AD9119BBCZ [ADI]

11-/14-Bit, 5.6 GSPS, RF Digital-to-Analog Converter; 11-位/ 14位, 5.6 GSPS , RF数位类比转换器
AD9119BBCZ
型号: AD9119BBCZ
厂家: ADI    ADI
描述:

11-/14-Bit, 5.6 GSPS, RF Digital-to-Analog Converter
11-位/ 14位, 5.6 GSPS , RF数位类比转换器

转换器
文件: 总68页 (文件大小:2723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11-/14-Bit, 5.6 GSPS,  
RF Digital-to-Analog Converter  
Data Sheet  
AD9119/AD9129  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RESET  
IRQ  
I250U VREF  
DAC update rate: up to 5.6 GSPS  
Direct RF synthesis at 2.8 GSPS data rate  
DC to 1.4 GHz in baseband mode  
DC to 1.0 GHz in 2× interpolation mode  
1.4 GHz to 4.2 GHz in Mix-Mode  
AD9129  
SDIO  
SDO  
CS  
1.2V  
SPI  
SCLK  
FRM_x  
Bypassable 2× interpolation  
Excellent dynamic performance  
Supports DOCSIS 3.0 wideband ACLR/harmonic performance  
8 QAM carriers: ACLR > 65 dBc  
(FRAME/  
PARITY)  
MIX-  
NORMAL MODE  
BASEBAND  
MODE  
P0_D[13:0]P,  
P0_D[13:0]N  
IOUTP  
IOUTN  
Tx DAC  
CORE  
DLL  
DCI_x  
Industry-leading single/multicarrier IF or RF synthesis  
4-carrier W-CDMA ACLR at 2457.6 MSPS  
2×  
f
f
f
OUT = 900 MHz, ACLR = 71 dBc (baseband mode)  
OUT = 2100 MHz, ACLR = 68 dBc (Mix-Mode)  
OUT = 2700 MHz, ACLR = 67 dBc (Mix-Mode)  
P1_D[13:0]P,  
P1_D[13:0]N  
PLL  
Dual-port LVDS and DHSTL data interface  
Up to 1.4 GSPS operation  
CLOCK  
DISTRIBUTION  
DCR  
DCO_x  
Source synchronous DDR clocking with parity bit  
Low power: 1.0 W at 2.8 GSPS (1.3 W at 5.6 GSPS)  
DACCLK_x  
Figure 1.  
APPLICATIONS  
Broadband communications systems  
CMTS/VOD  
Wireless infrastructure: W-CDMA, LTE, point-to-point  
Instrumentation, automatic test equipment (ATE)  
Radars, jammers  
GENERAL DESCRIPTION  
The AD9119/AD9129 are high performance, 11-/14-bit RF digital-  
to-analog converters (DACs) supporting data rates up to 2.8 GSPS.  
The DAC core is based on a quad-switch architecture that enables  
dual-edge clocking operation, effectively increasing the DAC  
update rate to 5.6 GSPS when configured for Mix-Mode™ or 2×  
interpolation. The high dynamic range and bandwidth enable  
multicarrier generation up to 4.2 GHz.  
The AD9119/AD9129 include several features that may further  
simplify system integration. A dual-port, source synchronous  
LVDS interface simplifies the data interface to a host FPGA/ASIC.  
A differential frame/parity bit is also included to monitor the  
integrity of the interface. On-chip delay locked loops (DLLs)  
are used to optimize timing between different clock domains.  
A serial peripheral interface (SPI) is used to configure the  
AD9119/AD9129 and monitor the status of readback registers.  
The AD9119/AD9129 is manufactured on a 0.18 µm CMOS  
process and operates from +1.8 V and −1.5 V supplies. It is  
supplied in a 160-ball chip scale package ball grid array.  
In baseband mode, wide bandwidth capability combines with high  
dynamic range to support from 1 to 158 contiguous carriers for  
CATV infrastructure applications. A choice of two optional 2×  
interpolation filters is available to simplify the postreconstruction  
filter by effectively increasing the DAC update rate by a factor of 2.  
In Mix-Mode operation, the AD9119/AD9129 can reconstruct  
RF carriers in the second and third Nyquist zone while still  
maintaining exceptional dynamic range up to 4.2 GHz. The  
high performance NMOS DAC core features a quad-switch  
architecture that enables industry-leading direct RF synthesis  
performance with minimal loss in output power. The output  
current can be programmed over a range of 9.5 mA to 34.4 mA.  
PRODUCT HIGHLIGHTS  
1. High dynamic range and signal reconstruction bandwidth  
support RF signal synthesis of up to 4.2 GHz.  
2. Dual-port interface with double data rate (DDR) LVDS  
data receivers supports 2800 MSPS maximum conversion rate.  
3. Manufactured on a CMOS process; a proprietary switching  
technique enhances dynamic performance.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD9119/AD9129  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Serial Peripheral Interface Pin Descriptions .......................... 36  
MSB/LSB Transfers .................................................................... 37  
Serial Port Configuration.......................................................... 37  
Theory of Operation ...................................................................... 38  
LVDS Data Port Interface.......................................................... 39  
Digital Datapath Description ................................................... 42  
Interrupt Requests...................................................................... 46  
Interface Timing Validation.......................................................... 48  
Sample Error Detection (SED) Operation.............................. 48  
SED Example............................................................................... 48  
Analog Interface Considerations.................................................. 49  
Analog Modes of Operation ..................................................... 49  
Clock Input.................................................................................. 50  
PLL ............................................................................................... 50  
Voltage Reference ....................................................................... 51  
Analog Outputs .......................................................................... 51  
Start-Up Sequence...................................................................... 54  
Device Configuration Registers.................................................... 55  
Device Configuration Register Map........................................ 55  
Device Configuration Register Descriptions.......................... 56  
Outline Dimensions....................................................................... 66  
Ordering Guide .......................................................................... 66  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
LVDS Digital Specifications........................................................ 4  
HSTL Digital Specifications........................................................ 4  
Serial Port and CMOS Pin Specifications ................................. 5  
AC Specifications.......................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 12  
AD9119........................................................................................ 12  
AD9129........................................................................................ 22  
Terminology .................................................................................... 35  
Serial Communications Port Overview....................................... 36  
Serial Peripheral Interface (SPI)............................................... 36  
General Operation of the SPI.................................................... 36  
Instruction Mode (8-Bit Instruction)...................................... 36  
REVISION HISTORY  
1/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 68  
 
Data Sheet  
AD9119/AD9129  
SPECIFICATIONS  
DC SPECIFICATIONS  
VDDA = VDD = 1.8 V, VSSA = −1.5 V, IOUTFS = 33 mA, TA = −40°C to +85°C.  
Table 1.  
AD9119  
AD9129  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
RESOLUTION  
11  
14  
Bits  
ACCURACY  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ANALOG OUTPUTS  
0.2  
0.15  
1.4  
1.1  
LSB  
LSB  
Gain Error (with Internal Reference)  
Full-Scale Output Current Maximum  
Full-Scale Output Current Minimum  
Output Compliance Range  
Output Impedance1  
DAC CLOCK INPUT (DACCLK_P, DACCLK_N)  
Differential Peak-to-Peak Voltage  
Common-Mode Voltage  
TEMPERATURE DRIFT  
Gain  
+2.5  
34.2  
9.4  
+2.5  
34.2  
9.4  
%
33.4  
9.1  
1.5  
34.9  
9.6  
2.5  
33.4  
9.1  
1.5  
34.9  
9.6  
2.5  
mA  
mA  
V
0.4  
1
1.2  
2
0.4  
1
1.2  
2
V
V
60  
20  
60  
20  
ppm/°C  
ppm/°C  
Reference Voltage  
REFERENCE  
Internal Reference Voltage  
Output Resistance  
1.0  
5
1.0  
5
V
kΩ  
ANALOG SUPPLY VOLTAGES  
VDDA  
VSSA  
1.70  
−1.4  
1.80  
−1.5  
1.90  
−1.6  
1.70  
−1.4  
1.80  
−1.5  
1.90  
−1.6  
V
V
DIGITAL SUPPLY VOLTAGES  
VDD  
1.70  
1.8  
1.8  
1.9  
1.90  
2.0  
1.70  
1.8  
1.8  
1.9  
1.90  
2.0  
V
V
FIR40 Enabled, DACCLK > 2600 MSPS  
SUPPLY CURRENTS AND POWER DISSIPATION, 2.3 GSPS  
(NORMAL MODE)  
IVDDA  
IVSSA  
IDVDD  
202  
53  
307  
209  
54  
327  
202  
53  
307  
209  
54  
327  
mA  
mA  
mA  
Power Dissipation  
Normal Mode  
FIR25 Enabled  
FIR40 Enabled  
1.0  
1.17  
1.3  
1.05  
1.24  
1.4  
1.0  
1.17  
1.3  
1.05  
1.24  
1.4  
W
W
W
Reduced Power Mode, Power-Down Enabled  
(Register 0x01 = 0xEF)  
IVDDA  
IVSSA  
IVDD  
7.6  
6
0.4  
7.6  
6
0.4  
mA  
µA  
mA  
SUPPLY CURRENTS AND POWER DISSIPATION, 2.8 GSPS  
(NORMAL MODE)  
IVDDA  
IVSSA  
IDVDD  
230  
53  
336  
1.1  
230  
53  
336  
1.1  
mA  
mA  
mA  
W
Power Dissipation (Normal Mode)  
1 For more information about output impedance, see the Output Stage Configuration section.  
Rev. 0 | Page 3 of 68  
 
 
 
AD9119/AD9129  
Data Sheet  
LVDS DIGITAL SPECIFICATIONS  
VDDA = VDD = 1.8 V, VSSA = −1.5 V, IOUTFS = 33 mA, TA = −40°C to +85°C. LVDS drivers and receivers are compatible with the IEEE  
Standard 1596.3-1996, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LVDS DATA INPUTS (P1_D[13:0]P, P1_D[13:0]N,  
P0_D[13:0]P, P0_D[13:0]N)  
Px_DxP = VIA, Px_DxN = VIB  
Input Voltage Range  
VIA, VIB  
VIDTH  
VIDTHH − VIDTHL  
RIN  
825  
−100  
1575 mV  
+100 mV  
mV  
Input Differential Threshold  
Input Differential Hysteresis  
Receiver Differential Input Impedance  
LVDS Input Rate  
20  
80  
1400  
120  
MSPS  
pF  
Input Capacitance  
1.2  
LVDS CLOCK INPUTS (DCI_P, DCI_N)  
Input Voltage Range  
Input Differential Threshold  
Input Differential Hysteresis  
Receiver Differential Input Impedance  
Maximum Clock Rate  
DCI_P = VIA, DCI_N = VIB  
VIA, VIB  
VIDTH  
VIDTHH − VIDTHL  
RIN  
825  
−225  
1575 mV  
+225 mV  
mV  
20  
80  
700  
120  
MHz  
LVDS CLOCK OUTPUTS (DCO_P, DCO_N)  
DCO_P = VOA, DCO_N = VOB,  
100 Ω termination  
Output Voltage High  
Output Voltage Low  
Output Differential Voltage  
Output Offset Voltage  
Output Impedance, Single-Ended  
RO Mismatch Between A and B  
Change in |VOD| Between Setting 0 and Setting 1  
Change in VOS Between Setting 0 and Setting 1  
Output Current  
VOA, VOB  
VOA, VOB  
|VOA|, |VOB|  
VOS  
RO  
∆RO  
1375 mV  
mV  
1025  
Register 0x7C[7:6] = 01b (default) 200  
1150  
225  
100  
250  
mV  
1250 mV  
80  
120  
10  
%
|∆VOD|  
∆VOS  
25  
25  
mV  
mV  
Driver Shorted to Ground  
Drivers Shorted Together  
Power-Off Output Leakage  
Maximum Clock Rate  
ISA, ISB  
ISAB  
|IXA|, |IXB|  
20  
4
10  
mA  
mA  
µA  
700  
MHz  
HSTL DIGITAL SPECIFICATIONS  
VDDA = VDD = 1.8 V, VSSA = −1.5 V, IOUTFS = 33 mA, TA = −40°C to +85°C. HSTL receiver levels are compatible with the EIA/JEDEC  
JESD8-6 standard, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Comments/Conditions  
Min  
Typ  
Max  
Unit  
HSTL DATA INPUTS (P1_D[13:0]P, P1_D[13:0]N,  
P0_D[13:0]P, P0_D[13:0]N)  
Px_DxP = VIA, Px_DxN = VIB  
Common-Mode Input Voltage Range  
Differential Input Voltage  
Receiver Differential Input Impedance  
HSTL Input Rate  
VIA, VIB  
RIN  
0.68  
200  
80  
0.9  
V
mV  
MSPS  
pF  
120  
1400  
1.2  
Input Capacitance  
HSTL CLOCK INPUT (DCI_P, DCI_N)  
Common-Mode Input Voltage Range  
Differential Input Voltage  
Receiver Differential Input Impedance  
Maximum Clock Rate  
DCI_P = VIA, DCI_N = VIB  
VIA, VIB  
RIN  
0.68  
450  
80  
0.9  
mV  
mV  
120  
700  
MHz  
Rev. 0 | Page 4 of 68  
 
 
 
Data Sheet  
AD9119/AD9129  
SERIAL PORT AND CMOS PIN SPECIFICATIONS  
VDDA = VDD = 1.8 V, VSSA = −1.5 V, IOUTFS = 33 mA, TA = −40°C to +85°C.  
Table 4.  
Parameter  
Symbol  
Test Comments/Conditions  
Min  
Typ  
Max  
Unit  
WRITE OPERATION  
SCLK Clock Rate  
SCLK Clock High  
See Figure 126  
fSCLK, 1/tSCLK  
20  
MHz  
ns  
ns  
ns  
ns  
tHIGH  
tLOW  
tDS  
tDH  
tS  
20  
20  
10  
5
10  
5
SCLK Clock Low  
SDIO to SCLK Setup Time  
SCLK to SDIO Hold Time  
CS to SCLK Setup Time  
SCLK to CS Hold Time  
ns  
tH  
ns  
READ OPERATION  
See Figure 127  
SCLK Clock Rate  
SCLK Clock High  
SCLK Clock Low  
SDIO to SCLK Setup Time  
SCLK to SDIO Hold Time  
CS to SCLK Setup Time  
SCLK to SDIO (or SDO) Data Valid Time  
fSCLK, 1/tSCLK  
20  
10  
MHz  
ns  
ns  
ns  
ns  
tHIGH  
tLOW  
tDS  
tDH  
tS  
20  
20  
10  
5
10  
ns  
tDV  
ns  
CS to SDIO (or SDO) Output Valid to High-Z tEZ  
INPUTS (SDI, SDIO, SCLK, CS)  
2
Voltage In High  
Voltage In Low  
Current In High  
VIH  
VIL  
IIH  
1.2  
1.8  
0
V
V
µA  
µA  
0.4  
+75  
Current In Low  
IIL  
−150  
OUTPUTS (SDIO, SYNC)  
Voltage Out High  
Voltage Out Low  
Current Out High  
Current Out Low  
VOH  
VOL  
IOH  
IOL  
1.3  
0
2.0  
0.3  
V
V
mA  
mA  
4
4
Rev. 0 | Page 5 of 68  
 
AD9119/AD9129  
Data Sheet  
AC SPECIFICATIONS  
VDDA = VDD = 1.8 V, VSSA = −1.5 V, IOUTFS = 33 mA, TA = −40°C to +85°C, unless otherwise noted.  
Table 5.  
AD9119  
Typ  
AD9129  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
DAC Update Rate (DACCLK_x Inputs)  
Normal Mode, FIR25 Enabled, or FIR40 Enabled with VDD = 1.9 V  
FIR40 Filter Enabled, VDD = 1.8 V  
Adjusted DAC Update Rate1  
Output Settling Time to 0.1%  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fDAC = 2600 MSPS  
1400  
1400  
1400  
2800 1400  
2600 1400  
2800 1400  
2800  
2600  
2800  
MSPS  
MSPS  
MSPS  
ns  
13  
13  
fOUT = 100 MHz  
fOUT = 350 MHz  
fOUT = 550 MHz  
fOUT = 950 MHz  
−76  
−65  
−63  
−55  
−76  
−65  
−64  
−55  
dBc  
dBc  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
fDAC = 2600 MSPS, fOUT2 = fOUT1 + 1.4 MHz  
fOUT = 100 MHz  
−82  
−78  
−73  
−67  
−86  
−85  
−83  
−76  
dBc  
dBc  
dBc  
dBc  
fOUT = 350 MHz  
fOUT = 550 MHz  
fOUT = 950 MHz  
NOISE SPECTRAL DENSITY (NSD)  
Single Tone, fDAC = 2800 MSPS  
fOUT = 100 MHz  
−157  
−157  
−155  
−154  
−166  
−162  
−158  
−157  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
fOUT = 350MHz  
fOUT = 550 MHz  
fOUT = 850 MHz  
DOCSIS ACLR PERFORMANCE (50 MHz to 1000 MHz) at ≥6 MHz OFFSET  
fDAC = 2782 MSPS  
8 Contiguous Carriers  
16 Contiguous Carriers  
32 Contiguous Carriers  
64  
62  
60  
64  
63  
61  
dBc  
dBc  
dBc  
W-CDMA ACLR (SINGLE CARRIER)  
Adjacent Channel  
fDAC = 2605.056 MSPS, fOUT = 750 MHz  
fDAC= 2605.056 MSPS, fOUT = 950 MHz  
fDAC = 2605.056 MSPS, fOUT = 1700 MHz (Mix-Mode)  
fDAC = 2605.056 MSPS, fOUT = 2100 MHz (Mix-Mode)  
Alternate Adjacent Channel  
fDAC = 2605.056 MSPS, fOUT = 750 MHz  
fDAC = 2605.056 MSPS, fOUT = 950 MHz  
fDAC = 2605.056 MSPS, fOUT = 1700 MHz (Mix-Mode)  
fDAC = 2605.056 MSPS, fOUT = 2100 MHz (Mix-Mode)  
75  
74  
73.5  
69  
75  
74  
73.5  
69  
dBc  
dBc  
dBc  
dBc  
80  
78  
74  
72  
80  
78  
74  
72  
dBc  
dBc  
dBc  
dBc  
1 Adjusted DAC update rate is calculated as fDAC divided by the minimum required interpolation factor. For the AD9119/AD9129, the minimum interpolation factor is 1.  
Thus, with fDAC = 2800 MSPS, fDAC adjusted = 2800 MSPS.  
Rev. 0 | Page 6 of 68  
 
 
Data Sheet  
AD9119/AD9129  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 6.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
DCI, DCO to VSS  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VSSA − 0.3V to +2.5V  
VSSA − 0.3 V to VDDA + 0.3 V  
−0.3 V to VDD + 0.3 V  
LVDS Data Inputs to VSS  
IOUTP, IOUTN to VSSA  
I250U, VREF to VSSA  
IRQ, CS, SCLK, SDO, SDIO, RESET,  
SYNC to VSS  
Table 7. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
°C/W1  
160-Ball CSP_BGA  
31.2  
7.0  
1 With no airflow movement.  
Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
150°C  
−40°C to +85°C  
−65°C to +150°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 7 of 68  
 
 
 
 
AD9119/AD9129  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
I250U  
VREF  
VSSA  
VSSA  
VDDA SH  
IOUTP  
IOUTN  
VDDA SH  
VDDA  
VDDA  
VDDA  
VSSC  
VSSC  
VSSC  
A
B
C
D
E
F
VDDA  
DACCLK_N  
DACCLK_P  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VSSA  
VDDA  
VDDA  
VSSC  
VSSA  
VSSA  
VDDA  
VSSC  
VSSA  
VSSA  
VSSC  
VDDA SH  
VSSA  
VDDA SH  
VDDA  
VDDA  
VDDA  
VSSC  
VDDA  
VDDA  
VSSC  
VDDA  
VDDA  
VSSC  
VDDA  
VSSC  
VSSC  
VSS  
VSSC  
VSSC  
VSS  
VSSC  
VSS  
VSS  
VSS  
SYNC  
VSS  
VSS  
VSS  
VSSC  
VDDA  
VSS  
VSSC  
VSSC  
VSSC  
VSSC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
IRQ  
VSS  
VSS  
VSSC  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
G
H
J
AD9119  
RESET  
SDIO  
SCLK  
NC  
SDO  
CS  
VDD  
DCI_P  
NC  
VDD  
VDD  
VDD  
VDD  
VDD  
DCI_N  
DCO_P  
P1_D7P  
P1_D7N  
P0_D7P  
P0_D7N  
DCO_N  
P1_D8P  
P1_D8N  
P0_D8P  
P0_D8N  
FRM_P  
P1_D9P  
P1_D9N  
P0_D9P  
P0_D9N  
FRM_N  
K
L
NC  
NC  
NC  
NC  
P1_D0P  
P1_D0N  
P0_D0P  
P0_D0N  
P1_D1P  
P1_D1N  
P0_D1P  
P0_D1N  
P1_D2P  
P1_D2N  
P0_D2P  
P0_D2N  
P1_D3P  
P1_D3N  
P0_D3P  
P0_D3N  
P1_D4P  
P1_D4N  
P0_D4P  
P0_D4N  
P1_D5P  
P1_D5N  
P0_D5P  
P0_D5N  
P1_D6P  
P1_D6N  
P0_D6P  
P0_D6N  
P1_D10P  
P1_D10N  
P0_D10P  
P0_D10N  
NC  
NC  
M
N
NC  
NC  
NC  
NC  
P
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 2. AD9119 Pin Configuration  
Table 8. AD9119 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
A1  
I250U  
Nominal 1.0 V Reference. Tie this pin to VSSA via a 4.0 kΩ resistor to generate  
a 250 µA reference current.  
A2  
VREF  
VSSA  
VDDA SH  
Voltage Reference Input/Output. Decouple to VSSA with a 1 nF capacitor.  
−1.5 V Analog Supply Voltage Input.  
+1.8 V Analog Supply Shield. Tie these pins to VDDA at the DAC.  
+1.8 V Analog Supply Voltage Input.  
A3, A4, B3, B4, B5, C4, C5, C6  
A5, A8, B6, B7  
A9, A10, A11, B1, B2, B8, B9, B10, VDDA  
B11, C2, C3, C7, C8, C9, C10, D2,  
D3, D4, D7, E1, E2  
Rev. 0 | Page 8 of 68  
 
 
Data Sheet  
AD9119/AD9129  
Pin No.  
Mnemonic  
Description  
G12, G13, G14, H11, H12, H13,  
H14, J3, J4, J11, J12, J13, J14  
VDD  
+1.8 V Digital Supply Voltage Input.  
C13, C14, D12, D13, D14, E11,  
E12, E13, E14, F11, F12, F13, F14,  
G1, G2, G3, G11, H3, H4  
A12, A13, A14, B12, B13, C11,  
C12, D5, D6, D8, D9, D10, D11,  
E3, E4, F1, F2, F3, F4, G4  
VSS  
+1.8 V Digital Supply Return.  
Analog Supply Return.  
VSSC  
A6  
A7  
B14  
C1, D1  
H1  
IOUTP  
IOUTN  
SYNC  
DACCLK_N, DACCLK_P  
RESET  
IRQ  
DAC Positive Current Output Source.  
DAC Negative Current Output Source.  
Synchronization Signal Output.  
Negative/Positive DAC Clock Input.  
Reset Input. Active high. If unused, tie this pin to VSS.  
H2  
Interrupt Request Open Drain Output. Active high. Pull up this pin to VDD  
with a 1 kΩ resistor.  
J1  
SDIO  
Serial Port Data Input/Output.  
J2  
SDO  
Serial Port Data Output.  
K1  
SCLK  
Serial Port Clock Input.  
K2  
CS  
Serial Port Enable Input.  
K3, K4  
DCI_P, DCI_N  
D CO _ P, DCO_N  
FRM_P, FRM_N  
NC, NC  
NC, NC  
NC, NC  
P1_D0P, P1_D0N  
P1_D1P, P1_D1N  
P1_D2P, P1_D2N  
P1_D3P, P1_D3N  
P1_D4P, P1_D4N  
P1_D5P, P1_D5N  
P1_D6P, P1_D6N  
P1_D7P, P1_D7N  
P1_D8P, P1_D8N  
P1_D9P, P1_D9N  
P1_D10P, P1_D10N  
NC, NC  
Positive, Negative Data Clock Input (DCI).  
Positive, Negative Data Clock Output (DCO).  
Positive, Negative Data Frame/Parity Signal (FRAME/PARITY).  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
Data Port 1 Positive/Negative Data Input Bit 0.  
Data Port 1 Positive/Negative Data Input Bit 1.  
Data Port 1 Positive/Negative Data Input Bit 2.  
Data Port 1 Positive/Negative Data Input Bit 3.  
Data Port 1 Positive/Negative Data Input Bit 4.  
Data Port 1 Positive/Negative Data Input Bit 5.  
Data Port 1 Positive/Negative Data Input Bit 6.  
Data Port 1 Positive/Negative Data Input Bit 7.  
Data Port 1 Positive/Negative Data Input Bit 8.  
Data Port 1 Positive/Negative Data Input Bit 9.  
Data Port 1 Positive/Negative Data Input Bit 10.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
No Connect. Do not connect to this pin.  
Data Port 0 Positive/Negative Data Input Bit 0.  
Data Port 0 Positive/Negative Data Input Bit 1.  
Data Port 0 Positive/Negative Data Input Bit 2.  
Data Port 0 Positive/Negative Data Input Bit 3.  
Data Port 0 Positive/Negative Data Input Bit 4.  
Data Port 0 Positive/Negative Data Input Bit 5.  
Data Port 0 Positive/Negative Data Input Bit 6.  
Data Port 0 Positive/Negative Data Input Bit 7.  
Data Port 0 Positive/Negative Data Input Bit 8.  
Data Port 0 Positive/Negative Data Input Bit 9.  
Data Port 0 Positive/Negative Data Input Bit 10.  
K11, K12  
K13, K14  
L1, M1  
L2, M2  
L3, M3  
L4, M4  
L5, M5  
L6, M6  
L7, M7  
L8, M8  
L9, M9  
L10, M10  
L11, M11  
L12,M12  
L13, M13  
L14, M14  
N1, P1  
N2, P2  
N3, P3  
N4, P4  
N5, P5  
N6, P6  
N7, P7  
N8, P8  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
NC, NC  
NC, NC  
P0_D0P, P0_D0N  
P0_D1P, P0_D1N  
P0_D2P, P0_D2N  
P0_D3P, P0_D3N  
P0_D4P, P0_D4N  
P0_D5P, P0_D5N  
P0_D6P, P0_D6N  
P0_D7P, P0_D7N  
P0_D8P, P0_D8N  
P0_D9P, P0_D9N  
P0_D10P, P0_D10N  
Rev. 0 | Page 9 of 68  
AD9119/AD9129  
Data Sheet  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
I250U  
VREF  
VSSA  
VSSA  
VDDA SH  
IOUTP  
IOUTN  
VDDA SH  
VDDA  
VDDA  
VDDA  
VSSC  
VSSC  
VSSC  
SYNC  
VSS  
A
B
C
D
E
F
VDDA  
DACCLK_N  
DACCLK_P  
VDDA  
VDDA  
VDDA  
VDDA  
VDDA  
VSSA  
VDDA  
VDDA  
VSSC  
VSSA  
VSSA  
VDDA  
VSSC  
VSSA  
VSSA  
VSSC  
VDDA SH  
VSSA  
VDDA SH  
VDDA  
VDDA  
VDDA  
VSSC  
VDDA  
VDDA  
VSSC  
VDDA  
VDDA  
VSSC  
VDDA  
VSSC  
VSSC  
VSS  
VSSC  
VSSC  
VSS  
VSSC  
VSS  
VSS  
VSS  
VSSC  
VDDA  
VSS  
VSS  
VSS  
VSSC  
VSSC  
VSSC  
VSSC  
VSS  
VSS  
VSS  
VSS  
G
H
J
VSS  
VSS  
IRQ  
VSS  
VSS  
VSSC  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
AD9129  
RESET  
SDIO  
SCLK  
SDO  
CS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
K
L
DCI_P  
DCI_N  
DCO_P  
DCO_N  
FRM_P  
FRM_N  
P1_D0P  
P1_D0N  
P0_D0P  
P0_D0N  
P1_D1P  
P1_D1N  
P0_D1P  
P0_D1N  
P1_D2P  
P1_D2N  
P0_D2P  
P0_D2N  
P1_D3P  
P1_D3N  
P0_D3P  
P0_D3N  
P1_D4P  
P1_D4N  
P0_D4P  
P0_D4N  
P1_D5P  
P1_D5N  
P0_D5P  
P0_D5N  
P1_D6P  
P1_D6N  
P0_D6P  
P0_D6N  
P1_D7P  
P1_D7N  
P0_D7P  
P0_D7N  
P1_D8P  
P1_D8N  
P0_D8P  
P0_D8N  
P1_D9P  
P1_D9N  
P0_D9P  
P0_D9N  
P1_D10P  
P1_D10N  
P0_D10P  
P0_D10N  
P1_D11P  
P1_D11N  
P0_D11P  
P0_D11N  
P1_D12P  
P1_D12N  
P0_D12P  
P0_D12N  
P1_D13P  
P1_D13N  
P0_D13P  
P0_D13N  
M
N
P
Figure 3. AD9129 Pin Configuration  
Table 9. AD9129 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
A1  
I250U  
Nominal 1.0 V Reference. Tie this pin to VSSA via a 4.0 kΩ resistor to generate  
a 250 µA reference current.  
A2  
VREF  
VSSA  
VDDA SH  
Voltage Reference Input/Output. Decouple to VSSA with a 1 nF capacitor.  
−1.5 V Analog Supply Voltage Input.  
+1.8 V Analog Supply Shield. Tie these pins to VDDA at the DAC.  
+1.8 V Analog Supply Voltage Input.  
A3, A4, B3, B4, B5, C4, C5, C6  
A5, A8, B6, B7  
A9, A10, A11, B1, B2, B8, B9, B10, VDDA  
B11, C2, C3, C7, C8, C9, C10, D2,  
D3, D4, D7, E1, E2  
G12, G13, G14, H11, H12, H13,  
H14, J3, J4, J11, J12, J13, J14  
C13, C14, D12, D13, D14, E11,  
E12, E13, E14, F11, F12, F13, F14,  
G1, G2, G3, G11, H3, H4  
VDD  
+1.8 V Digital Supply Voltage Input.  
+1.8 V Digital Supply Return.  
VSS  
Rev. 0 | Page 10 of 68  
Data Sheet  
AD9119/AD9129  
Pin No.  
Mnemonic  
Description  
A12, A13, A14, B12, B13, C11,  
C12, D5, D6, D8, D9, D10, D11,  
E3, E4, F1, F2, F3, F4, G4  
VSSC  
Analog Supply Return.  
A6  
A7  
B14  
C1, D1  
H1  
IOUTP  
IOUTN  
SYNC  
DACCLK_N, DACCLK_P  
RESET  
IRQ  
DAC Positive Current Output Source.  
DAC Negative Current Output Source.  
Synchronization Signal Output.  
Negative/Positive DAC Clock Input.  
Reset Input. Active high. If unused, tie this pin to VSS.  
H2  
Interrupt Request Open-Drain Output. Active high. Pull up this pin to VDD  
with a 1 kΩ resistor.  
J1  
SDIO  
Serial Port Data Input/Output.  
J2  
SDO  
Serial Port Data Output.  
K1  
SCLK  
Serial Port Clock Input.  
K2  
CS  
Serial Port Enable Input.  
K3, K4  
DCI_P, DCI_N  
Positive, Negative Data Clock Input (DCI).  
Positive, Negative Data Clock Output (DCO).  
Positive, Negative Data Frame/Parity Signal (FRAME/PARITY).  
Data Port 1 Positive/Negative Data Input Bit 0.  
Data Port 1 Positive/Negative Data Input Bit 1.  
Data Port 1 Positive/Negative Data Input Bit 2.  
Data Port 1 Positive/Negative Data Input Bit 3.  
Data Port 1 Positive/Negative Data Input Bit 4.  
Data Port 1 Positive/Negative Data Input Bit 5.  
Data Port 1 Positive/Negative Data Input Bit 6.  
Data Port 1 Positive/Negative Data Input Bit 7.  
Data Port 1 Positive/Negative Data Input Bit 8.  
Data Port 1 Positive/Negative Data Input Bit 9.  
Data Port 1 Positive/Negative Data Input Bit 10.  
Data Port 1 Positive/Negative Data Input Bit 11.  
Data Port 1 Positive/Negative Data Input Bit 12.  
Data Port 1 Positive/Negative Data Input Bit 13.  
Data Port 0 Positive/Negative Data Input Bit 0.  
Data Port 0 Positive/Negative Data Input Bit 1.  
Data Port 0 Positive/Negative Data Input Bit 2.  
Data Port 0 Positive/Negative Data Input Bit 3.  
Data Port 0 Positive/Negative Data Input Bit 4.  
Data Port 0 Positive/Negative Data Input Bit 5.  
Data Port 0 Positive/Negative Data Input Bit 6.  
Data Port 0 Positive/Negative Data Input Bit 7.  
Data Port 0 Positive/Negative Data Input Bit 8.  
Data Port 0 Positive/Negative Data Input Bit 9.  
Data Port 0 Positive/Negative Data Input Bit 10.  
Data Port 0 Positive/Negative Data Input Bit 11.  
Data Port 0 Positive/Negative Data Input Bit 12.  
Data Port 0 Positive/Negative Data Input Bit 13.  
K11, K12  
K13, K14  
L1, M1  
L2, M2  
L3, M3  
L4, M4  
L5, M5  
L6, M6  
L7, M7  
L8, M8  
L9, M9  
L10, M10  
L11, M11  
L12,M12  
L13, M13  
L14, M14  
N1, P1  
N2, P2  
N3, P3  
N4, P4  
N5, P5  
N6, P6  
N7, P7  
N8, P8  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
D CO _ P, DCO_N  
FRM_P, FRM_N  
P1_D0P, P1_D0N  
P1_D1P, P1_D1N  
P1_D2P, P1_D2N  
P1_D3P, P1_D3N  
P1_D4P, P1_D4N  
P1_D5P, P1_D5N  
P1_D6P, P1_D6N  
P1_D7P, P1_D7N  
P1_D8P, P1_D8N  
P1_D9P, P1_D9N  
P1_D10P, P1_D10N  
P1_D11P, P1_D11N  
P1_D12P, P1_D12N  
P1_D13P, P1_D13N  
P0_D0P, P0_D0N  
P0_D1P, P0_D1N  
P0_D2P, P0_D2N  
P0_D3P, P0_D3N  
P0_D4P, P0_D4N  
P0_D5P, P0_D5N  
P0_D6P, P0_D6N  
P0_D7P, P0_D7N  
P0_D8P, P0_D8N  
P0_D9P, P0_D9N  
P0_D10P, P0_D10N  
P0_D11P, P0_D11N  
P0_D12P, P0_D12N  
P0_D13P, P0_D13N  
Rev. 0 | Page 11 of 68  
AD9119/AD9129  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9119  
Static Linearity  
IOUTFS = 28 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
0.3  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.2  
0.1  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
0
–0.1  
–0.2  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
0
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
CODE  
CODE  
Figure 4. Typical INL, 11 mA at 25°C  
Figure 7. Typical DNL, 11 mA at 25°C  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.3  
0.2  
0.1  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.1  
–0.2  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
CODE  
200 400 600 800 1000 1200 1400 1600 1800 2000  
CODE  
Figure 8. Typical DNL, 22 mA at 25°C  
Figure 5. Typical INL, 22 mA at 25°C  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.3  
0.2  
0.1  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.1  
–0.2  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
CODE  
200 400 600 800 1000 1200 1400 1600 1800 2000  
CODE  
Figure 9. Typical DNL, 33 mA at 25°C  
Figure 6. Typical INL, 33 mA at 25°C  
Rev. 0 | Page 12 of 68  
 
 
Data Sheet  
AD9119/AD9129  
AC (Normal Mode)  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF 5dBm  
REF 5dBm  
5
–5  
5
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
VBW 20kHz  
VBW 20kHz  
Figure 13. Single-Tone Spectrum at fOUT = 1000 MHz  
Figure 10. Single-Tone Spectrum at fOUT = 70 MHz  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1600MSPS  
2200MSPS  
2600MSPS  
2800MSPS  
1400MSPS  
1600MSPS  
2200MSPS  
2600MSPS  
2800MSPS  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 11. SFDR vs. fOUT over fDAC  
Figure 14. IMD vs. fOUT over fDAC  
–150  
–155  
–160  
–165  
–170  
–145  
–150  
–155  
–160  
–165  
–170  
1600MSPS  
2200MSPS  
2800MSPS  
1600MSPS  
2200MSPS  
2800MSPS  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 12. Single-Tone NSD vs. fOUT  
Figure 15. W-CDMA NSD vs. fOUT  
Rev. 0 | Page 13 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
11mA  
22mA  
33mA  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 16. SFDR vs. fOUT over Digital Full Scale  
Figure 18. SFDR vs. fOUT over DAC IOUTFS  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
11mA  
22mA  
33mA  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 17. IMD vs. fOUT over Digital Full Scale  
Figure 19. IMD vs. fOUT over DAC IOUTFS  
Rev. 0 | Page 14 of 68  
Data Sheet  
AD9119/AD9129  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–150  
–155  
–160  
–165  
–170  
–145  
–150  
–155  
–160  
–165  
–170  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 20. Single-Tone NSD vs. fOUT over Temperature  
Figure 22. W-CDMA NSD vs. fOUT over Temperature  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
CENTER 877.5MHz  
VBW 3kHz  
SPAN 53.84MHz  
SWEEP 1.485s  
CENTER 877.5MHz  
VBW 3kHz  
SPAN 58.84MHz  
SWEEP 1.623s  
TOTAL CARRIER POWER –10.705dBm/3.84MHz  
LOWER  
OFFSET FREQ INTEG BW  
TOTAL CARRIER POWER –10.646dBm/7.68MHz  
LOWER  
OFFSET FREQ INTEG BW  
UPPER  
dBc dBm FILTER  
UPPER  
dBc dBm FILTER  
dBc  
dBm  
dBc  
dBm  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–74.97 –85.68 –75.24 –85.95 OFF  
–77.99 –88.69 –78.44 –89.14 OFF  
–78.68 –89.38 –78.94 –89.65 OFF  
–78.79 –89.50 –78.58 –89.29 OFF  
–76.81 –87.52 –77.20 –87.91 OFF  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–71.62 –85.23 –71.61 –85.22 OFF  
–74.36 –87.96 –74.94 –88.55 OFF  
–74.35 –87.95 –74.91 –88.52 OFF  
–72.89 –86.50 –74.53 –88.14 OFF  
–67.34 –80.95 –73.68 –87.29 OFF  
10MHz  
15MHz  
20MHz  
25MHz  
10MHz  
15MHz  
20MHz  
25MHz  
Figure 21. Single-Carrier W-CDMA at 877.5 MHz  
Figure 23. Two-Carrier W-CDMA at 877.5 MHz  
Rev. 0 | Page 15 of 68  
AD9119/AD9129  
Data Sheet  
AC (Mix-Mode)  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF 0dBm  
REF 5dBm  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
VBW 20kHz  
VBW 20kHz  
Figure 24. Single Tone Spectrum at fOUT = 2350 MHz  
Figure 27. Single-Tone Spectrum at fOUT = 1600 MHz  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
1600MSPS  
2200MSPS  
2800MSPS  
1600MSPS  
2200MSPS  
2800MSPS  
500  
1000  
1500  
2000  
2500  
3000  
500  
1000  
1500  
2000  
2500  
3000  
fOUT (MHz)  
fOUT (MHz)  
Figure 28. IMD vs. fOUT over fDAC  
Figure 25. SFDR vs. fOUT over fDAC  
–145  
–150  
–155  
–160  
–165  
–170  
–145  
–150  
–155  
–160  
–165  
–170  
1000  
1500  
2000  
2500  
3500  
3500  
4000  
4500  
1500  
2000  
2500  
3000  
3500  
4000  
fOUT (MHz)  
fOUT (MHz)  
Figure 26. Single-Tone NSD vs. fOUT  
Figure 29. W-CDMA NSD vs. fOUT  
Rev. 0 | Page 16 of 68  
Data Sheet  
AD9119/AD9129  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
11mA  
22mA  
33mA  
1000  
1500  
2000  
2500  
3500  
3500  
4000  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
fOUT (MHz)  
fOUT (MHz)  
Figure 30. SFDR vs. fOUT over Digital Full Scale  
Figure 32. SFDR vs. fOUT over DAC IOUTFS  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
11mA  
22mA  
33mA  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
1000  
1500  
2000  
2500  
fOUT (MHz)  
3000  
3500  
4000  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
fOUT (MHz)  
Figure 31. IMD vs. fOUT over Digital Full Scale  
Figure 33. IMD vs. fOUT over DAC IOUTFS  
Rev. 0 | Page 17 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–145  
–150  
–155  
–160  
–165  
–145  
–150  
–155  
–160  
–165  
–170  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
1500  
2000  
2500  
3000  
3500  
3500  
1000  
1500  
2000  
2500  
3500  
3500  
4000  
fOUT (MHz)  
fOUT (MHz)  
Figure 34. Single-Tone NSD vs. fOUT over Temperature  
Figure 36. W-CDMA NSD vs. fOUT over Temperature  
–20  
–30  
–20  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
CENTER 1.98GHz  
VBW 3kHz  
SPAN 58.84MHz  
SWEEP 1.623s  
CENTER 1.888GHz  
VBW 3kHz  
SPAN 53.84MHz  
SWEEP 1.485s  
TOTAL CARRIER POWER –10.125dBm/3.84MHz  
LOWER  
OFFSET FREQ INTEG BW  
TOTAL CARRIER POWER –10.251dBm/15.36MHz  
LOWER  
OFFSET FREQ INTEG BW  
UPPER  
dBc dBm FILTER  
UPPER  
dBc dBm FILTER  
dBc  
dBm  
dBc  
dBm  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–70.25 –80.37 –70.38 –80.50 OFF  
–74.47 –84.60 –74.54 –84.66 OFF  
–75.55 –85.68 –75.72 –85.85 OFF  
–76.03 –86.15 –76.25 –86.37 OFF  
–76.62 –86.75 –76.70 –86.83 OFF  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–65.84 –82.06 –65.79 –82.01 OFF  
–67.02 –83.23 –66.75 –82.97 OFF  
–68.05 –84.27 –67.99 –84.21 OFF  
–69.07 –85.29 –69.03 –85.25 OFF  
10MHz  
15MHz  
20MHz  
25MHz  
10MHz  
15MHz  
20MHz  
Figure 35. Single-Carrier W-CDMA at 1887.5 MHz  
Figure 37. Four-Carrier W-CDMA at 1980 MHz  
Rev. 0 | Page 18 of 68  
Data Sheet  
AD9119/AD9129  
DOCSIS Performance (Normal Mode)  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF –20dBm  
REF –20dBm  
–20  
–30  
–20  
–30  
1
1
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
2Δ1  
–90  
–90  
3Δ1  
2Δ1 3Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
VBW 2kHz  
VBW 2kHz  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
MODE TRC SCL  
X
Y
FUNCTION  
N
Δ1  
Δ1  
1
1
1
f
f
f
70MHz  
(Δ) 70MHz  
(Δ) 140MHz  
–3.819dBm BAND POWER  
(Δ) –74.107dB BAND POWER  
(Δ) –74.148dB BAND POWER  
6MHz  
6MHz  
6MHz  
–3.819dBm  
(Δ) –74.24dB  
(Δ) –74.17dB  
N
Δ1  
Δ1  
1
1
1
f
f
f
950MHz  
(Δ) –68MHz  
(Δ) –882MHz  
–6.351dBm BAND POWER  
(Δ) –66.696dB BAND POWER  
(Δ) –70.598dB BAND POWER  
6MHz  
6MHz  
6MHz  
–6.349dBm  
(Δ) –66.696dB  
(Δ) –70.598dB  
Figure 38. Single Carrier at 70 MHz Output  
Figure 41. Single Carrier at 950 MHz Output  
REF –20dBm  
REF –20dBm  
–20  
–30  
–20  
–30  
1
1
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1  
2Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
3Δ1  
3Δ1  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
VBW 2kHz  
VBW 2kHz  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
MODE TRC SCL  
X
Y
FUNCTION  
N
Δ1  
Δ1  
1
1
1
f
f
f
959MHz  
(Δ) –77MHz  
(Δ) –891MHz  
–14.282dBm BAND POWER  
(Δ) –64.535dB BAND POWER  
(Δ) –68.529dB BAND POWER  
6MHz  
6MHz  
6MHz  
–14.264dBm  
(Δ) –64.535dB  
(Δ) –68.597dB  
N
Δ1  
Δ1  
1
1
1
f
f
f
79MHz  
(Δ) 61MHz  
(Δ) 131MHz  
–12.143dBm BAND POWER  
(Δ) –70.38dB BAND POWER  
(Δ) –67.78dB BAND POWER  
6MHz  
6MHz  
6MHz  
–12.142dBm  
(Δ) –70.351dB  
(Δ) –67.775dB  
Figure 39. Four Carrier at 70 MHz Output  
Figure 42. Four Carrier at 950 MHz Output  
REF –20dBm  
REF –20dBm  
–20  
–30  
–20  
–30  
1
1
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1 3Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
2Δ1  
3Δ1  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
VBW 20kHz  
VBW 2kHz  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
MODE TRC SCL  
X
Y
FUNCTION  
N
Δ1  
Δ1  
1
1
1
f
f
f
91MHz  
(Δ) 49MHz  
(Δ) 117.9MHz  
–15.295dBm BAND POWER  
(Δ) –66.768dB BAND POWER  
(Δ) –66.821dB BAND POWER  
6MHz  
6MHz  
6MHz  
–15.294dBm  
(Δ) –66.669dB  
(Δ) –66.833dB  
N
Δ1  
Δ1  
1
1
1
f
f
f
971MHz  
(Δ) –89MHz  
(Δ) –903MHz  
–14.632dBm BAND POWER  
(Δ) –62.657dB BAND POWER  
(Δ) –66.131dB BAND POWER  
6MHz  
6MHz  
6MHz  
–18.397dBm  
(Δ) –62.657dB  
(Δ) –66.195dB  
Figure 40. Eight Carrier at 70 MHz Output  
Figure 43. Eight Carrier at 950 MHz Output  
Rev. 0 | Page 19 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 44. Second Harmonic vs. fOUT Performance for One DOCSIS Carrier  
Figure 47. Third Harmonic vs. fOUT Performance for One DOCSIS Carrier  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 48. Third Harmonic vs. fOUT Performance for Four DOCSIS Carriers  
Figure 45. Second Harmonic vs. fOUT Performance for Four DOCSIS Carriers  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 49. Third Harmonic vs. fOUT Performance for Eight DOCSIS Carriers  
Figure 46. Second Harmonic vs. fOUT Performance for Eight DOCSIS Carriers  
Rev. 0 | Page 20 of 68  
Data Sheet  
AD9119/AD9129  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 50. Single-Carrier ACPR vs. fOUT  
Figure 53. 16-Carrier ACPR vs. fOUT  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (MHz)  
fOUT (GHz)  
Figure 51. Four-Carrier ACPR vs. fOUT  
Figure 54. 32-Carrier ACPR vs. fOUT  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
REF –20dBm  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
0.2  
0.4  
0.6  
0.8  
1.0  
CENTER 77MHz  
RES BW 10kHz  
SPAN 60MHz  
SWEEP 6.08s (1001 pts)  
fOUT (GHz)  
VBW 1kHz  
Figure 52. Eight-Carrier ACPR vs. fOUT  
Figure 55. Gap Channel ACPR at 77 MHz  
Rev. 0 | Page 21 of 68  
AD9119/AD9129  
Data Sheet  
AD9129  
Static Linearity  
IOUTFS = 28 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
1.0  
0.5  
2.0  
1.5  
1.0  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2000 4000 6000 8000 10000 12000 14000 16000  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
CODE  
Figure 56. Typical INL, 11 mA at 25°C  
Figure 59. Typical DNL, 11 mA at 25°C  
1.0  
0.5  
2.0  
1.5  
1.0  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
Figure 57. Typical INL, 22 mA at 25°C  
Figure 60. Typical DNL, 22 mA at 25°C  
2.0  
1.5  
1.0  
0.5  
1.0  
0
0.5  
0
–0.5  
–1.0  
–1.5  
–0.5  
–1.0  
–1.5  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
Figure 58. Typical INL, 33 mA at 25°C  
Figure 61. Typical DNL, 33 mA at 25°C  
Rev. 0 | Page 22 of 68  
 
Data Sheet  
AD9119/AD9129  
AC (Normal Mode)  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF 5dBm  
REF 5dBm  
5
–5  
5
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
VBW 20kHz  
VBW 20kHz  
Figure 62. Single-Tone Spectrum at fOUT = 70 MHz  
Figure 65. Single-Tone Spectrum at fOUT = 1000 MHz  
0
–40  
1400MSPS  
1600MSPS  
2200MSPS  
2600MSPS  
2800MSPS  
1600MSPS  
2200MSPS  
2600MSPS  
2800MSPS  
–10  
–50  
–60  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–70  
–80  
–90  
–100  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 63. SFDR vs. fOUT over fDAC  
Figure 66. IMD vs. fOUT over fDAC  
–145  
–150  
–155  
–160  
–165  
–170  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
1600MSPS  
2200MSPS  
2800MSPS  
1600MSPS  
2200MSPS  
2800MSPS  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
fOUT (MHz)  
fOUT (MHz)  
Figure 64. Single-Tone NSD vs. fOUT  
Figure 67. W-CDMA NSD vs. fOUT  
Rev. 0 | Page 23 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 68. SFDR vs. fOUT over Digital Full Scale  
Figure 71. IMD vs. fOUT over Digital Full Scale  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
11mA  
22mA  
33mA  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 69. SFDR for Second Harmonic vs. fOUT over Digital Full Scale  
Figure 72. SFDR vs. fOUT over DAC IOUTFS  
–40  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–16dBFS  
–12dBFS  
–6dBFS  
11mA  
22mA  
33mA  
–50  
0dBFS  
–60  
–70  
–80  
–90  
–100  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 73. IMD vs. fOUT over DAC IOUTFS  
Figure 70. SFDR for Third Harmonic vs. fOUT over Digital Full Scale  
Rev. 0 | Page 24 of 68  
Data Sheet  
AD9119/AD9129  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–150  
–155  
–160  
–165  
–170  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
fOUT (MHz)  
fOUT (MHz)  
Figure 74. SFDR vs. fOUT over Temperature  
Figure 77. W-CDMA NSD vs. fOUT over Temperature  
–145  
–150  
–155  
–160  
–165  
–170  
–60  
–65  
–70  
–75  
–80  
–85  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
200  
400  
600  
800  
1000  
1200  
1400  
fOUT (MHz)  
fOUT (MHz)  
Figure 75. IMD vs. fOUT over Temperature  
Figure 78. Single-Tone NSD vs. fOUT over Temperature  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
CENTER 877.5MHz  
VBW 3kHz  
SPAN 58.84MHz  
SWEEP 1.623s  
CENTER 877.5MHz  
VBW 3kHz  
SPAN 53.84MHz  
SWEEP 1.485s  
TOTAL CARRIER POWER –10.599dBm/7.68MHz  
OFFSET FREQ INTEG BW dBc dBm  
TOTAL CARRIER POWER –10.794dBm/3.84MHz  
OFFSET FREQ INTEG BW dBc dBm  
dBc  
dBm FILTER  
dBc  
dBm FILTER  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–72.33 –85.89 –72.37 –85.93 OFF  
–75.18 –88.74 –75.19 –88.75 OFF  
–74.76 –88.32 –74.92 –88.48 OFF  
–72.69 –86.25 –74.60 –88.16 OFF  
–65.42 –78.99 –73.53 –87.09 OFF  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–76.29 –87.08 –75.85 –86.64 OFF  
–80.60 –91.39 –79.88 –90.68 OFF  
–81.37 –92.16 –81.09 –91.89 OFF  
–81.76 –92.56 –81.89 –92.68 OFF  
–79.29 –90.08 –80.89 –91.69 OFF  
10MHz  
15MHz  
20MHz  
25MHz  
10MHz  
15MHz  
20MHz  
25MHz  
Figure 76. Single-Carrier W-CDMA at 877.5 MHz  
Figure 79. Two-Carrier W-CDMA at 875 MHz  
Rev. 0 | Page 25 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
FIRST ACLR (dBc)  
FIRST ACLR (dBc)  
SECOND ACLR (dBc)  
SECOND ACLR (dBc)  
700  
750  
800  
850  
900  
950  
1000  
700  
750  
800  
850  
900  
950  
fOUT (MHz)  
fOUT (MHz)  
Figure 80. Single-Carrier W-CDMA ACLR vs. fOUT (First ACLR, Second ACLR)  
Figure 82. Two-Carrier W-CDMA ACLR vs. fOUT (First ACLR, Second ACLR)  
–60  
–60  
THIRD ACLR (dBc)  
FOURTH ACLR (dBc)  
FIFTH ACLR (dBc)  
THIRD ACLR (dBc)  
FOURTH ACLR (dBc)  
FIFTH ACLR (dBc)  
–65  
–65  
–70  
–75  
–80  
–85  
–90  
–70  
–75  
–80  
–85  
–90  
700  
750  
800  
850  
900  
950  
700  
750  
800  
850  
900  
950  
1000  
fOUT (MHz)  
fOUT (MHz)  
Figure 83. Two-Carrier W-CDMA ACLR vs. fOUT (Third ACLR, Fourth ACLR,  
Fifth ACLR)  
Figure 81. Single-Carrier W-CDMA ACLR vs. fOUT (Third ACLR, Fourth ACLR,  
Fifth ACLR)  
Rev. 0 | Page 26 of 68  
Data Sheet  
AD9119/AD9129  
AC (Mix-Mode)  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF 0dBm  
REF 5dBm  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
5
–5  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
START 20MHz  
RES BW 20kHz  
STOP 2.6GHz  
SWEEP 7.78s (1001 pts)  
VBW 20kHz  
VBW 20kHz  
Figure 84. Single-Tone Spectrum at fOUT = 2350 MHz  
Figure 87. Single-Tone Spectrum at fOUT = 1600 MHz  
–50  
–40  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–50  
–60  
–70  
–80  
–90  
1600MSPS  
2200MSPS  
2800MSPS  
1600  
2200  
2800  
500  
1000  
1500  
fOUT (MHz)  
2000  
2500  
3000  
500  
1000  
1500  
fOUT (MHz)  
2000  
2500  
3000  
Figure 85. SFDR vs. fOUT over fDAC  
Figure 88. IMD vs. fOUT over fDAC  
–145  
–150  
–155  
–160  
–165  
–170  
–145  
–150  
–155  
–160  
–165  
–170  
1000  
1500  
2000  
2500  
fOUT (MHz)  
3000  
3500  
4000  
4500  
1500  
2000  
2500  
fOUT (MHz)  
3000  
3500  
4000  
Figure 86. Single-Tone NSD vs. fOUT  
Figure 89. W-CDMA NSD vs. fOUT  
Rev. 0 | Page 27 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
11mA  
22mA  
33mA  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
fOUT (MHz)  
fOUT (MHz)  
Figure 90. SFDR vs. fOUT over Digital Full Scale  
Figure 92. SFDR vs. fOUT over DAC IOUTFS  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
–16dBFS  
–12dBFS  
–6dBFS  
0dBFS  
11mA  
22mA  
33mA  
1000  
1500  
2000  
2500  
fOUT (MHz)  
3000  
3500  
4000  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
fOUT (MHz)  
Figure 93. IMD vs. fOUT over DAC IOUTFS  
Figure 91. IMD vs. fOUT over Digital Full Scale  
Rev. 0 | Page 28 of 68  
Data Sheet  
AD9119/AD9129  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–145  
–150  
–155  
–160  
–165  
–170  
–145  
–150  
–155  
–160  
–165  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
1000  
1500  
2000  
2500  
fOUT (MHz)  
3000  
3500  
4000  
1500  
2000  
2500  
fOUT (MHz)  
3000  
3500  
Figure 94. Single-Tone NSD vs. fOUT over Temperature  
Figure 96. W-CDMA NSD vs. fOUT over Temperature  
–20  
–20  
–30  
–40  
–30  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
CENTER 1.888GHz  
VBW 3kHz  
SPAN 53.84MHz  
SWEEP 1.485s  
CENTER 1.98GHz  
VBW 3kHz  
SPAN 58.84MHz  
SWEEP 1.623s  
TOTAL CARRIER POWER –9.445dBm/3.84MHz  
LOWER  
OFFSET FREQ INTEG BW  
TOTAL CARRIER POWER –10.211dBm/15.36MHz  
LOWER  
OFFSET FREQ INTEG BW  
UPPER  
dBc dBm FILTER  
UPPER  
dBc dBm FILTER  
dBc  
dBm  
dBc  
dBm  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–73.71 –83.15 –74.00 –83.45 OFF  
–77.40 –86.84 –77.31 –86.75 OFF  
–78.04 –87.48 –77.85 –87.30 OFF  
–78.13 –87.57 –78.51 –87.96 OFF  
–78.01 –87.46 –78.43 –87.87 OFF  
5MHz  
3.84MHz  
3.84MHz  
3.84MHz  
3.84MHz  
–69.05 –85.24 –69.03 –85.22 OFF  
–69.86 –86.05 –69.71 –85.90 OFF  
–70.81 –87.00 –70.52 –86.71 OFF  
–71.03 –87.22 –70.91 –87.10 OFF  
10MHz  
15MHz  
20MHz  
25MHz  
10MHz  
15MHz  
20MHz  
Figure 95. Single-Carrier W-CDMA at 1887.5 MHz  
Figure 97. Four-Carrier W-CDMA at 1980 MHz  
Rev. 0 | Page 29 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 28 mA, fDAC = 2.6 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
FIRST ACLR (dBc)  
FIRST ACLR (dBc)  
SECOND ACLR (dBc)  
SECOND ACLR (dBc)  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
fOUT (GHz)  
fOUT (GHz)  
Figure 98. Single-Carrier W-CDMA ACLR vs. fOUT (First ACLR, Second ACLR)  
Figure 100. Four-Carrier W-CDMA ACLR vs. fOUT (First ACLR, Second ACLR)  
–50  
–50  
THIRD ACLR (dBc)  
FOURTH ACLR (dBc)  
THIRD ACLR (dBc)  
FOURTH ACLR (dBc)  
FIFTH ACLR (dBc)  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
FIFTH ACLR (dBc)  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
fOUT (GHz)  
fOUT (GHz)  
Figure 99. Single-Carrier W-CDMA ACLR vs. fOUT (Third ACLR, Fourth ACLR,  
Fifth ACLR)  
Figure 101. Four-Carrier W-CDMA ACLR vs. fOUT (Third ACLR, Fourth ACLR,  
Fifth ACLR)  
Rev. 0 | Page 30 of 68  
Data Sheet  
AD9119/AD9129  
DOCSIS Performance (Normal Mode)  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF –20dBm  
REF –20dBm  
–20  
–30  
–20  
–30  
1
1
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1  
2Δ1  
3Δ1  
3Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
VBW 2kHz  
VBW 20kHz  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
MODE TRC SCL  
X
Y
FUNCTION  
N
Δ1  
Δ1  
1
1
1
f
f
f
950MHz  
(Δ) –68MHz  
(Δ) –882MHz  
–6.221dBm BAND POWER  
(Δ) –68.115dB BAND POWER  
(Δ) –71.783dB BAND POWER  
6MHz  
6MHz  
6MHz  
–6.223dBm  
(Δ) –68.115dB  
(Δ) –71.783dB  
N
Δ1  
Δ1  
1
1
1
f
f
f
70MHz  
–3.611dBm BAND POWER  
(Δ) –72.929dB BAND POWER  
(Δ) –74.629dB BAND POWER  
6MHz  
6MHz  
6MHz  
–3.612dBm  
(Δ) –72.903dB  
(Δ) –74.583dB  
(Δ)  
(Δ) 70MHz  
(Δ) (Δ) 140MHz  
Figure 105. Single Carrier at 950 MHz Output  
Figure 102. Single Carrier at 70 MHz Output  
REF –20dBm  
REF –20dBm  
–20  
–20  
–30  
–30  
–40  
1
1
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1 3Δ1  
2Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
3Δ1  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
VBW 20kHz  
VBW 2kHz  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
N
Δ1  
Δ1  
1
1
1
f
f
f
79MHz  
–11.506dBm BAND POWER  
(Δ) –71.473dB BAND POWER  
(Δ) –69.109dB BAND POWER  
6MHz  
6MHz  
6MHz  
–11.506dBm  
(Δ) –71.606dB  
(Δ) –69.155dB  
(Δ)  
(Δ) 61MHz  
N
1
1
1
f
f
f
959MHz  
(Δ) –77MHz  
(Δ) –891MHz  
–14.583dBm BAND POWER  
(Δ) –65.064dB BAND POWER  
(Δ) –71.759dB BAND POWER  
6MHz  
6MHz  
6MHz  
–14.584dBm  
(Δ) –65.064dB  
(Δ) –71.759dB  
(Δ) (Δ) 131MHz  
Δ1  
Δ1  
Figure 103. Four Carrier at 70 MHz Output  
Figure 106. Four Carrier at 950 MHz Output  
REF –20dBm  
REF –20dBm  
–20  
–30  
–20  
–30  
1
1
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1  
–100  
–110  
–120  
3Δ1  
–100  
–110  
–120  
3Δ1  
START 0Hz  
STOP 1.1GHz  
START 0Hz  
RES BW 20kHz  
STOP 1.1GHz  
SWEEP 27.9s (1001 pts)  
RES BW 20kHz  
VBW 20kHz  
SWEEP 27.9s (1001 pts)  
VBW 2kHz  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
FUNCTION  
WIDTH  
FUNCTION  
VALUE  
MODE TRC SCL  
X
Y
FUNCTION  
MODE TRC SCL  
X
Y
FUNCTION  
N
Δ1  
Δ1  
1
1
1
f
f
f
91MHz  
–15.917dBm BAND POWER  
(Δ) –66.430dB BAND POWER  
(Δ) –67.401dB BAND POWER  
6MHz  
6MHz  
6MHz  
–15.919dBm  
(Δ) –66.658dB  
(Δ) –67.436dB  
N
Δ1  
Δ1  
1
1
1
f
f
f
971MHz  
(Δ) –89MHz  
(Δ) –903.0MHz  
–18.364dBm BAND POWER  
(Δ) –63.858dB BAND POWER  
(Δ) –70.065dB BAND POWER  
6MHz  
6MHz  
6MHz  
–18.364dBm  
(Δ) –63.858dB  
(Δ) –70.065dB  
(Δ)  
(Δ) 49MHz  
(Δ) (Δ) 117.9MHz  
Figure 104. Eight Carrier at 70 MHz Output  
Figure 107. Eight Carrier at 950 MHz Output  
Rev. 0 | Page 31 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 108. Second Harmonic vs. fOUT Performance for One DOCSIS Carrier  
Figure 111. Third Harmonic vs. fOUT Performance for One DOCSIS Carrier  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 109. Second Harmonic vs. fOUT Performance for Four DOCSIS Carriers  
Figure 112. Third Harmonic vs. fOUT Performance for Four DOCSIS Carriers  
–40  
–40  
–50  
–60  
–70  
–80  
–90  
–50  
–60  
–70  
–80  
–90  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 110. Second Harmonic vs. fOUT Performance for Eight DOCSIS Carriers  
Figure 113. Third Harmonic vs. fOUT Performance for Eight DOCSIS Carriers  
Rev. 0 | Page 32 of 68  
Data Sheet  
AD9119/AD9129  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 117. 16-Carrier ACPR vs. fOUT  
Figure 114. Single-Carrier ACPR vs. fOUT  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
1
2
3
4
5
6
7
8
9
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
fOUT (GHz)  
Figure 115. Four-Carrier ACPR vs. fOUT  
Figure 118. 32-Carrier ACPR vs. fOUT  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
ACP1  
ACP2  
ACP3  
ACP4  
ACP5  
0
0.2  
0.4  
0.6  
0.8  
1.0  
fOUT (GHz)  
Figure 116. Eight-Carrier ACPR vs. fOUT  
Rev. 0 | Page 33 of 68  
AD9119/AD9129  
Data Sheet  
IOUTFS = 33 mA, fDAC = 2.782 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
REF –20dBm  
–40  
–50  
–60  
–70  
–80  
–90  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
0.2  
0.4  
0.6  
0.8  
1.0  
CENTER 77MHz  
RES BW 10kHz  
SPAN 60MHz  
SWEEP 6.08s (1001 pts)  
VBW 1kHz  
fOUT (GHz)  
Figure 119. Gap Channel ACLR at 77 MHz  
Figure 120. Gap Channel ACLR vs. fOUT  
Rev. 0 | Page 34 of 68  
Data Sheet  
AD9119/AD9129  
TERMINOLOGY  
Linearity Error (Integral Nonlinearity or INL)  
The maximum deviation of the actual analog output from the  
ideal output, determined by a straight line drawn from zero to  
full scale.  
Spurious-Free Dynamic Range  
The difference, in decibels (dB), between the rms amplitude of  
the output signal and the peak spurious signal over the specified  
bandwidth.  
Differential Nonlinearity (DNL)  
The measure of the variation in analog value, normalized to full  
scale, associated with a 1 LSB change in digital input code.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal. It is expressed as  
a percentage or in decibels (dB).  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Noise Spectral Density (NSD)  
The converter noise power per unit of bandwidth. This is  
usually specified in dBm/Hz in the presence of a 0 dBm full-  
scale signal.  
Offset Error  
The deviation of the output current from the ideal of zero.  
For IOUTP, 0 mA output is expected when the inputs are all 0s.  
For IOUTN, 0 mA output is expected when all inputs are set to 1.  
Adjacent Channel Leakage Ratio (ACLR)  
The ratio, in dBc, between the measured power within a channel  
relative to its adjacent channels.  
Gain Error  
The difference between the actual and ideal output span. The  
actual span is determined by the output when all inputs are set  
to 1 minus the output when all inputs are set to 0.  
Adjacent Channel Power Ratio (ACPR)  
The ratio, in dBc, between the total power of an adjacent channel  
(intermodulation signal) to the main channel's power (useful  
signal).  
Output Compliance Range  
The range of allowable voltage at the output of a current output  
DAC. Operation beyond the maximum compliance limits may  
cause either output stage saturation or breakdown, resulting in  
nonlinear performance.  
Modulation Error Ratio (MER)  
A measure of the discrepancy between the average output  
symbol magnitude and the rms error magnitude of the individual  
symbol. Modulated signals create a discrete set of output values  
referred to as a constellation, and each symbol creates an output  
signal corresponding to one point on the constellation.  
Temperature Drift  
Specified as the maximum change from the ambient (25°C) value  
to the value at either TMIN or TMAX. For offset and gain drift, the  
drift is reported in ppm of full-scale range (FSR) per degree  
Celsius (°C). For reference drift, the drift is reported in ppm per °C.  
Intermodulation Distortion (IMD)  
The result of two or more signals at different frequencies mixing  
together. Many products are created according to the formula  
aF1 bF2, where a and b are integer values.  
Power Supply Rejection  
The maximum change in the full-scale output as the supplies  
are varied from nominal to minimum and maximum specified  
voltages.  
Rev. 0 | Page 35 of 68  
 
AD9119/AD9129  
Data Sheet  
SERIAL COMMUNICATIONS PORT OVERVIEW  
The AD9119/AD9129 are 11-bit/14-bit DACs that operate at an  
update rate of up to 2.8 GSPS. Due to internal timing requirements,  
the minimum allowable sample rate is 1400 MSPS. Input data is  
sampled through two 11-/14-bit LVDS ports that are internally  
multiplexed. Each port has its own data inputs, but both ports  
share a common data clock input (DCI). The LVDS inputs meet  
the IEEE-1596 specification with the exception of input hysteresis,  
which is not guaranteed over all process corners. Each DCI input  
runs at one-quarter the input data rate in a double data rate  
(DDR) format. Each edge of the DCI is used to transfer data  
into the AD9119/AD9129.  
AD9129 and the system controller. Phase 2 of the communication  
cycle is a transfer of one byte only. Single-byte data transfers are  
useful to reduce CPU overhead when register access requires  
one byte only. Registers change immediately upon writing to the  
CS  
last bit of each transfer byte.  
each sequence of eight bits (except the last byte) to stall the bus.  
CS  
(chip select) can be raised after  
The serial transfer resumes when  
nonbyte boundaries resets the SPI.  
is lowered. Stalling on  
INSTRUCTION MODE (8-BIT INSTRUCTION)  
The instruction byte is shown in the following table.  
MSB  
LSB  
I0  
The DACCLK_N and DACCLK_P inputs directly drive the  
DAC core to minimize clock jitter. The DACCLK signal is  
divided by 4 and then output as the DCO for each port. The  
DCO signal can be used to clock the data source. The DAC  
expects DDR LVDS data (P0_D[13:0]x, P1_D[13:0]x), with  
each channel aligned with the single DDR DCI signal.  
I7  
I6  
I5  
I4  
I3  
I2  
I1  
R/W  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W, Bit 7 of the instruction byte, determines whether a read or  
a write data transfer occurs after the instruction byte write.  
Logic 1 indicates a read operation. Logic 0 indicates a write  
operation, the data transfer cycle. A6 to A0 (Bit 6 through Bit 0  
of the instruction byte) determine which register is accessed  
during the data transfer portion of the communications cycle.  
Control of the AD9119/AD9129 functions is via a SPI.  
SERIAL PERIPHERAL INTERFACE (SPI)  
The AD9119/AD9129 SPI is a flexible, synchronous serial  
communications port, allowing easy interface to many  
industry-standard microcontrollers and microprocessors. The  
serial I/O is compatible with most synchronous transfer formats,  
including the Motorola® SPI and the Intel® SSR protocols. The  
interface allows read/write access to all registers that configure  
the AD9119/AD9129. Most significant bit first (MSB-first) or  
least significant bit first (LSB-first) transfer formats are supported.  
The AD9119/AD9129 serial interface port can be configured as  
a single I/O pin (SDIO) or two unidirectional pins for input/  
output (SDIO and SDO).  
SERIAL PERIPHERAL INTERFACE PIN  
DESCRIPTIONS  
SCLK—Serial Clock  
The serial clock pin is used to synchronize data to and from the  
AD9119/AD9129 and to run the internal state machines. The  
maximum frequency of SCLK is 20 MHz. All data input to the  
AD9119/AD9129 is registered on the rising edge of SCLK. All  
data is driven out of the AD9119/AD9129 on the rising edge  
of SCLK.  
CS  
—Chip Select  
SDO (PIN J2)  
Active low input starts and gates a communication cycle. It allows  
more than one device to be used on the same serial communi-  
cations lines. The SDO and SDIO pins go to a high impedance  
state when this input is high. Chip select should stay low during  
the entire communication cycle.  
AD9119/  
AD9129  
SPI PORT  
SDIO (PIN J1)  
SCLK (PIN K1)  
CS (PIN K2)  
Figure 121. AD9119/AD9129 SPI Port  
SDIO—Serial Data I/O  
GENERAL OPERATION OF THE SPI  
Data is always written into the AD9119/AD9129 on this pin.  
However, this pin can be used as a bidirectional data line. The  
configuration of this pin is controlled by Register 0x00, Bit 7  
(SDIO_DIR). The default is Logic 1, which configures the SDIO  
pin as bidirectional.  
There are two phases to a communication cycle with the AD9119/  
AD9129. Phase 1 is the instruction cycle, which is the writing of  
an instruction byte into the AD9119/AD9129, coincident with  
the first eight SCLK rising edges. The instruction byte provides  
the AD9119/AD9129 serial port controller with information  
about the data transfer cycle, which is Phase 2 of the communi-  
cation cycle. The Phase 1 instruction byte defines whether the  
upcoming data transfer is read or write and the starting register  
address for the first byte of the data transfer. The first eight SCLK  
rising edges of each communication cycle are used to write the  
instruction byte into the AD9119/AD9129.  
SDO—Serial Data Out  
Data is read from this pin for protocols that use separate lines  
for transmitting and receiving data. When the AD9119/AD9129  
are operating in a single bidirectional I/O mode, this pin does  
not output data and is set to a high impedance state.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle. Phase 2 is the actual data transfer between the AD9119/  
Rev. 0 | Page 36 of 68  
 
 
 
 
 
Data Sheet  
AD9119/AD9129  
MSB/LSB TRANSFERS  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
The AD9119/AD9129 serial port can support both MSB-first  
and LSB-first data formats. This functionality is controlled by  
the LSB/MSB bit, Bit 6 in Register 0x00. The default is MSB first  
(LSB/MSB = 0). When the MSB-first data format is selected, the  
instruction and data bytes must be written from the most  
significant bit to the least significant bit.  
D0 D1 D2  
D4 D5 D6 D7  
0
N N N  
R/W A0 A1 A2 A3 A4 A5 A6  
0
0
0
Figure 124. Serial Register Interface Timing, LSB-First Write  
When LSB/MSB = 1 (LSB first), the instruction and data bytes  
must be written from the least significant bit to the most  
significant bit.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
SDIO  
SDO  
SERIAL PORT CONFIGURATION  
The AD9119/AD9129 serial port configuration is controlled  
by Register 0x00, Bits[7:5]. Note that the configuration changes  
immediately upon writing to the last bit of the register. When  
setting the software reset bit (SoftReset in Register 0x00, Bit 5),  
all registers are set to their default values except Register 0x00,  
which remains unchanged.  
D10 D20  
D10 D20  
D40 D5N D6N D7N  
R/W A0 A1 A2 A3 A4 A5 A6  
D0  
D40 D5N D6N D7N  
D0  
Figure 125. Serial Register Interface Timing, LSB-First Read  
In the event of unexpected programming sequences, the  
AD9119/AD9129 SPI can become inaccessible. For example,  
if user code inadvertently changes the LSB/MSB bit, the bits that  
follow experience unexpected results. The SPI can be returned  
to a known state by writing an incomplete byte (1 to 7 bits) of  
all 0s, followed by three bytes of 0x00. This returns to the MSB-  
first instructions (Register 0x00 = 0x00) so that the device can  
be reinitialized.  
tDS  
tSCLK  
CS  
SCLK  
SDIO  
tDS  
tDH  
INSTRUCTION BIT 7  
INSTRUCTION BIT 6  
Figure 126. Timing Diagram for an SPI Register Write  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
CS  
SCLK  
SDIO  
R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0
SCLK  
N
N
N
0
0
0
t
DNV  
Figure 122. Serial Register Interface Timing, MSB-First Write  
t
DV  
I1  
I0  
D7  
D6  
D5  
SDIO  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
Figure 127. Timing Diagram for an SPI Register Read  
CS  
After the last instruction bit is written to the SDIO pin, the  
driving signal must be set to a high impedance in time for the  
bus to turn around. The serial output data from the AD9119/  
AD9129 is enabled by the falling edge of SCLK. This causes the  
first output data bit to be shorter than the remaining data bits,  
as shown in Figure 127. To assure proper reading of data, read  
the SDIO pin or the SDO pin before changing SCLK from low  
to high. Due to the more complex multibyte protocol, multiple  
AD9119/ AD9129 devices cannot be daisy-chained on the SPI bus.  
SCLK  
D6N D5N  
D6N D5N  
D30 D20 D10 D00  
D30 D20 D10 D00  
R/W A6 A5 A4 A3 A2 A1 A0  
D7  
SDIO  
SDO  
D7  
Figure 123. Serial Register Interface Timing, MSB-First Read  
CS  
Control multiple DACs by using independent  
signals.  
Rev. 0 | Page 37 of 68  
 
 
 
 
AD9119/AD9129  
Data Sheet  
THEORY OF OPERATION  
The AD9119/AD9129 are 11-bit/14-bit DACs that are capable of  
reconstructing signal bandwidths up to 1.4 GHz while operating  
with an input data rate up to 2.8 GSPS. Figure 128 shows a top  
level functional diagram of the AD9119/AD9129. A high perfor-  
mance NMOS DAC delivers a signal dependent, differential  
current to a balanced external load referenced a nominal 1.8 V  
analog supply. The current source array of the DAC is referenced  
This effectively reduces the bus interface speed to ½ the data  
rate (for example, fDATA/2) with the DCI clock operating at fDATA/4.  
An optional parity bit can also be sent along with the data to  
enhance the robustness of the interface. In this case, a counter  
is available to count parity errors and generate an interrupt  
request (IRQ) when a programmable threshold is exceeded.  
The AD9119/AD9129 provide the host with a DCO clock that is  
equal to the DCI clock frequency to establish synchronous opera-  
tion. A delay locked loop (DLL) with programmable phase offset  
is used to generate an internal sampling clock with optimum edge  
placement for the input data latches of the LVDS DDR receivers.  
When data is latched into the AD9119/AD9129, an eight-sample-  
deep FIFO is used to hand off the data between the host and the  
AD9119/AD9129 clock domains. The FIFO can be reset with an  
external synchronization signal, fSYNC, to ensure consistent pipeline  
latency. The pipeline delay, from a sample being latched into the  
data port to when it appears at the DAC output, varies depending  
on the chosen configuration (see the Pipeline Delay (Latency)  
section).  
to an external −1.5 V supply, and its full-scale current, IOUTFS  
can be adjusted over a 9.5 mA to 34.4 mA span.  
,
RESET  
IRQ  
I250U VREF  
AD9129  
SDIO  
SDO  
CS  
1.2V  
SPI  
SCLK  
FRM_x  
(FRAME/  
PARITY)  
MIX-  
NORMAL MODE  
BASEBAND  
MODE  
P0_D[13:0]P,  
P0_D[13:0]N  
IOUTP  
IOUTN  
Tx DAC  
CORE  
DLL  
DCI_x  
2×  
P1_D[13:0]P,  
P1_D[13:0]N  
The de-interleaved data is reassembled into its original data stream  
after passing into the internal clock domain of the AD9119/  
AD9129. Because the quad-switch architecture of the DAC  
updates its output on both the rising and falling edge (for example,  
dual edge clocking) of the DACCLK signal, the following two  
additional modes of operation are available:  
PLL  
CLOCK  
DISTRIBUTION  
DCR  
DCO_x  
DACCLK_x  
A 2× interpolation filter can be selected to increase the  
effective DAC update rate (fDAC) to be 2× the input data  
rate, hence simplifying the analog postfiltering require-  
ments and reducing the effects of alias harmonics in the  
desired baseband region.  
A Mix-Mode option essentially generates the complement  
sample on the falling edge such that the original Nyquist  
spectrum is shifted to fDACCLK, with the sinc null of the DAC  
Figure 128. Functional Block Diagram of the AD9119/AD9129  
A low jitter differential clock receiver is used to square up the  
signal appearing at the DACCLK_x input that sets the update  
rate of the DAC. The differential clock receiver can accept  
sinusoidal signals with negligible noise spectral density degra-  
dation if the input signal level is maintained above 0 dBm.  
A +1 dB degradation occurs at a −5 dBm input, and degradation  
increases as the signal approaches −10 dBm and its associated  
+2 dB additional degradation. A duty cycle restorer (DCR),  
following the clock receiver, ensures near 50% duty-cycle to the  
subsequent circuitry. The output of the DCR serves as the  
master clock and is routed directly to the DAC, as well as to a  
clock distribution block that generates all critical internal and  
external clocks. The clock source quality, as defined by its phase  
noise characteristics, jitter, and drive capability, is an important  
consideration in maintaining optimum ac performance.  
falling at 2 × fDACCLK  
.
The digital handoff between the digital domain and mixed signal  
domain of a high speed DAC is critical in preserving its output  
dynamic range. A phase locked loop (PLL) with programmable  
phase offset is used to optimize the timing handoff between these  
two clock domains. State machines are used to initialize both the  
DLL and the PLL during the initial boot sequence after receiving  
a stable DACCLK signal. Following initialization of the two loops,  
they maintain optimum timing alignment over temperature, time,  
and power supply variation. The AD9119/AD9129 also provide  
IRQ capability to monitor the DLL, the PLL, and other internal  
circuitry.  
The AD9119/AD9129 supports a source synchronous, LVDS  
double data-rate (DDR) data interface to the host processor.  
Two 11-bit/14-bit LVDS data ports (P0_DxP, P0_DxN and  
P1_Dx P, P 1 _ Dx N ) are used to sample de-interleaved data from  
the host on the rising and falling edge of the host DCI clock.  
Rev. 0 | Page 38 of 68  
 
 
Data Sheet  
AD9119/AD9129  
The data timing requirements are defined by a minimum data  
valid margin that is dependent on the data clock input skew,  
input data jitter, and the variations of the DLL delay line across  
delay settings. This margin is defined by subtracting from the  
data period any data skew, data jitter, and the keep-out window  
(KOW) that is defined by the sum of the set and hold times, as  
follows:  
LVDS DATA PORT INTERFACE  
The AD9119/AD9129 can operate with input data rates of up to  
2.8 GSPS. A source synchronous LVDS interface is used between  
the host and the AD9119/AD9129 to achieve these high data rates,  
while simplifying the interface. As shown in Figure 129, the host  
feeds the AD9119/AD9129 with de-interleaved input data into  
two 11-bit/14-bit LVDS data ports (P0_DxP, P0_DxN and  
P1_DxP, P1_DxN) at ½ the DAC clock rate (that is, fDACCLK/2).  
Along with the input data, the host provides an embedded DDR  
data clock input (DCI_x) at fDACCLK/4.  
t
DATA VALID MARGIN = tDATA PERIOD − tDATA SKEW − tDATA JITTER − (tH + tS)  
The keep-out window, which is the sum of the set and hold times,  
is the area where data transitions should not occur. The timing  
margin allows tuning of the DLL delay setting, either automatically  
or in manual mode (see Figure 130).  
A DLL circuit that is designed to operate with DCI clock rates  
of between 350 MHz and 700 MHz is used to generate a phase  
shifted version of DCI, called the data sampling clock (DSC),  
to register the input data on both the rising and falling edges.  
Figure 130 shows that the ideal location for the DSC signal is 90°  
out of phase from the DCI input. However, due to skew of the DCI  
relative to the data, it may be necessary to change the DSC phase  
offset to sample the data at the center of its eye diagram. The  
sampling instance can be varied in discrete increments by offsetting  
the nominal DLL phase shift value of 90° via Register 0x0A,  
Bits[3:0]. The following equation defines the phase offset  
relationship:  
As shown in Figure 130, the DCI clock edges must be coincident  
with the data bit transitions with minimum skew and jitter. The  
nominal sampling point of the input data occurs in the middle  
of the DCI clock edges because this point corresponds to the  
center of the data eye. This is also equivalent to a nominal phase  
shift of 90°of the DCI clock.  
Phase Offset = 90° n × 11.25°, |n| < 8  
HOST  
PROCESSOR  
AD9129  
COMBINED  
ODD/EVEN  
PARITY BIT  
OPTIONAL PARITY  
EVEN DATA  
SAMPLES  
14 × 2  
DELAY  
LOCK  
LOOP  
f
= f /2  
DACCLK  
DATA  
ODD DATA  
SAMPLES  
14 × 2  
1 × 2  
DCI  
f
= f  
/4  
DCI  
DACCLK  
1 × 2  
= f  
DCO  
CLOCK  
fDACCLK  
DISTRIBUTION  
f
/4  
DACCLK  
DCO  
Figure 129. Recommended Digital Interface Between the AD9119/AD9129 and the Host Processor  
tDATA JITTER  
tDSC SETUP AND HOLD  
DLL PHASE  
tDATA SKEW  
DELAY  
DATA EYE  
INPUT DATA[13:0]  
DCI  
tDATA PERIOD  
DATA SAMPLE CLOCK  
Figure 130. LVDS Data Port Timing Requirements  
Rev. 0 | Page 39 of 68  
 
 
 
AD9119/AD9129  
Data Sheet  
Figure 131 shows the DSC set and hold times with respect to  
the DCI signal and data signals.  
Table 10 lists the values that are guaranteed over the operating  
conditions. These values were taken with 50% duty cycle and  
DCI swing of 450 mV p-p. For best performance, the duty cycle  
variation should be kept below 5%, and the DCI input should  
be as high as possible, up to 800 mV p-p.  
DATA  
DCI  
Table 10. Data Port Set and Hold Time Window (Guaranteed)  
DSC  
Data Port Set and Hold Times (ps)  
at DLL Phase  
tS  
tH  
Frequency,  
fDAC (MHz)  
Time (ps)  
−3  
0
+3  
Figure 131. LVDS Data Port Set and Hold Times  
1600  
tS  
tH  
tS  
tH  
tS  
tH  
−272  
682  
−168  
564  
−88  
457  
−489  
911  
−292  
705  
−185  
559  
−683  
1120  
−420  
839  
Table 11 shows the typical times for various DAC clock frequencies  
that are required to calculate the data valid margin. The amount  
of margin that is available for tuning of the DSC sampling point  
can be determined using Table 11.  
2300  
2800  
−285  
652  
Table 11. Data Port Set and Hold Time Window (Typical)  
Data Port Set and Hold Times (ps) at DLL Phase  
Frequency, Time  
fDAC1 (MHz) (ps)  
−6  
−106 −205 −274 −353 −436 −523 −604 −680 −798  
426 499 571 651 730 813 900 977 1069  
−124 −197 −291 −351 −453 −524 −600 −670 −732  
427 490 556 637 713 795 870 942 1025  
−120 −191 −252 −335 −402 −495 −552 −626 −704  
421 485 550 619 689 760 836 910 989  
−111 −184 −226 −301 −370 −442 −528 −580 −641  
−5  
−4  
−3  
−2  
−1  
0
+1  
+2  
+3  
+4  
+5  
+6  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
tS  
tH  
−906  
1152  
−815  
1100  
−776  
1049  
−719  
970  
−993  
1235  
−908  
1181  
−847  
1128  
−784  
1032  
−709  
1003  
−663  
963  
−1064  
1303  
−982  
1241  
−902  
1195  
−822  
1095  
−765  
1061  
−700  
1021  
−660  
958  
−1131  
1387  
−1071  
1320  
−978  
1250  
−895  
1151  
−823  
1122  
−765  
1070  
−713  
1015  
−675  
954  
382  
−93  
400  
−90  
398  
−82  
389  
−87  
370  
−94  
415  
−93  
390  
429  
−133 −209 −265 −326 −401 −475 −524 −596  
442 492 555 617 677 754 816 883  
−139 −182 −254 −298 −359 −430 −496 −547  
443 488 535 593 664 717 778 849  
−122 −170 −220 −272 −346 −399 −452 −517  
423 468 522 571 625 683 733 789  
−133 −161 −206 −274 −331 −384 −443 −488  
409 451 491 536 592 636 696 751  
−143 −182 −245 −283 −334 −378 −427 −487  
453 487 523 571 622 673 722 778  
−131 −182 −227 −270 −312 −357 −388 −439  
422 456 500 542 595 644 686 731  
489  
549  
619  
700  
762  
825  
907  
−646  
950  
−593  
900  
−565  
854  
−607  
908  
−540  
794  
−586  
855  
−623  
911  
−521  
818  
−565  
859  
−604  
908  
−659  
956  
−485  
778  
−531  
821  
−570  
858  
−623  
902  
−130 −156 −196 −244 −277 −313 −366 −404 −457  
−496  
769  
−534  
815  
−560  
862  
−615  
911  
426  
−73  
370  
−43  
338  
−54  
316  
−36  
335  
459  
494  
529  
567  
607  
653  
698  
731  
−106 −142 −177 −216 −258 −308 −348 −394  
−430  
702  
−458  
740  
−486  
780  
−535  
828  
407  
−76  
369  
−77  
340  
−72  
355  
433  
−115 −145 −184 −228 −275 −306 −351  
396 430 466 503 535 567 614  
−108 −144 −179 −228 −277 −305 −336  
372 406 441 475 499 539 580  
−101 −143 −175 −208 −243 −287 −320  
379 404 442 480 511 545 575  
467  
502  
546  
582  
619  
662  
−375  
652  
−402  
690  
−443  
725  
−491  
766  
−354  
622  
−400  
654  
−424  
685  
−471  
729  
−347  
607  
−382  
638  
−408  
676  
−463  
717  
1 Table 11 shows characterization data for selected fDAC frequencies. Other frequencies are possible, and Table 11 can be used to estimate performance.  
Rev. 0 | Page 40 of 68  
 
 
 
 
Data Sheet  
AD9119/AD9129  
Maximizing the opening of the eye in both the DCI and data  
signals improves reliability of the data port interface. Use differ-  
ential controlled impedance traces of equal length (that is, delay)  
between the host processor and the AD9119/AD9129 input. To  
ensure coincident transitions with the data bits, implement the  
DCI as an additional data line with an alternating (010101…)  
bit sequence from the same output drivers that are used for  
the data.  
Before losing lock, the DLL controller issues a DLL warning by  
setting Register 0x0E, Bit 6, to 1b and setting either Bit 5 or Bit 4  
to 1b. This setting indicates that the DLL is near to losing lock. If  
the DLL is going to reach the beginning of the delay line soon,  
the controller issues a start warning by setting Register 0x0E, Bit 5  
and Bit 6 to 1b. This setting indicates that the DLL is at the start  
of the delay line, and losing lock is imminent.  
USER DCI  
For synchronous operation between the host and the AD9119/  
AD9129, the AD9119/AD9129 provide a data clock output, DCO,  
to the host at the same rate as DCI (that is, fDACCLK/4). Note that  
the DCI signal can have arbitrary phase alignment with respect to  
the DCO because the DLL of the AD9119/AD9129 ensures proper  
data hand-off between the two clock domains (that is, the host  
processors and the internal digital core of the AD9119/AD9129).  
D0  
USER DATA  
D1  
DATA  
SAMPLE CLK  
90°  
DELAY LINE – COLD  
DELAY LINE  
HOT  
Figure 132. Example of DLL Length Variation Across Temperature  
The default reset state of the AD9119/AD9129 is to have the  
DCO signal disabled. To enable it, write a 1b to Register 0x0C,  
Bit 6. The DCO output level is controlled in Register 0x7C,  
Bits[7:6]. The default setting is 01b, or 2.8 mA, but it can be  
increased to as high as 4 mA (11b) if higher swing is necessary.  
A similar situation can happen at the end of the delay line, in  
which case a DLL warning and a DLL end is issued. DLL end is  
indicated when Register 0x0E, Bit 4 and Bit 6 are set to 1b.  
In case of a DLL warning, action must be taken to prevent loss  
of lock. On a start warning, reduce the minimum delay of the  
delay line by removing one or several of the delay cells. This  
can be accomplished by setting the bits in Registers 0x70 and  
Register 0x71 to 0b. Begin by setting Bit 0 of Register 0x70 to 0b,  
then Bit 1, and so on. In some cases, up to three delay cells may  
need to be disabled. It is possible to disable up to six delay cells.  
However, in most cases, none of the cells need to be disabled.  
The situation varies, depending on the temperature range needed,  
as well as the DACCLK signal rate used. The end warning case  
is a theoretical possibility, but practical conditions normally  
dictate that it is not reachable. If the end warning is reached, the  
DLL must be relocked immediately. When doing initial lock (or  
relock) of the DLL, all delay cells must be active, with all delay cell  
bits in Register 0x70 and Register 0x71 set to 1b.  
The DCI signal is ac-coupled internally; therefore, a possibility  
exists that removing the DCI signal can cause DAC output chatter  
due to randomness on the DCI input. To avoid this chatter, it is  
recommended that the DAC output be disabled when the DCI  
signal is not present. To do this, program the DAC output current  
power-down bit in Register 0x01, Bit 6, to 1b. When the DCI signal  
is again present, the DAC output can be enabled by programming  
Register 0x01, Bit 6, to 0b. The DAC output powers up in ~2 µs.  
The status of the DLL can be polled by reading the data status  
register at Address 0x0E. Bit 0 indicates that the DLL is running  
and attempting lock, and Bit 7 is set to 1b when the DLL is locked.  
Bit 2 is set to 1b when a valid data clock is detected. The warning  
bits in Address 0x0E, Bits[6:4] can be used as indicators that the  
DAC may be operating in a nonideal location in the delay line.  
Note that these bits are read at the SPI port speed, which is much  
slower than the actual speed of the DLL. This means that these  
bits can show only a snapshot of what is happening, rather than  
giving real-time feedback.  
Parity  
The data interface can be continuously monitored by enabling  
the parity bit feature in Register 0x5C, Bit 7, and configuring  
the FRM_P, FRM_N pins (Pin K13 and Pin K14) as parity pins  
by setting Register 0x07, Bits[1:0] = 1 dec. When this pin con-  
figuration is used, the host sends a parity bit along with each data  
sample. This bit is set according to the following formulas,  
where n is the data sample that is being checked.  
Temperature Effects  
The length of the delay line varies slightly across the operating  
temperature range, as the amount of delay through a delay cell  
expands or contracts slightly due to the temperature change.  
This can introduce a situation where the DLL may lock at one  
temperature extreme and then approach an unlocked state as  
the temperature changes (see Figure 132).  
For even parity on the AD9129,  
XOR[FRM(n), P0_D0(n), P0_D1(n), P0_D2(n), ..., P0_D13(n),  
P1_D0(n), P1_D1(n), P1_D2(n), …, P1_D13(n)] = 0.  
In the example shown in Figure 132, the DLL can lock at Phase  
Setting 0 at 90° in a cold temperature. As the temperature gets  
hotter, the delay line changes length, and the controller adjusts  
the DLL control voltage to keep the 90° offset. In this case, a voltage  
beyond the acceptable control voltage range is required to hold  
the 90° phase offset.  
For odd parity on the AD9129,  
XOR[FRM(n), P0_D0(n), P0_D1(n), P0_D2(n), ..., P0_D13(n),  
P1_D0(n), P1_D1(n), P1_D2(n), …, P1_D13(n)] = 1.  
Rev. 0 | Page 41 of 68  
 
AD9119/AD9129  
Data Sheet  
For the AD9119, the data port is 11-bit instead of 14-bit, so  
P0_D11, P0_D12, P0_D13, P1_D11, P1_D12, and P1_D13 are  
not used in the calculation of the parity bit. Thus, the parity bit  
is calculated over 29 bits (including the frame/parity bit) for the  
AD9129 and over 23 bits for the AD9119.  
pin and more than one IRQ is enabled, check Register 0x06,  
Bits[3:2] when an IRQ event occurs to determine whether the  
IRQ was caused by a parity error. The IRQ can also be cleared  
by writing 1b to Register 0x06, Bit 2 or Register 0x06, Bit 3.  
The parity bit feature can also be used to validate the interface  
timing. As described previously, the host provides a parity bit  
with the data samples and configures the AD9119/AD9129 to  
generate an IRQ. The user can then sweep the sampling instance  
of the AD9119/AD9129 input registers to determine at what  
point a sampling error occurs.  
If a parity error occurs, the parity error counter (Register 0x5D  
or Register 0x5E) is incremented. Parity errors on the bits that  
are sampled by the rising edge of DCI increment the parity  
rising edge error counter (Register 0x5D) and set the parity  
error rising edge bit (Register 0x5C, Bit 0). Parity errors on the  
bits that are sampled by the falling edge of DCI increment the  
parity falling edge error counter (Register 0x5E) and set the  
parity error falling edge bit (Register 0x5C, Bit 1). The parity  
counter continues to accumulate until it is cleared, or until it  
reaches a maximum value of 255. The count can be cleared by  
writing 1b to Register 0x5C, Bit 5.  
DIGITAL DATAPATH DESCRIPTION  
Figure 133 provides a more detailed diagram of the AD9119/  
AD9129 digital datapath. The 22-bit/28-bit datapath with  
internal DDR clocking interfaces with the dual 11-bit/14-bit  
input data ports. Because two 11-bit/14-bit samples are captured  
on each clock edge of DCI, four consecutive samples are captured  
per DCI clock cycle. Samples captured on the rising edge of DCI  
propagate through the upper section at a rate of DACCLK/2  
(DDR), and those captured on the falling edge propagate through  
the lower section.  
An IRQ can be enabled to trigger when a parity error occurs by  
writing 1b to Register 0x04, Bit 2 for rising edge-based parity  
detection or to Register 0x04, Bit 3 for falling edge-based parity.  
The status of IRQ can be measured via Register 0x06, Bit 2 or  
Register 0x06, Bit 3 or by using the IRQ pin. When using the IRQ  
FIFO PH0  
FIFO PH1  
REG 0  
REG 1  
REG 2  
REG 3  
REG 4  
REG 5  
REG 6  
REG 7  
14  
14  
TO DAC  
DECODE  
FRAME  
1
FRAME/  
PARITY  
28  
14  
14  
INPUT  
LATCH  
PARITY/  
SED LOGIC  
MIX-MODE  
2×  
28  
DATA  
1
DCI  
DLL  
DACCLK/4  
FIFO PH2  
FIFO PH3  
14  
REG 0  
REG 1  
REG 2  
REG 3  
REG 4  
REG 5  
REG 6  
REG 7  
14  
14  
INPUT  
LATCH  
PARITY/  
SED LOGIC  
28  
14  
DACCLK/4  
DACCLK/4 DIST.  
FRAME  
SPI FIFO ALIGN ACKNOWLEDGE  
REG 0x11[6]  
RESET  
LOGIC  
SPI FIFO ALIGN REQUEST  
REG 0x11[7]  
FIFO WRITE POINTER OFFSET  
REG 0x12[2:0]  
Figure 133. Digital Datapath of the AD9119/AD9129  
Rev. 0 | Page 42 of 68  
 
 
Data Sheet  
AD9119/AD9129  
After the input data has been captured, the data is passed through a  
logic block that monitors and/or determines the signal integrity  
of the high speed digital data interface. The optional parity check  
is used to continuously monitor the digital interface on a sample-  
per-sample basis, and the sample error detection (SED) can be  
used to validate the input data interface for system debug/test  
purposes. Note that the FRAME and PARITY signals share the  
same pin assignment because the FRAME signal is typically  
used during system initialization (for FIFO synchronization  
purposes), and parity is used in normal operation.  
The two preferred methods are use of the FRAME signal and  
via a write sequence to the serial port. Before initializing the  
FIFO data level, the LVDS DLL and the DAC clock PLL must be  
locked.  
The FRM_x input can be used to initialize the FIFO data level  
value. First, set up the FRM_N and FRM_P pins for frame mode  
(Register 0x07, Bits[1:0] = 2). Next, assert the FRAME signal  
high for at least one DCI clock cycle. When the FRAME signal is  
asserted in this manner, the write pointer is set to 4 (by default  
or to the FIFO start level (Register 0x12, Bits[2:0])) the next  
time the read pointer becomes 0 (see Figure 134).  
FIFO Description  
READ  
The next functional block in the datapath is a set of four FIFOs  
that are eight registers deep. The dual port data is clocked into  
the FIFOs on both the rising and the falling edge of the DCI signal.  
The FIFO acts as a buffer that absorbs timing variations between  
the data source and DAC, such as the clock-to-data variation of  
an FPGA or ASIC. For the greatest timing margin, maintain the  
FIFO level near half full (that is, a difference of four between the  
write and read pointers). The value of the write pointer determines  
the FIFO register into which the input data is written, and the  
value of the read pointer determines the register from which data  
is read and fed into the data assembler. The write and read pointers  
are updated every time new data is loaded and removed,  
respectively, from the FIFO.  
0
1
2
3
4
5
6
7
0
1
2
3
POINTER  
FIFO WRITE RESETS  
FRAME  
WRITE  
POINTER  
3
4
5
6
7
0
1
2
4
5
6
7
Figure 134. Timing of the Frame Input vs. Write Pointer Value  
To initialize the FIFO data level through the serial port, toggle  
Bit 7 of Register 0x11 from 0b to 1b. When the write to the  
register is complete, the FIFO data level is initialized.  
The recommended procedure for a serial port FIFO data level  
initialization is as follows:  
1. Request FIFO level reset by setting Register 0x11, Bit 7,  
to 1b.  
2. Verify that the part acknowledges the request by ensuring  
that Register 0x11, Bit 6, is set to 1b.  
3. Remove the request by setting Register 0x11, Bit 7, to 0b.  
4. Verify that the part drops the acknowledge signal by  
ensuring that Register 0x11, Bit 6, is set to 0b.  
Valid data is transmitted through the FIFO as long as the FIFO  
does not overflow or become empty. Note that an overflow or  
empty condition of the FIFO is the same as the write pointer and  
read pointer being equal. When both pointers are equal, an  
attempt is made to simultaneously read and write a single FIFO  
register. This simultaneous register access leads to unreliable  
data transfer through the FIFO and must be avoided by ensuring  
that data is written to the FIFO at the same rate that data is read  
from the FIFO, keeping the data level in the FIFO constant.  
This condition must be met by ensuring that DCI is equal to  
DACCLK/4 (or equivalently, DCO).  
Monitoring the FIFO Status  
The relative FIFO data levels can be read from Register 0x13  
through Register 0x16 at any time. The FIFO data level reported  
by the serial port is denoted as a 7-bit thermometer code of the  
write counter state, relative to the absolute read counter being at 0.  
Resetting the FIFO Data Level  
FIFO initialization is required to ensure a four-sample spacing  
and a deterministic pipeline latency. If the clocks are running  
at power-up, the FIFO initializes to 50% full. The AD9119/  
AD9129 has an internal delay that effectively offsets the FIFO  
pointers by 2, such that the optimal FIFO data level of 4 (center)  
reads back as 2 (0000011b) from Register 0x13 to Register 0x16.  
To achieve this level, set Register 0x12 to 0x20 (hexadecimal) before  
resetting the FIFO. This sets the read pointer to Level 2 and the  
write pointer to Level 0.  
For example, the FIFO data level of 2 is reported as a value of  
0000011b in the status register. Adding the internal delay of 2 to  
this value makes the reported FIFO level equal to 4. It should be  
noted that, depending on the timing relationship between DCI  
and the main DACCLK signal, the FIFO level value can be off by  
a count of 1. Therefore, it is important that the difference  
between the read and write pointers be maintained at ≥2.  
Multiple DAC Synchronization  
Synchronization of multiple AD9119/AD9129s implies that all  
of the DAC outputs are time aligned to the same phase when all  
devices are fed with the same data pattern (along with DCI) at  
the same instance of time. FIFO initialization ensures that the  
initial pipeline latency in the FIFO is set to four samples and  
remains at this level, assuming that no process, voltage, or tem-  
perature variations occur between the host and the AD9119/  
AD9129 clock domains.  
To maximize the timing margin between the DCI input and the  
internal DAC data rate clock, initialize the FIFO data level before  
beginning data transmission. The value of the FIFO data level  
can be initialized in three ways: by resetting the device, by strobing  
the FRM_x input, and via a write sequence to the serial port.  
Rev. 0 | Page 43 of 68  
 
 
 
 
AD9119/AD9129  
Data Sheet  
Figure 136 shows an example of two AD9119/AD9129 devices  
that are synchronized to the same host (that is, FPGA and ASIC).  
Note that, when the same resources are used to generate these out-  
put signals, synchronization to a single host IC ensures minimum  
data and DCI time skew between devices.  
provide a DACCLK/8 signal. Using the SYNC output from each  
DAC, enabled by Register 0x1A, Bit 4 = 1, the user can create  
a simple phase detector with an external XOR gate.  
DAC 1  
SYNC  
Even after FIFO initialization, a phase ambiguity exists between  
the read pointers of each device because the read counter of each  
device powers up in an arbitrary state. Therefore, the exact instance  
when the respective write pointer is set to 4, after the FRAME  
signal is asserted, also remains ambiguous. It is possible for the  
read pointer of one device to reach its 0 count several clock  
cycles before another device (see Figure 134).  
XOR  
DAC 2  
SYNC  
Figure 135. Example of Synchronization of Two DACs to  
1 DACCLK Accuracy  
Synchronization within a data sample requires insight into the  
difference between the read pointers of the master and slave  
devices, as well as the ability to vary the delay of the slave device(s)  
within the host to compensate for initial offsets between devices.  
It is possible to calculate how many data samples the slave device(s)  
is offset from the master device for the following reasons:  
By adjusting the internal delay (incrementing or decrementing  
by one DACCLK cycle with each write to Register 0x1A, Bit 7 or  
Bit 6, respectively), the user can align the DACCLKs inside the two  
DACs to within 1 DACCLK cycle, when errors from the external  
phase detector, low-pass filter, and delay differences are taken  
into account. The existing phase position can be read from  
Register 0x1A, Bits[2:0]. Align the SYNC outputs first, then reset  
the FIFOs on each DAC to ensure that proper sync is achieved.  
The pipeline delay of each device is the same after FIFO  
initialization.  
The read counter of each device is derived from the same  
phase aligned DACCLK source.  
The state of the read counters of each device is sampled at  
the same instance in time via the FRAME signal.  
The readback value (Register 0x12[6:4]) is normalized to  
a data sample (that is, a DACCLK period).  
This calibration must be performed at each power-up because  
the FIFOs can be reset to any of four levels based on the divide-  
by-4 output of the clock distribution block (see Figure 133). For  
example, a FIFO reset to Level 2 could have an actual FIFO level  
of 1.5, 1.75, 2, or 2.25, based on the location of the div-by-4 clock  
edge. Adjusting the SYNC signals to align with each other  
eliminates this ambiguity.  
By calculating the difference between the read pointer settings  
of the master and slave devices, the user can advance or delay  
the data stream of the slave device within the FPGA. Because  
this difference can be up to 4 data samples, the FPGA must  
provide this adjustment range for DAC synchronization alone.  
Note that additional range must be added to compensate for any  
other system delay variation.  
When the two DACs are aligned, the drift over temperature and  
supply voltage of the DACCLK signal of one DAC, relative to  
another DAC, is expected to be no more than 450 ps.  
The DCO signal is derived from the SYNC signal such that if  
the SYNC signal is adjusted by a DACCLK cycle, the DCO  
signal must also be adjusted by the same amount.  
In addition to synchronizing to the data sample level, the AD9119/  
AD9129 can enable synchronization to the DACCLK level (see  
Figure 135). A 1.8 V CMOS output pin, SYNC, can be used to  
When all adjustments of the SYNC signal are complete, it is  
recommended to disable the SYNC output by programming  
Register 0x1A, Bit 4 = 0, to eliminate a possible source of clock  
spurious signals.  
MATCHED  
DELAYS  
COMMON  
CLOCK  
SOURCE  
1.4GHz  
TO  
2.8GHz  
0+ dBm  
DCI  
ADCLK925  
DCO_x  
DACCLK  
AD9129  
MASTER  
DCI_x  
FRM_x  
0+ dBm  
FPGA  
DCI_x  
FRM_x  
DACCLK  
AD9129  
SLAVE  
DCO_x  
Figure 136. Example of Synchronization of Two DACs to One FPGA  
Rev. 0 | Page 44 of 68  
 
 
Data Sheet  
AD9119/AD9129  
5
0
Data Assembler and Signal Processing Modes  
–5  
The data assembler reconstructs the original sample sequence.  
It consists of a 4:1 multiplexer operating at fDACCLK. Each of the  
four FIFOs provides a sample that is now referenced to the  
internal clock domain of the AD9119/AD9129, fDACCLK. The  
reconstructed sample sequence can be directed to the DAC  
decode logic or undergo additional signal processing. In 2×  
interpolation mode, a FIR filter is used to generate a new data  
sample that is inserted between each sample, such that it can  
update the DAC decode logic on the falling edge of DACCLK.  
In Mix-Mode, the complement of each data sample is generated  
and inserted after it, such that it also updates the DAC in a similar  
manner. The 2× interpolator can be used with Mix-Mode enabled.  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
500  
1000  
1500  
2000  
2500  
FREQUENCY (MHz)  
Figure 137. FIR25 2× Interpolation Filter Plot, Complete Frequency Response;  
2× Digital Filter  
fDAC = 2.5 GHz  
The AD9119/AD9129 include a bypassable 2× half-band  
interpolation filter to help simplify the analog reconstruction  
filter. The filter has the potential benefit of minimizing the  
impact of folded back harmonics in the desired baseband  
region. The filter operates in a dual-edge clocking mode, where  
it generates a new interpolated sample value for every alternate  
DACCLK edge. This effectively increases the DAC update rate  
to 2 × fDACCLK with the DAC’s sinc response null moving from  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
fDACCLK to 2 × fDACCLK.  
There are two different filters, FIR25 and FIR40, that can be  
chosen using Register 0x18, Bit 5, when the 2× interpolator is  
enabled with Register 0x18, Bit 7.  
The FIR25 half-band filter provides 25 dB of stop-band rejection.  
Its response is shown in Figure 137. Coefficients were optimized  
for practical implementation purposes with the notion that the  
0.5 dB pass-band ripple effects on a multicarrier application  
(for example, DOCSIS) can be compensated by the digital host  
adjusting individual channel powers. Note that the worst-case  
tilt across any 6 MHz channel is less than −0.05 dB.  
0
200  
400  
600  
800  
1000  
1200  
FREQUENCY (MHz)  
Figure 138. FIR25 2× Interpolation Filter Plot, Pass-Band Ripple; fDAC = 2.5 GHz  
5
0
–5  
The FIR40 half-band filter provides 40 dB of stop-band rejection,  
and its response is shown in Figure 139. Coefficients were  
chosen to reduce pass-band ripple and increase out-of-band  
rejection for multicarrier applications (for example, DOCSIS).  
As a result, the frequency response has a flatter in-band response  
and a sharper transition region, and the trade-off is a higher phase  
count, leading to higher pipeline delay and higher power  
consumption. The two filters are compared in Table 12.  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
Table 12. Features of the Two 2× Interpolation Filters  
Filter  
FIR25  
FIR40  
Ripple (dB)  
Attenuation (dB)  
Power (mW)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.5  
0.1  
25  
40  
150  
450  
NORMALIZED FREQUENCY (×π RAD/Sample)  
Figure 139. FIR40 2× Interpolation Filter Plot, Complete Frequency Response  
A duty cycle restore circuit follows the DACCLK clock receiver  
to minimize impact of duty cycle errors on image rejection.  
Rev. 0 | Page 45 of 68  
 
 
 
AD9119/AD9129  
Data Sheet  
1.0  
To ensure repeatable pipeline delay over multiple power-up cycles,  
the SYNC output of the DAC must be aligned with a known system  
sync reference. Follow a calibration process that is similar to the  
multiple DAC sync process (see the Multiple DAC Synchronization  
section for more information) after each power-up event to align  
the DAC to the system sync reference.  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
Power-Up Time  
The AD9119/AD9129 have a power-down register (Register 0x01)  
that enables the user to power down various portions of the DAC.  
The power-up time for several usage cases is shown in Table 14.  
The recommended way to power up the AD9119/AD9129 is  
to power up all parts of the circuit with IREF disabled (by setting  
Register 0x01, Bit 6 = 1b), and then enable IREF by programming  
Register 0x01, Bit 6 = 0b.  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
NORMALIZED FREQUENCY (×π RAD/Sample)  
Figure 140. FIR40 2× Interpolation Filter Plot, Pass-Band Ripple  
Pipeline Delay (Latency)  
Table 14. Power-Up Times for Several Usage Cases  
The pipeline delay, or latency, of the AD9129 varies, based on  
the configuration that is chosen and can be calculated using the  
following formula:  
State  
Register State  
Time (μs)  
Power-Up  
Clock Path Up  
Wake-Up  
From 0x01 = 0xEF to 0x01 = 0x08  
From 0x01 = 0x0C to 0x01 = 0x08  
From 0x01 = 0x48 to 0x01 = 0x08  
250  
220  
2
Pipeline_Total = Pipeline_Delay + 2×_Delay  
+ Group_Delay + FIFO_Level  
INTERRUPT REQUESTS  
The values listed in Table 13 can be used, depending on the  
mode of operation that is selected.  
The AD9119/AD9129 can provide the host processor with an  
interrupt request output signal (IRQ), indicating that one or  
more of the following events has occurred:  
Table 13. Pipeline Delay Values for Each Block  
One of the clock controllers has established or lost lock.  
A parity error has occurred.  
A sample error detection status or result is ready.  
The FIFO is nearing an overwrite status.  
Pipeline  
Delay  
Group  
Delay  
Total  
Pipeline  
Total  
Delay  
Mode  
(fDAC cycles) (fDAC cycles) (fDAC cycles) (fDAC cycles)  
No 2× filter  
With FIR25  
With FIR40  
74  
43  
67  
N/A  
2
9
74  
117  
141  
74  
119  
150  
The IRQ output signal is an active low output signal that is available  
on the IRQ pin (Pin H2). If used, connect the output to VDD via  
a 10 kΩ pull-up resistor.  
The terms used in Table 13 are defined as follows:  
Pipeline delay is the time from DAC code latched until the  
DAC output begins to move.  
Each IRQ is enabled by setting the enable bits in Register 0x03  
and Register 0x04 that have the same bit mapping as the IRQ  
status bits in Registers 0x05 and Register 0x06. If an interrupt bit  
is not enabled, a read request of that bit shows a direct readback  
of the current state of the source. Thus, a read request of either  
register shows the current state of all eight interrupts in that  
register, regardless of whether each individual bit is actually  
enabled to generate an interrupt. When an interrupt bit is enabled,  
it captures a rising edge of the interrupt source and holds it,  
even if the source subsequently returns to its zero state. It is  
possible, for example, for the retimer lost interrupt enable and  
retimer lock interrupt enable status bits (Register 0x03[1:0],  
respectively) to be set when a controller temporarily loses lock  
but then reestablishes lock before the IRQ is serviced by the host.  
In such a case, the host should validate the present status of the  
suspect block by reading back its current status bits. Based on  
the status of these bits, the host can take appropriate action, if  
required.  
Group delay is the time for the maximum amplitude pulse  
to reach the DAC output, as compared to the first time the  
output moves.  
No 2× filter is the base pipeline delay, including data  
interface, analog circuitry (six cycles), and data FIFO at  
half-full/Position 3.  
FIR25 is the 2× interpolator with 25 dB of out-of-band  
rejection.  
FIR40 is the 2× interpolator with 40 dB of out-of-band  
rejection.  
Note that the values for pipeline delay apply in both normal  
mode and Mix-Mode. After the total delay through the digital  
blocks is calculated, add the FIFO level to that delay to find the  
total pipeline delay. Note that the pipeline delay can be considered  
fixed, with the only ambiguity being the FIFO state. The FIFO  
state can be initialized as part of the startup sequence to ensure  
a four sample spacing and, therefore, a fixed pipeline delay, or  
deterministic latency (see the Resetting the FIFO Data Level  
section for more information).  
Rev. 0 | Page 46 of 68  
 
 
 
 
Data Sheet  
AD9119/AD9129  
The IRQ pin responds only to those interrupts that are enabled. To  
clear an IRQ, it is necessary to write a 1b to the bit in Register 0x05  
or Register 0x06 that caused the interrupt. See Figure 141 for  
a detailed diagram of the interrupt circuitry.  
interrupt enable bit (Register 0x03[0]) can be set, and the IRQ  
output signal can be monitored to determine when lock is  
established, before continuing in a similar manner with the data  
receiver controller. Clear the relevant lock bit, after locking, before  
continuing to the next controller. When all of the controllers are  
locked, set the appropriate lost lock enable bits in Register 0x03  
to continuously monitor the controllers for loss of lock.  
The IRQ can also be used during the AD9119/AD9129  
initialization phase after power-up to determine when the  
retimer PLL and data receiver controllers achieve lock. For  
example, before enabling the retimer PLL, the retimer lock  
WRITE 1b TO  
REQUEST BIT  
SINGLE IRQ BIT  
R
IRQ ENABLE  
IRQ ENABLE  
IRQ PIN  
D
Q
IRQ REQUEST  
IRQ ENABLE  
SOURCE  
Figure 141. Interrupt Request Circuitry  
Table 15. Interrupt Request Registers  
Addr (Hex) Bit Bit Name  
Description  
0x05  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
FIFO_Warn2 interrupt status  
FIFO_Warn1 interrupt status  
SPIFrmAck interrupt status  
Reserved  
Indicates that the FIFO is within two slots of overwrite  
Indicates that the FIFO is within one slot of overwrite  
Indicates acknowledgement that the SFrmReq bit has changed from 0b to 1b  
Reserved  
DLL warn interrupt status  
DLL lock interrupt status  
Retimer lost interrupt status  
Retimer lock interrupt status  
Reserved  
Indicates that the DLL is close to coming unlocked and action is needed  
Indicates that the DLL is now locked  
Indicates that the retimer PLL is no longer locked  
Indicates that the retimer PLL is now locked  
Reserved  
0x06  
AED pass interrupt status  
AED fail interrupt status  
SED fail interrupt status  
Parity error falling edge status  
Parity error rising edge status  
Reserved  
Indicates that the AED logic has captured eight valid samples  
Indicates that the AED logic has detected a miscompare  
Indicates that the SED logic has detected a miscompare  
Indicates a parity fault due to data captured on the falling edge  
Indicates a parity fault due to data captured on the rising edge  
Reserved  
Reserved  
Reserved  
Rev. 0 | Page 47 of 68  
 
AD9119/AD9129  
Data Sheet  
INTERFACE TIMING VALIDATION  
The AD9119/AD9129 provide on-chip sample error detection  
(SED) circuitry that simplifies verification of the input data  
interface. The SED compares the input data samples captured  
at the digital input pins with a set of comparison values. The  
comparison values are loaded into registers through the SPI port.  
Differences between the captured values and the comparison  
values are detected and stored.  
The compare pass bit is set if the last comparison indicates that  
the sample is error free. The compare fail bit is set if an error is  
detected. The compare fail bit is automatically cleared by the  
reception of eight consecutive error-free comparisons. When  
autoclear mode is enabled, Register 0x51 through Register 0x58  
accumulate errors as previously described but reset to all 0s after  
eight consecutive error-free sample comparisons are made.  
The sample error, compare pass, and compare fail flags can be  
configured to trigger an IRQ when active, if desired. This is  
accomplished by enabling the appropriate bits in the event flag  
register (Register 0x06, Bit 4, Bit 5, and Bit 6).  
SAMPLE ERROR DETECTION (SED) OPERATION  
The SED circuitry operates on a data set made up of eight  
11-bit/14-bit input words, denoted as R0L, R1L, R0H, R1H,  
F0L, F1L, F0H, and F1H. These represent the rising edge and  
falling edge data of Data Port 0 and Data Port 1. (The AD9119/  
AD9129 use both edges of the DCI clock to sample data on each  
input port.) To properly align the input samples, the rising edge  
data-words of the data ports (that is, RxL and RxH) are indicated  
by asserting the FRAME signal for a minimum of two complete  
input samples.  
SED EXAMPLE  
Normal Operation  
The following example illustrates the SED configuration for  
continuously monitoring the input data and assertion of an IRQ  
when a single error is detected.  
1. Write to the following registers to load the comparison values:  
a) Register 0x51: SED Patt/Err R0L, Bits[7:0].  
b) Register 0x52: SED Patt/Err R0H, Bits[13:8].  
c) Register 0x53: SED Patt/Err R1L, Bits[7:0].  
d) Register 0x54: SED Patt/Err R1H, Bits[13:8].  
e) Register 0x55: SED Patt/Err F0L, Bits[7:0].  
f) Register 0x56: SED Patt/Err F0H, Bits[13:8].  
g) Register 0x57: SED Patt/Err F1L, Bits[7:0].  
h) Register 0x58: SED Patt/Err F1H, Bits[13:8].  
i) Comparison values can be chosen arbitrarily;  
however, choosing values that require frequent  
bit toggling provides the most robust test.  
Figure 142 shows the input timing of the interface in word mode.  
The FRAME signal can be issued once at the start of the data  
transmission, or it can be asserted repeatedly at intervals coinciding  
with the RxL and RxH data-words.  
DCI  
FRAME  
P0[7:0]  
P0[13:8]  
P1[7:0]  
R0L  
F0L  
R0H  
R1L  
F0H  
F1L  
2. Enable the SED error detect flag to assert the IRQ pin.  
a) Register 0x04: set to 0x10.  
3. Begin transmitting the input data pattern.  
4. Write three times to Register 0x50 to enable the SED.  
a) Register 0x50: set to 0x80.  
P1[13:8]  
R1H  
F1H  
Figure 142. Timing Diagram of FRAME Signal Required to Align Input Data  
for SED  
The SED has three flag bits (Register 0x50, Bit 0, Bit 1, and Bit 2)  
that indicate the results of the input sample comparisons. The  
SED fail bit (Register 0x50, Bit 0) is set when an error is detected  
and remains set until cleared. The SED also provides registers that  
indicate which input data bits experienced errors (Register 0x51  
through Register 0x58). These bits are latched and indicate the  
accumulated errors detected until cleared. To clear the SED  
registers, write 1b to Register 0x50, Bit 6.  
b) Register 0x50: set to 0xC0.  
c) Register 0x50: set to 0x80.  
If IRQ is asserted, read Register 0x50 and Register 0x51 through  
Register 0x58 to verify that a SED error is detected and determine  
which input bits are in error. The bits in Register 0x51 through  
Register 0x58 are latched. This means that the bits indicate any  
errors that occur on those bits throughout the test and not just  
the errors that caused the error detected flag to be set.  
The autosample error detection (AED) mode is an autoclear  
mode that has the following two effects:  
AED mode activates the AED fail bit and the AED pass bit  
(Register 0x50, Bit 1 and Bit 2).  
AED mode changes the behavior of Register 0x51 through  
Register 0x58.  
Rev. 0 | Page 48 of 68  
 
 
 
 
Data Sheet  
AD9119/AD9129  
ANALOG INTERFACE CONSIDERATIONS  
When Mix-Mode is used, the output is effectively chopped at  
the DAC sample rate. This has the effect of reducing the power  
of the fundamental signal while increasing the power of the  
images centered around the DAC sample rate, thus improving  
the dynamic range of these images.  
ANALOG MODES OF OPERATION  
The AD9119/AD9129 use the quad-switch architecture shown in  
Figure 143. Only one pair of switches is enabled during a half-clock  
cycle, thus requiring each pair to be clocked on alternative clock  
edges. A key benefit of the quad-switch architecture is that it masks  
the code-dependent glitches that occur in the conventional two-  
switch DAC architecture.  
INPUT  
DATA  
D
D
D
D
D
D
D
D
D
D
10  
1
2
3
4
5
6
7
8
9
DACCLK_x  
D3  
–D8  
DACCLK_x  
IOUTP  
IOUTN  
CLK  
D2  
D4  
–D7  
–D9  
V
V
V
V
1
2
3
4
G
G
G
D1  
D5  
–D6  
–D10  
FOUR-SWITCH  
DAC OUTPUT  
(fS MIX-MODE)  
t
LATCHES  
V
1
V
2
V
3
V 4  
G
G
G
G
D6  
–D5  
D10  
–D1  
–D2  
–D4  
D7  
D9  
Px_D[13:0]x  
G
–D3  
D8  
Figure 145. Mix-Mode Waveform  
This ability to change modes provides the user the flexibility to  
place a carrier anywhere in the first three Nyquist zones, depending  
on the operating mode selected. Switching between baseband  
and Mix-Mode reshapes the sinc roll-off inherent at the DAC  
output. In baseband mode, the sinc null appears at fDACCLK  
because the same sample latched on the rising clock edge is also  
latched again on the falling clock edge, thus resulting in the  
same ubiquitous sinc response of a traditional DAC. In Mix-  
Mode, the complement sample of the rising edge is latched on  
V
SSA  
Figure 143. Quad-Switch Architecture  
In two-switch architecture, when a switch transition occurs and  
D1 and D2 are in different states, a glitch occurs. But, if D1 and  
D2 happen to be at the same state, the switch transitions, and no  
glitches occur. This code-dependent glitching causes an increased  
amount of distortion in the DAC. In quad-switch architecture  
(no matter what the codes are), there are always two switches  
that are transitioning at each half-clock cycle, thus eliminating  
the code-dependent glitches but, in the process, creating a constant  
glitch at 2 × DACCLK. For this reason, a significant clock spur  
at 2 × fDACCLK is evident in the DAC output spectrum.  
INPUT  
the falling edge, therefore pushing the sinc null to 2 × fDACCLK  
.
Figure 146 shows the ideal frequency response of both modes  
with the sinc roll-off included.  
FIRST  
NYQUIST ZONE  
SECOND  
NYQUIST ZONE  
THIRD  
NYQUIST ZONE  
D
D
D
D
D
D
D
D
D
D
1
2
3
4
5
6
7
8
9
10  
DATA  
0
–5  
MIX-MODE  
DACCLK_x  
–10  
–15  
–20  
–25  
–30  
–35  
D
D
D
3
D
D
t
t
1
2
4
5
TWO-SWITCH  
DAC OUTPUT  
D
D
D
D
D
6
7
8
9
10  
BASEBAND  
MODE  
FOUR-SWITCH  
DAC OUTPUT  
(NORMAL MODE)  
D
D
D
D
D
10  
6
7
8
9
D
D
D
D
D
5
1
2
3
4
Figure 144. Two-Switch and Quad-Switch DAC Waveforms  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
As a consequence of the quad-switch architecture enabling  
updates on each half-clock cycle, it is possible to operate that  
DAC core at 2× the DACCLK rate if new data samples are latched  
into the DAC core on both the rising and falling edge of the  
DACCLK. This notion serves as the basis when operating the  
AD9119/AD9129 in either Mix-Mode or with the 2× interpo-  
lation filter enabled. In each case, the DAC core is presented  
with new data samples on each clock edge, albeit in Mix-Mode;  
the falling edge sample is simply the complement of the rising  
edge sample value.  
NORMALIZED FREQUENCY RELATIVE TO fDACCLK (Hz)  
Figure 146. Sinc Roll-Off for Baseband Mode and Mix-Mode Operation  
The quad-switch can be configured via SPI (Register 0x19, Bit 0)  
to operate in either baseband mode (0b) or Mix-Mode (1b).  
Rev. 0 | Page 49 of 68  
 
 
 
 
AD9119/AD9129  
Data Sheet  
A clock control register exists at Address 0x30. This register can  
be used to enable automatic duty cycle correction (Bit 1), enable  
zero-crossing control (Bit 6), and set the zero-crossing point  
(Bits[5:2]). Recommended settings for this register are listed in  
the recommended start-up sequence section (see the Start-Up  
Sequence section).  
CLOCK INPUT  
The AD9119/AD9129 contain a low jitter, differential clock  
receiver that is capable of interfacing directly to a differential  
or single-ended clock source. Because the input is self-biased to  
a nominal midsupply voltage of 1.25 V with a nominal impedance  
of 10 kΩ//2 pF, it is recommended that the clock source be  
ac-coupled to the DACCLK_x input pins with an external  
differential load of 100 Ω. When the nominal differential input  
span is 1 V p-p, the clock receiver can operate with a span that  
ranges from 250 mV p-p to 2.0 V p-p.  
PLL  
The DACCLK_x input goes to a high frequency PLL to ensure  
robust locking of the DAC sample clock to the input clock. The  
PLL is enabled by default such that the PLL locks upon power-up.  
The PLL (or DAC clock retimer) control registers are located at  
Register 0x33 and Register 0x34. Register 0x33 enables the user  
to set the phase detector phase offset level (Bits[7:4]), clear the PLL  
lost lock status bit (Bit 3), choose the PLL divider for optimum per-  
formance (Bit 2), and choose the phase detector mode (Bits[1:0]).  
These settings are determined during product characterization  
and are given in the recommended start-up sequence (see the  
Start-Up Sequence section). It is not normally necessary to change  
these values, nor is the product characterization data valid on  
any settings other than the recommended ones. Register 0x34 is  
used to reset the PLL, should that become necessary.  
TO DAC  
AND DLL  
DACCLK_P  
DACCLK_N  
DUTY CYCLE  
RESTORER  
5kΩ  
5kΩ  
25µA  
1.25V  
50kΩ  
Figure 147. Clock Input  
The quality of the clock source, as well as its interface to the  
AD9119/AD9129 clock input, directly impacts ac performance.  
Select the phase noise and spur characteristics of the clock source  
to meet the target application requirements. Phase noise and  
spurs at a given frequency offset on the clock source are directly  
translated to the output signal. It can be shown that the phase noise  
characteristics of a reconstructed output sine wave are related to  
the clock source by 20 × log10 (fOUT/fCLK) when the DAC clock  
path contribution is negligible. (The wideband noise is not  
dominated by the thermal and quantization noise of the DAC.)  
At DACCLK = 2.8 GSPS, the lock time is about 10 µs. In most  
situations, no action is required with the PLL. If the DACCLK  
is changed and, especially, if it is changed multiple times, as in  
a frequency hopping application, a phase slip or glitch may be  
caused by the change in frequency, and it may become necessary  
to reset the PLL. This can be checked by reading the PLL retimer  
lost lock bit (Register 0x35, Bit 6). If that is the case, toggle the  
PLL reset bit by programming Register 0x34, Bit 3, high and then  
low. In addition, clear the PLL retimer lost lock bit by writing 0b  
to Register 0x35, Bit 6. PLL lock can be verified by reading the  
PLL lock bit at Register 0x35, Bit 7. It is possible to use the IRQ  
registers to set an interrupt for these events. See the Interrupt  
Requests section for more details.  
Figure 148 shows a clock source based on the ADF4350 low phase  
noise/jitter PLL. The ADF4350 can provide output frequencies  
from 140 MHz up to 4.4 GHz with jitter as low as 0.5 ps rms. Its  
squared-up output level can be varied from −4 dBm to +5 dBm,  
allowing further optimization of the clock drive level.  
AD9129  
ADF4350  
2.4nF  
DACCLK_P  
N
DIV-BY-2  
N = 0 – 4  
100Ω  
PLL  
VCO  
2.4nF  
DACCLK_N  
fREF  
0.8GHz TO 2.8GHz  
1V p-p  
Figure 148. Possible Signal Chain for DACCLK_x Input  
Rev. 0 | Page 50 of 68  
 
 
 
Data Sheet  
AD9119/AD9129  
VOLTAGE REFERENCE  
I
= 9.5mA – 34mA  
OUTFS  
The AD9119/AD9129 output current is set by a combination of  
digital control bits and the I250U reference current, as shown in  
Figure 149.  
(9/17) × I  
OUTFS  
I
=
PEAK  
(8/17) × I  
AC  
OUTFS  
AD9129  
FSC[9:0]  
V
BG  
1.0V  
(9/17) × I  
OUTFS  
DAC  
VREF  
I250U  
+
CURRENT  
SCALING  
1nF  
Figure 150. Equivalent DAC Output Circuit  
I
FULLSCALE  
4kΩ  
The example shown in Figure 150 can be modeled as a pair of  
dc current sources that source a current of 9/17 × IOUTFS to each  
output. A differential ac current source, IPEAK, is used to model  
the signal (that is, a digital code) dependent nature of the DAC  
output. The polarity and signal dependency of this ac current  
source is related to the digital code (F) by the following equation:  
I250  
V
SSA  
Figure 149. Voltage Reference Circuit  
The reference current is obtained by forcing the band gap  
voltage across an external 4.0 kΩ resistor from I250U (Pin A1)  
to ground. The 1.0 V nominal band gap voltage (VREF) generates  
a 250 µA reference current in the 4.0 kΩ resistor. Note the  
following constraints when configuring the voltage reference  
circuit:  
F (code) = (DACCODE − 8192)/8192  
−1 < F (code) < +1  
(2)  
(3)  
where DACCODE = 0 to 16,383 (decimal).  
Both the 4.0 kΩ resistor and 1 nF bypass capacitor are  
required for proper operation.  
Because IPEAK can swing (8/17) × IOUTFS, the output currents  
that are measured at IOUTP and IOUTN can span from  
IOUTFS/17 to IOUTFS. However, because the ac signal-dependent  
current component is complementary, the sum of the two  
outputs is always constant (that is, IOUTP + IOUTN =  
(18/17) × IOUTFS).  
Adjusting the DAC output full-scale current, IOUTFS, from  
its default setting of 20 mA should be performed digitally.  
The AD9119/AD9129 are not multiplying DACs. Modula-  
tion of the reference current, I250U, with an ac signal is not  
supported.  
The band gap voltage appearing at the VREF pin must be  
buffered for use with an external circuitry because its output  
impedance is approximately 7.5 kΩ.  
The code-dependent current that is measured at the IOUTP  
(and IOUTN) output is as follows:  
IOUTP = (9/17) × IOUTFS (mA) + (8/17) × IOUTFS (mA)  
× F (code)  
(4)  
An external reference can be used to overdrive the internal  
reference by connecting it to the VREF pin.  
IOUTN = (9/17) × IOUTFS (mA) − (8/17) × IOUTFS (mA)  
× F (code)  
As mentioned, the IOUTFS can be adjusted digitally over a 9.4 mA  
to 34.2 mA range by the FSC_x[9:0] bits (Register 0x20, Bits[7:0]  
and Register 0x21, Bits[1:0]). The following equation relates  
Figure 151 shows the IOUTP vs. DACCODE transfer function  
when IOUTFS is set to 19.65 mA.  
20  
IOUTFS to the FSC_x[9:0] bits, which can be set from 0 to 1023.  
18  
16  
14  
12  
10  
8
I
OUTFS = 24.21875 mA × FSC_x[9:0]/1000 + 9.4 mA  
(1)  
Note that the default value of 0x200 generates 21.937 mA full scale,  
but most of the characterization presented in this datasheet uses  
33 mA, unless noted otherwise.  
ANALOG OUTPUTS  
Equivalent DAC Output and Transfer Function  
6
The AD9119/AD9129 provide complementary current outputs,  
IOUTP and IOUTN, that sink current from an external load  
that is referenced to the 1.8 V VDDA supply. Figure 150 shows  
an equivalent output circuit for the DAC. Compared to most  
current output DACs of this type, the outputs of the AD9119/  
AD9129 exhibit a slight offset current (that is, IOUTFS/17), and the  
peak differential ac current is slightly below IOUTFS/2 (that is,  
8/17 × IOUTFS).  
4
2
0
0
4096  
8192  
12,288  
16,384  
DAC CODE  
Figure 151. Gain Curve for FSC_x[9:0] = 512, DAC Offset = 1.228 mA  
Rev. 0 | Page 51 of 68  
 
 
 
 
 
AD9119/AD9129  
Data Sheet  
Peak DAC Output Power Capability  
Figure 152 shows the AD9119/AD9129 interfacing to the JTX-2-  
10T transformer. This transformer provides excellent amplitude/  
phase balance (that is, <1 dB/1°) up to 1 GHz while providing  
a 0 Ω D dc bias path to VDDA. If filtering of the DAC images  
and clock components is required, applying an analog LC filter  
on the single-ended side has the advantage of preserving the  
balance of the transformer.  
The maximum peak power capability of a differential current  
output DAC is dependent on its peak differential ac current,  
I
PEAK, and the equivalent load resistance it sees. In the case of a  
1:1 balun with 50 Ω source termination, the equivalent load that  
is seen by the DAC ac current source is 25 Ω. If the AD9119/  
AD9129 is programmed for an IOUTFS = 20 mA, its peak ac current  
is 9.375 mA and its peak power, delivered to the equivalent  
load, is 2.2 mW (that is, P = I2R). Because the source and load  
resistance seen by the 1:1 balun are equal, this power is shared  
equally. Hence, the output load receives 1.1 mW, or 0.4 dBm  
peak power.  
JTX-2-10T+  
MINI-CIRCUITS  
IOUTP  
2:1  
50Ω  
VDDA  
50Ω  
To calculate the rms power delivered to the load, consider the  
following:  
IOUTN  
Figure 152. Recommended Transformer for Wideband Applications with  
Upper Bandwidths of up to 2.2 GHz  
Peak-to-rms of digital waveform  
Any digital backoff from digital full scale  
DAC sinc response and nonideal losses in the external  
network  
Figure 153 shows an interface that can be considered when  
interfacing the DAC output to a self-biased differential gain block.  
The inductors (L) shown serve as RF chokes that provide the  
dc bias path to AGND. Its value, along with the dc blocking  
capacitors, determines the lower cut-off frequency of the  
composite pass-band response. (The dc blocking capacitors  
form a high-pass response with the input resistance of the RF  
differential gain stage.)  
For example, a reconstructed sine wave with no digital backoff  
ideally measures −2.6 dBm because it has a peak-to-rms ratio of  
3 dB. If a typical balun loss of 0.4 dBm is included, the user would  
expect to measure −3 dBm of actual power in the region where  
the sinc response of the DAC has negligible influence. Increasing  
the output power is best accomplished by increasing IOUTFS  
.
C
IOUTP  
Output Stage Configuration  
L
The AD9119/AD9129 are intended to serve high dynamic range  
applications that require wide signal reconstruction bandwidth  
(that is, a DOCSIS cable modem termination system (CMTS))  
and/or high IF/RF signal generation. Optimum ac performance  
can be realized only if the DAC output is configured for differential  
(that is, balanced) operation with its output common-mode  
voltage biased to a stable, low noise 1.8 V nominal analog supply  
(VDDA). The ADP150 LDO can be used to generate a clean 1.8  
V supply.  
RF DIFF_  
AMP  
100Ω  
VDDA  
L
C
IOUTN  
Figure 153. Interfacing the DAC Output to Self-Biased,  
Differential Gain Stage  
Many RF differential amplifiers consist of two single-ended  
amplifiers with matched gain, thus providing no common-mode  
rejection while possibly degrading the balance, due to poor  
matching characteristics. Also, depending on the component  
tolerances, differential LC filters can further degrade the balance  
in a differential signal path. In both cases, the use of a balun could  
be advantageous in rejecting the common-mode distortion and  
noise components from the RF DAC prior to filtering or further  
amplification.  
The output network used to interface to the DAC should provide  
a near 0 Ω dc bias path to VDDA. Any imbalance in the output  
impedance over frequency between the IOUTP and IOUTN pins  
degrades the distortion performance (mostly even order) and  
noise performance. Component selection and layout are critical  
in realizing the performance potential of the AD9119/AD9129.  
Most applications that require balanced-to-unbalanced conversion  
from 10 MHz to 1 GHz can take advantage of the Mini-Circuits  
JTX series of transformers that offer impedance ratios of both  
2:1 and 1:1.  
Rev. 0 | Page 52 of 68  
 
 
 
Data Sheet  
AD9119/AD9129  
For applications that operate the AD9119/AD9129 in Mix-Mode  
with output frequencies extending beyond 2.2 GHz, the user may  
want to consider the circuit shown in Figure 154. This circuit  
uses a wideband balun (for example, −3 dB at 4.0 GHz), with a  
configuration that is similar to the example shown in Figure 152,  
to provide a dc bias path for the DAC outputs. This circuit was  
implemented on an evaluation board, and the frequency response  
was measured to compare it with the ideal curve in Figure 146.  
The result is shown in Figure 155.  
To assist in matching the AD9119/AD9129 output, a Smith chart  
is provided in Figure 156. The plot was taken using the circuit  
in Figure 154, with the balun and the coupling capacitors  
removed, and L = 270 nH. For the measured vs. ideal response of  
the DAC output, see Figure 155, which illustrates that a nonideal  
response occurs in the second half of the second Nyquist zone.  
This area corresponds to the low impedance area between 2 GHz  
and 3 GHz, as shown in the Smith chart in Figure 156. Output  
matching can be used to compensate for this nonideal response;  
the possible reduction in signal bandwidth must be considered if  
such matching is used.  
MINI-CIRCUITS  
TCI-1-13M+  
TCI-1-33M+  
C
IOUTP  
L
L
50Ω  
50Ω  
VDDA  
IOUTN  
C
Figure 154. Recommended Mix-Mode Configuration Offering Extended RF  
Bandwidth Using TC1-1-13M+ Balun  
4
1
3
NORMAL MODE  
0
–3  
MIX-MODE  
3
MEASURED NORMAL  
MEASURED MIX-MODE  
–6  
2
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
1. 300kHz 3.1341Ω 710.55mΩ 376.96nH  
2. 1GHz  
3. 2GHz  
4. 3GHz  
54.333Ω –44.210Ω 3.5999pF  
13.113Ω –11.207Ω 7.1006pH  
13.022Ω –14.259Ω 756.48pF  
Figure 156. Measured Smith Chart Showing the DAC Output Impedance;  
DAC = 2.6 GSPS  
f
0
500 1000 1500 2000 2500 3000 3500 4000 4500 5000  
FREQUENCY (MHz)  
Figure 155. Measured vs. Ideal DAC Output Response; fDAC = 2.6 GSPS  
Rev. 0 | Page 53 of 68  
 
 
 
AD9119/AD9129  
Data Sheet  
START-UP SEQUENCE  
A small number of steps is required to program the AD9119/AD9129 to the proper operating state after the device is powered up. This  
sequence is listed in Table 16, along with an explanation of the purpose of each step.  
Table 16. Start-Up Sequence After Power-Up  
Register  
0x00  
0x30  
0x0C  
0x0B  
0x01  
0x34  
0x01  
0x33  
0x33  
Value  
Description  
0x00  
4-wire SPI, MSB-first packing, short addressing mode  
Enable cross control, cross location = 7 dec, duty cycle correction off  
Set DLL minimum delay = 4 dec, enable DCO  
Set clock divider to DCI/512  
0x5C  
0x64  
0x39  
0x68  
Set bias power-down  
0x6D or 0x5D  
0x48  
Set PLL mode for normal or 2× mode; normal mode or FIR25 on = 0x6D, FIR40 on = 0x5D  
Enable bias  
0x13  
Initialize PLL to phase step = 1 dec  
0xF8 or 0xD8  
Select PFD, set PLL phase step, keep PLL lost bit cleared; phase step is as follows: normal mode or  
FIR25 on = 0xF8, FIR40 on = 0xD8  
0x33  
0x0D  
0x0A  
0x18  
0x20  
0x21  
0x30  
0x12  
0x11  
0x11  
0x01  
0xF0 or 0xD0  
0x06  
Deassert the PLL lost bit, keeping the phase step; normal mode or FIR25 on = 0xF0, FIR40 on = 0xD0  
Set duty correction bandwidth to lowest  
0xC0  
Enable DLL  
0xm0  
0xC6  
Select data mode, filter mode to set value of m; for example: 0x40, unsigned data, interpolator off  
Set full-scale current (FSC) to 33 mA  
Complete the setting of FSC  
Enable cross control, cross location = 1 dec, enable duty cycle correction  
Set the FIFO pointers  
0x03  
0x46  
0x20  
0x81  
Assert FIFO reset  
0x01  
Deassert FIFO reset  
0x00  
Enable IREF (DAC output)  
Rev. 0 | Page 54 of 68  
 
 
Data Sheet  
AD9119/AD9129  
DEVICE CONFIGURATION REGISTERS  
DEVICE CONFIGURATION REGISTER MAP  
The blank bits in Table 17 are reserved and should be programmed to their default values. A setting of 1 or 0 indicates the required  
programming for the bit.  
Table 17. Device Configuration Register Map  
Address  
Register Name Hex  
Dec  
0
Type Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0x81  
0x48  
0x00  
0x00  
0x00  
0x00  
Mode  
0x00  
0x01  
0x03  
0x04  
0x05  
0x06  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SDIO_DIR  
LSB/MSB  
IREF_PD  
SoftReset  
BIAS_PD  
SPIFrmAck  
AED fail  
0
0
SoftReset  
LSB/MSB  
SDIO_DIR  
DLL_PD  
Power-Down  
IRQ Enable 0  
IRQ Enable 1  
IRQ Request 0  
IRQ Request 1  
1
BG_PD  
1
CLKPATH_PD Retimer_PD  
3
FIFO_Warn2  
FIFO_Warn1  
AED pass  
FIFO_Warn1  
AED pass  
DLL warn  
Parity err fall  
DLL warn  
Parity err fall  
DLL lock  
Retimer lost  
Retimer lock  
4
SED fail  
Parity err rise  
DLL lock  
5
FIFO_Warn2  
SPIFrmAck  
AED fail  
Retimer lost  
Retimer lock  
6
SED fail  
Parity err rise  
Frame Pin Usage 0x07  
7
ParUsage  
FrmUsage  
FRM_x pin usage mode, Bits[1:0] 0x00  
0x58  
Reserved_0  
Data Ctrl 0  
0x08  
0x0A  
8
Must maintain default (reset) value of 0x58  
10  
DLL enable  
Warn clear  
Duty cycle  
correction  
enable  
Phase offset, Bits[3:0]  
0x40  
Data Ctrl 1  
0x0B  
11  
R/W  
Lock delay  
divider  
Controller clock divider,  
Bits[1:0]  
Delay line middle set, Bits[3:0]  
0x29  
Data Ctrl 2  
Data Ctrl 3  
Data Status 0  
0x0C  
0x0D  
0x0E  
12  
13  
14  
R/W  
R/W  
R
DCO enable  
Maximum delay set, Bits[2:0]  
Minimum delay set, Bits[2:0]  
Duty correction BW, Bits[1:0]  
DCI on DLL lock phase DLL running  
0x23  
0x04  
N/A  
DLL lock  
DLL warn  
DLL delay line DLL delay line DLL correct  
start warning end warning phase  
FIFO Ctrl  
0x11  
17  
R/W  
SPIFrmReq  
SPIFrmAck  
Enable pin  
framing  
Phase report 0x00  
enable  
FIFO Offset  
FIFO Ph0 Thrm  
FIFO Ph1 Thrm  
FIFO Ph2 Thrm  
FIFO Ph3 Thrm  
Data Mode Ctrl  
Decode Ctrl  
Sync  
0x12  
0x13  
0x14  
0x15  
0x16  
0x18  
0x19  
0x1A  
0x20  
0x21  
0x22  
0x23  
0x30  
0x33  
0x34  
0x35  
0x50  
18  
19  
20  
21  
22  
24  
25  
26  
32  
33  
34  
35  
48  
51  
52  
53  
80  
81  
82  
83  
84  
85  
86  
87  
88  
92  
R/W  
R
RdPtrOff, Bits[2:0]  
WtPtrOff, Bits[2:0]  
0x04  
Phz0Thrm, Bits[6:0]  
N/A  
R
Phz1Thrm, Bits[6:0]  
Phz2Thrm, Bits[6:0]  
Phz3Thrm, Bits[6:0]  
N/A  
R
N/A  
R
N/A  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Filter enable  
Inc latency  
Binary select FILT_SEL  
Dec latency  
Mix-Mode en 0x00  
Sync enable  
Sync done  
Phase readback, Bits[2:0]  
0x00  
0x00  
0x02  
0x00  
0x0C  
0x00  
0x30  
0x55  
N/A  
FSC_1  
Full-scale current, Bits[7:0]  
FSC_2  
Full-scale current, Bits[9:8]  
ANA_CNT1  
ANA_CNT2  
CLK REG1  
0
Cross enable  
Cross location, Bits[3:0]  
Clear lost  
Duty enable  
0
Retimer Ctrl 0  
Retimer Ctrl 1  
Retimer Stat 0  
SED Control  
Phase step, Bits[3:0]  
PLL divider  
AED pass  
Retimer mode, Bits[1:0]  
PLL reset_Z  
PLL lock  
PLL lost  
R/W  
R
SED enable  
SED error clear AED enable  
0
0
AED fail  
SED fail  
0x00  
N/A  
SED Patt/Err R0L 0x51  
SED Patt/Err R0H 0x52  
SED Patt/Err R1L 0x53  
SED Patt/Err R1H 0x54  
SED Patt/Err F0L 0x55  
SED Patt/Err F0H 0x56  
SED Patt/Err F1L 0x57  
SED Patt/Err F1H 0x58  
SED Data Port 0 rising edge low part error, Bits[7:0]  
SED Data Port 0 rising edge high part error, Bits[13:8]  
SED Data Port 1 rising edge low part error, Bits[7:0]  
SED Data Port 1 rising edge high part error, Bits[13:8]  
SED Data Port 0 falling edge low part error, Bits[7:0]  
SED Data Port 0 falling edge high part error, Bits[13:8]  
SED Data Port 1 falling edge low part error, Bits[7:0]  
SED Data Port 1 falling edge high part error, Bits[13:8]  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
Parity Control  
0x5C  
R/W  
Parity enable Parity even  
Parity error  
clear  
Parity error  
falling edge  
Parity error  
rising edge  
0x00  
Parity Err Rising 0x5D  
Parity Err Falling 0x5E  
93  
R
Parity rising edge error count, Bits[7:0]  
Parity falling edge error count, Bits[7:0]  
Enable delay cell, Bits[7:0]  
N/A  
94  
R
N/A  
Delay Ctrl 0  
Delay Ctrl 1  
Drive Strength  
Part ID  
0x70  
0x71  
0x7C  
0x7F  
112  
113  
124  
127  
R/W  
R/W  
R/W  
R
0xFF  
0x67  
0x7C  
Enable delay cell, Bits[10:8]  
DCO drive strength, Bits[1:0]  
Part ID, Bits[7:0]  
0x07 or  
0x87  
Rev. 0 | Page 55 of 68  
 
 
 
 
AD9119/AD9129  
Data Sheet  
DEVICE CONFIGURATION REGISTER DESCRIPTIONS  
SPI Communications Control Register  
Address: 0x00, Reset: 0x81, Name: Mode  
Table 18. Bit Descriptions for Mode  
Bits Bit Name  
Description  
Reset  
Access  
7
SDIO_DIR  
Selects 3-wire or 4-wire mode  
1: 3-wire bidirectional  
1
R/W  
0: 4-wire unidirectional  
6
LSB/MSB  
LSB/MSB data packing  
1: LSB-first packing  
0: MSB-first packing  
0
R/W  
5
4
3
2
1
0
SoftReset  
Reserved  
Reserved  
SoftReset  
LSB/MSB  
SDIO_DIR  
1: performs a software-based reset  
Must be set to 0; reserved (short addressing mode)  
Mirror Bit 4 for safety  
0
0
0
0
0
1
R/W  
R/W  
R
Mirror Bit 5 for safety  
R
Mirror Bit 6 for safety  
R
Mirror Bit 7 for safety  
R
Power Control Register  
Address: 0x01, Reset: 0x48, Name: Power-Down  
Table 19. Bit Descriptions for Power-Down  
Bits Bit Name  
Description  
Reset  
Access  
7
6
5
BG_PD  
Band gap power-down  
1: band gap is powered down  
0: band gap is active  
0
R/W  
IREF_PD  
BIAS_PD  
IREF power-down  
1: FSC is 0 mA  
0: FSC is as programmed  
1
0
R/W  
R/W  
Bias power-down  
1: all bias currents are off  
0: all bias currents are on  
4
3
2
Reserved  
Reserved  
0
1
0
R/W  
R/W  
R/W  
Reserved  
Must be set to 1; reserved  
CLKPATH_PD  
Clock path power-down  
1: DAC clock is powered down  
0: DAC clock is active  
1
0
Retimer_PD  
DLL_PD  
1: PLL is powered down  
0
0
R/W  
R/W  
DLL (data receiver) power-down  
1: DLL (data receiver) is powered down  
Rev. 0 | Page 56 of 68  
Data Sheet  
AD9119/AD9129  
Interrupt Enable Register 0  
Address: 0x03, Reset: 0x00, Name: IRQ Enable 0  
Table 20. Bit Descriptions for IRQ Enable 0  
Bits Bit Name  
Description  
Reset Access  
7
6
5
FIFO_Warn2 interrupt enable  
Enables the FIFO warning within two slots of overwrite interrupt  
Enables the FIFO warning within one slot of overwrite interrupt  
0
0
0
R/W  
R/W  
R/W  
FIFO_Warn1 interrupt enable  
SPIFrmAck interrupt enable  
Enables the FIFO SPI-based calibration acknowledgement of SPIFrmReq  
(Address 0x11, Bit 7) going from 0b to1b  
4
3
2
1
0
Reserved  
Reserved  
0
0
0
0
0
R
DLL warn interrupt enable  
DLL lock interrupt enable  
Retimer lost interrupt enable  
Retimer lock interrupt enable  
Enables the DLL warning flag that the data receiver is no longer locked  
Enables the DLL warning flag that the data receiver is now locked  
Enables the retimer lost interrupt indication  
Enables the retimer lock interrupt indication  
R/W  
R/W  
R/W  
R/W  
Interrupt Enable Register 1  
Address: 0x04, Reset: 0x00, Name: IRQ Enable 1  
Table 21. Bit Descriptions for IRQ Enable 1  
Bits Bit Name  
Description  
Reset Access  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
AED pass interrupt enable  
AED fail interrupt enable  
SED fail interrupt enable  
Enables the AED pass interrupt reporting saying that eight valid samples captured  
Enables the AED fail interrupt reporting that a miscompare occurred  
Enables the SED fail interrupt reporting that a miscompare occurred  
Parity error falling edge enable Enables the parity fail due to a falling edge-based parity detected error  
Parity error rising edge enable  
Reserved  
Enables the parity fail due to a rising edge-based parity detected error  
Reserved  
Reserved  
Reserved  
R
Interrupt Status Register 0  
Address: 0x05, Reset: 0x00, Name: IRQ Request 0  
Table 22. Bit Descriptions for IRQ Request 0  
Bits Bit Name  
Description  
Reset Access  
7
6
5
4
3
FIFO_Warn2 interrupt status  
Indicates that the FIFO is within two slots of overwrite  
Indicates that the FIFO is within one slot of overwrite  
Indicates acknowledgement of SPIFrmReq has changed from 0b to1b  
Reserved  
0
0
0
0
0
R
R
R
R
R
FIFO_Warn1 interrupt status  
SPIFrmAck interrupt status  
Reserved  
DLL warn interrupt status  
Indicates that the DLL (data receiver) is close to coming unlocked and action is  
needed  
2
1
0
DLL lock interrupt status  
Indicates that the DLL (data receiver) is now locked  
Indicates that the retimer PLL is no longer locked  
Indicates that the retimer PLL is now locked  
0
0
0
R
R
R
Retimer lost interrupt status  
Retimer lock interrupt status  
Rev. 0 | Page 57 of 68  
AD9119/AD9129  
Data Sheet  
Interrupt Status Register1  
Address: 0x06, Reset: 0x00, Name: IRQ Request 1  
Table 23. Bit Descriptions for IRQ Request 1  
Bits Bit Name  
Description  
Reset Access  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
AED pass interrupt status  
AED fail interrupt status  
SED fail interrupt status  
Indicates that the AED logic has captured eight valid samples  
Indicates that the AED logic has detected a miscompare  
Indicates that the SED logic has detected a miscompare  
Parity error falling edge status Indicates a parity fault due to data captured on the falling edge  
Parity error rising edge status  
Reserved  
Indicates a parity fault due to data captured on the rising edge  
Reserved  
Reserved  
Reserved  
Frame Pin Usage Register  
Address: 0x07, Reset: 0x00, Name: Frame Pin Usage  
Table 24. Bit Descriptions for Frame Pin Usage  
Bits Bit Name  
Description  
Reserved  
Reset Access  
7
6
5
Reserved  
Reserved  
ParUsage  
0
0
0
R/W  
R/W  
R
Reserved  
1: FRM_x pin is in parity mode, and parity is enabled  
Note that parity must be enabled, and the type must be chosen in Register 0x5C[7:6]  
4
FrmUsage  
1: FRM_x pin is in frame mode and enable pin framing (Register 0x11[5] = 1b) is  
enabled  
0
R
3
2
Reserved  
Reserved  
Reserved  
Reserved  
0
R
0
R
[1:0] FRM_x pin usage mode  
3: reserved  
2: frame  
0x0  
R/W  
1: parity  
0: no effect  
Reserved_0 Register  
Address: 0x08, Reset: 0x58, Name: Reserved_0  
Table 25. Bit Descriptions for Reserved_0  
Bits Bit Name  
Description  
Reset Access  
0x58  
[7:0] Reserved  
Must keep default (reset) value; reserved  
R
Data Receiver Control 0 Register  
Address: 0x0A, Reset: 0x40, Name: Data Ctrl 0  
Table 26. Bit Descriptions for Data Ctrl 0  
Bits Bit Name  
Description  
Reset Access  
7
DLL enable  
1: enables DLL  
0: disables DLL  
0
R/W  
6
Duty cycle correction enable 1: enables duty cycle correction  
0: disables duty cycle correction  
1
R/W  
5
4
Reserved  
Reserved  
Reserved  
0
R/W  
R/W  
R/W  
Reserved  
0
[3:0] Phase offset  
Locked phase = 90° n × 11.25°, where n is the 4-bit signed magnitude number  
0x0  
Rev. 0 | Page 58 of 68  
Data Sheet  
AD9119/AD9129  
Data Receiver Control 1 Register  
Address: 0x0B, Reset: 0x29, Name: Data Ctrl 1  
Table 27. Bit Descriptions for Data Ctrl 1  
Bits Bit Name  
Description  
Reset  
Access  
R/W  
7
6
Warn clear  
1: clears data receiver warning bit  
0
0
Lock delay divider  
1: long delay  
0: short delay  
R/W  
[5:4] Controller clock divider  
Controller clock divider  
00: DCI/4  
01: DCI/16  
10: DCI/64  
11: DCI/512  
0x2  
0x9  
R/W  
[3:0] Delay line middle set  
Sets nominal delay line delay  
R/W  
Data Receiver Control 2 Register  
Address: 0x0C, Reset: 0x23, Name: Data Ctrl 2  
Table 28. Bit Descriptions for Data Ctrl 2  
Bits Bit Name  
Description  
Reset  
0
Access  
R/W  
7
6
Reserved  
Reserved  
DCO enable  
1: enables DCO output driver  
0
R/W  
[5:3] Maximum delay set  
[2:0] Minimum delay set  
Sets maximum delay line delay (larger number = longer delay line)  
Sets minimum delay line delay (larger number = smaller delay line)  
0x2  
0x3  
R/W  
R/W  
Data Receiver Control 3 Register  
Address: 0x0D, Reset: 0x04, Name: Data Ctrl 3  
Table 29. Bit Descriptions for Data Ctrl 3  
Bits Bit Name  
Description  
Reset  
0x00  
0x2  
Access  
R
[7:3] Reserved  
Reserved.  
[2:1] Duty correction BW set  
Controller clock divider.  
00: highest BW.  
01: higher BW.  
R/W  
10: lower BW.  
11: lowest BW.  
0
Reserved  
Reserved  
0
R/W  
Data Receiver Status 0 Register  
Address: 0x0E, Reset: 0x00, Name: Data Status 0  
Table 30. Bit Descriptions for Data Status 0  
Bits Bit Name  
Description  
Reset  
Access  
7
6
5
4
3
DLL lock  
1: DLL lock  
0
0
0
0
0
R
R
R
R
R
DLL warning  
1: DLL near beginning/end of delay line  
DLL delay line start warning 1: DLL at beginning of delay line  
DLL delay line end warning 1: DLL at end of delay line  
DLL correct phase  
1: data is sampled on correct phase  
0: data is sampled on incorrect phase.  
1: user has provided a clock > 100 MHz  
2
1
DCI on  
0
0
R
R
DLL lock phase  
1: DLL is locked on negative half of DCI.  
0: DLL is locked on positive half of DCI  
0
DLL running  
1: closed loop DLL attempting to lock  
0: delay fixed at middle of delay line  
0
R
Rev. 0 | Page 59 of 68  
AD9119/AD9129  
Data Sheet  
FIFO Control Register  
Address: 0x11, Reset: 0x00, Name: FIFO Ctrl  
Table 31. Bit Descriptions for FIFO Ctrl  
Bits  
Bit Name  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R
7
SPIFrmReq  
Requests a SPI-based FIFO alignment (FIFO reset)  
Acknowledges SPIFrmReq change (tracks SPIFrmReq setting)  
1: enables hardware pin-based FIFO framing  
Reserved  
0
6
SPIFrmAck  
0
5
Enable pin framing  
0
[4:1] Reserved  
0x0  
0
0
Phase report enable  
1: enables FIFO phase reporting  
R/W  
FIFO Offset Register  
Address: 0x12, Reset: 0x04, Name: FIFO Offset  
Table 32. Bit Descriptions for FIFO Offset  
Bits Bit Name  
Reserved  
[6:4] RdPtrOff[2:0]  
Reserved  
[2:0] WtPtrOff[2:0]  
Description  
Reset  
0
Access  
R
7
Reserved  
FIFO read pointer offset  
Reserved  
0x0  
0
R/W  
R
3
FIFO write pointer offset  
0x4  
R/W  
FIFO Thermometer for Phase 0 Status Register  
Address: 0x13, Reset: 0x00, Name: FIFO PH0 THRM  
Table 33. Bit Descriptions for FIFO PH0 THRM  
Bits Bit Name  
Reserved  
[6:0] Phz0Thrm  
Description  
Reset  
0
Access  
7
Reserved  
R
R
Phase 0-based FIFO thermometer status. Phase 0 relative FIFO phasing, as 0000000b  
to 1111111b, where 0000011b is considered the middle of the FIFO storage space.  
0x00  
FIFO Thermometer for Phase 1 Status Register  
Address: 0x14, Reset: 0x00, Name: FIFO PH1 THRM  
Table 34. Bit Descriptions for FIFO PH1 THRM  
Bits Bit Name  
Reserved  
[6:0] Phz1Thrm  
Description  
Reset  
0
Access  
7
Reserved  
R
R
Phase 1-based FIFO thermometer status. Phase 1 relative FIFO phasing, as 0000000b  
to 1111111b, where 0000011b is considered the middle of the FIFO storage space.  
0x00  
FIFO Thermometer for Phase 2 Status Register  
Address: 0x15, Reset: 0x00, Name: FIFO PH2 THRM  
Table 35. Bit Descriptions for FIFO PH2 THRM  
Bits Bit Name  
Reserved  
[6:0] Phz2Thrm  
Description  
Reset  
0
Access  
7
Reserved  
R
R
Phase 2-based FIFO thermometer status. Phase 2 relative FIFO phasing, as 0000000b  
to 1111111b, where 0000011b is considered the middle of the FIFO storage space.  
0x00  
FIFO Thermometer for Phase 3 Status Register  
Address: 0x16, Reset: 0x00, Name: FIFO PH3 THRM  
Table 36. Bit Descriptions for FIFO PH3 THRM  
Bits Bit Name  
Reserved  
[6:0] Phz3Thrm  
Description  
Reset  
0
Access  
7
Reserved  
R
R
Phase 3-based FIFO thermometer status. Phase 3 relative FIFO phasing, as 0000000b  
to 1111111b, where 0000011b is considered the middle of the FIFO storage space.  
0x00  
Rev. 0 | Page 60 of 68  
 
Data Sheet  
AD9119/AD9129  
Data Mode Control Register  
Address: 0x18, Reset: 0x00, Name: Data Mode Ctrl  
Table 37. Bit Descriptions for Data Mode Ctrl  
Bits Bit Name  
Description  
Reset Access  
7
6
Filter enable  
Binary select  
1: enables 2× interpolation filter  
0: bypasses 2× interpolation filter  
0
R/W  
Selects input data format  
1: unsigned  
0
R/W  
0: signed  
5
FILT_SEL  
2× interpolator filter select  
1: 40 dB OOB rejection  
0: 25 dB out-of-band (OOB) rejection  
0
0
R
R
[4:0] Reserved  
Reserved  
Decoder Control (Program Thermometer Type) Register  
Address: 0x19, Reset: 0x00, Name: Decode Ctrl  
Table 38. Bit Descriptions for Decode Ctrl  
Bits Bit Name  
Description  
Reset Access  
[7:1] Reserved  
Reserved  
0x00  
0
R
0
Mix-Mode enable  
1: Mix-Mode  
0: normal  
R/W  
Sync Control Register  
Address: 0x1A, Reset: 0x00, Name: Sync  
Table 39. Bit Descriptions for Sync  
Bits Bit Name  
Description  
Reset Access  
7
6
5
4
Inc latency  
Dec latency  
Reserved  
Increment delay by 1  
Decrement delay by 1  
0
0
0
0
R/W  
R/W  
R
Reserved  
Sync enable  
1: multi-DAC sync output pin enabled  
0: multi-DAC sync output pin disabled  
1: last increment or decrement request is complete  
R/W  
3
Sync done  
0
0
R
R
[2:0] Phase readback  
Readback of existing SYNC phase delay value  
Full-Scale Current Adjust (Lower) Register  
Address: 0x20, Reset: 0x00, Name: FSC_1  
Table 40. Bit Descriptions for FSC_1  
Bits Bit Name  
Description  
DAC gain adjust; DAC full-scale current (LSB)  
Reset Access  
0x00 R/W  
[7:0] Full-scale current, Bits[7:0]  
Full-Scale Current Adjust (Upper) Register  
Address: 0x21 Reset: 0x02, Name: FSC_2  
Table 41. Bit Descriptions for FSC_2  
Bits Bit Name  
Description  
Reset Access  
7
Reserved  
Reserved  
0
R/W  
R
[6:2] Reserved  
Reserved  
0
[1:0] Full-scale current, Bits[9:8]  
DAC gain adjust; DAC full-scale current (MSB)  
0x02  
R/W  
Rev. 0 | Page 61 of 68  
 
 
 
AD9119/AD9129  
Data Sheet  
Analog Control 1 Register  
Address: 0x22, Reset: 0x00, Name: ANA_CNT1  
Table 42. Bit Descriptions for ANA_CNT1  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] Reserved  
Reserved  
0x0  
R/W  
Analog Control 2 Register  
Address: 0x23, Reset: 0x0C, Name: ANA_CNT2  
Table 43. Bit Descriptions for ANA_CNT2  
Bits Bit Name  
Description  
Reserved  
Reset  
Access  
[7:0] Reserved  
0x0C  
R/W  
Clock Control 1 Register  
Address: 0x30, Reset: 0x00, Name: CLK REG1  
Table 44. Bit Descriptions for CLK REG1  
Bits Bit Name  
Description  
Reset  
Access  
R/W  
7
6
Reserved  
Must be set to 0; reserved  
0
0
0
0
0
Cross enable  
Enables zero-crossing control  
Adjusts zero-crossing control location (signed magnitude)  
Enables duty cycle correction  
Must be set to 0  
R/W  
[5:2] Cross location  
R/W  
1
0
Duty enable  
R/W  
Select internal  
R/W  
Retimer Control 0 Register  
Address: 0x33, Reset: 0x30, Name: Retimer Ctrl 0  
Table 45. Bit Descriptions for Retime Ctrl 0  
Bits Bit Name  
Description  
Reset  
0x3  
0
Access  
[7:4] Phase step  
4-bit signed magnitude; PFD phase step = n × 30°  
R/W  
3
2
Clear lost  
Clear lost status bit  
1: divide-by-4  
PLL divider  
0
0: divide-by-8  
[1:0] Retimer mode  
0: enable PFD, normal mode  
1: reserved  
0x0  
2: reserved  
3: reserved  
Retimer Control 1 Register  
Address: 0x34, Reset: 0x55, Name: Retimer Ctrl 1  
Table 46. Bit Descriptions for Retimer Ctrl 1  
Bits Bit Name  
Description  
Reset  
0x5  
0
Access  
R/W  
[7:4] Reserved  
Reserved  
3
PLL reset_Z  
1: normal operation for DAC clock PLL  
0: resets the DAC clock PLL  
Reserved  
R/W  
[2:0] Reserved  
0x5  
R/W  
Retimer Status 0 Register  
Address: 0x35, Reset: 0x00, Name: Retimer Stat 0  
Table 47. Bit Descriptions for Retimer Stat 0  
Bits Bit Name  
Description  
Reset  
0
Access  
7
6
PLL lock  
PLL lost  
1: retimer PLL locked  
1: retimer PLL lost (can be sticky)  
Reserved  
R
R
R
R
0
[5:4] Reserved  
[3:0] Reserved  
0x0  
0x0  
Reserved  
Rev. 0 | Page 62 of 68  
 
Data Sheet  
AD9119/AD9129  
Sample Error Detection (SED) Control Register  
Address: 0x50, Reset: 0x00, Name: SED Control  
Table 48. Bit Descriptions for SED Control  
Bits Bit Name  
Description  
Reset  
Access  
R/W  
R/W  
R/W  
R
7
6
5
4
3
2
1
0
SED enable  
SED error clear  
AED enable  
Reserved  
Reserved  
AED pass  
AED fail  
1: setting this bit to 1 enables the SED compare logic  
1: clears all SED reported error bits below  
1: enables the AED function (SED with autoclear after eight passing sets)  
Must be set to 0; reserved  
0
0
0
0
0
0
0
0
Must be set to 0; reserved  
R
1: signals eight true compare cycles  
1: signals a miscompare  
R/W  
R
SED fail  
1: signals an SED miscompare (with SED or AED enabled)  
R
Sample Error Detection (SED) Data Port 0 Rising Edge Status Low Register  
Address: 0x51, Reset: 0x00, Name: SED Patt/Err R0L  
Table 49. Bit Descriptions for SED Patt/Err R0L  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] SED Data Port 0 rising edge low part error bits  
SED Data Port 0 rising edge error, Bits[7:0]  
0x00  
R
Sample Error Detection (SED) Data Port 0 Rising Edge Status High Register  
Address: 0x52, Reset: 0x000, Name: SED Patt/Err R0H  
Table 50. Bit Descriptions for SED Patt/Err R0H  
Bits Bit Name  
Description  
Reset  
0x0  
Access  
[7:6] Reserved  
Reserved  
R
R
[5:0] SED Data Port 0 rising edge high part error bits  
SED Data Port 0 rising edge error, Bits[13:8]  
0x00  
Sample Error Detection (SED) Data Port 1 Rising Edge Status Low Register  
Address: 0x53, Reset: 0x00, Name: SED Patt/Err R1L  
Table 51. Bit Descriptions for SED Patt/Err R1L  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] SED Data Port 1 rising edge low part error bits  
SED Data Port 1 rising edge error, Bits[7:0]  
0x00  
R
Sample Error Detection (SED) Data Port 1 Rising Edge Status High Register  
Address: 0x54, Reset: 0x00, Name: SED Patt/Err R1H  
Table 52. Bit Descriptions for SED Patt/Err R1H  
Bits Bit Name  
Description  
Reset  
0x0  
Access  
[7:6] Reserved  
Reserved  
R
R
[5:0] SED Data Port 1 rising edge high part error bits  
SED Data Port 1 rising edge error, Bits[13:8]  
0x00  
Rev. 0 | Page 63 of 68  
AD9119/AD9129  
Data Sheet  
Sample Error Detection (SED) Data Port 0 Falling Edge Status Low Register  
Address: 0x55, Reset: 0x00, Name: SED Patt/Err F0L  
Table 53. Bit Descriptions for SED Patt/Err F0L  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] SED Data Port 0 falling edge low part error bits  
SED Data Port 0 falling edge error, Bits[7:0]  
0x00  
R
Sample Error Detection (SED) Data Port 0 Falling Edge Status High Register  
Address: 0x56, Reset: 0x000, Name: SED Patt/Err F0H  
Table 54. Bit Descriptions for SED Patt/Err F0H  
Bits Bit Name  
Description  
Reset  
0x0  
Access  
[7:6] Reserved  
Reserved  
R
R
[5:0] SED Data Port 0 falling edge high part error bits  
SED Data Port 0 falling edge error, Bits[13:8]  
0x00  
Sample Error Detection (SED) Data Port 1 Falling Edge Status Low Register  
Address: 0x57, Reset: 0x00, Name: SED Patt/Err F1L  
Table 55. Bit Descriptions for SED Patt/Err F1L  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] SED Data Port 1 falling edge low part error bits  
SED Data Port 1 falling edge error, Bits[7:0]  
0x00  
R
Sample Error Detection (SED) Data Port 1 Falling Edge Status High Register  
Address: 0x58, Reset: 0x00, Name: SED Patt/Err F1H  
Table 56. Bit Descriptions for SED Patt/Err F1H  
Bits Bit Name  
Description  
Reset  
0x0  
Access  
[7:6] Reserved  
Reserved  
R
R
[5:0] SED Data Port 1 falling edge high part error bits  
SED Data Port 1 falling edge error, Bits[13:8]  
0x00  
Parity Control Register  
Address: 0x5C, Reset: 0x00, Name: Parity Control  
Table 57. Bit Descriptions for Parity Control  
Bits Bit Name  
Description  
Reset  
0x00  
0
Access  
R/W  
7
6
Parity enable  
Parity even  
1: enables parity  
1: even parity; if the parity bit from the FRM_x pin = 1,  
the number of 1s in the word is even  
R/W  
0: odd parity; if the parity bit from the FRM_x pin = 1,  
the number of 1s in the word is odd  
Note that the parity bit must be enabled in Register 0x07  
5
Parity error clear  
1: clears parity error counters  
0
R/W  
R
[4:2] Reserved  
Reserved  
0x0  
0
1
0
Parity error falling edge  
Parity error rising edge  
1: signals detection of a falling edge parity error  
1: signals detection of a rising edge parity error  
R
0
R
Parity Rising Edge Count Register  
Address: 0x5D, Reset: 0x00, Name: Parity Err Rising  
Table 58. Bit Descriptions for Parity Err Rising  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] Parity rising edge error count  
Number of rising edge-based errors detected, clipped to 256  
0x00  
R
Parity Falling Edge Count Register  
Address: 0x5E, Reset: 0x00, Name: Parity Err Falling  
Table 59. Bit Descriptions for Parity Err Falling  
Bits Bit Name  
Description  
Reset  
Access  
[7:0] Parity falling edge error count  
Number of falling edge-based errors detected, clipped to 256  
Rev. 0 | Page 64 of 68  
0x00  
R
Data Sheet  
AD9119/AD9129  
Delay Control Register 0  
Address: 0x70, Reset: 0xFF, Name: Delay Ctrl 0  
Table 60. Bit Descriptions for Delay Ctrl 0  
Bits Bit Name  
Description  
Reset Access  
[7:0] Enable delay cell  
Sets each bit to enable or disable the delay cell, Bits[7:0]; delay cell number corresponds to bit  
0xFF  
R/W  
number  
1: enables delay cell (default)  
0: disables delay cell  
Delay Control Register 1  
Address: 0x71, Reset: 0x67, Name: Delay Ctrl 1  
Table 61. Bit Descriptions for Delay Ctrl 1  
Bits Bit Name  
Description  
Reset Access  
[7:3] Reserved  
Reserved  
0x60  
0x7  
R/W  
R/W  
[2:0] Enable delay cell  
Sets each bit to enable or disable the delay cell, Bits[10:8]; delay cell numbers are 10, 9,  
and 8, which correspond to Bit 2, Bit 1, and Bit 0, respectively  
1: enables delay cell (default)  
0: disables delay cell  
Drive Strength Register  
Address: 0x7C, Reset: 0x7C, Name: Drive Strength  
Table 62. Bit Descriptions for Drive Strength  
Bits Bit Name  
Description  
Reset Access  
[7:6] DCO drive strength  
Sets DCO drive strength  
00: 2 mA  
0x1  
R/W  
01: 2.8 mA (default)  
10: 3.4 mA  
11: 4 mA  
[5:0] Reserved  
Reserved  
0x3C  
R/W  
Part ID Register  
Address: 0x7F, Reset: 0x03 or 0x83, Name: Part ID  
Table 63. Bit Descriptions for Part ID  
Bits Bit Name  
Description  
Reset Access  
[7:0] Part ID  
Version information  
0x07 = the AD9129 (14-bit version)  
0x87 = the AD9119 (11-bit version)  
0x07  
or  
0x87  
R
Rev. 0 | Page 65 of 68  
AD9119/AD9129  
Data Sheet  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
13 11  
14 12 10  
9
7
5
3
1
8
6
4
2
A
B
C
D
E
F
10.40  
BSC SQ  
G
H
J
K
L
0.80  
BSC  
M
N
P
BOTTOM VIEW  
DETAIL A  
TOP VIEW  
1.00 MAX  
0.85 MIN  
DETAIL A  
0.43 MAX  
1.40 MAX  
0.25 MIN  
0.55  
0.50  
0.45  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT WITH JEDEC STANDARDS MO-275-GGAA-1.  
Figure 157. 160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-160-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
AD9119BBCZ  
AD9119BBCZRL  
AD9119-EBZ  
AD9119-MIX-EBZ  
AD9119-CBLTX-EBZ  
AD9129BBCZ  
AD9129BBCZRL  
AD9129BBC  
AD9129BBCRL  
AD9129-EBZ  
AD9129-MIX-EBZ  
AD9129-CBLTX-EBZ  
−40°C to +85°C  
−40°C to +85°C  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board for Normal Mode Evaluation  
Evaluation Board for Mix-Mode Evaluation  
Evaluation Board for Cable Transmitter Evaluation  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board for Normal Mode Evaluation  
Evaluation Board for Mix-Mode Evaluation  
BC-160-1  
BC-160-1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
BC-160-1  
BC-160-1  
BC-160-1  
BC-160-1  
Evaluation Board for Cable Transmitter Evaluation  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 66 of 68  
 
 
 
Data Sheet  
NOTES  
AD9119/AD9129  
Rev. 0 | Page 67 of 68  
AD9119/AD9129  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11149-0-1/13(0)  
Rev. 0 | Page 68 of 68  
 

相关型号:

AD9119BBCZRL

11-/14-Bit, 5.6 GSPS, RF Digital-to-Analog Converter
ADI

AD9122

Dual, 16-Bit, 1200 MSPS, TxDAC+® Digital-to-Analog Converter
ADI

AD9122-EP

TxDAC Digital-to-Analog Converter
ADI

AD9122-M5372-EBZ

Dual, 16-Bit, 1200 MSPS, TxDAC+® Digital-to-Analog Converter
ADI

AD9122-M5375-EBZ

Dual, 16-Bit, 1200 MSPS, TxDAC+® Digital-to-Analog Converter
ADI

AD9122BCPZ

Dual, 16-Bit, 1200 MSPS, TxDAC+® Digital-to-Analog Converter
ADI

AD9122BCPZRL

Dual, 16-Bit, 1200 MSPS, TxDAC+® Digital-to-Analog Converter
ADI

AD9122SCPZ-EP

TxDAC Digital-to-Analog Converter
ADI

AD9122SCPZ-EP-RL

TxDAC Digital-to-Analog Converter
ADI

AD9125

Dual, 16-Bit, 1000 MSPS, TxDAC+ Digital-to-Analog Converter
ADI

AD9125-M5372-EBZ

Dual, 16-Bit, 1000 MSPS, TxDAC+ Digital-to-Analog Converter
ADI

AD9125-M5375-EBZ

Dual, 16-Bit, 1000 MSPS, TxDAC+ Digital-to-Analog Converter
ADI