AD9211_07 [ADI]

10-Bit, 200 MSPS/250 MSPS/300 MSPS, 1.8 V Analog-to-Digital Converter; 10位, 200 MSPS / 250 MSPS / 300 MSPS , 1.8 V模拟数字转换器
AD9211_07
型号: AD9211_07
厂家: ADI    ADI
描述:

10-Bit, 200 MSPS/250 MSPS/300 MSPS, 1.8 V Analog-to-Digital Converter
10位, 200 MSPS / 250 MSPS / 300 MSPS , 1.8 V模拟数字转换器

转换器
文件: 总28页 (文件大小:1400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 200 MSPS/250 MSPS/300 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9211  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RBIAS  
PWDN  
AGND  
AVDD (1.8V)  
SNR = 60.1 dBFS @ fIN up to 70 MHz @ 300 MSPS  
ENOB of 9.7 @ fIN up to 70 MHz @ 300 MSPS (−1.0 dBFS)  
SFDR = −80 dBc @ fIN up to 70 MHz @ 300 MSPS (−1.0 dBFS)  
Excellent linearity  
REFERENCE  
AD9211  
DRVDD  
DGND  
VIN+  
VIN–  
DNL = 0.1 LSB typical  
TRACK-AND-HOLD  
INL = 0.2 LSB typical  
10  
10  
ADC  
10-BIT  
CORE  
OUTPUT  
STAGING  
LVDS  
D9 TO D0  
LVDS at 300 MSPS (ANSI-644 levels)  
700 MHz full power analog bandwidth  
On-chip reference, no external decoupling required  
Integrated input buffer and track-and-hold  
Low power dissipation  
CLK+  
CLK–  
CLOCK  
MANAGEMENT  
OR+  
OR–  
SERIAL PORT  
DCO+  
DCO–  
437 mW @ 300 MSPS—LVDS SDR mode  
410 mW @ 300 MSPS—LVDS DDR mode  
Programmable input voltage range  
1.0 V to 1.5 V, 1.25 V nominal  
RESET SCLK SDIO CSB  
Figure 1.  
1.8 V analog and digital supply operation  
Selectable output data format (offset binary, twos  
complement, Gray code)  
Clock duty cycle stabilizer  
Integrated data capture clock  
APPLICATIONS  
Wireless and wired broadband communications  
Cable reverse path  
Communications test equipment  
Radar and satellite subsystems  
Power amplifier linearization  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9211 is a 10-bit monolithic sampling analog-to-digital  
converter optimized for high performance, low power, and ease  
of use. The product operates at up to a 300 MSPS conversion  
rate and is optimized for outstanding dynamic performance  
in wideband carrier and broadband systems. All necessary  
functions, including a track-and-hold (T/H) and voltage  
reference, are included on the chip to provide a complete  
signal conversion solution.  
1. High Performance—Maintains 60.1 dBFS SNR @  
300 MSPS with a 70 MHz input.  
2. Low Power—Consumes only 410 mW @ 300 MSPS.  
3. Ease of Use—LVDS output data and output clock signal  
allow interface to current FPGA technology. The on-chip  
reference and sample-and-hold provide flexibility in  
system design. Use of a single 1.8 V supply simplifies  
system power supply design.  
4. Serial Port Control—Standard serial port interface  
supports various product functions, such as data  
formatting, disabling the clock duty cycle stabilizer, power-  
down, gain adjust, and output test pattern generation.  
5. Pin-Compatible Family—12-bit pin-compatible family  
offered as AD9230.  
The ADC requires a 1.8 V analog voltage supply and a  
differential clock for full performance operation. The digital  
outputs are LVDS (ANSI-644) compatible and support either  
twos complement, offset binary format, or Gray code. A data  
clock output is available for proper output data timing.  
Fabricated on an advanced CMOS process, the AD9211 is  
available in a 56-lead LFCSP, specified over the industrial  
temperature range (−40°C to +85°C).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD9211  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 19  
Analog Input and Voltage Reference ....................................... 19  
Clock Input Considerations...................................................... 20  
Power Dissipation and Power-Down Mode ........................... 21  
Digital Outputs ........................................................................... 21  
Timing ......................................................................................... 22  
RBIAS........................................................................................... 22  
AD9211 Configuration Using the SPI..................................... 22  
Hardware Interface..................................................................... 23  
Configuration Without the SPI ................................................ 23  
Memory Map .................................................................................. 25  
Reading the Memory Map Table.............................................. 25  
Reserved Locations .................................................................... 25  
Default Values............................................................................. 25  
Logic Levels................................................................................. 25  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagrams.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 13  
Equivalent Circuits......................................................................... 18  
REVISION HISTORY  
5/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD9211  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 1.  
AD9211-200  
AD9211-250  
AD9211-300  
Parameter1  
RESOLUTION  
ACCURACY  
Temp Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
10  
10  
10  
Bits  
No Missing Codes  
Offset Error  
Full  
25°C  
Guaranteed  
4.3  
Guaranteed  
4.6  
Guaranteed  
4.4  
mV  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
−12  
+12  
+4.3  
+0.5  
0.35  
−13  
+13  
+4.3  
+0.5  
0.45  
−13  
−2.2  
−0.5  
−0.7  
+13  
+4.3  
+0.5  
+0.7  
mV  
Gain Error  
1.0  
0.1  
0.2  
1.3  
0.1  
0.2  
1.1  
0.1  
0.2  
% FS  
% FS  
LSB  
LSB  
LSB  
LSB  
−2.2  
−0.5  
−0.35  
−2.2  
−0.5  
−0.45  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
μV/°C  
%/°C  
±8  
0.018  
±7  
0.018  
±6  
0.018  
Gain Error  
ANALOG INPUTS (VIN+, VIN−)  
Differential Input Voltage Range2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
POWER SUPPLY  
Full  
Full  
Full  
25°C  
0.98  
1.25  
1.4  
4.3  
2
1.5  
0.98  
1.25  
1.4  
4.3  
2
1.5  
0.98  
1.25  
1.4  
4.3  
2
1.5  
V p-p  
V
kΩ  
pF  
AVDD  
DRVDD  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
Supply Currents  
3
IAVDD  
Full  
Full  
Full  
Full  
Full  
Full  
134  
51  
35  
144  
54  
158  
53  
38  
169  
55  
189  
54  
39  
203  
57  
mA  
mA  
mA  
mW  
mW  
mW  
IDRVDD3/SDR Mode4  
IDRVDD3/DDR Mode5  
Power Dissipation3  
SDR Mode4  
333  
304  
356  
380  
353  
403  
437  
410  
468  
DDR Mode5  
1 See the AN-835 application note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 The input range is programmable through the SPI, and the range specified reflects the nominal values of each setting. See the Memory Map section.  
3 IAVDD and IDRVDD are measured with a −1 dBFS, 10.3 MHz sine input at rated sample rate.  
4 Single data rate mode; this is the default mode of the AD9211.  
5 Double data rate mode; user-programmable feature. See the Memory Map section.  
Rev. 0 | Page 3 of 28  
 
AD9211  
AC SPECIFICATIONS1  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 2.  
AD9211-200  
AD9211-250  
AD9211-300  
Parameter2  
SNR  
Temp  
Min  
Typ  
59.5  
59.3  
59.0  
Max  
Min  
Typ  
59.4  
59.3  
59.0  
Max  
Min  
Typ  
59.2  
59.1  
58.7  
Max  
Unit  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
59.0  
58.9  
58.9  
58.8  
58.5  
58.4  
58.9  
58.7  
58.8  
58.7  
58.5  
58.4  
58.6  
57.5  
58.5  
57.0  
58.3  
57.0  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 70 MHz  
fIN = 170 MHz  
SINAD  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
59.0  
58.9  
58.8  
58.7  
58.2  
58.1  
59.5  
59.2  
58.8  
58.9  
58.7  
58.8  
58.6  
58.2  
58.1  
59.4  
59.2  
59.0  
58.6  
57.3  
58.4  
57.0  
58.2  
56.7  
59.1  
59.0  
58.8  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 70 MHz  
fIN = 170 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 10 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
9.8  
9.7  
9.6  
9.7  
9.7  
9.7  
9.7  
9.7  
9.6  
Bits  
Bits  
Bits  
fIN = 170 MHz  
WORST HARMONIC (Second or Third)  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
−85  
−77  
−77  
−78  
−78  
−75  
−75  
−72  
−72  
−86  
−80  
−79  
−79  
−77  
−76  
−74  
−70  
−70  
−80  
−80  
−80  
−75  
−70  
−74  
−67  
−73  
−67  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 70 MHz  
fIN = 170 MHz  
WORST OTHER  
(SFDR Excluding Second and Third)  
fIN = 10 MHz  
fIN = 70 MHz  
fIN = 170 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
−86  
−83  
−81  
−82  
−82  
−81  
−81  
−74  
−74  
−82  
−82  
−79  
−80  
−77  
−79  
−77  
−77  
−75  
−82  
−80  
−80  
−75  
−70  
−75  
−71  
−75  
−70  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
TWO-TONE IMD  
140.2 MHz/141.3 MHz @ −7 dBFS  
170.2 MHz/171.3 MHz @ −7 dBFS  
ANALOG INPUT BANDWIDTH  
25°C  
25°C  
25°C  
−78  
−86  
700  
−87  
−82  
700  
−81  
−82  
700  
dBc  
dBc  
MHz  
1 All ac specifications tested by driving CLK+ and CLK− differentially.  
2 See the AN-835 application note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
Rev. 0 | Page 4 of 28  
 
AD9211  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 3.  
AD9211-200  
Typ Max  
AD9211-250  
Typ Max  
AD9211-300  
Typ Max  
Parameter1  
Temp Min  
Min  
Min  
Unit  
CLOCK INPUTS  
Logic Compliance  
Full  
Full  
Full  
Full  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
1.2  
6
1.2  
1.2  
V
V p-p  
V
0.2  
0.2  
6
0.2  
6
AVDD −  
0.3  
AVDD + AVDD −  
1.6  
AVDD + AVDD −  
1.6  
AVDD  
3.6  
0.8  
AVDD +  
1.6  
AVDD  
3.6  
0.3  
1.1  
1.2  
0
0.3  
1.1  
1.2  
0
Input Common-Mode Range Full  
High Level Input Voltage (VIH) Full  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance (Differential) Full  
Input Capacitance  
LOGIC INPUTS  
1.1  
1.2  
0
AVDD  
3.6  
0.8  
V
V
V
μA  
μA  
kΩ  
pF  
Full  
Full  
Full  
0.8  
−10  
−10  
16  
+10  
+10  
24  
−10  
−10  
16  
+10  
+10  
24  
−10  
−10  
16  
+10  
+10  
24  
20  
4
20  
4
20  
4
Full  
Logic 1 Voltage  
Full  
Full  
0.8 ×  
VDD  
0.8 ×  
VDD  
0.8 ×  
VDD  
V
V
Logic 0 Voltage  
0.2 ×  
0.2 ×  
0.2 ×  
AVDD  
AVDD  
AVDD  
Logic 1 Input Current (SDIO)  
Logic 0 Input Current (SDIO)  
Logic 1 Input Current  
Full  
Full  
Full  
0
−60  
55  
0
−60  
55  
0
−60  
50  
μA  
μA  
μA  
(SCLK, PWDN, CSB, RESET)  
Logic 0 Input Current  
(SCLK, PWDN, CSB, RESET)  
Input Capacitance  
LOGIC OUTPUTS2  
Full  
0
4
0
4
0
4
μA  
pF  
25°C  
VOD Differential Output Voltage Full  
247  
1.125  
454  
1.375  
247  
1.125  
454  
1.375  
247  
1.125  
454  
1.375  
mV  
V
VOS Output Offset Voltage  
Output Coding  
Full  
Twos complement, Gray code, or offset binary (default)  
1 See the AN-835 application note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 LVDS RTERMINATION = 100 Ω.  
Rev. 0 | Page 5 of 28  
 
AD9211  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 4.  
AD9211-200  
AD9211-250  
AD921-300  
Typ  
Parameter (Conditions)  
Maximum Conversion Rate  
Minimum Conversion Rate  
Temp Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Max Unit  
Full  
Full  
Full  
Full  
200  
250  
300  
MSPS  
40  
40  
40  
MSPS  
ns  
CLK+ Pulse Width High (tCH  
CLK+ Pulse Width Low (tCL)  
Output (LVDS − SDR Mode)1  
Data Propagation Delay (tPD  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
)
2.25  
2.25  
2.5  
2.5  
1.8  
1.8  
2.0  
2.0  
1.5  
1.5  
1.7  
1.7  
ns  
)
Full  
3.0  
0.2  
0.2  
3.9  
+0.1  
7
3.0  
0.2  
0.2  
3.9  
+0.1  
7
3.0  
0.2  
0.2  
3.9  
+0.1  
7
ns  
ns  
ns  
ns  
25°C  
25°C  
Full  
DCO Propagation Delay (tCPD  
)
Data to DCO Skew (tSKEW  
)
Full  
Full  
−0.3  
−0.5  
+0.5  
+0.3  
−0.3  
−0.5  
+0.5  
+0.3  
−0.3  
−0.5  
+0.5  
+0.3  
ns  
Cycles  
Latency  
Output (LVDS − DDR Mode)2  
Data Propagation Delay (tPD  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
)
Full  
3.8  
0.2  
0.2  
3.9  
+0.1  
7
3.8  
0.2  
0.2  
3.9  
+0.1  
7
3.8  
0.2  
0.2  
3.9  
+0.1  
7
ns  
ns  
ns  
ns  
25°C  
25°C  
Full  
DCO Propagation Delay (tCPD  
)
Data to DCO Skew (tSKEW  
Latency  
)
Full  
ns  
Full  
25°C  
Cycles  
ps rms  
Aperture Uncertainty (Jitter, tJ)  
0.2  
0.2  
1 See Figure 2.  
2 See Figure 3.  
Rev. 0 | Page 6 of 28  
 
AD9211  
TIMING DIAGRAMS  
N – 1  
tA  
N + 4  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCL  
1/fS  
CLK+  
CLK–  
tCPD  
DCO+  
DCO–  
tSKEW  
tPD  
Dx+  
Dx–  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
Figure 2. Single Data Rate Mode  
N – 1  
tA  
N + 4  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCL  
1/fS  
CLK+  
CLK–  
tCPD  
DCO+  
DCO–  
tSKEW  
tPD  
D0/D5+  
D0/D5–  
D5  
N – 8  
D0  
N – 7  
D5  
N – 7  
D0  
N – 6  
D5  
N – 6  
D0  
N – 5  
D5  
N – 5  
D0  
N – 4  
D5  
N – 4  
D0  
N – 3  
D4/D9+  
D4/D9–  
D9  
D4  
N – 7  
D9  
N – 7  
D4  
N – 6  
D9  
N – 6  
D4  
N – 5  
D9  
N – 5  
D4  
N – 4  
D9  
N – 4  
D4  
N – 3  
N – 8  
5 MSBs  
5 LSBs  
Figure 3. Double Data Rate Mode  
Rev. 0 | Page 7 of 28  
 
 
 
 
AD9211  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
ELECTRICAL  
AVDD to AGND  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
D0+/D0− through D9+/D9−  
to DRGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−2.0 V to +2.0 V  
−0.3 V to DRVDD + 0.3 V  
THERMAL RESISTANCE  
The exposed paddle must be soldered to the ground plane  
for the LFCSP package. Soldering the exposed paddle to the  
customer board increases the reliability of the solder joints,  
maximizing the thermal capability of the package.  
DCO to DRGND  
OR to DGND  
CLK+ to AGND  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to +3.9 V  
CLK− to AGND  
−0.3 V to +3.9 V  
VIN+ to AGND  
VIN− to AGND  
SDIO/DCS to DGND  
PWDN to AGND  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to +3.9 V  
Table 6.  
Package Type  
56-Lead LFCSP (CP-56-2)  
θJA  
θJC  
Unit  
30.4  
2.9  
°C/W  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces, and through holes, ground, and power planes  
reduces the θJA.  
CSB to AGND  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
SCLK/DFS to AGND  
ENVIRONMENTAL  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering 10 sec)  
−65°C to +125°C  
−40°C to +85°C  
300°C  
ESD CAUTION  
Junction Temperature  
150°C  
Rev. 0 | Page 8 of 28  
 
AD9211  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D1–  
D1+  
D2–  
D2+  
D3–  
1
2
3
4
5
6
7
8
9
PIN 1  
42 AVDD  
41 AVDD  
40 CML  
39 AVDD  
38 AVDD  
37 AVDD  
36 VIN–  
INDICATOR  
D3+  
AD9211  
TOP VIEW  
(Not to Scale)  
DRVDD  
DRGND  
D4–  
35 VIN+  
34 AVDD  
33 AVDD  
32 AVDD  
31 RBIAS  
30 AVDD  
29 PWDN  
D4+ 10  
D5– 11  
D5+ 12  
D6– 13  
D6+ 14  
PIN 0 (EXPOSED PADDLE) = AGND  
DNC = DO NOT CONNECT  
Figure 4. AD9211 Single Data Rate Mode Pin Configuration  
Table 7. Single Data Rate Mode Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
30, 32 to 34, 37 to 39, AVDD  
41 to 43, 46  
1.8 V Analog Supply.  
7, 24, 47  
0
8, 23, 48  
35  
DRVDD  
AGND1  
DRGND1  
VIN+  
1.8 V Digital Output Supply.  
Analog Ground.  
Digital Output Ground.  
Analog Input—True.  
36  
VIN−  
Analog Input—Complement.  
40  
CML  
Common-Mode Output Pin. Enabled through the SPI, this pin provides a reference for the  
optimized internal bias voltage for VIN+/VIN−.  
44  
45  
31  
28  
25  
CLK+  
CLK−  
RBIAS  
RESET  
SDIO/DCS  
Clock Input—True.  
Clock Input—Complement.  
Set Pin for Chip Bias Current. (Place 1% 10 kΩ resistor terminated to ground.) Nominally 0.5 V.  
CMOS-Compatible Chip Reset (Active Low).  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select  
(External Pin Mode).  
26  
27  
29  
49  
50  
51 to 54  
55  
56  
1
SCLK/DFS  
CSB  
Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode).  
Serial Port Chip Select (Active Low).  
Chip Power-Down.  
Data Clock Output—Complement.  
Data Clock Output—True.  
Do Not Connect.  
D0 Complement Output Bit (LSB).  
D0 True Output Bit (LSB).  
PWDN  
DCO−  
DCO+  
DNC  
D0−  
D0+  
D1−  
D1+  
D1 Complement Output Bit.  
D1 True Output Bit.  
2
3
4
D2−  
D2+  
D2 Complement Output Bit.  
D2 True Output Bit.  
5
6
D3−  
D3+  
D3 Complement Output Bit.  
D3 True Output Bit.  
9
10  
D4−  
D4+  
D4 Complement Output Bit.  
D4 True Output Bit.  
Rev. 0 | Page 9 of 28  
 
AD9211  
Pin No.  
11  
12  
Mnemonic  
D5−  
D5+  
Description  
D5 Complement Output Bit.  
D5 True Output Bit.  
13  
14  
D6−  
D6+  
D6 Complement Output Bit.  
D6 True Output Bit.  
15  
16  
D7−  
D7+  
D7 Complement Output Bit.  
D7 True Output Bit.  
17  
18  
D8−  
D8+  
D8 Complement Output Bit.  
D8 True Output Bit.  
19  
20  
21  
22  
D9−  
D9+  
OR−  
OR+  
D9 Complement Output Bit (MSB).  
D9 True Output Bit (MSB).  
Overrange Complement Output Bit.  
Overrange True Output Bit.  
1 AGND and DRGND should be tied to a common quiet ground plane.  
Rev. 0 | Page 10 of 28  
AD9211  
D2/D7–  
D2/D7+  
D3/D8–  
1
2
3
4
5
6
7
8
9
PIN 1  
42 AVDD  
41 AVDD  
40 CML  
39 AVDD  
38 AVDD  
37 AVDD  
36 VIN–  
INDICATOR  
D3/D8+  
(MSB) D4/D9–  
(MSB) D4/D9+  
DRVDD  
AD9211  
TOP VIEW  
(Not to Scale)  
DRGND  
OR–  
35 VIN+  
34 AVDD  
33 AVDD  
32 AVDD  
31 RBIAS  
30 AVDD  
29 PWDN  
OR+ 10  
DNC 11  
DNC 12  
DNC 13  
DNC 14  
PIN 0 (EXPOSED PADDLE) = AGND  
DNC = DO NOT CONNECT  
Figure 5. AD9211 Double Data Rate Pin Configuration  
Table 8. Double Data Rate Mode Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
30, 32 to 34, 37 to 39,  
41 to 43, 46  
AVDD  
1.8 V Analog Supply.  
7, 24, 47  
0
8, 23, 48  
35  
DRVDD  
AGND1  
DRGND1  
VIN+  
1.8 V Digital Output Supply.  
Analog Ground.  
Digital Output Ground.  
Analog Input—True.  
36  
VIN−  
Analog Input—Complement.  
40  
CML  
Common-Mode Output Pin. Enabled through the SPI, this pin provides a reference for the  
optimized internal bias voltage for VIN+/VIN−.  
44  
45  
31  
28  
25  
CLK+  
CLK−  
RBIAS  
RESET  
SDIO/DCS  
Clock Input—True.  
Clock Input—Complement.  
Set Pin for Chip Bias Current. (Place 1% 10 kΩ resistor terminated to ground.) Nominally 0.5 V.  
CMOS-Compatible Chip Reset (Active Low).  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select  
(External Pin Mode).  
26  
27  
29  
49  
50  
53  
54  
55  
56  
1
SCLK/DFS  
CSB  
PWDN  
DCO−  
DCO+  
D0/D5−  
D0/D5+  
D1/D6−  
D1/D6+  
D2/D7−  
D2/D7+  
D3/D8−  
D3/D8+  
D4/D9−  
D4/D9+  
Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode).  
Serial Port Chip Select (Active Low).  
Chip Power-Down.  
Data Clock Output—Complement.  
Data Clock Output—True.  
D1/D7 Complement Output Bit (LSB).  
D1/D7 True Output Bit (LSB).  
D2/D8 Complement Output Bit.  
D2/D8 True Output Bit.  
D3/D9 Complement Output Bit.  
D3/D9 True Output Bit.  
D4/D10 Complement Output Bit.  
D4/D10 True Output Bit.  
D5/D11 Complement Output Bit (MSB).  
D5/D11 True Output Bit (MSB).  
2
3
4
5
6
Rev. 0 | Page 11 of 28  
AD9211  
Pin No.  
Mnemonic  
OR−  
Description  
9
D6 Complement Output Bit. (This pin is disabled if Pin 21 is reconfigured through the SPI to be OR−.)  
D6 True Output Bit. (This pin is disabled if Pin 22 is reconfigured through the SPI to be OR+.)  
Do Not Connect.  
Do Not Connect. (This pin can be reconfigured as the Overrange Complement Output Bit through  
the serial port register.)  
10  
OR+  
DNC  
DNC/(OR−)  
11 to 20, 51, 52  
21  
22  
DNC/(OR+)  
Do Not Connect. (This pin can be reconfigured as the Overrange True Output Bit through the serial  
port register.)  
1 AGND and DRGND should be tied to a common quiet ground plane.  
Rev. 0 | Page 12 of 28  
AD9211  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, DCS enabled, TA = 25°C, 1.25 V p-p differential input, AIN = −1 dBFS, unless  
otherwise noted.  
0
95  
90  
85  
80  
75  
70  
65  
60  
55  
200MSPS  
10.3MHz @ –1.0dBFS  
SNR: 59.5dB  
ENOB: 9.8BITS  
SFDR: 85dBc  
–20  
–40  
SFDR  
–60  
–80  
SNR (dB)  
80  
–100  
–120  
0
25  
50  
75  
100  
0
20  
40  
60  
100  
120  
140  
160  
180  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. AD9211-200 64k Point Single-Tone FFT; 200 MSPS, 10.3 MHz  
Figure 9. AD9211-200 Single-Tone SNR/SFDR vs. Input Frequency (fIN) with  
1.25 V p-p Full Scale; 200 MSPS  
0
90  
200MSPS  
70.3MHz @ –1.0dBFS  
SNR: 59.3dB  
SFDR (dBFS)  
80  
–20  
ENOB: 9.7BITS  
SFDR: –77dBc  
70  
60  
–40  
–60  
SNR (dBFS)  
50  
40  
30  
–80  
SNR (dB)  
SFDR (dB)  
20  
10  
0
–100  
–120  
0
25  
50  
75  
100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
AMPLITUDE (dBFS)  
Figure 7. AD9211-200 64k Point Single-Tone FFT; 200 MSPS, 70.3 MHz  
Figure 10. AD9211-200 SNR/SFDR vs. Input Amplitude; 170.3 MHz  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
200MSPS  
170.3MHz @ –1.0dBFS  
SNR: 59.0dB  
ENOB: 9.6BITS  
SFDR: 77dBc  
–20  
–40  
–60  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–80  
–100  
–120  
0
25  
50  
75  
100  
0
256  
512  
768  
1024  
FREQUENCY (MHz)  
OUTPUT CODE  
Figure 8. AD9211-200 64k Point Single-Tone FFT; 200 MSPS, 170.3 MHz  
Figure 11. AD9211-200 INL; 200 MSPS  
Rev. 0 | Page 13 of 28  
 
AD9211  
0.5  
0
–20  
250MSPS  
170.3MHz @ –1.0dBFS  
SNR: 59.0dB  
ENOB: 9.7BITS  
SFDR: –79dBc  
0.4  
0.3  
0.2  
–40  
0.1  
0
–60  
–0.1  
–0.2  
–0.3  
–0.4  
–80  
–100  
–120  
–0.5  
0
256  
512  
768  
1024  
0
31.25  
62.50  
FREQUENCY (MHz)  
93.75  
125.00  
OUTPUT CODE  
Figure 12. AD9211-200 DNL; 200 MSPS  
Figure 15. AD9211-250 64k Point Single-Tone FFT; 250 MSPS, 170.3 MHz  
0
–20  
95  
90  
85  
250MSPS  
10.3MHz @ –1.0dBFS  
SNR: 59.4dB  
ENOB: 9.7BITS  
SFDR: 86dBc  
SFDR  
–40  
80  
–60  
75  
70  
65  
–80  
SNR (dB)  
–100  
60  
–120  
0
55  
31.25  
62.50  
FREQUENCY (MHz)  
93.75  
125.00  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
FREQUENCY (MHz)  
Figure 13. AD9211-250 64k Point Single-Tone FFT; 250 MSPS, 10.3 MHz  
Figure 16. AD9211-250 Single-Tone SNR/SFDR vs. Input Frequency (fIN) with  
1.25 V p-p Full Scale; 250 MSPS  
0
100  
250MSPS  
90  
70.3MHz @ –1.0dBFS  
SNR: 59.2dB  
SFDR (dBFS)  
–20  
ENOB: 9.7BITS  
SFDR: 80dBc  
80  
70  
–40  
–60  
60  
SNR (dBFS)  
50  
40  
30  
–80  
SFDR (dB)  
SNR (dB)  
20  
10  
0
–100  
–120  
0
31.25  
62.50  
93.75  
125.00  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
AMPLITUDE (dBFS)  
Figure 14. AD9211-250 64k Point Single-Tone FFT; 250 MSPS, 70.3 MHz  
Figure 17. AD9211-250 SNR/SFDR vs. Input Amplitude; 250 MSPS, 170.3 MHz  
Rev. 0 | Page 14 of 28  
AD9211  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
–20  
300MSPS  
70.3MHz @ –1.0dBFS  
SNR: 59.1dB  
ENOB: 9.7BITS  
SFDR: 80dBc  
–40  
–60  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–80  
–100  
–120  
0
256  
512  
768  
1024  
1024  
150  
0
25  
50  
75  
100  
125  
150  
OUTPUT CODE  
FREQUENCY (MHz)  
Figure 18. AD9211-250 INL; 250 MSPS  
Figure 21. AD9211-300 64k Point Single-Tone FFT; 300 MSPS, 70.3 MHz  
0.5  
0.4  
0
300MSPS  
170.3MHz @ –1.0dBFS  
SNR: 58.7dB  
ENOB: 9.7BITS  
SFDR: 80dBc  
–20  
0.3  
0.2  
–40  
–60  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
256  
512  
768  
0
25  
50  
75  
100  
125  
150  
OUTPUT CODE  
FREQUENCY (MHz)  
Figure 19. AD9211-250 DNL; 250 MSPS  
Figure 22. AD9211-300 64k Point Single-Tone FFT; 300 MSPS, 170.3 MHz  
0
–20  
95  
90  
300MSPS  
10.3MHz @ –1.0dBFS  
SNR: 59.2dB  
ENOB: 9.7BITS  
SFDR: 80dBc  
85  
SFDR  
–40  
80  
–60  
75  
70  
65  
–80  
–100  
–120  
SNR (dB)  
60  
55  
0
25  
50  
75  
100  
125  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. AD9211-300 64k Point Single-Tone FFT; 300 MSPS, 10.3 MHz  
Figure 23. AD9211-300 Single-Tone SNR/SFDR vs. Input Frequency (fIN) with  
1.25 V p-p Full Scale; 300 MSPS  
Rev. 0 | Page 15 of 28  
AD9211  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0.25  
0.20  
0.15  
0.10  
0.05  
0
SFDR (dBFS)  
SNR (dBFS)  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
SFDR (dB)  
SNR (dB)  
0
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
256  
512  
768  
1024  
AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 24. AD9211-300 SNR/SFDR vs. Input Amplitude; 300 MSPS, 170.3 MHz  
Figure 27. AD9211-300 DNL; 300 MSPS  
0.25  
0.20  
0.15  
0.10  
0.05  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR (dBFS)  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
SFDR (dBc)  
0
256  
512  
768  
1024  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
OUTPUT CODE  
AMPLITUDE (dBFS)  
Figure 25. AD9211-300 INL; 300 MSPS  
Figure 28. AD9211-300 Two-Tone SFDR vs. Input Amplitude; 300 MSPS,  
170.1 MHz, 171.1 MHz  
0
–20  
0
245.76MSPS  
190.1MHz  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
20  
40  
60  
80  
100  
120  
140  
0
30.72  
61.44  
92.16  
122.88  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. AD9211-300 64k Point, Two-Tone FFT; 300 MSPS,  
170.1 MHz, 171.1 MHz  
Figure 29. AD9211-300 64k Point FFT; Three W-CDMA Carriers,  
IF = 190.1 MHz, 245.6 MSPS  
Rev. 0 | Page 16 of 28  
AD9211  
85  
80  
75  
70  
65  
60  
55  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SFDR (dBc)  
SNR (dB)  
–0.5  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1.0  
1.1  
1.2  
1.3  
1.4  
(V)  
1.5  
1.6  
1.7  
1.8  
TEMPERATURE (°C)  
V
CM  
Figure 31. Gain vs. Temperature  
Figure 30. SNR/SFDR vs. Common-Mode Voltage;  
300 MSPS, 70.3 MHz @ −1 dBFS  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 32. Offset vs. Temperature  
Rev. 0 | Page 17 of 28  
AD9211  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
26k  
1kΩ  
CSB  
1.2V  
10k  
10kΩ  
CLK+  
CLK–  
Figure 33. Clock Inputs  
Figure 36. Equivalent CSB Input Circuit  
AVDD  
DRVDD  
AVDD  
V
VIN+  
VIN–  
BUF  
2k  
CML  
V+  
V–  
BUF  
~1.4V  
AVDD  
2kΩ  
DATAOUT–  
V–  
DATAOUT+  
V+  
BUF  
Figure 37. LVDS Outputs (Dx+, Dx−, OR+, OR−, DCO+, DCO−)  
Figure 34. Analog Inputs (VCML = ~1.4 V)  
DRVDD  
1k  
SCLK/DFS  
RESET  
PWDN  
30kΩ  
1k  
SDIO/DCS  
Figure 38. Equivalent SDIO/DCS Input Circuit  
Figure 35. Equivalent SCLK/DFS, RESET, PWDN Input Circuit  
Rev. 0 | Page 18 of 28  
 
AD9211  
THEORY OF OPERATION  
The AD9211 architecture consists of a front-end sample and  
hold amplifier (SHA) followed by a pipelined switched capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 10-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample, while the remaining stages operate on preceding  
samples. Sampling occurs on the rising edge of the clock.  
voltage of the AD8138 is easily set to AVDD/2 + 0.5 V, and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
1V p-p  
49.9  
499Ω  
AVDD  
VIN+  
33Ω  
499Ω  
523Ω  
20pF  
AD8138  
AD9211  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
0.1µF  
VIN–  
CML  
33Ω  
499Ω  
Figure 39. Differential Input Configuration Using the AD8138  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers may not be adequate to achieve  
the true performance of the AD9211. This is especially true in  
IF undersampling applications where frequencies in the 70 MHz  
to 100 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration. The signal characteristics must be considered  
when selecting a transformer. Most RF transformers saturate at  
frequencies below a few MHz, and excessive signal power can  
also cause core saturation, which leads to distortion.  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended mode. The output-  
staging block aligns the data, carries out the error correction,  
and passes the data to the output buffers. The output buffers are  
powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers  
go into a high impedance state.  
ANALOG INPUT AND VOLTAGE REFERENCE  
In any configuration, the value of the shunt capacitor, C, is  
dependent on the input frequency and may need to be reduced  
or removed.  
The analog input to the AD9211 is a differential buffer. For best  
dynamic performance, the source impedances driving VIN+  
and VIN− should be matched such that common-mode settling  
errors are symmetrical. The analog input is optimized to provide  
superior wideband performance and requires that the analog  
inputs be driven differentially. SNR and SINAD performance  
degrades significantly if the analog input is driven with a single-  
ended signal.  
15  
VIN+  
1.25V p-p  
50Ω  
2pF  
AD9211  
VIN–  
15Ω  
0.1µF  
A wideband transformer, such as Mini-Circuits® ADT1-1WT,  
can provide the differential analog inputs for applications that  
require a single-ended-to-differential conversion. Both analog  
inputs are self-biased by an on-chip resistor divider to a  
nominal 1.3 V.  
Figure 40. Differential Transformer—Coupled Configuration  
As an alternative to using a transformer-coupled input at  
frequencies in the second Nyquist zone, the AD8352 differential  
driver can be used (see Figure 41).  
V
CC  
An internal differential voltage reference creates positive and  
negative reference voltages that define the 1.25 V p-p fixed span  
of the ADC core. This internal voltage reference can be adjusted  
by means of SPI control. See the AD9211 Configuration Using  
the SPI section for more details.  
0.1µF  
11  
0.1µF  
0  
16  
1
8, 13  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
2
VIN+  
200Ω  
200Ω  
C
D
R
D
R
AD8352  
10  
C
AD9211  
Differential Input Configurations  
G
3
4
5
CML  
VIN–  
Optimum performance is achieved while driving the AD9211  
in a differential input configuration. For baseband applications,  
the AD8138 differential driver provides excellent performance  
and a flexible interface to the ADC. The output common-mode  
ANALOG INPUT  
14  
0.1µF  
0Ω  
0.1µF  
0.1µF  
Figure 41. Differential Input Configuration Using the AD8352  
Rev. 0 | Page 19 of 28  
 
 
AD9211  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be directly driven from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 45). Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages up to 3.3 V, making the  
selection of the drive logic voltage very flexible.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9211 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled into the CLK+ pin and CLK−  
pin via a transformer or capacitors. These pins are biased  
internally and require no additional bias.  
Figure 42 shows one preferred method for clocking the AD9211.  
The low jitter clock source is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD9211 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9211 and preserves the fast  
rise and fall times of the signal, which are critical to low jitter  
performance.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
CLOCK  
CLK  
INPUT  
OPTIONAL  
100  
0.1µF  
50*  
CLK+  
ADC  
AD9211  
CMOS DRIVER  
CLK  
0.1µF  
CLK–  
0.1µF  
39kΩ  
MINI-CIRCUITS  
ADT1–1WT, 1:1Z  
*50RESISTOR IS OPTIONAL.  
Figure 45. Single-Ended 1.8 V CMOS Sample Clock  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
ADC  
AD9211  
100  
50Ω  
0.1µF  
AD9510/AD9511/  
AD9512/AD9513/  
CLK–  
AD9514/AD9515  
0.1µF  
SCHOTTKY  
0.1µF  
DIODES:  
HSM2812  
CLOCK  
INPUT  
CLK  
OPTIONAL  
0.1µF  
50*  
100Ω  
Figure 42. Transformer-Coupled Differential Clock  
CLK+  
ADC  
CMOS DRIVER  
CLK  
If a low jitter clock is available, another option is to ac couple a  
differential PECL signal to the sample clock input pins, as  
shown in Figure 43. The AD9510/AD9511/AD9512/AD9513/  
AD9514/AD9515 family of clock drivers offers excellent jitter  
performance.  
AD9211  
0.1µF  
0.1µF  
CLK–  
*50RESISTOR IS OPTIONAL.  
Figure 46. Single-Ended 3.3 V CMOS Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
Clock Duty Cycle Considerations  
0.1µF  
0.1µF  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9211 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9211. When the DCS is on, noise and distortion perfor-  
mance are nearly flat for a wide range of duty cycles. However,  
some applications may require the DCS function to be off. If so,  
keep in mind that the dynamic range performance can be affected  
when operated in this mode. See the AD9211 Configuration  
Using the SPI section for more details on using this feature.  
CLOCK  
INPUT  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
100  
AD9211  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50*  
50*  
*50RESISTORS ARE OPTIONAL.  
Figure 43. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
CLK  
100  
LVDS DRIVER  
CLK  
AD9211  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles  
to allow the DLL to acquire and lock to the new rate.  
50*  
50*  
*50RESISTORS ARE OPTIONAL.  
Figure 44. Differential LVDS Sample Clock  
Rev. 0 | Page 20 of 28  
 
 
 
 
AD9211  
Clock Jitter Considerations  
DIGITAL OUTPUTS  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
Digital Outputs and Timing  
The AD9211 differential outputs conform to the ANSI-644  
LVDS standard on default power-up. This can be changed to a  
low power, reduced signal option similar to the IEEE 1596.3  
standard using the SPI. This LVDS standard can further reduce  
the overall power dissipation of the device, which reduces the  
power by ~39 mW. See the Memory Map section for more  
information. The LVDS driver current is derived on-chip and  
sets the output current at each output equal to a nominal  
3.5 mA. A 100 Ω differential termination resistor placed at the  
LVDS receiver inputs results in a nominal 350 mV swing at the  
receiver.  
SNR Degradation = 20 × log10[½ × π × fA × tJ]  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 47).  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9211.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
The AD9211 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capability  
for superior switching performance in noisy environments.  
Single point-to-point net topologies are recommended with a  
100 Ω termination resistor placed as close to the receiver as  
possible. No far-end receiver termination and poor differential  
trace routing may result in timing errors. It is recommended  
that the trace length is no longer than 24 inches and that the  
differential output traces are kept close together and at equal  
lengths.  
Refer to the AN-501 application note and the AN-756  
application note for more in-depth information about jitter  
performance as it relates to ADCs (visit www.analog.com).  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
An example of the LVDS output using the ANSI standard (default)  
data eye and a time interval error (TIE) jitter histogram with  
trace lengths less than 24 inches on regular FR-4 material is  
shown in Figure 48. Figure 49 shows an example of when the  
trace lengths exceed 24 inches on regular FR-4 material. Notice  
that the TIE jitter histogram reflects the decrease of the data eye  
opening as the edge deviates from the ideal position. It is up to  
the user to determine if the waveforms meet the timing budget  
of the design when the trace lengths exceed 24 inches.  
14  
16 BITS  
14 BITS  
12 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
500  
ANALOG INPUT FREQUENCY (MHz)  
12  
400  
Figure 47. Ideal SNR vs. Input Frequency and Jitter  
300  
10  
POWER DISSIPATION AND POWER-DOWN MODE  
200  
100  
0
8
6
4
2
0
The power dissipated by the AD9211 is proportional to its  
sample rate. The digital power dissipation does not vary much  
because it is determined primarily by the DRVDD supply and  
bias current of the LVDS output drivers.  
–100  
–200  
–300  
–400  
–500  
By asserting PWDN (Pin 29) high, the AD9211 is placed in  
standby mode or full power-down mode, as determined by the  
contents of Serial Port Register 08. Reasserting the PWDN pin  
low returns the AD9211 to its normal operational mode.  
–3 –2 –1  
0
1
2
3
–40  
–20  
0
20  
40  
TIME (ns)  
TIME (ps)  
An additional standby mode is supported by means of varying  
the clock input. When the clock rate falls below 20 MHz, the  
AD9211 assumes a standby state. In this case, the biasing network  
and internal reference remain on, but digital circuitry is powered  
down. Upon reactivating the clock, the AD9211 resumes normal  
operation after allowing for the pipeline latency.  
Figure 48. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths Less  
than 24 Inches on Standard FR-4, AD9211-250  
Rev. 0 | Page 21 of 28  
 
 
 
AD9211  
+FS – 1 LSB  
600  
400  
200  
0
12  
10  
8
OR DATA OUTPUTS  
1
0
0
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
OR  
–FS + 1/2 LSB  
0
0
1
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
6
–FS  
–FS – 1/2 LSB  
+FS  
+FS – 1/2 LSB  
–200  
–400  
–600  
4
Figure 50. OR Relation to Input Voltage and Output Data  
TIMING  
2
The AD9211 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
0
–100  
–3 –2 –1  
0
1
2
3
0
100  
TIME (ns)  
TIME (ps)  
Figure 49. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4, AD9211-250  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9211.  
These transients can degrade the converters dynamic performance.  
The AD9211 also provides data clock output (DCO) intended for  
capturing the data in an external register. The data outputs are valid  
on the rising edge of DCO.  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 12.  
If it is desired to change the output data format to twos comple-  
ment, see the AD9211 Configuration Using the SPI section.  
An output clock signal is provided to assist in capturing data  
from the AD9211. The DCO is used to clock the output data  
and is equal to the sampling clock (CLK) rate. In single data rate  
mode (SDR), data is clocked out of the AD9211 and must be  
captured on the rising edge of the DCO. In double data rate  
mode (DDR), data is clocked out of the AD9211 and must be  
captured on the rising and falling edges of the DCO. See the  
timing diagrams shown in Figure 2 and Figure 3 for more  
information.  
The lowest typical conversion rate of the AD9211 is 40 MSPS. At  
clock rates below 1 MSPS, the AD9211 assumes the standby mode.  
RBIAS  
The AD9211 requires the user to place a 10 kꢀ resistor between  
the RBIAS pin and ground. This resister should have a 1%  
tolerance and is used to set the master current reference of the  
ADC core.  
AD9211 CONFIGURATION USING THE SPI  
Output Data Rate and Pinout Configuration  
The AD9211 SPI allows the user to configure the converter for  
specific functions or operations through a structured register  
space inside the ADC. This gives the user added flexibility to  
customize device operation depending on the application.  
Addresses are accessed (programmed or readback) serially in  
one-byte words. Each byte may be further divided down into  
fields, which are documented in the Memory Map section.  
The output data of the AD9211 can be configured to drive 10  
pairs of LVDS outputs at the same rate as the input clock signal  
(single data rate, or SDR, mode), or five pairs of LVDS outputs  
at 2× the rate of the input clock signal (double data rate, or DDR,  
mode). SDR is the default mode; the device may be reconfigured  
for DDR by setting Bit 3 in Register 14 (see Table 13).  
There are three pins that define the serial port interface or SPI  
to this particular ADC. They are the SPI SCLK/DFS, SPI  
SDIO/DCS, and CSB pins. The SCLK/DFS (serial clock) is used  
to synchronize the read and write data presented the ADC. The  
SDIO/DCS (serial data input/output) is a dual-purpose pin that  
allows data to be sent and read from the internal ADC memory  
map registers. The CSB is an active low control that enables or  
disables the read and write cycles (see Table 9).  
Out-of-Range (OR)  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. OR is a digital output  
that is updated along with the data output corresponding to the  
particular sampled input voltage. Thus, OR has the same  
pipeline latency as the digital data. OR is low when the analog  
input voltage is within the analog input range and high when  
the analog input voltage exceeds the input range, as shown in  
Figure 50. OR remains high until the analog input returns to  
within the input range and another conversion is completed. By  
logically ANDing OR with the MSB and its complement, over-  
range high or underrange low conditions can be detected.  
Rev. 0 | Page 22 of 28  
 
 
 
 
AD9211  
HARDWARE INTERFACE  
Table 9. Serial Port Pins  
The pins described in Table 9 comprise the physical interface  
between the users programming device and the serial port of  
the AD9211. All serial pins are inputs with an open-drain  
configuration and should be tied to an external pull-up or pull-  
down resistor (suggested value of 10 kΩ).  
Mnemonic  
Function  
SCLK  
SCLK (Serial Clock) is the serial shift clock in.  
SCLK is used to synchronize serial interface  
reads and writes.  
SDIO (Serial Data Input/Output) is a dual-purpose  
pin. The typical role for this pin is an input and  
output depending on the instruction being sent  
and the relative position in the timing frame.  
CSB (Chip Select Bar) is an active low control that  
gates the read and write cycles.  
Master Device Reset. When asserted, device  
assumes default settings. Active low.  
SDIO  
This interface is flexible enough to be controlled by either  
PROMS or PIC mirocontrollers as well. This provides the user  
with an alternate method to program the ADC other than a SPI  
controller.  
CSB  
RESET  
If the user chooses not to use the SPI interface, some pins serve  
a dual function and are associated with a specific function when  
strapped externally to AVDD or ground during device power  
on. The Configuration Without the SPI section describes the  
strappable functions supported on the AD9230.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 51  
and Table 11.  
CONFIGURATION WITHOUT THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data then follows the instruction phase and is determined by  
the W0 and W1 bits, which is 1 or more bytes of data. All data is  
composed of 8-bit words. The first bit of each individual byte of  
serial data indicates whether this is a read or write command.  
This allows the serial data input/output (SDIO) pin to change  
direction from an input to an output.  
In applications that do not interface to the SPI control registers,  
the SPI SDIO/DCS and SPI SCLK/DFS pins can alternately  
serve as standalone CMOS-compatible control pins. When the  
device is powered up, it is assumed that the user intends to use  
the pins as static control lines for the duty cycle stabilizer. In  
this mode, the SPI CSB chip select should be connected to  
ground, which disables the serial port interface.  
Data may be sent in MSB or in LSB first mode. MSB first is  
default on power-up and can be changed by changing the con-  
figuration register. For more information about this feature and  
others, see the AN-877, Interfacing to High Speed ADCs via SPI.  
Table 10. Mode Selection  
External  
Voltage  
Mnemonic  
Configuration  
SPI SDIO/DCS  
AVDD  
AGND  
AVDD  
Duty cycle stabilizer enabled  
Duty cycle stabilizer disabled  
Twos complement enabled  
Offset binary enabled  
SPI SCLK/DFS  
AGND  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 51. Serial Port Interface Timing Diagram  
Rev. 0 | Page 23 of 28  
 
 
 
 
AD9211  
Table 11. Serial Timing Definitions  
Parameter  
Timing (minimum, ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
1
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure 51)  
tDIS_SDIO  
5
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge (not shown in Figure 51)  
Table 12. Output Data Format  
Gray Code Mode  
(SPI Accessible)  
D11 to D0  
Offset Binary  
Output Mode  
D11 to D0  
Twos Complement Mode  
D11 to D0  
Input (V)  
Condition (V)  
< 0.62  
= 0.62  
= 0  
= 0.62  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
0000 0000 00  
0000 0000 00  
0000 0000 00  
1111 1111 11  
1111 1111 11  
0000 0000 00  
0000 0000 00  
0000 0000 00  
1111 1111 11  
1111 1111 11  
0000 0000 00  
0000 0000 00  
0000 0000 00  
0000 0000 00  
0000 0000 00  
> 0.62 + 0.5 LSB  
1
Rev. 0 | Page 24 of 28  
 
AD9211  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: chip  
configuration register map (Address 0x00 to Address 0x02),  
transfer register map (Address 0xFF), and program register map  
(Address 0x08 to Address 0x2A).  
Undefined memory locations should not be written to other  
than their default values suggested in this data sheet. Addresses  
that have values marked as 0 should be considered reserved and  
have a 0 written into their registers during power-up.  
DEFAULT VALUES  
The Addr. (Hex) column of the memory map indicates the  
register address in hexadecimal, and the Default Value (Hex)  
column shows the default hexadecimal value that is already  
written into the register. The Bit 7 (MSB) column is the start of  
the default hexadecimal value given. For example, Hexadecimal  
Address 0x09, clock, has a hexadecimal default value of 0x01.  
This means Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0,  
Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in binary. The  
default value enables the duty cycle stabilizer. Overwriting this  
default so that Bit 0 = 0 disables the duty cycle stabilizer. For more  
information on this and other functions, consult the AN-877  
application note, Interfacing to High Speed ADCs via SPI.  
Coming out of reset, critical registers are preloaded with default  
values. These values are indicated in Table 13. Other registers  
do not have default values and retain the previous value when  
exiting reset.  
LOGIC LEVELS  
An explanation of various registers follows: “Bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
Table 13. Memory Map Register  
Default  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Default Notes/  
Comments  
(Hex) Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
00  
chip_port_config  
0
LSB  
first  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
0
0x18  
The nibbles  
should be  
mirrored by the  
user so that LSB  
or MSB first  
mode registers  
correctly,  
regardless of  
shift mode.  
01  
02  
chip_id  
8-bit chip ID, Bits[7:0]  
AD9211 = 0x06  
Read-  
only  
Default is unique  
chip ID, different  
for each device.  
This is a read-  
only register.  
chip_grade  
0
0
0
0
0
0
Speed grade:  
00 = 300 MSPS  
01 = 250 MSPS  
10 = 200 MSPS  
X
0
X
0
X
Read-  
only  
Child ID used to  
differentiate  
graded devices.  
Transfer Register  
FF device_update  
0
0
SW  
transfer  
0x00  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
Rev. 0 | Page 25 of 28  
 
 
 
AD9211  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default Notes/  
Comments  
(Hex) Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ADC Functions  
08  
modes  
0
0
PWDN:  
0 = full  
(default)  
1 =  
0
0
Internal power-down mode:  
000 = normal (power-up,  
default)  
001 = full power-down  
010 = standby  
0x00  
Determines  
various generic  
modes of chip  
operation.  
standby  
011 = normal (power-up)  
Note: External PWDN pin  
overrides this setting.  
09  
clock  
0
0
0
0
0
0
0
Duty  
cycle  
stabilizer:  
0 =  
disabled  
1 =  
0x01  
0x00  
enabled  
(default)  
OD  
test_io  
Reset  
Reset  
Output test mode:  
When set, the  
test data is  
placed on the  
output pins in  
place of normal  
data.  
PN23  
gen:  
1 = on  
0 = off  
(default)  
PN9 gen:  
1 = on  
0 = off  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
(default)  
0011 = −FS short  
0100 = checker board output  
0101 = PN 23 sequence  
0110 = PN 9  
0111 = one/zero word toggle  
1000 = unused  
1001 = unused  
1010 = unused  
1011 = unused  
1100 = unused  
(Format determined by output_mode)  
OF  
14  
ain_config  
0
0
0
0
0
0
0
Analog  
input  
disable:  
1 = on  
0 = off  
(default)  
CML  
0
0x00  
0x00  
enable:  
1 = on  
0 = off  
(default)  
output_mode  
Output  
enable:  
0 =  
enable  
(default)  
1 =  
DDR:  
1 =  
enabled  
0 =  
disabled (default)  
(default)  
Output  
invert:  
1 = on  
0 = off  
Data format select:  
00 = offset binary  
(default)  
0
0
01 = twos  
complement  
10 = Gray code  
disable  
15  
16  
output_adjust  
output_phase  
0
0
0
LVDS  
LVDS fine adjust:  
0x00  
0x03  
course  
adjust:  
0 =  
3.5 mA  
(default)  
1 =  
001 = 3.50 mA  
010 = 3.25 mA  
011 = 3.00 mA  
100 = 2.75 mA  
101 = 2.50 mA  
110 = 2.25 mA  
111 = 2.00 mA  
2.0 mA  
Output  
clock  
0
0
polarity  
1 =  
inverted  
0 =  
normal  
(default)  
Rev. 0 | Page 26 of 28  
AD9211  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Default Notes/  
Comments  
(Hex) Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
17  
flex_output_delay Output  
Output clock delay:  
00000 = 0.1 ns  
00001 = 0.2 ns  
00010 = 0.3 ns  
11101 = 3.0 ns  
11110 = 3.1 ns  
11111 = 3.2 ns  
0
delay  
enable:  
0 =  
enable  
1 =  
disable  
18  
flex_vref  
Input voltage range setting:  
10000 = 0.98 V  
10001 = 1.00 V  
10010 = 1.02 V  
10011 = 1.04 V  
0
11111 = 1.23 V  
00000 = 1.25 V  
00001 = 1.27 V  
01110 = 1.48 V  
01111 = 1.50 V  
2A  
ovr_config  
OR  
position  
(DDR  
OR  
enable:  
1 = on  
00000001  
mode  
only):  
(default)  
0 = off  
0 = Pin 9,  
Pin 10  
1 =  
Pin 21,  
Pin 22  
Rev. 0 | Page 27 of 28  
AD9211  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
8.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
56  
43  
42  
1
PIN 1  
INDICATOR  
4.45  
4.30 SQ  
4.15  
TOP  
VIEW  
EXPOSED  
7.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
14  
15  
29  
28  
0.30 MIN  
6.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.50 BSC  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2  
Figure 52. 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
8 mm × 8 mm Body, Very Thin Quad  
(CP-56-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
CP-56-2  
CP-56-2  
AD9211BCPZ-2001  
AD9211BCPZ-2501  
AD9211BCPZ-3001  
AD9211-200EBZ1  
AD9211-250EBZ1  
AD9211-300EBZ1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
LVDS Evaluation Board with AD9211BCPZ-200  
LVDS Evaluation Board with AD9211BCPZ-250  
LVDS Evaluation Board with AD9211BCPZ-300  
CP-56-2  
1 Z = RoHS Compliant Part.  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06041-0-5/07(0)  
Rev. 0 | Page 28 of 28  
 
 

相关型号:

AD9212

Octal, 10-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9212-65EB1

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9212-65EBZ

Octal, 10-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9212ABCPZ-40

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9212ABCPZ-65

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9212ABCPZRL7-40

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9212ABCPZRL7-65

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC
ADI

AD9212BCPZ-40

Octal, 10-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9212BCPZ-65

Octal, 10-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9212BCPZRL7-40

Octal, 10-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9212BCPZRL7-65

Octal, 10-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9212_11

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC
ADI