXDAC Q output voltage range to 1.5 V  
10: Sets AUXDAC Q output voltage range to 1.0 V  
11: Sets AUXDAC Q output voltage range to 0.5 V  
000: Sets AUXDAC Q top of range to 1.0 V  
001: Sets AUXDAC Q top of range to 1.5 V  
010: Sets AUXDAC Q top of range to 2.0 V  
011: Sets AUXDAC Q top of range to 2.5 V  
100: Sets AUXDAC Q top of range to 2.9 V  
AUXDAC Q output voltage adjustment word MSBs  
4:2 QAUXOFS[2:0]  
1:0 QAUXDAC[9:8]  
7:0 IAUXDAC[7:0]  
AUXDAC I  
AUX CTLI  
0x0B  
0x0C  
AUXDAC I output voltage adjustment word LSBs  
0x3FF: Sets AUXDAC I output to full scale  
0x200: Sets AUXDAC I output to midscale  
0x000: Sets AUXDAC I output to bottom of scale  
7
IAUXEN  
1: Enables AUXDAC I  
6:5 IAUXRNG[1:0]  
00: Sets AUXDAC I output voltage range to 2 V  
01: Sets AUXDAC I output voltage range to 1.5 V  
10: Sets AUXDAC I output voltage range to 1.0 V  
11: Sets AUXDAC I output voltage range to 0.5 V  
000: Sets AUXDAC I top of range to 1.0 V  
001: Sets AUXDAC I top of range to 1.5 V  
010: Sets AUXDAC I top of range to 2.0 V  
011: Sets AUXDAC I top of range to 2.5 V  
100: Sets AUXDAC I top of range to 2.9 V  
AUX DAC I output voltage adjustment word MSBs  
4:2 IAUXOFS[2:0]  
1:0 IAUXDAC[9:8]  
5:0 RREF[5:0]  
Reference  
Resistor  
0x0D  
Permits an adjustment of the on-chip reference voltage and output at REFIO (see Figure 83)  
000000: Sets the value of RREF to 8 kΩ, VREF = 0.8 V  
100000: Sets the value of RREF to 10 kΩ, VREF = 1.0 V  
111111: Sets the value of RREF to 12 kΩ, VREF = 1.2 V  
Rev. 0 | Page 35 of 48  
AD9114/AD9115/AD9116/AD9117  
Register  
Address Bit Name  
Function  
Cal Control  
0x0E  
7
PRELDQ  
0: Preload Q DAC calibration reference set to 32  
1: Preload Q DAC calibration reference set by user (Cal Address 1)  
0: Preload I DAC calibration reference set to 32  
1: Preload I DAC calibration reference set by user (Cal Address 1)  
1: Select Q DAC self-calibration  
6
PRELDI  
5
4
3
CALSELQ  
CALSELI  
CALCLK  
1: Select I DAC self-calibration  
1: Calibration clock enabled  
2:0 DIVSEL[2:0]  
Calibration clock divide ratio from DAC clock rate  
000 = divide by 256; 001 = divide by 128 … 110 = divide by 4; 111= divide by 2  
Cal Memory  
0x0F  
7
6
CALSTATQ  
CALSTATI  
1: Calibration of Q DAC complete  
1: Calibration of I DAC complete  
Status of Q DAC calibration memory  
00: Uncalibrated  
3:2 CALMEMQ[1:0]  
01: Self-calibrated  
10: User calibrated  
1:0 CALMEMI[1:0]  
Status of I DAC calibration memory  
00: Uncalibrated  
01: Self-calibrated  
10: User calibrated  
Memory  
Address  
0x10  
0x11  
0x12  
5:0 MEMADDR[5:0]  
5:0 MEMDATA[5:0]  
Address of static memory to be accessed  
Memory  
Data  
Data for static memory access  
Memory  
R/W  
7
6
4
3
2
1
0
CALRSTQ  
CALRSTI  
CALEN  
SMEMWR  
SMEMRD  
UNCALQ  
UNCALI  
1: Clear CALSTATQ  
1: Clear CALSTATI  
1: Initiate device self-calibration  
1: Write to static memory (calibration coefficients)  
1: Read from static memory (calibration coefficients)  
1: Reset Q DAC calibration coefficients to default (uncalibrated)  
1: Reset I DAC calibration coefficients to default (uncalibrated)  
Q datapath retimer clock select output (that is, readback after Q retimer acquires)  
CLKMODE  
0x14  
7:6 CLKMODEQ[1:0]  
4
Searching  
High indicates internal data path retimer is searching for clock relationship (device  
output is not usable while this bit is high)  
3
2
Reacquire  
CLKMODEN  
Edge triggered, 0 to 1 causes the retimer to reacquire the clock relationship  
0: CLKMODEI/Q values computed by the two retimers and read back in CLKMODEI[1:0]  
and CLKMODEQ[1:0]  
1: CLKMODE values set in CLKMODEI[1:0] override both I and Q retimers  
1:0 CLKMODEI[1:0]  
7:0 VERSION[7:0]  
0: CLKMODEN, read only; clock phase chosen by retimer  
1: CLKMODEN, read/write; value in this register sets I and Q clock phases  
Version  
0x1F  
Hardware version of the device  
Rev. 0 | Page 36 of 48  
AD9114/AD9115/AD9116/AD9117  
DIGITAL INTERFACE OPERATION  
Digital data for the I and Q DACs is supplied over a single  
parallel bus (DB[MSB:0]) accompanied by a qualifying clock  
(DCLKIO). The I and Q data is provided to the chip in an  
interleaved double data rate (DDR) format. The maximum  
guaranteed data rate is 250 MSPS with a 125 MHz clock. The  
order of data pairing and the sampling edge selection is user  
programmable using the IFIRST and IRISING configuration  
bits, resulting in four possible timing diagrams. These are  
shown in Figure 76, Figure 77, Figure 78, and Figure 79.  
DCLKIO  
DB[13:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Z
B
D
F
Q DATA  
A
C
E
G
Figure 78. Timing Diagram with IFIRST = 1, IRISING = 0  
DCLKIO  
DCLKIO  
DB[13:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
DB[13:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Z
B
D
F
E
Y
A
C
E
F
Q DATA  
Y
A
C
Q DATA  
Z
B
D
Figure 76. Timing Diagram with IFIRST = 0, IRISING = 0  
Figure 79. Timing Diagram with IFIRST = 1, IRISING = 1  
Ideally, the rising and falling edges of the clock fall in the center  
of the keep-in-window formed by the set-up and hold times, tS  
and tH. Refer to Table 2 for set-up and hold times. A detailed  
timing diagram is shown in Figure 80.  
DCLKIO  
DB[13:0]  
I DATA  
Z
A
B
C
D
E
F
G
H
Y
A
C
E
D
DCLKIO  
Q DATA  
X
Z
B
tS tH  
tS tH  
Figure 77. Timing Diagram with IFIRST = 0, IRISING = 1  
DB[13:0]  
Figure 80. Set-Up and Hold Times for All Input Modes  
In addition to the different timing modes listed in Table 2, the  
input data can also be presented to the device in either unsigned  
binary or twos complement format. The format type is chosen  
via the TWOS configuration bit.  
Rev. 0 | Page 37 of 48  
 
 
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
OR  
RETIMER-CLK  
D-FF  
D-FF  
D-FF  
1
D-FF  
2
D-FF  
4
0
3
TO DAC CORE  
DCLKIO-INT  
I
OUT  
DATA DB[13:0]  
(INPUT)  
DCLKIO-INT  
I
OUT  
NOTES  
D-FFs:  
0: RISING OR FALLING EDGE  
TRIGGERED FOR I OR Q DATA.  
1, 2, 3, 4: RISING EDGE TRIGGERED.  
IE  
IE  
OE  
DELAY2  
DCLKIO  
(INPUT/OUTPUT)  
CLKIN  
(INPUT)  
Figure 81. Simplified Diagram of AD9114/AD9115/AD9116/AD9117 Timing  
Settling OE high in the SPI allows the user to get a DCLKIO  
DIGITAL DATA LATCHING AND RETIMER SECTION  
output from the CLKIN input for use in the users PCB system.  
It is strongly recommended that IE = OE = high not be used  
even though the device may appear to function correctly.  
The AD9114/AD9115/AD9116/AD9117 have two clock inputs,  
DCLKIO and CLKIN. The CLKIN is the analog clock whose  
jitter affects DAC performance, and the DCLKIO is a digital  
clock, probably from an FPGA that needs to have a fixed  
relationship with the input data to ensure that the data is  
picked up correctly by the flip-flops on the pads.  
Retimer  
The AD9114/AD9115/AD9116/AD9117 have an internal data  
retimer circuit that compares the CLKIN-INT and DCLKIO-INT  
clocks and, depending on their phase relationship, selects a  
retimer clock (RETIMER-CLK) to safely transfer data from the  
DCLKIO used at the chips input interface to the CLKIN used to  
clock the analog DAC cores (D-FF (4)).  
Figure 81 is a simplified diagram of the entire data capture  
system in the AD9114/AD9115/AD9116/AD9117. The double  
data rate input data, DB[13:0], is latched at the pads/pins either  
on the rising edge or the falling edge of the DCLKIO-INT clock, as  
determined by IRISING, the SPI bit. IFIRST, the SPI bit, deter-  
mines which channel data is latched first (that is, I or Q). The  
captured data is then retimed to the internal clock (CLKIN-INT)  
in the retimer block before being sent to the final analog DAC  
core (D-FF (4)), which controls the current steering output  
switches. All delay blocks depicted in Figure 81 are noninverting,  
and any wires without an explicit delay block can be assumed  
to have no delay for the purpose of understanding.  
The retimer selects one of the three phases shown in Figure 82.  
The retimer is controlled by the SPI bits is shown in Table 15.  
RETIMER-CLKs  
1/2 PERIOD  
DATA  
CLOCK  
180°  
90°  
270°  
1/4 PERIOD 1/2 PERIOD  
Figure 82. RETIMER-CLK Phases  
Only one channel is shown in Figure 81 with the DATA pads  
(DB[13:0]) serving as double data rate pads for both channels.  
Note that in most cases, more than one retimer phase works,  
and in such cases, the retimer arbitrarily picks one phase that  
works. The retimer cannot pick the best or safest phase. If the  
user has a working knowledge of the exact phase relationship  
between DCLKIO and CLKIN (and thus DCLKIO-INT and  
CLKIN-INT, because the delay is approximately the same for  
both clocks and equal to DELAY1), then the retimer can be  
forced to this phase with CLKMODEN = 1 as described in  
Table 15 and the following paragraphs.  
The default PINMD and SPI settings are IE = high (closed) and  
OE = low (open). These settings are enabled when RESET/PINMD  
(Pin 35) is held high. In this mode, the user has to supply both  
DCLKIO and CLKIN. In PINMD, it is also recommended that the  
DCLKIO and the CLKIN be in-phase for proper functioning of  
the DAC, which can easily be ensured by tying the pins together  
on the PCB. If the user can access the SPI, settling IE low (that  
IE  
is, is high) causes the CLKIN to be used as the DCLKIO also.  
Rev. 0 | Page 38 of 48  
 
 
 
AD9114/AD9115/AD9116/AD9117  
Table 15. Timer Register List  
Bit Name  
Description  
CLKMODEQ[1:0]  
Searching  
Reacquire  
Q datapath retimer clock selected output. Valid after searching goes low.  
High indicates the internal data path retimer is searching for clock relationship (DAC is not usable until it is low again).  
Changing this bit from 0 to 1 causes the data path retimer circuit to reacquire the clock relationship.  
0: Uses CLKMODEI/CLKMODEQ values (as computed by the two internal retimers) for I and Q clocking.  
1: Uses the CLKMODE value set in CLKMODEI[1:0] to override the bits for both I and Q retimers (that is, forces the retimer).  
I datapath retimer clock selected output. Valid after searching goes low.  
CLKMODEN  
CLKMODEI[1:0]  
If CLKMODEN = 1, a value written to this register overrides both I and Q automatic retimer values.  
Table 16. CLKMODE Details  
CLKMODEI[1:0]/CLKMODEQ[1:0] DCLKIO-to-CLKIN Phase Relationship  
RETIMER-CLK Selected  
Phase 2  
Phase 3  
Phase 3  
Phase 1  
00  
01  
10  
11  
0° to 90°  
90° to 180°  
180° to 270°  
270° to 360°  
When reset is pulsed high and then returns low (the part is in  
SPI mode), the retimer runs and automatically selects a suitable  
clock phase for the RETIMER-CLK within 128 clock cycles. The  
SPI searching bit returns to low, indicating that the retimer has  
locked and the part is ready for use. The reacquire bit can be  
used to reinitiate phase detection in the I and Q retimers at any  
time. CLKMODEQ[1:0] and CLKMODEI[1:0] provide readback  
for the values picked by the internal phase detectors in the  
retimer (see Table 16).  
not tied together (that is, not in phase). Holding SCLK high  
causes the internal clock detector to use the phase detector  
output to determine which clock to use in the retimer (that is,  
select a suitable RETIMER-CLK phase). The action of taking  
SCLK high causes the internal phase detector to reexamine the  
two clocks, and determine the relative phase. Whenever the  
user wants to reevaluate the relative phase of the two clocks the  
SCLK pin can be taken low and then high again.  
ESTIMATING THE OVERALL DAC PIPELINE DELAY  
To force the two retimers (I and Q) to pick a particular phase  
for the retimer clock (they must both be forced to the same  
value), CLKMODEN should be set high and the required  
phase value is written into CLKMODEI[1:0]. For example,  
if the DCLKIO and the CLKIN are in phase to first order,  
the user could safely force the retimers to pick Phase 2 for  
the RETIMER-CLK. This forcing function may be useful  
for synchronizing multiple devices.  
DAC pipeline latency is affected by the phase of the RETIMER-  
CLK that is selected. If latency is critical to the system and needs to  
be constant, the retimer should be forced to a particular phase  
and not be allowed to automatically select a phase each time.  
Consider the case when DCLKIO = CLKIN (that is, in phase),  
and the RETIMER-CLK is forced to Phase 2. Assume that  
IRISING is 1 (that is, I data is latched on the rising edge and  
Q data on the falling edge). Then the latency to the output for  
the I-channel is 3 clock cycles (D-FF (1), D-FF (3), and D-FF (4),  
but not D-FF (2) because it is latched on the half clock cycle or  
180°). The latency to the output for the Q-channel from the  
time the falling edge latches it at the pads in D-FF (0) is 2.5  
clock cycles (½ clock cycle to D-FF (1), 1 clock cycle to D-FF  
(3), and 1 clock cycle to D-FF (4)). This latency for the AD9114/  
AD9115/AD9116/ AD9117 is case specific and needs to be  
calculated based on the RETIMER-CLK phase that is auto-  
matically selected or manually forced.  
In pin mode, it is expected that the user tie CLKIN and DCLKIO  
together. The device has a small amount of programmable func-  
CS  
tionality using the now unused SPI pins (SCLK, SDIO, and ).  
If the two chip clocks are tied together, the SCLK pin can be  
tied to ground and the chip uses a clock for the retimer that is  
180° out of phase with the two input clocks (that is, Phase 2,  
which is the safest or best option). The chip has an additional  
option in pin mode when the redefined SCLK pin is high. Use  
this mode if utilizing pin mode, but CLKIN and DCLKIO are  
Rev. 0 | Page 39 of 48  
 
 
 
AD9114/AD9115/AD9116/AD9117  
The AD9114/AD9115/AD9116/AD9117 allow reading and  
writing of the calibration coefficients. There are 32 coefficients  
in total. The read/write feature of the coefficients can be useful  
for improving the results of the self-calibration routine by  
averaging the results of several self-calibration cycles and  
loading the averaged results back into the device.  
SELF-CALIBRATION  
The AD9114/AD9115/AD9116/AD9117 have a self-calibration  
feature that improves the DNL of the device. Performing a self-  
calibration on the device improves device performance in low  
frequency applications. The device performance in applications  
where the analog output frequencies are above 5 MHz are generally  
influenced more by dynamic device behavior than by DNL, and  
in these cases, self-calibration is unlikely to produce measurable  
benefits. The calibration clock frequency is equal to the DAC  
clock divided by the division factor chosen by the DIVSEL value.  
Each calibration clock cycle is between 32 and 2048 DAC input  
clock cycles, depending on the value of DIVSEL[2:0] (Register  
0x0E, Bits[2:0]). The frequency of the calibration clock should  
be between 0.5 MHz and 4 MHz for reliable calibrations. Best  
results are obtained by setting DIVSEL[2:0] (Register 0x0E,  
Bits[2:0]) to produce a calibration clock frequency between  
these values. Separate self-calibration hardware is included  
for each DAC. The DACs can be self-calibrated individually  
or simultaneously.  
To read the calibration coefficients, use the following steps:  
1. Select which DAC core to read by setting either Bit 4  
(CALSELI) for the I DAC and/or Bit 5 (CALSELQ) for  
the Q DAC in Register 0x0E. Write the address of the first  
coefficient (0x01) to Register 0x10.  
2. Set the SMEMRD bit (Register 0x12, Bit 2 ) by writing 0x04  
to Register 0x12.  
3. Read the 6-bit value of the first coefficient by reading the  
contents of Register 0x11.  
4. Clear the SMEMRD bit by writing 0x00 to Register 0x12.  
5. Repeat Step 2 through Step 4 for each of the remaining 31  
coefficients by incrementing the address by one for each read.  
6. Deselect the DAC core by clearing either Bit 4 (CALSELI)  
for the I DAC and/or Bit 5 (CALSELQ) for the Q DAC in  
Register 0x0E.  
To perform a device self-calibration, the following procedure  
can be used:  
To write the calibration coefficients to the device, use the  
following steps:  
1. Write 0x00 to Register 0x12. This ensures that the  
UNCALI and UNCALQ bits are reset.  
2. Set up a calibration clock between 0.5 MHz and 4 MHz  
using DIVSEL[2:0], and then enable the calibration clock  
by setting the CALCLK bit (Register 0x0E, Bit 3).  
3. Select the DAC(s) to self-calibrate by setting either Bit 4  
(CALSELI) for the I DAC and/or Bit 5 (CALSELQ) for  
the Q DAC in Register 0x0E. Note that each DAC contains  
independent calibration hardware so they can be calibrated  
simultaneously.  
4. Start self-calibration by setting Bit 4 in Register 0x12. Wait  
approximately 300 calibration clock cycles.  
5. Check if the self-calibration has completed by reading  
the CALSTATI bit (Bit 6) and CALSTATQ bit (Bit 7) in  
Register 0x0F. Logic 1 indicates the calibration has  
completed.  
1. Select which DAC core to read by setting either Bit 4  
(CALSELI) for the I DAC and/or Bit 5 (CALSELQ) for  
the Q DAC in Register 0x0E.  
2. Set the SMEMWR bit (Register 0x12, Bit 3) by writing 0x08  
to Register 0x12.  
3. Write the address of the first coefficient (0x01) to  
Register 0x10.  
4. Write the value of the first coefficient to Register 0x11.  
5. Repeat Step 2 through Step 4 for each of the remaining  
31 coefficients by incrementing the address by one for  
each write.  
6. Clear the SMEMWR bit by writing 0x00 to Register 0x12.  
7. Deselect the DAC core by clearing either Bit 4 (CALSELI)  
for the I DAC and/or Bit 5 (CALSELQ) for the Q DAC in  
Register 0x0E.  
6. When the self-calibration has completed, write 0x00 to  
Register 0x12.  
7. Disable the calibration clock by clearing the CALCLK bit  
(Register 0x0E, Bit 3).  
Rev. 0 | Page 40 of 48  
 
AD9114/AD9115/AD9116/AD9117  
Option 3  
COARSE GAIN ADJUSTMENT  
Even when the device is in pin mode, full-scale values can be  
adjusted by sourcing or sinking current from the FSADJ pins.  
Any noise injected here appears as amplitude modulation of the  
output. Thus, a portion of the required series resistance (at least  
20 kΩ) must be installed right at the pin. A range of 10% is  
quite practical using this method.  
Option 1  
A coarse full-scale output current adjustment can be achieved  
using the lower six bits in Register 0x0D. This adds or subtracts  
up to 20% from the band gap voltage on Pin 34 (REFIO), and  
the voltage on the FSADJx resistors tracks this change. As a result,  
the DAC full-scale current varies the same amount. A second-  
ary effect to changing the REFIO voltage is that the full-scale  
voltage in the AUXDAC also changes by the same magnitude.  
The register uses twos complement format, in which 011111  
maximizes the voltage on the REFIO node and 100000 minimizes  
the voltage.  
Option 4  
As in Option 3, when the device is in pin mode both full-scale  
values can be adjusted by sourcing or sinking current from the  
REFIO pin. Noise injected here appears as amplitude modulation  
of the output, so a portion of the required series resistance (at  
least 10 kΩ) must be installed at the pin. A range of 25% is  
quite practical when using this method.  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
Fine Gain  
Each main DAC has independent fine gain control using the  
lower six bits in Register 0x03 (I DAC gain) and Register 0x06  
(Q DAC gain). Unlike Coarse Gain Option 1, this impacts only  
the main DAC full-scale output current. This register uses straight  
binary format. One application where straight binary format is  
critical is for side-band suppression while using a quadrature  
modulator. This is described in more detail in the Applications  
Information section.  
11.10  
0
8
16  
24  
32  
40  
48  
56  
3.3V DAC1  
3.3V DAC2  
CODE  
11.00  
10.90  
10.80  
1.8V DAC1  
1.8V DAC2  
Figure 83. Typical VREF Voltage vs. Code  
Option 2  
While utilizing the internal FSADJx resistors, each main DAC  
can achieve independently controlled coarse gain using the  
lower six bits of Register 0x04 (IRSET[5:0]) and Register 0x07  
(QRSET[5:0]). Unlike Coarse Gain Option 1, this impacts only  
the main DAC full-scale output current. The register uses twos  
complement format and allows the output current to be changed  
in approximately 0.25 dB steps.  
10.70  
10.60  
10.50  
22  
0
8
16  
24  
32  
40  
48  
56  
64  
GAIN DAC CODE  
20  
18  
Figure 85. Typical DAC Gain Characteristics  
V
_Q OR V _I  
OUT  
16  
14  
12  
10  
8
OUT  
6
4
2
0
10  
20  
30  
CODE  
40  
50  
60  
R
SET  
Figure 84. Effect of RSET Code  
Rev. 0 | Page 41 of 48  
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
USING THE INTERNAL TERMINATION RESISTORS  
The AD9117/AD9116/AD9115/AD9114 have four 62.5 Ω  
termination internal resistors (two for each DAC output).  
To use these resistors to convert the DAC output current to a  
voltage, connect each DAC output pin to the adjacent load pin.  
For example, on the I DAC, IOUTP must be shorted to RLIP  
and IOUTN must be shorted to RLIN. In addition, the CMLI  
or CMLQ pin must be connected to ground directly or through  
a resistor. If the output current is at the nominal 20 mA and the  
CMLI or CMLQ pin is tied directly to ground, this produces a  
dc common-mode bias voltage on the DAC output equal to 0.5 V.  
If the DAC dc bias needs to be higher than 0.5 V, an external  
resistor can be connected between the CMLI or CMLQ pin and  
ground. This part also has an internal common-mode resistor  
that can be enabled. This is explained in the Using the Internal  
Common-Mode Resistor section.  
60  
0
8
16  
24  
32  
40  
48  
56  
CODE  
Figure 87. Typical CML Resistor Value vs. Register Code  
Using the CMLx Pins for Optimal Performance  
CML  
The CMLx pins also serve to change the DAC bias voltages in  
the parts allowing them to run at higher dc output bias voltages.  
When running the bias voltage below 0.9 V and an AVDD of  
3.3 V, the parts perform optimally when the CMLx pins are tied  
to ground. When the dc bias increases above 0.9 V, set the CMLx  
pins at 0.5 V for optimal performance. The maximum dc bias  
on the DAC output should be kept at or below 1.2 V when the  
supply is 3.3 V. When the supply is 1.8 V, keep the dc bias close  
to 0 V and connect the CMLx pins directly to ground.  
R
CM  
RLIN  
62.5  
62.5Ω  
IOUTN  
IOUTP  
RLIP  
I DAC  
OR  
Q DAC  
Figure 86. Simplified Internal Load Options  
Using the Internal Common-Mode Resistor  
These devices contain an adjustable internal common-mode  
resistor, which can be used to increase the dc bias of the  
DAC outputs. By default, the common-mode resistor is not  
connected. When enabled, it can be adjusted from ~60 Ω to  
~260 Ω. Each main DAC has an independent adjustment using  
the lower six bits in Register 0x05 (IRCML[5:0]) and Register  
0x08 (QRCML[5:0]).  
Rev. 0 | Page 42 of 48  
 
 
AD9114/AD9115/AD9116/AD9117  
APPLICATIONS INFORMATION  
A differential resistor, RDIFF, can be inserted in applications  
where the output of the transformer is connected to the load,  
OUTPUT CONFIGURATIONS  
The following sections illustrate some typical output configu-  
rations for the AD9114/AD9115/AD9116/AD9117. Unless  
otherwise noted, it is assumed that IOUTFS is set to a nominal  
20 mA. For applications requiring the optimum dynamic  
performance, a differential output configuration is suggested.  
A differential output configuration can consist of either an RF  
transformer or a differential op amp configuration. The trans-  
former configuration provides the optimum high frequency  
performance and is recommended for any application that  
allows ac coupling. The differential op amp configuration is  
suitable for applications requiring dc coupling, signal gain,  
and/or a low output impedance.  
RLOAD, via a passive reconstruction filter or cable. RDIFF, as  
reflected by the transformer, is chosen to provide a source  
termination that results in a low VSWR. Note that approx-  
imately half the signal power is dissipated across RDIFF  
.
SINGLE-ENDED BUFFERED OUTPUT USING  
AN OP AMP  
An op amp such as the ADA4899-1 can be used to perform  
a single-ended current-to-voltage conversion, as shown in  
Figure 89. The AD9114/AD9115/AD9116/AD9117 are config-  
ured with a pair of series resistors, RS, off each output. For best  
distortion performance, RS should be set to 0 Ω. The feedback  
resistor, RFB, determines the peak-to-peak signal swing by the  
formula  
A single-ended output is suitable for applications where low  
cost and low power consumption are primary concerns.  
V
OUT = RFB × IFS  
DIFFERENTIAL COUPLING USING A TRANSFORMER  
An RF transformer can be used to perform a differential-to-  
single-ended signal conversion, as shown in Figure 88. The  
distortion performance of a transformer typically exceeds  
that available from standard op amps, particularly at higher  
frequencies. Transformer coupling provides excellent rejection  
of common-mode distortion (that is, even-order harmonics)  
over a wide frequency range. It also provides electrical isolation  
and can deliver voltage gain without adding noise. Transformers  
with different impedance ratios can also be used for impedance  
matching purposes. The main disadvantages of transformer  
coupling are low frequency roll-off, lack-of-power gain, and  
high output impedance.  
The common-mode voltage of the output is determined by the  
formula  
RFB  
RB  
RFB × IFS  
VCM = VREF × 1+  
2
The maximum and minimum voltages out of the amplifier are,  
respectively,  
RFB  
RB  
VMAX = VREF × 1+  
V
MIN = VMAX IFS × RFB  
C
F
R
R
FB  
B
29  
IOUTN  
+5V  
AD9114/AD9115/  
AD9116/AD9117  
IOUTP  
AD9114/AD9115/  
AD9116/AD9117  
R
S
R
LOAD  
28  
34  
ADA4899-1  
+
V
OUT  
28  
IOUTP  
REFIO  
OPTIONAL R  
DIFF  
C
R
–5V  
S
29  
25  
IOUTN  
AVSS  
Figure 88. Differential Output Using a Transformer  
The center tap on the primary side of the transformer must be  
connected to a voltage that keeps the voltages on IOUTP and  
IOUTN within the output common-mode voltage range of the  
device. Note that the dc component of the DAC output current  
is equal to IOUTFS and flows out of both IOUTP and IOUTN. The  
center tap of the transformer should provide a path for this dc  
current. In most applications, AGND provides the most conve-  
nient voltage for the transformer center tap. The complementary  
voltages appearing at IOUTP and IOUTN (that is, VIOUTP and  
Figure 89. Single-Supply Single-Ended Buffer  
VIOUTN) swing symmetrically around AGND and should be  
maintained with the specified output compliance range of the  
AD9114/AD9115/AD9116/AD9117.  
Rev. 0 | Page 43 of 48  
 
 
 
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
To keep the pin count reasonable, these auxiliary DACs each  
share a pin with the corresponding FSADJx resistor. They are,  
therefore, usable only when enabled and when that DAC is  
operated on its internal full-scale resistors. A simple I-to-V  
converter is implemented on chip with selectable shunt resistors  
(3.2 kΩ to 16 kΩ) such that if REFIO is set to exactly 1 V, REFIO/2  
equals 0.5 V and the following equation describes the no load  
output voltage:  
DIFFERENTIAL BUFFERED OUTPUT  
USING AN OP AMP  
A dual op amp (see the circuit shown in Figure 90) can be used  
in a differential version of the single-ended buffer shown in  
Figure 89. The same R-C network is used to form a one-pole  
differential, low-pass filter to isolate the op amp inputs from  
the high frequency images produced by the DAC outputs.  
The feedback resistors, RFB, determine the differential peak-  
to-peak signal swing by the formula  
1.5  
16 kΩ  
VOUT = 0.5 V IDAC  
RS  
V
OUT = 2 × RFB × IFS  
The maximum and minimum single-ended voltages out of the  
amplifier are, respectively,  
Figure 91 illustrates the function of all the SPI bits controlling  
these DACs with the exception of the QAUXEN and IAUXEN  
bits and gating to prohibit RS < 3.2 kΩ.  
RFB  
RB  
VMAX =VREF × 1+  
AVDD  
RNG0  
RNG1  
RNG: 00 = 125µA fS  
01 = 62µA fS  
V
MIN = VMAX RFB × IFS  
AUXDAC  
[9:0]  
10 = 31µA fS  
11 = 16µA fS  
The common-mode voltage of the differential output is  
determined by the formula  
(OFS > 4 = 4)  
OFS2  
OFS1  
OFS0  
V
CM = VMAX RFB × IFS  
16k  
AUX  
PIN  
C
F
4k8k16k16kΩ  
R
R
FB  
B
OP AMP  
+
AD9114/AD9115/  
AD9116/AD9117  
IOUTP  
R
S
REFIO  
2
28  
34  
ADA4841-2  
+
REFIO  
Figure 91. AUXDAC Simplified Circuit Diagram  
V
C
OUT  
AVSS  
25  
29  
+
The SPI speed limits the update rate of the auxiliary DACs. The  
data is inverted such that IAUXDAC is full scale at 0x000 and zero  
at 0x1FF, as shown in Figure 92.  
R
S
IOUTN  
ADA4841-2  
3.0  
C
F
OP AMP OUTPUT VOLTAGE vs.  
CHANGES IN R_OFFSET AND IDAC  
2.8  
R
R
2.6  
FB  
B
R_OFFSET = 3.3k  
R_OFFSET = 4kΩ  
R_OFFSET = 5.3kΩ  
R_OFFSET = 8kΩ  
2.4  
2.2  
Figure 90. Single-Supply Differential Buffer  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R_OFFSET = 16kΩ  
AUXILIARY DACs  
The DACs of the AD9114/AD9115/AD9116/AD9117 feature  
two versatile and independent 10-bit auxiliary DACs suitable  
for dc offset correction and similar tasks.  
Because the AUXDACs are driven through the SPI port, they  
should never be used in timing-critical applications, such  
as inside analog feedback loops.  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
IDAC (µA)  
Figure 92. AUXDAC Op Amp Output vs. Current, AVDD = 3.3 V No Load,  
AUXDAC 0x1FF to 0x000  
Rev. 0 | Page 44 of 48  
 
 
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
Two registers are assigned to each DAC with 10 bits for the  
actual DAC current to be generated, a 3-bit offset (and gain)  
adjustment, a 2-bit current range adjustment, and an enable/  
disable bit. Setting the QAUXOFS and IAUXOFS bits to all 1s  
disables the op amp and routes the DAC current directly to  
their respective FSADJI/ AUXI or FSADJQ/AUXQ pins. This  
is especially useful where the loads to be driven are beyond  
the limited capability of the on-chip amplifier. The respective  
DAC output open circuits when not enabled (QAUXEN or  
IAUXEN = 0).  
OPTIONAL  
PASSIVE  
FILTERING  
AD9114/AD9115/  
AD9116/AD9117  
I OR Q DAC  
ADL537x FAMILY  
I OR Q INPUTS  
1k  
AD9114/AD9115/  
AD9116/AD9117  
AUXDAC  
100kΩ  
Figure 94. Typical Use of Auxiliary DACs When DC Coupling to Quadrature  
Modulator ADL537x Family  
CORRECTING FOR NONIDEAL PERFORMANCE OF  
QUADRATURE MODULATORS ON THE IF-TO-RF  
CONVERSION  
DAC-TO-MODULATOR INTERFACING  
The auxiliary DACs can be used for local oscillator (LO) cancella-  
tion when the DAC output is followed by a quadrature modulator.  
This LO feedthrough is caused by the input referred dc offset  
voltage of the quadrature modulator (and the DAC output offset  
voltage mismatch) and can degrade system performance. Typical  
DAC-to-quadrature modulator interfaces are shown in Figure 93  
and Figure 94. The input common-mode voltage for the modula-  
tor could be higher than the output compliance range of the DAC,  
even with the RCM feature so that ac coupling or a dc level shift is  
necessary. If the required common-mode input voltage on the  
quadrature modulator is within that of the DAC, the dc blocking  
capacitors in Figure 93 can be removed. The 50 Ω resistors can, of  
course be omitted, if the internal resistors are used. A low-pass or  
band-pass passive filter is recommended when spurious signals  
from the DAC (distortion and DAC images) at the quadrature  
modulator inputs can affect the system performance. Placing the  
filter at the location shown in Figure 93 and Figure 94 allows easy  
design of the filter because the source and load impedances can  
easily be designed close to 50 ꢀ for a 20 mA full-scale output.  
Analog quadrature modulators make it very easy to realize  
single sideband radios. However, there are several nonideal  
aspects of quadrature modulator performance. Among these  
analog degradations are gain mismatch and LO feedthrough.  
Gain Mismatch  
The gain in the real and imaginary signal paths of the quad-  
rature modulator may not be matched perfectly. This leads  
to less than optimal image rejection because the cancellation  
of the negative frequency image is less than perfect.  
LO Feedthrough  
The quadrature modulator has a finite dc referred offset, as well  
as coupling from its LO port to the signal inputs. These can lead  
to a significant spectral spur at the frequency of the Quadrature  
Modulator LO.  
The AD9114/AD9115/AD9116/AD9117 have the capability  
to correct for both of these analog degradations. However,  
understand that these degradations drift over temperature;  
therefore, if close to optimal single sideband performance  
is desired, a scheme for sensing these degradations over  
temperature and correcting them may be necessary.  
MODULATOR V+  
OPTIONAL  
PASSIVE  
FILTERING  
I INPUTS  
AD9114/AD9115/  
AD9116/AD9117  
QUADRATURE  
MODULATOR  
I/Q CHANNEL GAIN MATCHING  
I DAC  
Fine gain matching is achieved by adjusting the values in the  
DAC fine gain adjustment registers. For the I DAC, these values  
are in the I DAC gain register (Register 0x03). For the Q DAC,  
these values are in the Q DAC gain register (Register 0x06). These  
are 6-bit values that cover 2% of full scale. To perform gain com-  
pensation by starting from the default values of zero, raise the  
value of one of these registers a few steps until it can be deter-  
mined if the amplitude of the unwanted image is increased  
or decreased. If the unwanted image increased in amplitude,  
remove the step and try the same adjustment on the other  
DAC control register. Iterate register changes until the rejection  
cannot be improved further. If the fine gain adjustment range is  
not sufficient to find a null (that is, the register goes full scale with  
no null apparent) adjust the course gain settings of the two DACs  
accordingly and try again. Variations on this simple method are  
possible.  
AD9114/AD9115/  
AD9116/AD9117  
AUXDAC1  
10k  
MODULATOR V+  
OPTIONAL  
PASSIVE  
FILTERING  
AD9114/AD9115/  
AD9116/AD9117  
Q DAC  
QUADRATURE  
MODULATOR  
Q INPUTS  
AD9114/AD9115/  
AD9116/AD9117  
AUX2DAC  
10kΩ  
Figure 93. Typical Use of Auxiliary DACs  
Rev. 0 | Page 45 of 48  
 
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
Note that LO feedthrough compensation is independent of  
phase compensation. However, gain compensation could affect  
the LO compensation because the gain compensation may change  
the common-mode level of the signal. The dc offset of some  
modulators is common-mode level dependent. Therefore, it is  
recommended that the gain adjustment be performed prior to  
LO compensation.  
Note that gain matching improves the negative frequency  
image rejection, but it is also related to the phase mismatch in  
the quadrature modulator. It can be improved by adjusting the  
relative phase between the two quadrature signals at the digital  
side or properly designing the low-pass filter between the DACs  
and quadrature modulators. Phase mismatch is frequency depen-  
dent, so routines have to be developed to adjust it if wideband  
signals are desired.  
LO FEEDTHROUGH COMPENSATION  
5
0
–5  
To achieve LO feedthrough compensation in a circuit, each  
output of the two AUXDACs must be connected through a  
10 kΩ resistor to one side of the differential DAC output.  
See the Auxiliary DACs section for details of how to use  
AUXDACs. The purpose of these connections is to drive a  
very small amount of current into the nodes at the quadrature  
modulator inputs, therefore adding a slight dc bias to one or  
the other of the quadrature modulator signal inputs.  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
To achieve LO feedthrough compensation, the user should  
start with the default conditions of the AUXDAC registers,  
then increment the magnitude of one or the other AUXDAC  
output voltages. While this is being done, the amplitude of the  
LO feedthrough at the quadrature modulator output should be  
sensed. If the LO feedthrough amplitude increases, try either  
decreasing the output voltage of the AUXDAC being adjusted,  
or try adjusting the output voltage of the other AUXDAC. It  
may take practice before an effective algorithm is achieved.  
Using the AD9114/AD9115/AD9116/AD9117 evaluation  
board, the LO feedthrough can typically be adjusted down to  
the noise floor, although this is not stable over temperature.  
447.5  
449.0  
450.0  
451.0  
452.5  
FREQUENCY (MHz)  
Figure 95. AD9114/AD9115/AD9116/AD9117 and ADL5370 with a Single-  
Tone Signal at 450 MHz, No Gain or LO Compensation  
5
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
RESULTS OF GAIN AND OFFSET CORRECTION  
The results of gain and offset correction can be seen in Figure 95  
and Figure 96. Figure 95 shows the output spectrum of the  
quadrature demodulator before gain and offset correction.  
Figure 96 shows the output spectrum after correction. The  
LO feedthrough spur at 450 MHz has been suppressed to the  
noise level. This result can be achieved by applying the correc-  
tion, but the correction needs to be repeated after a large change  
in temperature.  
447.5  
449.0  
450.0  
451.0  
452.5  
FREQUENCY (MHz)  
Figure 96. AD9114/AD9115/AD9116/AD9117 and ADL5370 with a Single-  
Tone Signal at 450 MHz, Gain and LO Compensation Optimized  
Rev. 0 | Page 46 of 48  
 
 
 
 
AD9114/AD9115/AD9116/AD9117  
To evaluate the ADL5370 on this board, the population of these  
same components should be reversed so that they are in the  
following positions:  
MODIFYING THE EVALUATION BOARD TO  
USE THE ADL5370 ON-BOARD QUADRATURE  
MODULATOR  
JP55, JP56, JP76, JP82—soldered  
R13, R14, R52, R53—populated  
R50, R57, T1, T2—unpopulated  
The evaluation board contains an Analog Devices, Inc.,  
ADL5370 quadrature modulator. The AD9114/AD9115/  
AD9116/AD9117 and the ADL5370 provide an easy-to-  
interface DAC/modulator combination that can be easily  
characterized on the evaluation board. Solderable jumpers  
can be configured to evaluate the single-ended or differential  
outputs of the AD9114/ AD9115/AD9116/AD9117. This is  
the default configuration from the factory and consists of  
the following population of the components:  
The AUXDAC outputs can be connected to Test Point TP44 and  
Test Point TP45 if LO feedthrough compensation is necessary.  
JP55, JP56, JP76, JP82—unsoldered  
R13, R14, R52, R53—unpopulated  
R50, R57, T1, T2—populated  
Rev. 0 | Page 47 of 48  
 
AD9114/AD9115/AD9116/AD9117  
OUTLINE DIMENSIONS  
6.00  
0.60 MAX  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BSC SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
20  
11  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 97. 40-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6 mm × 6 mm, Very Thin Quad  
(CP-40-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
40-Lead LFCSP_VQ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
CP-40-1  
CP-40-1  
AD9114BCPZ1  
AD9114BCPZRL71  
AD9115BCPZ1  
AD9115BCPZRL71  
AD9116BCPZ1  
AD9116BCPZRL71  
AD9117BCPZ1  
AD9117BCPZRL71  
AD9114-EBZ1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
CP-40-1  
AD9115-EBZ1  
AD9116-EBZ1  
AD9117-EBZ1  
1 Z = RoHS Compliant Part.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07466-0-8/08(0)  
Rev. 0 | Page 48 of 48  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY