AD9212_11 [ADI]

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC; 八通道,10位, 40 MSPS / 65 MSPS ,串行LVDS , 1.8 V ADC
AD9212_11
型号: AD9212_11
厂家: ADI    ADI
描述:

Octal, 10-Bit, 40 MSPS/65 MSPS, Serial LVDS, 1.8 V ADC
八通道,10位, 40 MSPS / 65 MSPS ,串行LVDS , 1.8 V ADC

文件: 总56页 (文件大小:1700K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 10-Bit, 40 MSPS/65 MSPS,  
Serial LVDS, 1.8 V ADC  
Data Sheet  
AD9212  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DRVDD  
DRGND  
8 analog-to-digital converters (ADCs) integrated into 1 package  
100 mW ADC power per channel at 65 MSPS  
SNR = 60.8 dB (to Nyquist)  
ENOB = 9.8 bits  
SFDR = 80 dBc (to Nyquist)  
AD9212  
10  
VIN + A  
VIN – A  
D + A  
D – A  
SERIAL  
LVDS  
ADC  
ADC  
10  
10  
VIN + B  
VIN – B  
D + B  
D – B  
SERIAL  
LVDS  
Excellent linearity  
DNL = 0.3 LSB (typical); INL = 0.4 LSB (typical)  
Serial LVDS (ANSI-644, default)  
Low power, reduced signal option (similar to IEEE 1596.3)  
Data and frame clock outputs  
325 MHz, full-power analog bandwidth  
2 V p-p input voltage range  
VIN + C  
VIN – C  
D + C  
D – C  
SERIAL  
LVDS  
ADC  
10  
10  
VIN + D  
VIN – D  
D + D  
D – D  
SERIAL  
LVDS  
ADC  
ADC  
ADC  
VIN + E  
VIN – E  
SERIAL  
LVDS  
D + E  
D – E  
1.8 V supply operation  
Serial port control  
10  
10  
VIN + F  
VIN – F  
D + F  
D – F  
SERIAL  
LVDS  
Full-chip and individual-channel power-down modes  
Flexible bit orientation  
Built-in and custom digital test pattern generation  
Programmable clock and data alignment  
Programmable output resolution  
Standby mode  
VIN + G  
VIN – G  
D + G  
D – G  
SERIAL  
LVDS  
ADC  
ADC  
10  
VIN + H  
VIN – H  
D + H  
D – H  
SERIAL  
LVDS  
VREF  
FCO+  
FCO–  
SENSE  
APPLICATIONS  
0.5V  
DATA RATE  
MULTIPLIER  
Medical imaging and nondestructive ultrasound  
Portable ultrasound and digital beam-forming systems  
Quadrature radio receivers  
Diversity radio receivers  
Tape drives  
Optical networking  
REFT  
REFB  
REF  
SELECT  
SERIAL PORT  
INTERFACE  
DCO+  
DCO–  
SCLK/  
DTP  
RBIAS AGND CSB SDIO/  
ODM  
CLK+  
CLK–  
Figure 1.  
The ADC contains several features designed to maximize  
Test equipment  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom user-  
defined test patterns entered via the serial port interface (SPI).  
GENERAL DESCRIPTION  
The AD9212 is an octal, 10-bit, 40 MSPS/65 MSPS ADC with an  
on-chip sample-and-hold circuit designed for low cost, low power,  
small size, and ease of use. Operating at a conversion rate of up to  
65 MSPS, it is optimized for outstanding dynamic performance  
and low power in applications where a small package size is critical.  
The AD9212 is available in a RoHS-compliant, 64-lead LFCSP. It is  
specified over the industrial temperature range of −40°C to +85°C.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Eight ADCs are contained in a small package.  
2. Low Power of 100 mW per Channel at 65 MSPS.  
3. Ease of Use. A data clock output (DCO) operates up to  
300 MHz and supports double data rate (DDR) operation.  
4. User Flexibility. SPI control offers a wide range of flexible  
features to meet specific system requirements.  
The ADC automatically multiplies the sample rate clock for  
the appropriate LVDS serial data rate. A data clock (DCO)  
for capturing data on the output and a frame clock (FCO) for  
signaling a new output byte are provided. Individual channel  
power-down is supported and typically consumes less than  
2 mW when all channels are disabled.  
5. Pin-Compatible Family. This includes the AD9222 (12-bit)  
and AD9252 (14-bit).  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9212  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Input Considerations...................................................... 23  
Serial Port Interface (SPI).............................................................. 31  
Hardware Interface..................................................................... 31  
Memory Map .................................................................................. 33  
Reading the Memory Map Table.............................................. 33  
Reserved Locations .................................................................... 33  
Default Values............................................................................. 33  
Logic Levels................................................................................. 33  
Applications Information.............................................................. 36  
Design Guidelines ...................................................................... 36  
Evaluation Board ............................................................................ 37  
Power Supplies............................................................................ 37  
Input Signals................................................................................ 37  
Output Signals ............................................................................ 37  
Default Operation and Jumper Selection Settings................. 38  
Alternative Analog Input Drive Configuration...................... 39  
Outline Dimensions....................................................................... 56  
Ordering Guide .......................................................................... 56  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Diagrams.......................................................................... 8  
Absolute Maximum Ratings.......................................................... 10  
Thermal Impedance................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Equivalent Circuits......................................................................... 13  
Typical Performance Characteristics ........................................... 15  
Theory of Operation ...................................................................... 20  
Analog Input Considerations.................................................... 20  
Rev. E | Page 2 of 56  
Data Sheet  
AD9212  
REVISION HISTORY  
12/11—Rev. D to Rev. E  
Changes to Table 9 Endnote ..........................................................26  
Changes to Digital Outputs and Timing Section........................27  
Added Table 10................................................................................27  
Changes to Table 11 and Table 12.................................................27  
Changes to RBIAS Pin Section......................................................28  
Deleted Figure 63 to Figure 66 ......................................................28  
Moved Figure 65..............................................................................28  
Changes to Serial Port Interface (SPI) Section............................30  
Changes to Hardware Interface Section.......................................30  
Changes to Table 15 ........................................................................31  
Changes to Reading the Memory Map Table Section................32  
Added Applications Information and Design Guidelines  
Changes to Output Signals Section and Figure 70......................37  
Changed Default Operation and Jumper Selection Settings  
Section ..............................................................................................38  
Added Endnote 2 in Ordering Guide...........................................56  
5/10—Rev. C to Rev. D  
Deleted LFCSP CP-64-3 Package..................................... Universal  
Changes to output_phase Register, Table 16 ...............................33  
Deleted Figure 85; Renumbered Sequentially .............................55  
Updated Outline Dimensions........................................................55  
Changes to Ordering Guide...........................................................55  
Sections.............................................................................................35  
Changes to Input Signals Section..................................................36  
Changes to Output Signals Section...............................................36  
Changes to Figure 70 ......................................................................36  
Changes to Default Operation and Jumper Selection Settings  
Section ..............................................................................................37  
Changes to Alternative Analog Input Drive Configuration  
Section ..............................................................................................38  
Changes to Figure 73 ......................................................................38  
Change to Figure 75........................................................................40  
Changes to Figure 76 ......................................................................41  
Changes to Figure 80 ......................................................................45  
Changes to Table 17 ........................................................................52  
Updated Outline Dimensions........................................................55  
Changes to Ordering Guide...........................................................55  
12/09—Rev. B to Rev. C  
Updated Outline Dimensions........................................................55  
Changes to Ordering Guide...........................................................56  
7/09—Rev. A to Rev. B  
Changes to Figure 5.........................................................................10  
Changes to Figure 49 and Figure 50 .............................................21  
Changes to Figure 63 and Figure 64 .............................................28  
Updated Outline Dimensions........................................................55  
12/07—Rev. 0 to Rev. A  
Changes to Features ..........................................................................1  
Changes to Figure 1...........................................................................1  
Changes to Crosstalk Parameter .....................................................3  
Changes to Logic Output (SDIO/ODM)........................................5  
Changes to Figure 2 to Figure 4.......................................................7  
Changes to Figure 59 ......................................................................24  
10/06—Revision 0: Initial Version  
Rev. E | Page 3 of 56  
 
AD9212  
Data Sheet  
SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 1.  
AD9212-40  
Min Typ  
AD9212-65  
Max Min Typ  
Parameter1  
Temperature  
Max  
Unit  
RESOLUTION  
10  
10  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Reference Voltage (1 V Mode)  
REFERENCE  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
±1.5  
±ꢀ  
±0.4  
±0.ꢀ  
Guaranteed  
±1.5  
±ꢀ  
±ꢀ.2  
±0.4  
±±  
±±  
±1.2  
±0.ꢁ  
±0.4  
±0.5  
±±  
±±  
mV  
mV  
% FS  
% FS  
±4.ꢀ  
±0.ꢂ  
±0.65 LSB  
±0.1  
±0.15  
±0.ꢀ  
±0.4  
±1  
LSB  
Full  
Full  
Full  
±2  
±1ꢁ  
±21  
±2  
±1ꢁ  
±21  
ppm/°C  
ppm/°C  
ppm/°C  
Output Voltage Error (VREF = 1 V)  
Load Regulation @ 1.0 mA (VREF = 1 V)  
Input Resistance  
Full  
Full  
Full  
±2  
6
±ꢀ0  
±2  
6
±ꢀ0  
mV  
mV  
kΩ  
ANALOG INPUTS  
Differential Input Voltage Range (VREF = 1 V)  
Common-Mode Voltage  
Differential Input Capacitance  
Analog Bandwidth, Full Power  
POWER SUPPLY  
Full  
Full  
Full  
Full  
2
2
V p-p  
V
pF  
AVDD/2  
ꢀ25  
AVDD/2  
ꢀ25  
MHz  
AVDD  
DRVDD  
IAVDD  
IDRVDD  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.ꢁ  
1.ꢁ  
1.±  
1.±  
252  
4ꢂ.5  
542  
1.ꢂ  
1.ꢂ  
260  
5ꢀ  
560  
11  
1.ꢁ  
1.ꢁ  
1.±  
1.±  
ꢀꢂ0  
54  
±00  
1.ꢂ  
1.ꢂ  
405  
5±  
±ꢀꢀ  
11  
V
V
mA  
mA  
mW  
mW  
mW  
Total Power Dissipation (Including Output Drivers)  
Power-Down Dissipation  
Standby Dissipation2  
CROSSTALK  
±ꢀ  
ꢂ5  
AIN = −0.5 dBFS  
Overrangeꢀ  
Full  
Full  
−ꢂ0  
−ꢂ0  
−ꢂ0  
−ꢂ0  
dB  
dB  
1 See the AN-±ꢀ5 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 Can be controlled via the SPI.  
Overrange condition is specific with 6 dB of the full-scale input range.  
Rev. E | Page 4 of 56  
 
Data Sheet  
AD9212  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 2.  
AD9212-40  
AD9212-65  
Parameter1  
Temperature Min Typ Max Min Typ Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 1ꢂ.ꢁ MHz  
fIN = ꢀ5 MHz  
fIN = ꢁ0 MHz  
Full  
Full  
Full  
Full  
61.2  
60.2 61.2  
61.2  
60.±  
60.±  
5±.5 60.±  
60.ꢁ  
dB  
dB  
dB  
dB  
61.0  
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)  
fIN = 2.4 MHz  
fIN = 1ꢂ.ꢁ MHz  
fIN = ꢀ5 MHz  
fIN = ꢁ0 MHz  
Full  
Full  
Full  
Full  
61.2  
60.0 61.0  
61.0  
60.ꢁ  
60.6  
5ꢁ.0 60.5  
60.4  
dB  
dB  
dB  
dB  
60.±  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 1ꢂ.ꢁ MHz  
fIN = ꢀ5 MHz  
fIN = ꢁ0 MHz  
Full  
Full  
Full  
Full  
ꢂ.±ꢁ  
ꢂ.ꢁ1 ꢂ.±ꢁ  
ꢂ.±ꢁ  
ꢂ.±1  
ꢂ.±1  
ꢂ.4ꢀ ꢂ.±1  
ꢂ.ꢁꢂ  
Bits  
Bits  
Bits  
Bits  
ꢂ.±4  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 1ꢂ.ꢁ MHz  
fIN = ꢀ5 MHz  
fIN = ꢀ5 MHz  
Full  
Full  
Full  
25°C  
Full  
±ꢁ  
±5  
ꢁꢂ  
±1  
ꢁꢂ  
ꢁꢁ  
ꢁꢁ  
ꢁ2  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢁ2  
62  
6ꢂ  
fIN = ꢁ0 MHz  
ꢁ4  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 2.4 MHz  
fIN = 1ꢂ.ꢁ MHz  
fIN = ꢀ5 MHz  
fIN = ꢀ5 MHz  
Full  
Full  
Full  
25°C  
Full  
−±ꢁ  
−±5 −ꢁ2  
−ꢁꢂ  
−±1  
−ꢁꢂ  
dBc  
dBc  
−ꢁꢁ −62 dBc  
−ꢁꢁ −6ꢂ dBc  
−ꢁ2  
fIN = ꢁ0 MHz  
−ꢁ4  
dBc  
WORST OTHER (EXCLUDING SECOND OR THIRD)  
fIN = 2.4 MHz  
fIN = 1ꢂ.ꢁ MHz  
fIN = ꢀ5 MHz  
fIN = ꢁ0 MHz  
Full  
Full  
Full  
Full  
−ꢂ0  
−±5 −ꢁ2  
−±5  
−±6  
−±6  
dBc  
dBc  
−±5 −ꢁ0 dBc  
−±5  
−±5  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)—  
AIN1 AND AIN2 = −ꢁ.0 dBFS  
fIN1 = 15 MHz, fIN2 = 16 MHz  
fIN1 = ꢁ0 MHz, fIN2 = ꢁ1 MHz  
25°C  
25°C  
±0.0  
ꢁꢁ.0  
ꢁꢁ.0  
ꢁꢁ.0  
dBc  
dBc  
1 See the AN-±ꢀ5 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
Rev. E | Page 5 of 56  
 
 
 
 
AD9212  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 3.  
AD9212-40  
Typ Max  
AD9212-65  
Typ Max  
Parameter1  
Temperature  
Min  
Min  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
25°C  
25°C  
250  
250  
mV p-p  
V
kΩ  
pF  
1.2  
20  
1.5  
1.2  
20  
1.5  
LOGIC INPUTS (PDWN, SCLK/DTP)  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
1.2  
0
ꢀ.6  
0.ꢀ  
1.2  
1.2  
ꢀ.6  
0.ꢀ  
V
V
kΩ  
pF  
ꢀ0  
0.5  
ꢀ0  
0.5  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
ꢀ.6  
0.ꢀ  
ꢀ.6  
0.ꢀ  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
ꢁ0  
0.5  
ꢁ0  
0.5  
kΩ  
pF  
LOGIC INPUT (SDIO/ODM)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
DRVDD + 0.ꢀ 1.2  
DRVDD + 0.ꢀ  
0.ꢀ  
V
V
0.ꢀ  
0
Input Resistance  
Input Capacitance  
25°C  
25°C  
ꢀ0  
2
ꢀ0  
2
kΩ  
pF  
LOGIC OUTPUT (SDIO/ODM)ꢀ  
Logic 1 Voltage (IOH = ±00 μA)  
Logic 0 Voltage (IOL = 50 μA)  
DIGITAL OUTPUTS (D + x, D − x), (ANSI-644)  
Logic Compliance  
Full  
Full  
1.ꢁꢂ  
1.ꢁꢂ  
V
V
0.05  
0.05  
LVDS  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
24ꢁ  
1.125  
454  
1.ꢀꢁ5  
Offset binary  
24ꢁ  
1.125  
454  
1.ꢀꢁ5  
Offset binary  
mV  
V
DIGITAL OUTPUTS (D + x, D − x),  
(LOW POWER, REDUCED SIGNAL OPTION)  
Logic Compliance  
LVDS  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
150  
1.10  
250  
1.ꢀ0  
Offset binary  
150  
1.10  
250  
1.ꢀ0  
Offset binary  
mV  
V
1 See the AN-±ꢀ5 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
This is specified for 1ꢀ SDIO pins sharing the same connection.  
Rev. E | Page 6 of 56  
 
Data Sheet  
AD9212  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 4.  
AD9212-40  
Typ  
AD9212-65  
Typ  
Parameter1  
CLOCK2  
Temp  
Min  
Max  
Min  
Max  
Unit  
Maximum Clock Rate  
Minimum Clock Rate  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
Full  
Full  
Full  
Full  
40  
65  
MSPS  
MSPS  
ns  
10  
10  
12.5  
12.5  
ꢁ.ꢁ  
ꢁ.ꢁ  
ns  
OUTPUT PARAMETERS2, ꢀ  
Propagation Delay (tPD)  
Full  
Full  
Full  
Full  
Full  
1.5  
1.5  
2.ꢀ  
ꢀ.1  
ꢀ.1  
1.5  
1.5  
2.ꢀ  
ꢀ.1  
ꢀ.1  
ns  
ps  
ps  
ns  
ns  
Rise Time (tR) (20% to ±0%)  
Fall Time (tF) (20% to ±0%)  
FCO Propagation Delay (tFCO  
ꢀ00  
ꢀ00  
2.ꢀ  
ꢀ00  
ꢀ00  
2.ꢀ  
)
4
DCO Propagation Delay (tCPD  
)
tFCO  
+
tFCO  
+
(tSAMPLE/20)  
(tSAMPLE/20)  
4
Full  
Full  
Full  
(tSAMPLE/20) − ꢀ00 (tSAMPLE/20) (tSAMPLE/20) + ꢀ00 (tSAMPLE/20) − ꢀ00 (tSAMPLE/20) (tSAMPLE/20) + ꢀ00 ps  
(tSAMPLE/20) − ꢀ00 (tSAMPLE/20) (tSAMPLE/20) + ꢀ00 (tSAMPLE/20) − ꢀ00 (tSAMPLE/20) (tSAMPLE/20) + ꢀ00 ps  
DCO to Data Delay (tDATA  
)
4
DCO to FCO Delay (tFRAME  
Data-to-Data Skew  
)
±50  
±200  
±50  
±200  
ps  
(tDATA-MAX − tDATA-MIN  
)
Wake-Up Time (Standby)  
25°C  
25°C  
Full  
600  
ꢀꢁ5  
±
600  
ꢀꢁ5  
±
ns  
μs  
Wake-Up Time (Power-Down)  
Pipeline Latency  
CLK  
cycles  
APERTURE  
Aperture Delay (tA)  
25°C  
25°C  
25°C  
ꢁ50  
<1  
1
ꢁ50  
<1  
1
ps  
Aperture Uncertainty (Jitter)  
Out-of-Range Recovery Time  
ps rms  
CLK  
cycles  
1 See the AN-±ꢀ5 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 Can be adjusted via the SPI interface.  
Measurements were made using a part soldered to FR-4 material.  
4 tSAMPLE/20 is based on the number of bits divided by 2 because the delays are based on half duty cycles.  
Rev. E | Page ꢁ of 56  
 
 
AD9212  
Data Sheet  
TIMING DIAGRAMS  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
DCO–  
DCO+  
tCPD  
tFRAME  
tFCO  
FCO–  
FCO+  
D – x  
tPD  
tDATA  
MSB  
N – 9  
D8  
N – 9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D8  
D7  
D6  
D5  
N – 8  
N – 9 N – 9  
N – 9 N – 9 N – 9 N – 9  
N – 9 N – 9 N – 8 N – 8  
N – 8 N – 8  
D + x  
Figure 2. 10-Bit Data Serial Stream (Default), MSB First  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D – x  
D + x  
MSB  
N – 9  
D10  
N – 9  
D9  
N – 9  
D8  
N – 9  
D7  
N – 9  
D6  
N – 9  
D5  
N – 9  
D4  
N – 9  
D3  
N – 9  
D2  
N – 9  
D1  
N – 9  
D0  
N – 9  
MSB  
N – 8  
D10  
N – 8  
Figure 3.12-Bit Data Serial Stream, MSB First  
Rev. E | Page ± of 56  
 
 
 
Data Sheet  
AD9212  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D – x  
D + x  
LSB  
N – 9  
D0  
N – 9  
D1  
N – 9  
D2  
N – 9  
D3  
N – 9  
D4  
N – 9  
D5  
N – 9  
D6  
N – 9  
D7  
N – 9  
D8  
N – 9  
LSB  
N – 8  
D0  
N – 8  
D1  
N – 8  
D2  
N – 8  
Figure 4. 10-Bit Data Serial Stream, LSB First  
Rev. E | Page ꢂ of 56  
 
 
 
 
AD9212  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL IMPEDANCE  
Table 6.  
Air Flow Velocity (m/s)  
With  
Respect To  
1
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
Rating  
θJA  
θJB  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
0.0  
1.0  
2.5  
1ꢁ.ꢁ  
15.5  
1ꢀ.ꢂ  
AGND  
−0.ꢀ V to +2.0 V  
−0.ꢀ V to +2.0 V  
−0.ꢀ V to +0.ꢀ V  
−2.0 V to +2.0 V  
−0.ꢀ V to +2.0 V  
±.ꢁ  
0.6  
DRGND  
DRGND  
DRVDD  
DRGND  
1 θJA for a 4-layer PCB with solid ground plane (simulated). Exposed pad  
soldered to PCB.  
AVDD  
Digital Outputs  
(D + x, D − x, DCO+,  
DCO−, FCO+, FCO−)  
ESD CAUTION  
CLK+, CLK−  
VIN + x, VIN − x  
SDIO/ODM  
PDWN, SCLK/DTP, CSB  
REFT, REFB, RBIAS  
VREF, SENSE  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
−0.ꢀ V to +ꢀ.ꢂ V  
−0.ꢀ V to +2.0 V  
−0.ꢀ V to +2.0 V  
−0.ꢀ V to +ꢀ.ꢂ V  
−0.ꢀ V to +2.0 V  
−0.ꢀ V to +2.0 V  
ENVIRONMENTAL  
Operating Temperature  
Range (Ambient)  
Storage Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
−40°C to +±5°C  
−65°C to +150°C  
150°C  
Lead Temperature  
(Soldering, 10 sec)  
ꢀ00°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 10 of 56  
 
 
 
Data Sheet  
AD9212  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
AVDD  
VIN + G  
VIN – G  
AVDD  
VIN – H  
VIN + H  
AVDD  
1
2
3
4
5
6
7
8
9
48 AVDD  
47 VIN + B  
46 VIN – B  
45 AVDD  
44 VIN – A  
43 VIN + A  
42 AVDD  
41 PDWN  
40 CSB  
39 SDIO/ODM  
38 SCLK/DTP  
37 AVDD  
EXPOSED PADDLE, PIN 0  
(BOTTOM OF PACKAGE)  
AD9212  
TOP VIEW  
(Not to Scale)  
AVDD  
CLK–  
CLK+ 10  
AVDD 11  
AVDD 12  
DRGND 13  
DRVDD 14  
D – H 15  
36 DRGND  
35 DRVDD  
34 D + A  
D + H 16  
33 D – A  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO ANALOG GROUND  
Figure 5. 64-Lead LFCSP Pin Configuration, Top View  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND  
AVDD  
Analog Ground (Exposed Paddle)  
1.± V Analog Supply  
1, 4, ꢁ, ±, 11,  
12, ꢀꢁ, 42, 45,  
4±, 51, 5ꢂ, 62  
1ꢀ, ꢀ6  
14, ꢀ5  
2
5
DRGND  
DRVDD  
VIN + G  
VIN − G  
VIN − H  
VIN + H  
CLK−  
Digital Output Driver Ground  
1.± V Digital Output Driver Supply  
ADC G Analog Input True  
ADC G Analog Input Complement  
ADC H Analog Input Complement  
ADC H Analog Input True  
6
Input Clock Complement  
10  
15  
16  
1ꢁ  
1±  
1ꢂ  
20  
21  
22  
2ꢀ  
24  
25  
26  
2ꢁ  
2±  
2ꢂ  
ꢀ0  
ꢀ1  
CLK+  
Input Clock True  
ADC H Digital Output Complement  
ADC H Digital Output True  
ADC G Digital Output Complement  
ADC G Digital Output True  
ADC F Digital Output Complement  
ADC F Digital Output True  
D − H  
D + H  
D − G  
D + G  
D − F  
D + F  
D − E  
D + E  
DCO−  
DCO+  
FCO−  
FCO+  
D − D  
D + D  
D − C  
ADC E Digital Output Complement  
ADC E Digital Output True  
Data Clock Digital Output Complement  
Data Clock Digital Output True  
Frame Clock Digital Output Complement  
Frame Clock Digital Output True  
ADC D Digital Output Complement  
ADC D Digital Output True  
ADC C Digital Output Complement  
ADC C Digital Output True  
ADC B Digital Output Complement  
D + C  
D − B  
Rev. E | Page 11 of 56  
 
 
 
 
 
AD9212  
Data Sheet  
Pin No.  
ꢀ2  
ꢀꢀ  
ꢀ4  
ꢀ±  
ꢀꢂ  
40  
41  
4ꢀ  
44  
46  
4ꢁ  
4ꢂ  
50  
52  
5ꢀ  
54  
55  
56  
5ꢁ  
5±  
60  
61  
6ꢀ  
64  
Mnemonic  
D + B  
D − A  
Description  
ADC B Digital Output True  
ADC A Digital Output Complement  
ADC A Digital Output True  
Serial Clock/Digital Test Pattern  
Serial Data Input-Output/Output Driver Mode  
Chip Select Bar  
Power-Down  
ADC A Analog Input True  
ADC A Analog Input Complement  
ADC B Analog Input Complement  
ADC B Analog Input True  
D + A  
SCLK/DTP  
SDIO/ODM  
CSB  
PDWN  
VIN + A  
VIN − A  
VIN − B  
VIN + B  
VIN + C  
VIN − C  
VIN − D  
VIN + D  
RBIAS  
ADC C Analog Input True  
ADC C Analog Input Complement  
ADC D Analog Input Complement  
ADC D Analog Input True  
External Resistor to Set the Internal ADC Core Bias Current  
Reference Mode Selection  
Voltage Reference Input/Output  
Negative Differential Reference  
Positive Differential Reference  
ADC E Analog Input True  
ADC E Analog Input Complement  
ADC F Analog Input Complement  
ADC F Analog Input True  
SENSE  
VREF  
REFB  
REFT  
VIN + E  
VIN − E  
VIN − F  
VIN + F  
Rev. E | Page 12 of 56  
Data Sheet  
AD9212  
EQUIVALENT CIRCUITS  
DRVDD  
V
V
D – x  
D + x  
VIN ± x  
V
V
DRGND  
Figure 9. Equivalent Digital Output Circuit  
Figure 6. Equivalent Analog Input Circuit  
10  
CLK+  
10kΩ  
10kΩ  
1.25V  
1k  
SCLK/DTP OR PDWN  
10Ω  
CLK–  
30kΩ  
Figure 7. Equivalent Clock Input Circuit  
Figure 10. Equivalent SCLK/DTP or PDWN Input Circuit  
100  
RBIAS  
350  
SDIO/ODM  
30kΩ  
Figure 11. Equivalent RBIAS Circuit  
Figure 8. Equivalent SDIO/ODM Input Circuit  
Rev. E | Page 1ꢀ of 56  
 
AD9212  
Data Sheet  
AVDD  
70kΩ  
1kΩ  
CSB  
VREF  
6k  
Figure 12. Equivalent CSB Input Circuit  
Figure 14. Equivalent VREF Circuit  
1k  
SENSE  
Figure 13. Equivalent SENSE Circuit  
Rev. E | Page 14 of 56  
Data Sheet  
AD9212  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
AIN = –0.5dBFS  
SNR = 60.08dB  
ENOB = 9.61  
AIN = –0.5dBFS  
SNR = 60.41dB  
ENOB = 9.7  
SFDR = 71.68dBc  
SFDR = 76.11dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9212-40  
Figure 18. Single-Tone 32k FFT with fIN = 35 MHz, AD9212-65  
0
0
AIN = –0.5dBFS  
AIN = –0.5dBFS  
SNR = 60.25dB  
ENOB = 9.66  
SNR = 61.17dB  
ENOB = 9.85  
SFDR = 81.27dBc  
–20  
–40  
SFDR = 72.45dBc  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Single-Tone 32k FFT with fIN = 19.7 MHz, AD9212-40  
Figure 19. Single-Tone 32k FFT with fIN = 70 MHz, AD9212-65  
0
0
AIN = –0.5dBFS  
SNR = 60.48dB  
ENOB = 9.72  
AIN = –0.5dBFS  
SNR = 60.08dB  
ENOB = 9.61  
SFDR = 76.84dBc  
–20  
–40  
SFDR = 71.68dBc  
–20  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9212-65  
Figure 20. Single-Tone 32k FFT with fIN = 120 MHz, AD9212-65  
Rev. E | Page 15 of 56  
 
AD9212  
Data Sheet  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
SFDR  
SFDR  
SNR  
SNR  
50  
10  
10  
20  
30  
40  
50  
60  
15  
20  
25  
30  
35  
40  
ENCODE RATE (MSPS)  
ENCODE RATE (MSPS)  
Figure 24. SNR/SFDR vs. fSAMPLE, fIN = 35 MHz, AD9212-65  
Figure 21. SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz, AD9212-40  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR  
70dB REFERENCE  
SNR  
SNR  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
15  
20  
25  
30  
35  
40  
ANALOG INPUT LEVEL (dBFS)  
ENCODE RATE (MSPS)  
Figure 25. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, AD9212-40  
Figure 22. SNR/SFDR vs. fSAMPLE, fIN = 19.7 MHz, AD9212-40  
90  
100  
90  
SFDR  
85  
80  
75  
70  
65  
60  
55  
50  
80  
70  
60  
50  
SFDR  
40  
SNR  
30  
20  
10  
0
70dB REFERENCE  
SNR  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
ANALOG INPUT LEVEL (dBFS)  
ENCODE RATE (MSPS)  
Figure 23. SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz, AD9212-65  
Figure 26. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9212-40  
Rev. E | Page 16 of 56  
Data Sheet  
AD9212  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–20  
AIN1 AND AIN2 = –7dBFS  
SFDR = 76.7dB  
IMD2 = 83.38dBc  
IMD3 = 77.21dBc  
–40  
–60  
SFDR  
–80  
70dB REFERENCE  
SNR  
–100  
–120  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 27. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, AD9212-65  
Figure 30. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz,  
AD9212-40  
100  
90  
80  
70  
60  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 77.4dB  
IMD2 = 77.92dBc  
IMD3 = 76.9dBc  
–20  
–40  
–60  
50  
SFDR  
40  
70dB REFERENCE  
–80  
30  
SNR  
20  
–100  
–120  
10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 28. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9212-65  
Figure 31. Two-Tone 32k FFT with fIN1 = 15 MHz and  
fIN2 = 16 MHz, AD9212-65  
0
0
–20  
AIN1 AND AIN2 = –7dBFS  
AIN1 AND AIN2 = –7dBFS  
SFDR = 72.5dB  
SFDR = 84.8dB  
IMD2 = 83.66dBc  
IMD3 = 84.6dBc  
IMD2 = 77.14dBc  
–20  
–40  
IMD3 = 72.55dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 29. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
AD9212-40  
Figure 32. Two-Tone 32k FFT with fIN1 = 70 MHz and  
fIN2 = 71 MHz, AD9212- 65  
Rev. E | Page 1ꢁ of 56  
AD9212  
Data Sheet  
80  
75  
70  
65  
60  
55  
0.5  
0.4  
0.3  
SFDR  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
SNR  
50  
1
10  
100  
1000  
0
0
0
200  
400  
600  
800  
1000  
1000  
40  
ANALOG INPUT FREQUENCY (MHz)  
CODE  
Figure 36. INL, fIN = 2.3 MHz, AD9212-65  
Figure 33. SNR/SFDR vs. fIN, AD9212-65  
0.5  
0.4  
90  
85  
80  
75  
70  
65  
60  
55  
0.3  
0.2  
SFDR  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
SINAD  
50  
–40  
–20  
0
20  
40  
60  
80  
200  
400  
600  
800  
TEMPERATURE (°C)  
CODE  
Figure 34. SINAD/SFDR vs. Temperature, fIN = 10.3 MHz, AD9212-40  
Figure 37. DNL, fIN = 2.3 MHz, AD9212-65  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
90  
85  
SFDR  
80  
75  
70  
65  
SINAD  
60  
55  
50  
–40  
–20  
0
20  
40  
60  
80  
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 38. CMRR vs. Frequency, AD9212-65  
Figure 35. SINAD/SFDR vs. Temperature, fIN = 10.3 MHz, AD9212-65  
Rev. E | Page 1± of 56  
Data Sheet  
AD9212  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–1  
0.096 LSB rms  
–3dB BANDWIDTH = 325MHz  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
0
N – 3  
N – 2  
N – 1  
N
CODE  
N + 1  
N + 2  
N + 3  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 39. Input-Referred Noise Histogram, AD9212-65  
Figure 41. Full Power Bandwidth vs. Frequency, AD9212-65  
0
–20  
NPR = 51.13dB  
NOTCH = 18.0MHz  
NOTCH WIDTH = 3.0MHz  
–40  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
Figure 40. Noise Power Ratio (NPR), AD9212- 65  
Rev. E | Page 1ꢂ of 56  
AD9212  
Data Sheet  
THEORY OF OPERATION  
The AD9212 architecture consists of a pipelined ADC divided  
into three sections: a 4-bit first stage followed by eight 1.5-bit  
stages and a 3-bit flash. Each stage provides sufficient overlap  
to correct for flash errors in the preceding stage. The quantized  
outputs from each stage are combined into a final 10-bit result  
in the digital correction logic. The pipelined architecture permits  
the first stage to operate with a new input sample while the  
remaining stages operate with preceding samples. Sampling  
occurs on the rising edge of the clock.  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 42). When the input  
circuit is switched into sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
input can help reduce the peak transient current injected from  
the output stage of the driving source. In addition, low-Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
high differential capacitance at the analog inputs and therefore  
achieve the maximum bandwidth of the ADC. Such use of low-  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a shunt capacitor or two  
single-ended capacitors can be placed on the inputs to provide a  
matching passive network. This ultimately creates a low-pass  
filter at the input to limit unwanted broadband noise. See the  
AN-742 Application Note, Frequency Domain Response of  
Switched-Capacitor ADCs; the AN-827 Application Note, A  
Resonant Approach to Interfacing Amplifiers to Switched-Capacitor  
ADCs; and the Analog Dialogue article Transformer-Coupled  
Front-End for Wideband A/D Converters(Volume 39, April 2005)  
for more information. In general, the precise values depend on  
the application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
ANALOG INPUT CONSIDERATIONS  
The analog inputs of the AD9212 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 45 and Figure 46.  
The analog input to the AD9212 is a differential switched-  
capacitor circuit designed for processing differential input signals.  
This circuit can support a wide common-mode range while  
maintaining excellent performance. An input common-mode  
voltage of midsupply minimizes signal-dependent errors and  
provides optimum performance.  
H
CPAR  
H
VIN + x  
CSAMPLE  
S
S
S
S
CSAMPLE  
VIN – x  
H
CPAR  
H
Figure 42. Switched-Capacitor Input Circuit  
Rev. E | Page 20 of 56  
 
 
 
Data Sheet  
AD9212  
90  
85  
80  
75  
70  
65  
60  
55  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBc)  
SFDR  
SNR (dB)  
SNR  
50  
0.3  
0.6  
0.9  
1.2  
1.5  
0.3  
0.6  
0.9  
1.2  
1.5  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 43. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 2.3 MHz, AD9212-40  
Figure 45. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 2.3 MHz, AD9212-65  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR  
SNR  
SFDR (dBc)  
SNR (dB)  
0.3  
0.6  
0.9  
1.2  
1.5  
0.3  
0.6  
0.9  
1.2  
1.5  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 44. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 19.7 MHz, AD9212-40  
Figure 46. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 35 MHz, AD9212-65  
Rev. E | Page 21 of 56  
 
 
AD9212  
Data Sheet  
ADT1-1WT  
1:1 Z RATIO  
For best dynamic performance, the source impedances driving  
VIN + x and VIN − x should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. An internal reference buffer  
creates the positive and negative reference voltages, REFT and  
REFB, respectively, that define the span of the ADC core. The  
output common mode of the reference buffer is set to midsupply,  
and the REFT and REFB voltages and span are defined as  
C
1
R
VIN + x  
ADC  
2Vp-p  
49.9ꢀ  
C
DIFF  
AD9212  
R
AVDD  
1kꢀ  
VIN – x  
AGND  
C
1kꢀ  
0.1μF  
1
C
IS OPTIONAL.  
DIFF  
REFT = 1/2 (AVDD + VREF)  
Figure 47. Differential Transformer-Coupled Configuration  
for Baseband Applications  
REFB = 1/2 (AVDD VREF)  
Span = 2 × (REFT REFB) = 2 × VREF  
ADT1-1WT  
1:1 Z RATIO  
2Vp-p  
16nH  
16nH 0.1μF  
33ꢀ  
It can be seen from these equations that the REFT and REFB  
voltages are symmetrical about the midsupply voltage and, by  
definition, the input span is twice the value of the VREF voltage.  
VIN+x  
65ꢀ  
ADC  
499ꢀ  
16nH  
2.2pF  
1kꢀ  
AD9212  
33ꢀ  
VIN–x  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9212, the largest input span available is 2 V p-p.  
AVDD  
1kꢀ  
1kꢀ  
0.1μF  
Differential Input Configurations  
Figure 48. Differential Transformer-Coupled Configuration for IF Applications  
There are several ways to drive the AD9212 either actively or  
passively; however, optimum performance is achieved by driving  
the analog input differentially. For example, using the AD8334  
differential driver to drive the AD9212 provides excellent perfor-  
mance and a flexible interface to the ADC (see Figure 50) for  
baseband applications. This configuration is commonly used  
for medical ultrasound systems.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance degrade due to the large input common-  
mode swing. If the application requires a single-ended input  
configuration, ensure that the source impedances on each input  
are well matched in order to achieve the best possible performance.  
A full-scale input of 2 V p-p can still be applied to the ADCs  
VIN + x pin while the VIN − x pin is terminated. Figure 49  
details a typical single-ended input configuration.  
AVDD  
For applications where SNR is a key parameter, differential  
transformer coupling is the recommended input configuration  
(see Figure 47 and Figure 48), because the noise performance of  
most amplifiers is not adequate to achieve the true performance  
of the AD9212.  
C
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
1kꢀ  
R
VIN + x  
0.1µF  
AVDD  
1kꢀ  
2V p-p  
49.9ꢀ  
ADC  
AD9212  
1
C
DIFF  
1kꢀ  
25ꢀ  
R
VIN – x  
C
0.1µF  
1kꢀ  
1
C
IS OPTIONAL.  
DIFF  
Figure 49. Single-Ended Input Configuration  
0.1μF  
LOP  
VIP  
0.1μF  
187ꢀ  
374ꢀ  
R
VOH  
0.1μF 120nH  
INH  
VIN + x  
1V p-p  
AD8334  
1.0kꢀ  
22pF  
LNA  
ADC  
AD9212  
VGA  
C
1.0kꢀ  
R
LMD  
VIN – x  
0.1μF  
VOL  
187ꢀ  
0.1μF  
AVDD  
0.1μF  
10μF  
LON  
VIN  
1kꢀ  
1kꢀ  
274ꢀ  
18nF  
0.1μF  
Figure 50. Differential Input Configuration Using the AD8334  
Rev. E | Page 22 of 56  
 
 
 
 
Data Sheet  
AD9212  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be driven directly from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 54). Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages of up to 3.3 V, making the  
selection of the drive logic voltage very flexible.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9212 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
and require no additional biasing.  
Figure 51 shows the preferred method for clocking the AD9212.  
The low jitter clock source is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD9212 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9212, and it preserves the  
fast rise and fall times of the signal, which are critical to low  
jitter performance.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
CLK+  
CLK  
CMOS DRIVER  
CLK  
OPTIONAL  
100ꢀ  
0.1µF  
1
50ꢀ  
CLK+  
ADC  
AD9212  
0.1µF  
CLK–  
0.1µF  
39kꢀ  
1
50RESISTOR IS OPTIONAL.  
®
Mini-Circuits  
ADT1–1WT, 1:1Z  
Figure 54. Single-Ended 1.8 V CMOS Sample Clock  
0.1µF  
0.1µF  
XFMR  
CLK+  
CLK+  
AD9510/AD9511/  
AD9512/AD9513/  
100ꢀ  
ADC  
AD9212  
CLK–  
50ꢀ  
AD9514/AD9515  
0.1µF  
0.1µF  
CLK+  
CLK  
OPTIONAL  
100ꢀ  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
0.1µF  
1
50ꢀ  
CLK+  
CMOS DRIVER  
CLK  
ADC  
AD9212  
Figure 51. Transformer-Coupled Differential Clock  
0.1µF  
0.1µF  
CLK–  
Another option is to ac-couple a differential PECL signal to the  
sample clock input pins as shown in Figure 52. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515 family of clock  
drivers offers excellent jitter performance.  
1
50RESISTOR IS OPTIONAL.  
Figure 55. Single-Ended 3.3 V CMOS Sample Clock  
Clock Duty Cycle Considerations  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9212 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9212. When the DCS is on, noise and distortion perfor-  
mance are nearly flat for a wide range of duty cycles. However,  
some applications may require the DCS function to be off. If so,  
keep in mind that the dynamic range performance can be affected  
when operated in this mode. See the Memory Map section for  
more details on using this feature.  
0.1µF  
0.1µF  
CLK+  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
AD9212  
100ꢀ  
0.1µF  
0.1µF  
CLK–  
CLK–  
1
1
240ꢀ  
240ꢀ  
50ꢀ  
50ꢀ  
1
50RESISTORS ARE OPTIONAL.  
Figure 52. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLK+  
CLK–  
CLK+  
CLK  
ADC  
AD9212  
100ꢀ  
LVDS DRIVER  
CLK  
0.1µF  
0.1µF  
CLK–  
1
1
50ꢀ  
50ꢀ  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles  
to allow the DLL to acquire and lock to the new rate.  
1
50RESISTORS ARE OPTIONAL.  
Figure 53. Differential LVDS Sample Clock  
Rev. E | Page 2ꢀ of 56  
 
 
 
 
AD9212  
Data Sheet  
Clock Jitter Considerations  
Power Dissipation and Power-Down Mode  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
As shown in Figure 57 and Figure 58, the power dissipated by  
the AD9212 is proportional to its sample rate. The digital power  
dissipation does not vary much because it is determined primarily  
by the DRVDD supply and bias current of the LVDS output drivers.  
SNR Degradation = 20 × log 10(1/2 × π × fA × tJ)  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.60  
0.58  
0.56  
0.54  
0.52  
0.50  
0.48  
0.46  
0.44  
0.42  
0.40  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 56).  
AVDD CURRENT  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9212.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
TOTAL POWER  
DRVDD CURRENT  
10  
15  
20  
25  
30  
35  
40  
ENCODE (MHz)  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
Figure 57. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, AD9212-40  
0.40  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
AVDD CURRENT  
TOTAL POWER  
130  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
RMS CLOCK JITTER REQUIREMENT  
120  
110  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
14 BITS  
12 BITS  
10 BITS  
8 BITS  
DRVDD CURRENT  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
10  
20  
30  
40  
50  
60  
ENCODE (MHz)  
1
10  
100  
1000  
Figure 58. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, AD9212-65  
ANALOG INPUT FREQUENCY (MHz)  
Figure 56. Ideal SNR vs. Input Frequency and Jitter  
Rev. E | Page 24 of 56  
 
 
 
Data Sheet  
AD9212  
By asserting the PDWN pin high, the AD9212 is placed into  
power-down mode. In this state, the ADC typically dissipates  
11 mW. During power-down, the LVDS output drivers are placed  
into a high impedance state. The AD9212 returns to normal  
operating mode when the PDWN pin is pulled low. This pin is  
both 1.8 V and 3.3 V tolerant.  
recommended that the trace length be no longer than 24 inches  
and that the differential output traces be kept close together and  
at equal lengths. An example of the FCO and data stream when  
the AD9212 is used with traces of proper length and position is  
shown in Figure 59.  
In power-down mode, low power dissipation is achieved by  
shutting down the reference, reference buffer, PLL, and biasing  
networks. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in the power-down  
mode: shorter cycles result in proportionally shorter wake-up  
times. With the recommended 0.1 ꢀF and 4.7 ꢀF decoupling  
capacitors on REFT and REFB, approximately 1 sec is required  
to fully discharge the reference buffer decoupling capacitors,  
and approximately 375 ꢀs is required to restore full operation.  
5ns/DIV  
CH1 500mV/DIV = FCO  
CH2 500mV/DIV = DCO  
CH3 500mV/DIV = DATA  
There are several other power-down options available when  
using the SPI. The user can individually power down each  
channel or put the entire device into standby mode. The latter  
option allows the user to keep the internal PLL powered when  
fast wake-up times (~600 ns) are required. See the Memory  
Map section for more details on using these features.  
Figure 59. LVDS Output Timing Example in ANSI-644 Mode (Default),  
AD9212-65  
An example of the LVDS output using the ANSI-644 standard  
(default) data eye and a time interval error (TIE) jitter histogram  
with trace lengths less than 24 inches on standard FR-4 material  
is shown in Figure 60. Figure 61 shows an example of the trace  
length exceeding 24 inches on standard FR-4 material. Notice  
that the TIE jitter histogram reflects the decrease of the data eye  
opening as the edge deviates from the ideal position. It is the users  
responsibility to determine if the waveforms meet the timing  
budget of the design when the trace lengths exceed 24 inches.  
Additional SPI options allow the user to further increase the  
internal termination (increasing the current) of all eight outputs  
in order to drive longer trace lengths (see Figure 62). Even though  
this produces sharper rise and fall times on the data edges and  
is less prone to bit errors, the power dissipation of the DRVDD  
supply increases when this option is used.  
Digital Outputs and Timing  
The AD9212 differential outputs conform to the ANSI-644 LVDS  
standard by default upon power-up. This can be changed to a low  
power, reduced signal option (similar to the IEEE 1596.3 standard)  
via the SDIO/ODM pin or the SPI. This LVDS standard can further  
reduce the overall power dissipation of the device by approximately  
36 mW. See the SDIO/ODM Pin section or Table 16 in the  
Memory Map section for more information. The LVDS driver  
current is derived on chip and sets the output current at each  
output equal to a nominal 3.5 mA. A 100 Ω differential termination  
resistor placed at the LVDS receiver inputs results in a nominal  
350 mV swing at the receiver.  
The AD9212 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
placed as close to the receiver as possible. If there is no far-end  
receiver termination or there is poor differential trace routing,  
timing errors may result. To avoid such timing errors, it is  
In cases that require increased driver strength to the DCO and  
FCO outputs because of load mismatch, Register 0x15 allows  
the user to increase the drive strength by 2×. To do this, first set the  
appropriate bit in Register 0x05. Note that this feature cannot be  
used with Bit 4 and Bit 5 in Register 0x15. Bit 4 and Bit 5 take  
precedence over this feature. See the Memory Map section for  
more details.  
Rev. E | Page 25 of 56  
 
 
AD9212  
Data Sheet  
500  
400  
400  
300  
EYE: ALL BITS  
ULS: 12071/12071  
EYE: ALL BITS  
ULS: 12072/12072  
300  
200  
200  
100  
100  
0
0
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
Figure 62. Data Eye for LVDS Outputs in ANSI-644 Mode with 100 Ω  
Termination On and Trace Lengths Greater Than 24 Inches on Standard FR-4  
Figure 60. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Less Than 24 Inches on Standard FR-4  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 8.  
To change the output data format to twos complement, see the  
Memory Map section.  
500  
EYE: ALL BITS  
ULS: 12067/12067  
400  
300  
200  
100  
Table 8. Digital Output Coding  
0
(VIN + x) − (VIN − x),  
Code Input Span = 2 V p-p (V) (D9 ... D0)  
Digital Output Offset Binary  
–100  
–200  
–300  
–400  
–500  
102ꢀ +1.00  
11 1111 1111  
10 0000 0000  
01 1111 1111  
00 0000 0000  
512  
511  
0
0.00  
−0.001ꢂ5ꢀ  
−1.00  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
Data from each ADC is serialized and provided on a separate  
channel. The data rate for each serial stream is equal to 10 bits  
times the sample clock rate, with a maximum of 650 Mbps  
(10 bits × 65 MSPS = 650 Mbps). The lowest typical conversion  
rate is 10 MSPS. However, if lower sample rates are required for  
a specific application, the PLL can be set up via the SPI to allow  
encode rates as low as 5 MSPS. See the Memory Map section for  
information about enabling this feature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–200ps  
–100ps  
0ps  
100ps  
200ps  
Figure 61. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater Than 24 Inches on Standard FR-4  
Rev. E | Page 26 of 56  
 
 
 
 
Data Sheet  
AD9212  
Two output clocks are provided to assist in capturing data from  
the AD9212. The DCO is used to clock the output data and is  
equal to five times the sample clock (CLK) rate. Data is clocked  
out of the AD9212 and must be captured on the rising and  
falling edges of the DCO that supports double data rate (DDR)  
capturing. The FCO is used to signal the start of a new output  
byte and is equal to the sample clock rate. See the timing  
diagram shown in Figure 2 for more information.  
Table 9. Flexible Output Test Modes  
Subject  
to Data  
Format  
Output Test  
Mode Bit  
Sequence  
Pattern Name  
Off (default)  
Digital Output Word 1  
Digital Output Word 2  
Select  
0000  
N/A  
N/A  
N/A  
0001  
Midscale short  
1000 0000 (±-bit)  
Same  
Yes  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
10 0000 0000 0000 (14-bit)  
0010  
0011  
0100  
+Full-scale short  
−Full-scale short  
Checkerboard  
1111 1111 (±-bit)  
Same  
Same  
Yes  
Yes  
No  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (14-bit)  
0000 0000 (±-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 0000 (14-bit)  
1010 1010 (±-bit)  
0101 0101 (±-bit)  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 1010 (14-bit)  
N/A  
N/A  
01 0101 0101 (10-bit)  
0101 0101 0101 (12-bit)  
01 0101 0101 0101 (14-bit)  
N/A  
N/A  
0101  
0110  
0111  
PN sequence long1  
PN sequence short1  
One-/zero-word toggle  
Yes  
Yes  
No  
1111 1111 (±-bit)  
0000 0000 (±-bit)  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (14-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 0000 (14-bit)  
1000  
1001  
User input  
1-/0-bit toggle  
Register 0x1ꢂ and Register 0x1A  
1010 1010 (±-bit)  
Register 0x1B and Register 0x1C  
N/A  
No  
No  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 1010 (14-bit)  
1010  
1011  
1100  
1× sync  
0000 1111 (±-bit)  
N/A  
N/A  
N/A  
No  
No  
No  
00 0001 1111 (10-bit)  
0000 0011 1111 (12-bit)  
00 0000 0111 1111 (14-bit)  
One bit high  
Mixed frequency  
1000 0000 (±-bit)  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
10 0000 0000 0000 (14-bit)  
1010 0011 (±-bit)  
10 0110 0011 (10-bit)  
1010 0011 0011 (12-bit)  
10 1000 0110 0111 (14-bit)  
1 All test mode options except PN sequence short and PN sequence long can support ±- to 14-bit word lengths in order to verify data capture to the receiver.  
Rev. E | Page 2ꢁ of 56  
 
AD9212  
Data Sheet  
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 90° relative to the  
output data edge.  
SDIO/ODM Pin  
The SDIO/ODM pin is for use in applications that do not require  
SPI mode operation. This pin can enable a low power, reduced  
signal option (similar to the IEEE 1596.3 reduced range link  
output standard) if it and the CSB pin are tied to AVDD during  
device power-up. This option should only be used when the  
digital output trace lengths are less than 2 inches from the LVDS  
receiver. When this option is used, the FCO, DCO, and outputs  
function normally, but the LVDS signal swing of all channels is  
reduced from 350 mV p-p to 200 mV p-p, allowing the user to  
further reduce the power on the DRVDD supply.  
An 8-, 12-, and 14-bit serial stream can also be initiated from the  
SPI. This allows the user to implement different serial stream to  
test the devices compatibility with lower and higher resolution  
systems. When changing the resolution to a 12-bit serial stream,  
the data stream is lengthened. See Figure 3 for the 12-bit example.  
However, when using the 12-bit option, the data stream stuffs  
two 0s at the end of the 10-bit serial data.  
For applications where this pin is not used, it should be tied low.  
In this case, the device pin can be left open, and the 30 kΩ internal  
pull-down resistor pulls this pin low. This pin is only 1.8 V tolerant.  
If applications require this pin to be driven from a 3.3 V logic level,  
insert a 1 kΩ resistor in series with this pin to limit the current.  
When the SPI is used, all data outputs can be inverted from  
their nominal state. This is not to be confused with inverting  
the serial stream to an LSB-first mode. In default mode, as  
shown in Figure 2, the MSB is first in the data output serial  
stream. However, this can be inverted so that the LSB is first in  
the data output serial stream (see Figure 4).  
Table 11. Output Driver Mode Pin Settings  
Resulting  
Resulting  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This feature is useful when  
validating receiver capture and timing. Refer to Table 9 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various  
ways, depending on the test pattern chosen. Note that some  
patterns do not adhere to the data format select option. In  
addition, customer user-defined test patterns can be assigned in  
the 0x19, 0x1A, 0x1B, and 0x1C register addresses. All test mode  
options except PN sequence short and PN sequence long can  
support 8- to 14-bit word lengths in order to verify data capture  
to the receiver.  
Selected ODM  
ODM Voltage  
Output Standard FCO and DCO  
Normal  
Operation  
AGND  
(10 kΩ pull-  
down resistor)  
ANSI-644  
(default)  
ANSI-644  
(default)  
ODM  
AVDD  
Low power,  
reduced signal  
option  
Low power,  
reduced signal  
option  
SCLK/DTP Pin  
The SCLK/DTP pin is for use in applications that do not require  
SPI mode operation. This pin can enable a single digital test pattern  
if it and the CSB pin are held high during device power-up. When  
the SCLK/DTP is tied to AVDD, the ADC channel outputs shift  
out the following pattern: 10 0000 0000. The FCO and DCO  
function normally while all channels shift out the repeatable  
test pattern. This pattern allows the user to perform timing  
alignment adjustments among the FCO, DCO, and output data.  
For normal operation, this pin should be tied to AGND through  
a 10 kΩ resistor. This pin is both 1.8 V and 3.3 V tolerant.  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A description  
of the PN sequence and how it is generated can be found in  
Section 5.1 of the ITU-T 0.150 (05/96) standard. The only  
difference is that the starting value must be a specific value  
instead of all 1s (see Table 10 for the initial values).  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.6 of the ITU-T 0.150 (05/96) standard. The  
only differences are that the starting value must be a specific  
value instead of all 1s (see Table 10 for the initial values) and the  
AD9212 inverts the bit stream with relation to the ITU standard.  
Table 12. Digital Test Pattern Pin Settings  
Resulting  
Resulting  
Selected DTP DTP Voltage  
D + x and D − x FCO and DCO  
Normal  
Operation  
AGND  
(10 kΩ pull-  
down resistor)  
Normal  
operation  
Normal operation  
Normal operation  
DTP  
AVDD  
10 0000 0000  
Table 10. PN Sequence  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map section  
for information about the options available.  
Initial  
Value  
First Three Output Samples  
(MSB First)  
Sequence  
PN Sequence Short  
PN Sequence Long  
0x0df  
0xdfꢂ, 0xꢀ5ꢀ, 0xꢀ01  
0x5ꢂ1, 0xfdꢁ, 0xaꢀ  
0x2ꢂb±0a  
Rev. E | Page 2± of 56  
 
 
 
Data Sheet  
AD9212  
CSB Pin  
VIN + x  
VIN – x  
The CSB pin should be tied to AVDD for applications that do  
not require SPI mode operation. By tying CSB high, all SCLK  
and SDIO information is ignored. This pin is both 1.8 V and  
3.3 V tolerant.  
REFT  
0.1µF  
0.1µF  
REFB  
+
ADC  
CORE  
4.7µF  
RBIAS Pin  
0.1µF  
VREF  
0.1µF  
To set the internal core bias current of the ADC, place a resistor  
that is nominally equal to 10.0 kΩ between the RBIAS pin and  
ground. The resistor current is derived on chip and sets the  
AVDD current of the ADC to a nominal 390 mA at 65 MSPS.  
Therefore, it is imperative that at least a 1% tolerance on this  
resistor be used to achieve consistent performance.  
1µF  
0.5V  
SELECT  
LOGIC  
SENSE  
Voltage Reference  
A stable, accurate 0.5 V voltage reference is built into the  
AD9212. This is gained up internally by a factor of 2, setting  
VREF to 1.0 V, which results in a full-scale differential input  
span of 2 V p-p. VREF is set internally by default; however, the  
VREF pin can be driven externally with a 1.0 V reference to  
improve accuracy.  
Figure 63. Internal Reference Configuration  
VIN + x  
VIN – x  
REFT  
0.1µF  
0.1µF  
REFB  
+
ADC  
CORE  
4.7µF  
When applying the decoupling capacitors to the VREF, REFT,  
and REFB pins, use ceramic low-ESR capacitors. These capacitors  
should be close to the ADC pins and on the same layer of the  
PCB as the AD9212. The recommended capacitor values and  
configurations for the AD9212 reference pin are shown in  
Figure 63.  
EXTERNAL  
REFERENCE  
0.1µF  
VREF  
1
1
1µF  
0.1µF  
0.5V  
SELECT  
LOGIC  
AVDD  
SENSE  
Table 13. Reference Settings  
Resulting  
Differential  
Span (V p-p)  
Selected  
Mode  
SENSE  
Voltage  
Resulting  
VREF (V)  
1
OPTIONAL.  
External  
AVDD  
N/A  
2 × external  
reference  
2.0  
Figure 64. External Reference Operation  
Reference  
Internal,  
2 V p-p FSR  
5
AGND to 0.2 V  
1.0  
0
–5  
Internal Reference Operation  
A comparator within the AD9212 detects the potential at the  
SENSE pin and configures the reference. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 63), setting VREF to 1 V.  
–10  
–15  
–20  
–25  
–30  
The REFT and REFB pins establish their input span of the ADC  
core from the reference configuration. The analog input full-  
scale range of the ADC equals twice the voltage at the reference  
pin for either an internal or an external reference configuration.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
CURRENT LOAD (mA)  
If the reference of the AD9212 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 65  
depicts how the internal reference voltage is affected by loading.  
Figure 65. VREF Accuracy vs. Load  
Rev. E | Page 2ꢂ of 56  
 
 
 
AD9212  
Data Sheet  
0.02  
0
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or to improve thermal drift charac-  
teristics. Figure 66 shows the typical drift characteristics of the  
internal reference in 1 V mode.  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. The external  
reference is loaded with an equivalent 6 kΩ load. An internal  
reference buffer generates the positive and negative full-scale  
references, REFT and REFB, for the ADC core. Therefore, the  
external reference must be limited to a nominal voltage of 1.0 V.  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 66. Typical VREF Drift  
Rev. E | Page ꢀ0 of 56  
 
Data Sheet  
AD9212  
SERIAL PORT INTERFACE (SPI)  
Regardless of the mode, if CSB is taken high in the middle of a  
byte transfer, the SPI state machine is reset and the device waits  
for a new instruction.  
The AD9212 serial port interface allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. This may  
provide the user with additional flexibility and customization,  
depending on the application. Addresses are accessed via the  
serial port and can be written to or read from via the port. Memory  
is organized into bytes that can be further divided into fields, as  
documented in the Memory Map section. Detailed operational  
information can be found in the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
In addition to the operation modes, the SPI port configuration  
influences how the AD9212 operates. For applications that do  
not require a control port, the CSB line can be tied and held high.  
This places the remainder of the SPI pins into their secondary  
modes, as defined in the SDIO/ODM Pin and SCLK/DTP Pin  
sections. CSB can also be tied low to enable 2-wire mode. When  
CSB is tied low, SCLK and SDIO are the only pins required for  
communication. Although the device is synchronized during  
power-up, the user should ensure that the serial port remains  
synchronized with the CSB line when using this mode. When  
operating in 2-wire mode, it is recommended that a 1-, 2-, or 3-  
byte transfer be used exclusively. Without an active CSB line,  
streaming mode can be entered but not exited.  
Three pins define the SPI: the SCLK, SDIO, and CSB pins (see  
Table 14). The SCLK pin is used to synchronize the read and write  
data presented to the ADC. The SDIO pin is a dual-purpose pin  
that allows data to be sent to and read from the internal ADC  
memory map registers. The CSB pin is an active low control  
that enables or disables the read and write cycles.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and read the contents  
of the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the SDIO pin to change from an  
input to an output at the appropriate point in the serial frame.  
Table 14. Serial Port Pins  
Pin  
Function  
SCLK  
Serial Clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
Serial Data Input/Output. A dual-purpose pin that typically  
serves as an input or output, depending on the instruction  
sent and the relative position in the timing frame.  
Chip Select Bar (Active Low). This control gates the read  
and write cycles.  
SDIO  
CSB  
Data can be sent in MSB- or LSB-first mode. MSB-first mode  
is the default at power-up and can be changed by adjusting the  
configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The falling edge of the CSB in conjunction with the rising edge  
of the SCLK determines the start of the framing sequence. During  
an instruction phase, a 16-bit instruction is transmitted, followed  
by one or more data bytes, which is determined by Bit Field W0  
and Bit Field W1. An example of the serial timing and its  
definitions can be found in Figure 68 and Table 15.  
HARDWARE INTERFACE  
The pins described in Table 14 constitute the physical interface  
between the users programming device and the serial port of  
the AD9212. The SCLK and CSB pins function as inputs when  
using the SPI. The SDIO pin is bidirectional, functioning as an  
input during write phases and as an output during readback.  
During normal operation, CSB is used to signal to the device  
that SPI commands are to be received and processed. When  
CSB is brought low, the device processes SCLK and SDIO to  
execute instructions. Normally, CSB remains low until the  
communication cycle is complete. However, if connected to a  
slow device, CSB can be brought high between bytes, allowing  
older microcontrollers enough time to transfer data into shift  
registers. CSB can be stalled when transferring one, two, or  
three bytes of data.  
If multiple SDIO pins share a common connection, care should be  
taken to ensure that proper VOH levels are met. Assuming the same  
load for each AD9212, Figure 67 shows the number of SDIO pins  
that can be connected together and the resulting VOH level.  
This interface is flexible enough to be controlled by either serial  
PROMs or PIC microcontrollers, providing the user with an  
alternative method, other than a full SPI controller, to program  
the ADC (see the AN-812 Application Note).  
When W0 and W1 are set to 11, the device enters streaming  
mode and continues to process data, either reading or writing,  
until CSB is taken high to end the communication cycle. This  
allows complete memory transfers without requiring additional  
instructions.  
If the user chooses not to use the SPI, these dual-function pins  
serve their secondary functions when the CSB is strapped to  
AVDD during device power-up. See the Theory of Operation  
section for details on which pin-strappable functions are  
supported on the SPI pins.  
Rev. E | Page ꢀ1 of 56  
 
 
 
AD9212  
Data Sheet  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.765  
1.760  
1.755  
1.750  
1.745  
1.740  
1.735  
1.730  
1.725  
1.720  
1.715  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
NUMBER OF SDIO PINS CONNECTED TOGETHER  
Figure 67. SDIO Pin Loading  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 68. Serial Timing Details  
Table 15. Serial Timing Definitions  
Parameter  
Timing (Minimum, ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
10  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure 6±)  
tDIS_SDIO  
10  
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge (not shown in Figure 6±)  
Rev. E | Page ꢀ2 of 56  
 
 
 
 
Data Sheet  
AD9212  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Undefined memory locations should not be written to except  
when writing the default values suggested in this data sheet.  
Addresses that have values marked as 0 should be considered  
reserved and have 0 written to their registers during power-up.  
Each row in the memory map register table (Table 16) has eight  
address locations. The memory map is divided into three sections:  
the chip configuration register map (Address 0x00 to Address 0x02),  
the device index and transfer register map (Address 0x04,  
Address 0x05, and Address 0xFF), and the ADC functions register  
map (Address 0x08 to Address 0x22).  
DEFAULT VALUES  
When the AD9212 comes out of a reset, critical registers are  
preloaded with default values. These values are indicated in  
Table 16, where an X refers to an undefined feature.  
The leftmost column of the memory map indicates the register  
address number; the default value is shown in the second right-  
most column. The Bit 7 column is the start of the default  
hexadecimal value given. For example, Address 0x09, the clock  
register, has a default value of 0x01, meaning Bit 7 = 0, Bit 6 = 0,  
Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or  
0000 0001 in binary. This setting is the default for the duty cycle  
stabilizer in the on condition. By writing 0 to Bit 0 of this address  
followed by writing 0x01 in Register 0xFF (transfer bit), the duty  
cycle stabilizer turns off. It is important to follow each writing  
sequence with a transfer bit to update the SPI registers. All  
registers, except Register 0x00, Register 0x04, Register 0x05, and  
Register 0xFF, are buffered with a master-slave latch and require  
writing to the transfer bit. For more information on this and  
other functions, consult the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
LOGIC LEVELS  
An explanation of various registers follows: “bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
Rev. E | Page ꢀꢀ of 56  
 
 
 
 
 
AD9212  
Data Sheet  
Table 16. Memory Map Register1  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
(MSB)  
(LSB)  
Bit 0  
Notes/  
Comments  
Parameter Name Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
00  
chip_port_config  
0
LSB first  
1 = on  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
1 = on  
0
0x1±  
The nibbles  
should be  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
0 = off  
(default)  
mirrored so  
that LSB- or  
MSB-first mode  
is set correctly  
regardless of  
shift mode.  
01  
02  
chip_id  
10-bit Chip ID Bits [ꢁ:0]  
(ADꢂ212 = 0x0±), (default)  
Read  
only  
Default is unique  
chip ID, different  
for each device.  
This is a read-  
only register.  
chip_grade  
X
Child ID [6:4]  
X
X
X
X
Read  
only  
Child ID used to  
differentiate  
graded devices.  
(identify device variants of Chip ID)  
000 = 65 MSPS  
001 = 40 MSPS  
Device Index and Transfer Registers  
04  
05  
FF  
device_index_2  
device_index_1  
device_update  
X
X
X
X
X
X
X
X
Data  
Channel  
H
1 = on  
(default)  
0 = off  
Data  
Channel  
G
Data  
Channel  
F
Data  
Channel  
E
0x0F  
0x0F  
0x00  
Bits are set to  
determine which  
on-chip device  
receives the next  
write command.  
1 = on  
1 = on  
1 = on  
(default) (default) (default)  
0 = off  
0 = off  
0 = off  
Clock  
Channel  
DCO  
1 = on  
0 = off  
Clock  
Channel  
FCO  
1 = on  
0 = off  
Data  
Channel  
D
Data  
Channel  
C
Data  
Channel  
B
Data  
Channel  
A
Bits are set to  
determine which  
on-chip device  
receives the next  
write command.  
1 = on  
1 = on  
1 = on  
1 = on  
(default) (default) (default) (default)  
(default) (default) 0 = off  
0 = off  
0 = off  
0 = off  
X
X
X
X
X
SW  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
transfer  
1 = on  
0 = off  
(default)  
ADC Functions Registers  
0±  
modes  
X
X
X
X
X
X
X
X
X
X
Internal power-down mode  
000 = chip run (default)  
001 = full power-down  
010 = standby  
0x00  
0x01  
Determines  
various generic  
modes of chip  
operation.  
011 = reset  
0ꢂ  
clock  
X
X
Duty  
Turns the  
cycle  
internal duty  
cycle stabilizer  
on and off.  
stabilizer  
1 = on  
(default)  
0 = off  
0D  
test_io  
User test mode  
00 = off (default)  
01 = on, single alternate 1 = on  
10 = on, single once  
11 = on, alternate once  
Reset PN Reset  
long gen PN short  
0x00  
When this register  
is set, the test  
data is placed on  
the output pins  
in place of  
Output test mode—see Table 9 in the  
Digital Outputs and Timing section  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
0011 = −FS short  
gen  
1 = on  
0 = off  
(default) 0 = off  
(default)  
normal data.  
0100 = checkerboard output  
0101 = PN 2ꢀ sequence  
0110 = PN ꢂ sequence  
0111 = one-/zero-word toggle  
1000 = user input  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
(format determined by output_mode)  
Rev. E | Page ꢀ4 of 56  
 
Data Sheet  
AD9212  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
(MSB)  
Parameter Name Bit 7  
(LSB)  
Bit 0  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
14  
output_mode  
X
0 = LVDS  
ANSI-644  
(default)  
1 = LVDS  
low power,  
(IEEE 15ꢂ6.ꢀ  
similar)  
X
X
X
Output  
invert  
1 = on  
0 = off  
(default)  
00 = offset binary  
(default)  
01 = twos complement  
0x00  
Configures the  
outputs and the  
format of the data.  
15  
output_adjust  
X
X
Output driver  
termination  
00 = none (default)  
01 = 200 Ω  
10 = 100 Ω  
11 = 100 Ω  
X
X
X
DCO and 0x00  
FCO  
Determines  
LVDS or other  
output properties.  
Primarily func-  
tions to set the  
LVDS span and  
common-mode  
levels in place of  
an external  
2× drive  
strength  
1 = on  
0 = off  
(default)  
resistor.  
16  
output_phase  
X
X
X
X
0011 = output clock phase adjust  
(0000 through 1010)  
0000 = 0° relative to data edge  
0001 = 60° relative to data edge  
0010 = 120° relative to data edge  
0x0ꢀ  
On devices that  
utilize global  
clock divide,  
this register  
determines  
0011 = 1±0° relative to data edge (default)  
0101 = ꢀ00° relative to data edge  
0110 = ꢀ60° relative to data edge  
1000 = 4±0° relative to data edge  
1001 = 540° relative to data edge  
1010 = 600° relative to data edge  
1011 to 1111 = 660° relative to data edge  
which phase  
of the divider  
output is used  
to supply the  
output clock.  
Internal latching  
is unaffected.  
1ꢂ  
1A  
1B  
1C  
21  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
serial_control  
Bꢁ  
B6  
B14  
B6  
B5  
B1ꢀ  
B5  
B4  
B12  
B4  
Bꢀ  
B2  
B1  
Bꢂ  
B1  
Bꢂ  
B0  
B±  
B0  
B±  
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB.  
B15  
Bꢁ  
B11  
Bꢀ  
B10  
B2  
User-defined  
pattern, 1 MSB.  
User-defined  
pattern, 2 LSB.  
B15  
B14  
X
B1ꢀ  
X
B12  
X
B11  
B10  
User-defined  
pattern, 2 MSB.  
LSB first  
1 = on  
0 = off  
<10  
MSPS,  
low  
encode  
rate  
000 = 10 bits (default, normal bit  
stream)  
001 = ± bits  
010 = 10 bits  
011 = 12 bits  
Serial stream  
control. Default  
causes MSB first  
and the native  
bit stream  
(default)  
mode  
1 = on  
0 = off  
(default)  
100 = 14 bits  
(global).  
22  
serial_ch_stat  
X
X
X
X
X
X
Channel  
output  
reset  
Channel  
power-  
down  
0x00  
Used to power  
down individual  
sections of a  
1 = on  
0 = off  
1 = on  
0 = off  
converter (local).  
(default) (default)  
1 X = an undefined feature  
Rev. E | Page ꢀ5 of 56  
AD9212  
Data Sheet  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
Exposed Paddle Thermal Heat Slug Recommendations  
It is required that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9212. An  
exposed continuous copper plane on the PCB should mate to  
the AD9212 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
Before starting design and layout of the AD9212 as a system, it  
is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9212, it is recommended  
that two separate 1.8 V supplies be used: one for analog (AVDD)  
and one for digital (DRVDD). If only one supply is available, it  
should be routed to the AVDD first and then tapped off and  
isolated with a ferrite bead or a filter choke preceded by  
decoupling capacitors for the DRVDD. The user can employ  
several different decoupling capacitors to cover both high and  
low frequencies. These capacitors should be located close to the  
point of entry at the PC board level and close to the parts, with  
minimal trace lengths.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
multiple tie points between the ADC and PCB during the  
reflow process, whereas using one continuous plane with no  
partitions guarantees only one tie point. See Figure 69 for a PCB  
layout example. For detailed information on packaging and the  
PCB layout of chip scale packages, see the AN-772 Application  
Note, A Design and Manufacturing Guide for the Lead Frame  
Chip Scale Package (LFCSP).  
A single PC board ground plane should be sufficient when  
using the AD9212. With proper decoupling and smart parti-  
tioning of the PC boards analog, digital, and clock sections,  
optimum performance can be easily achieved.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 69. Typical PCB Layout  
Rev. E | Page ꢀ6 of 56  
 
 
 
Data Sheet  
AD9212  
EVALUATION BOARD  
The AD9212 evaluation board provides all the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially by using  
a transformer (default) or an AD8334 driver. The ADC can also be  
driven in a single-ended fashion. Separate power pins are provided  
to isolate the DUT from the drive circuitry of the AD8334. Each  
input configuration can be selected by changing the connections  
of various jumpers (see Figure 74 to Figure 78). Figure 70 shows  
the typical bench characterization setup used to evaluate the  
ac performance of the AD9212. It is critical that the signal sources  
used for the analog input and clock have very low phase noise  
(<1 ps rms jitter) to realize the optimum performance of the  
converter. Proper filtering of the analog input signal to remove  
harmonics and lower the integrated or broadband noise at the  
input is also necessary to achieve the specified noise performance.  
board individually. Use P702 to connect a different supply for  
each section. At least one 1.8 V supply is needed for AVDD_DUT  
and DRVDD_DUT; however, it is recommended that separate  
supplies be used for both analog and digital signals and that each  
supply have a current capability of 1 A. To operate the evaluation  
board using the VGA option, a separate 5.0 V analog supply  
(AVDD_5 V) is needed. To operate the evaluation board using  
the SPI and alternate clock options, a separate 3.3 V analog supply  
(AVDD_3.3 V) is needed in addition to the other supplies.  
INPUT SIGNALS  
When connecting the clock and analog sources to the  
evaluation board, use clean signal generators with low phase  
noise, such as Rohde & Schwarz SMA or HP8644 signal generators  
or the equivalent, as well as a 1 m, shielded, RG-58, 50 Ω coaxial  
cable. Enter the desired frequency and amplitude from the ADC  
specifications tables. Typically, most Analog Devices, Inc., evalu-  
ation boards can accept approximately 2.8 V p-p or 13 dBm  
sine wave input for the clock. When connecting the analog  
input source, it is recommended to use a multipole, narrow-band,  
band-pass filter with 50 Ω terminations. Good choices of such  
band-pass filters are available from TTE, Allen Avionics, and  
K&L Microwave, Inc. The filter should be connected directly to  
the evaluation board if possible.  
See Figure 74 to Figure 84 for the complete schematics and  
layout diagrams demonstrating the routing and grounding  
techniques that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board has a wall-mountable switching power  
supply that provides a 6 V, 2 A maximum output. Connect the  
supply to the rated 100 V ac to 240 V ac wall outlet at 47 Hz to  
63 Hz. The other end of the supply is a 2.1 mm inner diameter  
jack that connects to the PCB at P701. Once on the PC board,  
the 6 V supply is fused and conditioned before connecting to  
three low dropout linear regulators that supply the proper bias  
to each of the various sections on the board.  
OUTPUT SIGNALS  
The default setup uses the Analog Devices HSC-ADC-FIFO5-  
INTZ to interface with the Analog Devices standard dual-channel  
FIFO data capture board (HCS-ADC-EVALCZ). Two of the  
eight channels can be evaluated at the same time. For more  
information on the channel settings and optional settings of  
these boards, visit www.analog.com/FIFO.  
When operating the evaluation board in a nondefault condition,  
L701 to L704 can be removed to disconnect the switching  
power supply. This enables the user to bias each section of the  
WALL OUTLET  
100V AC TO 240V AC  
47Hz TO 63Hz  
6V DC  
2A MAX  
5.0V  
1.8V  
1.8V  
3.3V  
3.3V  
+
+
+
+
+
SWITCHING  
POWER  
SUPPLY  
PC  
RUNNING  
ADC  
ANALYZER  
AND SPI  
USER  
ROHDE & SCHWARZ,  
INTERPOSER  
BOARD  
HSC-ADC-EVALCZ  
FIFO DATA  
CAPTURE  
SMA,  
2V p-p SIGNAL  
SYNTHESIZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
BOARD  
CH A TO CH H  
10-BIT  
SOFTWARE  
AD9212  
EVALUATION BOARD  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMA,  
CLK  
SERIAL  
LVDS  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
SPI  
Figure 70. Evaluation Board Connection  
Rev. E | Page ꢀꢁ of 56  
 
 
 
 
 
AD9212  
Data Sheet  
A differential LVPECL clock can also be used to clock the  
ADC input using the AD9515 (U401). Populate R406 and  
R407 with 0 Ω resistors, and remove R215 and R216 to  
disconnect the default clock path inputs. In addition, populate  
C205 and C206 with a 0.1 μF capacitor, and remove C409 and  
C410 to disconnect the default clock path outputs. The  
AD9515 has many pin-strappable options that are set to a  
default mode of operation. Consult the AD9515 data sheet  
for more information about these and other options.  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
The following is a list of the default and optional settings or  
modes allowed on the AD9212 Rev. A evaluation board.  
Power: Connect the switching power supply that is  
provided with the evaluation kit between a rated 100 V ac  
to 240 V ac wall outlet at 47 Hz to 63 Hz and P701.  
AIN: The evaluation board is set up for a transformer-  
coupled analog input with an optimum 50 Ω impedance  
match of 150 MHz of bandwidth (see Figure 71). For more  
bandwidth response, the differential capacitor across the  
analog inputs can be changed or removed. The common  
mode of the analog inputs is developed from the center  
tap of the transformer or AVDD_DUT/2.  
In addition, an on-board oscillator is available on the OSC401  
and can act as the primary clock source. The setup is quick  
and involves installing R403 with a 0 Ω resistor and setting  
the enable jumper (J401) to the on position. If the user wishes  
to employ a different oscillator, two oscillator footprint options  
are available (OSC401) to check the ADC performance.  
0
PDWN: To enable the power-down feature, short J301 to  
the on position (AVDD) for the PDWN pin.  
–1  
–2  
–3dB CUTOFF = 186MHz  
–3  
–4  
SCLK/DTP: To enable the digital test pattern on the digital  
outputs of the ADC, use J304. If J304 is tied to AVDD during  
device power-up, Test Pattern 10 0000 0000 is enabled. See the  
SCLK/DTP Pin section for details.  
–5  
–6  
–7  
–8  
SDIO/ODM: To enable the low power, reduced signal option  
(similar to the IEEE 1595.3 reduced range link LVDS output  
standard), use J303. If J303 is tied to AVDD during device  
power-up, it enables the LVDS outputs in a low power,  
reduced signal option from the default ANSI-644 standard.  
This option changes the signal swing from 350 mV p-p to  
200 mV p-p, reducing the power of the DRVDD supply. See  
the SDIO/ODM Pin section for more details.  
–9  
–10  
–11  
–12  
–13  
–14  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 71. Evaluation Board Full-Power Bandwidth  
VREF: VREF is set to 1.0 V by tying the SENSE pin to  
ground, R317. This causes the ADC to operate in 2.0 V p-p  
full-scale range. A separate external reference option using  
the ADR510 is also included on the evaluation board.  
Populate R312 and R313, and remove C307. Proper use of  
the VREF options is noted in the Voltage Reference  
section.  
CSB: To enable processing of the SPI information on the  
SDIO and SCLK pins, tie J302 low in the always enable  
mode. To ignore the SDIO and SCLK information, tie J302  
to AVDD.  
Non-SPI Mode: For users who wish to operate the DUT  
without using the SPI, simply remove Jumpers J302, J303,  
and J304. This disconnects the CSB, SCLK/DTP, and  
SDIO/ODM pins from the control bus, allowing the DUT  
to operate in its simplest mode. Each of these pins has  
internal termination and will float to its respective level.  
RBIAS: RBIAS has a default setting of 10 kΩ (R301) to  
ground and is used to set the ADC core bias current.  
Clock: The default clock input circuitry is derived from a  
simple transformer-coupled circuit using a high bandwidth  
1:1 impedance ratio transformer (T401) that adds a very  
low amount of jitter to the clock path. The clock input is  
50 Ω terminated and ac-coupled to handle single-ended  
sine wave types of inputs. The transformer converts the  
single-ended input to a differential signal that is clipped  
before entering the ADC clock inputs.  
D + x, D − x: If an alternative data capture method to the  
setup shown in Figure 74 is used, optional receiver  
terminations, R318 and R320 to R328, can be installed next  
to the high speed backplane connector.  
Rev. E | Page ꢀ± of 56  
 
 
Data Sheet  
AD9212  
In this example, a 16 MHz, two-pole low-pass filter was applied  
to the AD8334 outputs. The following components need to be  
removed and/or changed:  
ALTERNATIVE ANALOG INPUT DRIVE  
CONFIGURATION  
The following is a brief description of the alternative analog  
input drive configuration using the AD8334 dual VGA. If this  
drive option is in use, some components may need to be populated,  
in which case all the necessary components are listed in Table 17.  
For more details on the AD8334 dual VGA, including how it works  
and its optional pin settings, consult the AD8334 data sheet.  
Remove L507, L508, L511, L512, L515, L516, L519, L520,  
L607, L608, L611, L612, L615, L616, L619, and L620 on the  
AD8334 analog outputs.  
Populate L507, L508, L511, L512, L515, L516, L519, L520,  
L607, L608, L611, L612, L615, L616, L619, and L620 with  
680 nH inductors.  
To configure the analog input to drive the VGA instead of the  
default transformer option, the following components need to  
be removed and/or changed.  
Populate C543, C547, C551, C555, C643, C647, C651, and  
C655 with a 68 pF capacitor.  
Remove R102, R115, R128, R141, R161, R162, R163, R164,  
R202, R208, R218, R225, R234, R241, R252, R259, T101,  
T102, T103, T104, T201, T202, T203, and T204 in the  
default analog input path.  
680nH  
68pF  
680nH  
Figure 72. Example Filter Configured for 16 MHz, Two-Pole Low-Pass Filter  
0
Populate R101, R114, R127, R140, R201, R217, R233, and  
R251 with 0 Ω resistors in the analog input path.  
fSAMPLE = 65MSPS  
AIN = 3.5MHz  
AD8334 = MAX GAIN SETTING  
–20  
Populate R152, R153, R154, R155, R156, R157, R158, R159,  
R215, R216, R229, R230, R247, R248, R263, R264, C103,  
C105, C110, C112, C117, C119, C124, C126, C203, C205,  
C210, C212, C217, C219, C224, and C226 with 10 kΩ  
resistors to provide an input common-mode level to the  
ADC analog inputs.  
–40  
–60  
–80  
Populate R105, R113, R118, R124, R131, R137, R151, R160,  
R205, R213, R221, R222, R237, R238, R255, and R256 with  
0 Ω resistors in the ADC analog input path to connect the  
VGA outputs.  
–100  
–120  
0
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5  
FREQUENCY (MHz)  
Remove R515, R520, R527, R532, R615, R620, R627, and  
R632 on the AD8334 analog outputs.  
Figure 73. AD9212 FFT Example Results Using  
16 MHz, Two-Pole Low-Pass Filter Applied to the AD8334 Outputs  
(Analog Input Signal = −1.03 dBFS, SNR = 56.75 dBc, SFDR = 64.4 dBc)  
Remove R512, R524, R612, and R624 to set the AD8334  
mode and AD8334 HILO pin low. Some applications may  
require this to be different. Consult the AD8334 data sheet  
for more information on these functions.  
In this configuration, L505 to L520 and L605 to L620 are populated  
with 0 Ω resistors to allow signal connection and use of a filter if  
additional requirements are necessary.  
Rev. E | Page ꢀꢂ of 56  
 
AD9212  
Data Sheet  
0 7 2  
0 5 9 6 8 -  
Figure 74. Evaluation Board Schematic, DUT Analog Inputs  
Rev. E | Page 40 of 56  
 
Data Sheet  
AD9212  
3
0 7 8 - 9 6 0 5  
Figure 75. Evaluation Board Schematic, DUT Analog Inputs (Continued)  
Rev. E | Page 41 of 56  
 
AD9212  
Data Sheet  
7 4 0 8 - 9 6 0 5  
2
2
2
2
R307  
10k  
R306  
100kΩ  
AVDD_DUT  
R302  
DNP  
R305  
100kΩ  
CW  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
0
VIN+C  
VINC  
AVDD  
VIND  
VIN+D  
RBIAS  
SENSE  
VREF  
REFB  
REFT  
AVDD  
VIN+E  
VINE  
AVDD  
VINF  
VIN+F  
SLUG  
VIN_C  
VIN_C  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CHB  
D+B  
DB  
CHB  
CHC  
AVDD_DUT  
VIN_D  
D+C  
DC  
CHC  
CHD  
GND  
R301  
10kΩ  
VIN_D  
D+D  
DD  
CHD  
FCO  
VSENSE_DUT  
VREF_DUT  
FCO+  
FCO−  
DCO+  
DCO−  
D+E  
FCO  
DCO  
DCO  
AVDD_DUT  
VIN_E  
CHE  
CHE  
DE  
VIN_E  
D+F  
CHF  
AVDD_DUT  
DF  
CHF  
CHG  
VIN_F  
VIN_F  
D+G  
DG  
CHG  
Figure 76. Evaluation Board Schematic, DUT, VREF, and Digital Output Interface  
Rev. E | Page 42 of 56  
Data Sheet  
AD9212  
5
0 - 7 9 6 8 0 5  
25  
16  
15  
14  
13  
12  
11  
10  
9
S0  
S1  
S2  
S3  
1
2
33  
31  
1
S4  
3
S5  
GND  
VS  
S6  
S7  
S8  
8
S9  
32  
7
RSET  
S10  
VREF  
6
Figure 77. Evaluation Board Schematic, Clock Circuitry  
Rev. E | Page 4ꢀ of 56  
AD9212  
Data Sheet  
7 6 0 - 6 8 5 9  
R524  
10k  
R523  
10kΩ  
R513  
187Ω  
C512  
10µF  
C511  
0.1µF  
C533  
10µF  
C534  
0.1µF  
C535  
10µF  
C536  
0.1µF  
C510  
10µF  
C509  
0.1µF  
R512  
10kΩ  
R511  
10kΩ  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCM2  
VCM1  
EN34  
NC  
VCM3  
VCM4  
HILO  
R504  
10kΩ  
R505  
10kΩ  
AVDD_5V  
EN12  
CLMP12  
GAIN12  
VPS1  
VIN1  
CLMP34  
GAIN34  
VPS4  
VG34  
VG12  
AVDD_5V  
AVDD_5V  
VIN4  
VIP1  
VIP4  
LOP1  
LON1  
COM1X  
LMD1  
INH1  
LOP4  
LON4  
COM4X  
LMD4  
INH4  
R509  
274Ω  
C505  
0.1µF  
COM1  
COM2  
COM4  
COM3  
C527  
0.018µF  
C526  
22pF  
L504  
120nH  
0.1µF  
C525  
R503  
274Ω  
R508  
274Ω  
R507  
274Ω  
C502  
0.018µF  
C521  
0.018µF  
C515  
0.018µF  
C503  
22pF  
L501  
120nH  
C520  
22pF  
C514  
22pF  
0.1µF  
C501  
L503  
120nH  
L502  
120nH  
0.1µF  
C519  
0.1µF  
C513  
AVDD_5V  
AVDD_5V  
CW  
CW  
GND  
GND  
VG34  
VG12  
Variable Gain Circuit  
(01.0V DC)  
Variable Gain Circuit  
(01.0V DC)  
VG34  
VG12  
External  
Variable Gain Drive  
External  
Variable Gain Drive  
Figure 78. Evaluation Board Schematic, Optional DUT Analog Input Drive  
Rev. E | Page 44 of 56  
 
Data Sheet  
AD9212  
7 7 0 8 - 9 6 0 5  
R613  
187Ω  
C612  
10µF  
C611  
0.1µF  
C633  
10µF  
C634  
0.1µF  
C635  
10µF  
C636  
0.1µF  
C610  
10µF  
C609  
0.1µF  
VCM2  
NC  
VCM3  
VCM4  
HILO  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCM1  
EN34  
EN12  
10kΩ  
R604  
R612  
10kΩ  
R611  
10kΩ  
R605  
10kΩ  
AVDD_5V  
CLMP12  
GAIN12  
VPS1  
CLMP34  
GAIN34  
VPS4  
VG56  
VG78  
AVDD_5V  
AVDD_5V  
VIN1  
VIN4  
VIP1  
VIP4  
LOP1  
LOP4  
LON1  
COM1X  
LMD1  
INH1  
LON4  
COM4X  
LMD4  
INH4  
R609  
274Ω  
C605  
0.1µF  
62  
63  
COM1  
COM2  
COM4  
COM3  
64  
C627  
0.018µF  
C626  
22pF  
L604  
120nH  
0.1µF  
C625  
R603  
274Ω  
R608  
274Ω  
R607  
274Ω  
C602  
0.018µF  
C621  
0.018µF  
C615  
0.018µF  
C603  
22pF  
L601  
120nH  
C620  
22pF  
C614  
22pF  
0.1µF  
C601  
L603  
120nH  
L602  
120nH  
0.1µF  
C619  
0.1µF  
C613  
AVDD_5V  
AVDD_5V  
CW  
CW  
GND  
GND  
VG78  
VG56  
Variable Gain Circuit  
(01.0V DC)  
Variable Gain Circuit  
(01.0V DC)  
VG78  
VG56  
External  
Variable Gain Drive  
External  
Variable Gain Drive  
Figure 79. Evaluation Board Schematic, Optional DUT Analog Input Drive (Continued)  
Rev. E | Page 45 of 56  
AD9212  
Data Sheet  
7 8 0 - 6 8 5 9  
CR702  
GREEN  
C702  
0.1µF  
C703  
0.1µF  
GND  
GND  
1
1
R709  
0Ω  
0Ω  
SDO_CHA  
SDI_CHA  
R708  
R707  
R706  
0Ω  
0Ω  
SCLK_CHA  
CSB1_CHA  
PICVCC  
1
3
5
7
9
2
4
PICVCC  
GP1  
GP1  
GP0  
6
GP0  
MCLR/GP3  
8
MCLR/GP3  
10  
GND  
GND  
CR701  
2
OPTIONAL GREEN  
Figure 80. Evaluation Board Schematic, Power Supply Inputs and SPI Interface Circuitry  
Rev. E | Page 46 of 56  
Data Sheet  
AD9212  
Figure 81. Evaluation Board Layout, Primary Side  
Rev. E | Page 4ꢁ of 56  
AD9212  
Data Sheet  
Figure 82. Evaluation Board Layout, Ground Plane  
Rev. E | Page 4± of 56  
Data Sheet  
AD9212  
Figure 83. Evaluation Board Layout, Power Plane  
Rev. E | Page 4ꢂ of 56  
AD9212  
Data Sheet  
Figure 84. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. E | Page 50 of 56  
 
Data Sheet  
AD9212  
Table 17. Evaluation Board Bill of Materials (BOM)1  
Qty  
per  
Reference  
Manufacturer  
Manufacturer Part Number  
Item Board Designator  
Device  
Package  
PCB  
402  
Value  
1
2
1
11±  
ADꢂ212LFCSP_REVA PCB  
PCB  
C101, C102, C10ꢁ,  
C10±, C10ꢂ, C114,  
C115, C116, C121,  
C122, C12ꢀ, C12±,  
C201, C202, C20ꢁ,  
C20±, C20ꢂ, C214,  
C215, C216, C221,  
C222, C22ꢀ, C22±,  
Cꢀ01, Cꢀ02, Cꢀ04,  
Cꢀ05, Cꢀ06, C401,  
C402, C40ꢀ, C40ꢂ,  
C410, C411, C412,  
C41ꢀ, C414, C415,  
C416, C41ꢁ, C41±,  
C501, C504, C505,  
C506, C50±, C50ꢂ,  
C511, C51ꢀ, C51±,  
C51ꢂ, C522, C52ꢀ,  
C524, C525, C52±,  
C52ꢂ, C5ꢀ0, C5ꢀ2,  
C5ꢀ4, C5ꢀ6, C5ꢀꢁ,  
C5ꢀ±, C601, C604,  
C605, C606, C60±,  
C60ꢂ, C611, C61ꢀ,  
C616, C61ꢁ, C61±,  
C61ꢂ, C622, C62ꢀ,  
C624, C625, C62±,  
C62ꢂ, C6ꢀ0, C6ꢀ2,  
C6ꢀ4, C6ꢀ6, Cꢁ01,  
Cꢁ02, Cꢁ0ꢀ, Cꢁ06,  
Cꢁ0±, Cꢁ10, Cꢁ12,  
Cꢁ2ꢀ, Cꢁ24, Cꢁ25,  
Cꢁ26, Cꢁ2ꢁ, Cꢁꢀ0,  
Cꢁꢀ1, Cꢁꢀ2, Cꢁꢀꢀ,  
Cꢁꢀ4, Cꢁꢀ5, Cꢁ40,  
Cꢁ41, Cꢁ42, Cꢁ4ꢀ,  
Cꢁ44, Cꢁ45, Cꢁ46,  
Cꢁ4ꢁ, Cꢁ4±, Cꢁ4ꢂ,  
Cꢁ50, Cꢁ51, Cꢁ52,  
Cꢁ5ꢀ  
Capacitor  
0.1 μF, ceramic, X5R,  
10 V, 10% tol  
Murata  
GRM155Rꢁ1C104KA±±D  
4
±
±
C104, C111, C11±,  
C125, C204, C211,  
C21±, C225  
C510, C512, C5ꢀꢀ,  
C5ꢀ5, C610, C612,  
C6ꢀꢀ, C6ꢀ5  
Capacitor  
Capacitor  
402  
±05  
2.2 pF, ceramic, COG,  
0.25 pF tol, 50 V  
Murata  
Murata  
GRM1555C1H2R20CZ01D  
GRM21ꢂR60J106KE1ꢂD  
10 μF, 6.ꢀ V ±10%,  
ceramic, X5R  
5
6
1
4
±
Cꢀ0ꢀ  
Capacitor  
Capacitor  
Capacitor  
60ꢀ  
402  
402  
4.ꢁ μF, ceramic, X5R,  
6.ꢀ V, 10% tol  
1000 pF, ceramic, XꢁR,  
25 V, 10% tol  
0.01± μF, ceramic, XꢁR,  
16 V, 10% tol  
Murata  
Murata  
AVX  
GRM1±±R60J4ꢁ5KE1ꢂD  
GRM155Rꢁ1H102KA01D  
0402YC1±ꢀKAT2A  
C50ꢁ, C5ꢀ1, C60ꢁ,  
C6ꢀ1  
C502, C515, C521,  
C52ꢁ, C602, C615,  
C621, C62ꢁ  
Rev. E | Page 51 of 56  
 
AD9212  
Data Sheet  
Qty  
per  
Reference  
Manufacturer  
Manufacturer Part Number  
Item Board Designator  
Device  
Package  
Value  
±
±
C50ꢀ, C514, C520,  
C526, C60ꢀ, C614,  
C620, C626  
Capacitor  
402  
22 pF, ceramic, NPO,  
5% tol, 50 V  
Murata  
GRM1555C1H220JZ01D  
1
Cꢁ04  
Capacitor  
Capacitor  
1206  
60ꢀ  
10 μF, tantalum,  
16 V, 20% tol  
1 μF, ceramic, X5R,  
6.ꢀ V, 10% tol  
ROHM Co., Ltd. TCA1C106M±R  
10  
Cꢀ0ꢁ, Cꢁ14, Cꢁ15,  
Cꢁ16, Cꢁ1ꢁ, Cꢁ1ꢂ,  
Cꢁ20, Cꢁ21, Cꢁ22  
C540, C541, C544,  
C545, C54±, C54ꢂ,  
C552, C55ꢀ, C640,  
C641, C644, C645,  
C64±, C64ꢂ, C652,  
C65ꢀ  
Murata  
Murata  
GRM1±±R61C105KAꢂꢀD  
11  
16  
Capacitor  
±05  
0.1 μF, ceramic, XꢁR,  
50 V, 10% tol  
GRM21BRꢁ1H104KA01L  
12  
1ꢀ  
4
1
Cꢁ05, Cꢁ0ꢁ, Cꢁ0ꢂ,  
Cꢁ11  
CR401  
Capacitor  
Diode  
60ꢀ  
10 μF, ceramic, X5R,  
6.ꢀ V, 20% tol  
ꢀ0 V, 20 mA, dual  
Schottky  
Green, 4V, 5 m candela  
ꢀ A, ꢀ0 V, SMC  
Murata  
GRM1±±R60J106ME4ꢁD  
HSMS-2±12-TR1G  
SOT-2ꢀ  
60ꢀ  
Avago  
Technologies  
Panasonic  
Micro  
14  
15  
2
1
CRꢁ01, CRꢁ02  
Dꢁ02  
LED  
Diode  
LNJꢀ14G±TRA  
SKꢀꢀ-TP  
DO-  
214AB  
Commercial Co.  
16  
1ꢁ  
1±  
1ꢂ  
1
Dꢁ01  
Diode  
DO-  
214AA  
5 A, 50 V, SMC  
Micro  
Commercial Co.  
Tyco/Raychem  
Murata  
S2A-TP  
1
Fꢁ01  
Fuse  
1210  
2020  
60ꢀ  
6.0 V, 2.2 A trip-current  
resettable fuse  
10 μH, 5 A, 50 V, 1ꢂ0 Ω  
@ 100 MHz  
10 Ω, test frequency  
100 MHz, 25% tol,  
500 mA  
NANOSMDC110F-2  
DLW5BSN1ꢂ1SQ2L  
BLM1±BA100SN1D  
1
FERꢁ01  
Choke coil  
Ferrite bead  
24  
FB101, FB102,  
FB10ꢀ, FB104,  
FB105, FB106,  
FB10ꢁ, FB10±,  
FB10ꢂ, FB110,  
FB111, FB112,  
FB201, FB202,  
FB20ꢀ, FB204,  
FB205, FB206,  
FB20ꢁ, FB20±,  
FB20ꢂ, FB210,  
FB211, FB212  
Murata  
20  
21  
2ꢀ  
24  
4
6
1
±
JP501, JP502,  
JP601, JP602  
Jꢀ01, Jꢀ02, Jꢀ0ꢀ,  
Jꢀ04, J401, Jꢁ01  
Connector  
Connector  
Connector  
Ferrite bead  
2-pin  
ꢀ-pin  
10-pin  
1210  
100 mil header jumper,  
2-pin  
100 mil header jumper,  
ꢀ-pin  
100 mil header, male,  
2 × 5 double row straight  
Samtec  
Samtec  
Samtec  
Murata  
TSW-102-0ꢁ-G-S  
TSW-10ꢀ-0ꢁ-G-S  
TSW-105-0±-G-D  
BLMꢀ1PG500SN1L  
Jꢁ02  
Lꢁ01, Lꢁ02, Lꢁ0ꢀ,  
Lꢁ04, Lꢁ05, Lꢁ06,  
Lꢁ0ꢁ, Lꢁ0±  
10 μH, bead core ꢀ.2 ×  
2.5 × 1.6 SMD, 2 A  
25  
±
L501, L502, L50ꢀ,  
L504, L601, L602,  
L60ꢀ, L604  
Inductor  
402  
120 nH, test freq  
100 MHz, 5% tol,  
150 mA  
Murata  
LQG15HNR12J02D  
Rev. E | Page 52 of 56  
Data Sheet  
AD9212  
Qty  
per  
Reference  
Manufacturer  
Manufacturer Part Number  
Item Board Designator  
Device  
Package  
Value  
26  
ꢀ2  
L505, L506, L50ꢁ,  
L50±, L50ꢂ, L510,  
L511, L512, L51ꢀ,  
L514, L515, L516,  
L51ꢁ, L51±, L51ꢂ,  
L520, L605, L606,  
L60ꢁ, L60±, L60ꢂ,  
L610, L611, L612,  
L61ꢀ, L614, L615,  
L616, L61ꢁ, L61±,  
L61ꢂ, L620  
Resistor  
±05  
0 Ω, 1/± W, 5% tol  
NIC  
Components  
Corp.  
NRC04Z0TRF  
2ꢁ  
2±  
2ꢂ  
1
1
OSC401  
Oscillator  
Connector  
Connector  
SMT  
Clock oscillator,  
65.00 MHz, ꢀ.ꢀ V,  
±5% duty cycle  
Side-mount SMA for  
0.06ꢀ" board thickness  
Valpey Fisher  
VFACꢀ-BHL-65MHz  
142-0ꢁ01-±51  
646ꢂ16ꢂ-1  
P101, P10ꢀ, P105,  
P10ꢁ, P201, P20ꢀ,  
P205, P20ꢁ, P401  
SMA  
Johnson  
Components  
Pꢀ01  
HEADER  
146ꢂ16ꢂ-1, right angle  
2-pair, 25 mm, header  
assembly  
Tyco  
ꢀ0  
ꢀ1  
1
Pꢁ01  
Connector  
Resistor  
0.1",  
PCMT  
402  
RAPCꢁ22, power  
supply connector  
10 kΩ, 1/16 W, 5% tol  
Switchcraft  
RAPCꢁ22X  
21  
Rꢀ01, Rꢀ0ꢁ, R401,  
R402, R410, R41ꢀ,  
R504, R505, R511,  
R512, R52ꢀ, R524,  
R604, R605, R611,  
R612, R62ꢀ, R624,  
Rꢁ11, Rꢁ14, Rꢁ15  
NIC  
Components  
Corp.  
NRC04J10ꢀTRF  
ꢀ2  
1±  
R10ꢀ, R11ꢁ, R12ꢂ,  
R142, R20ꢀ, R21ꢂ,  
R2ꢀ5, R25ꢀ, Rꢀ1ꢁ,  
R405, R415, R416,  
R41ꢁ, R41±, Rꢁ06,  
Rꢁ0ꢁ, Rꢁ0±, Rꢁ0ꢂ  
Resistor  
402  
0 Ω, 1/16 W, 5% tol  
NIC  
Components  
Corp.  
NRC04Z0TRF  
ꢀꢀ  
ꢀ4  
ꢀ5  
±
R102, R115, R12±,  
R141, R202, R21±,  
R2ꢀ4, R252  
R104, R116, R1ꢀ0,  
R14ꢀ, R204, R220,  
R2ꢀ6, R254  
R10ꢂ, R111, R112,  
R12ꢀ, R125, R126,  
R1ꢀ5, R1ꢀ±, R1ꢀꢂ,  
R14±, R14ꢂ, R150,  
R211, R212, R214,  
R22±, R2ꢀ1, R2ꢀ2,  
R246, R24ꢂ, R250,  
R262, R265, R266,  
Rꢀ1ꢂ, Rꢁ10, Rꢁ12,  
Rꢁ1ꢀ  
Resistor  
Resistor  
Resistor  
402  
60ꢀ  
402  
64.ꢂ Ω, 1/16 W, 1% tol  
0 Ω, 1/10 W, 5% tol  
1 kΩ, 1/16 W, 1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04F64RꢂTRF  
NRC06Z0TRF  
±
2±  
NRC04F1001TRF  
ꢀ6  
16  
R10±, R110, R121,  
R122, R1ꢀ4, R1ꢀ6,  
R146, R14ꢁ, R20ꢂ,  
R210, R226, R22ꢁ,  
R242, R245, R260,  
R261  
Resistor  
402  
ꢀꢀ Ω, 1/16 W, 5% tol  
NIC  
Components  
Corp.  
NRC04Jꢀꢀ0TRF  
Rev. E | Page 5ꢀ of 56  
AD9212  
Data Sheet  
Qty  
per  
Reference  
Manufacturer  
Manufacturer Part Number  
Item Board Designator  
Device  
Package  
Value  
ꢀꢁ  
ꢀ±  
ꢀꢂ  
±
1
R161, R162, R16ꢀ,  
R164, R20±, R225,  
R241, R25ꢂ  
Resistor  
402  
4ꢂꢂ Ω, 1/16 W, 1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04F4ꢂꢂ0TRF  
NRC04F100ꢀTRF  
NRC04F4121TRF  
Rꢀ0ꢀ, Rꢀ05, Rꢀ06  
Resistor  
Resistor  
402  
402  
100 kΩ, 1/16 W, 1% tol  
4.12 kΩ, 1/16W, 1% tol  
R414  
NIC  
Components  
Corp.  
40  
41  
1
1
R404  
Rꢀ0ꢂ  
Resistor  
Resistor  
402  
402  
4ꢂ.ꢂ Ω, 1/16 W, 0.5% tol Susumu  
RR0510R-4ꢂRꢂ-D  
NRC04F4ꢂꢂ1TRF  
4.ꢂꢂ kΩ, 1/16 W, 5% tol  
NIC  
Components  
Corp.  
42  
4ꢀ  
44  
45  
5
Rꢀ10, R501, R5ꢀ5,  
R601, R6ꢀ4  
Potentiometer ꢀ-lead  
10 kΩ, Cermet trimmer  
potentiometer, 1±-turn  
top adjust, 10%, 1/2 W  
4ꢁ0 kΩ, 1/16 W, 5% tol  
ꢀꢂ kΩ, 1/16 W, 5% tol  
1±ꢁ Ω, 1/16 W, 1% tol  
Copal  
Electronics  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
CTꢂ4EW10ꢀ  
1
Rꢀ0±  
Resistor  
Resistor  
Resistor  
402  
402  
402  
NRC04J4ꢁ4TRF  
NRC04JꢀꢂꢀTRF  
NRC04F1±ꢁ0TRF  
4
R502, R5ꢀ6, R602,  
R6ꢀ5  
16  
R51ꢀ, R514, R51±,  
R51ꢂ, R525, R526,  
R5ꢀ0, R5ꢀ1, R61ꢀ,  
R614, R61±, R61ꢂ,  
R625, R626, R6ꢀ0,  
R6ꢀ1  
46  
4ꢁ  
4±  
±
R515, R520, R52ꢁ,  
R5ꢀ2, R615, R620,  
R62ꢁ, R6ꢀ2  
R50ꢀ, R50ꢁ, R50±,  
R50ꢂ, R60ꢀ, R60ꢁ,  
R60±, R60ꢂ  
R425, R42ꢁ, R42ꢂ,  
R4ꢀ1, R4ꢀꢀ, R4ꢀ5,  
R4ꢀ6, R4ꢀꢂ, R441,  
R44ꢀ, R445  
Resistor  
Resistor  
Resistor  
402  
402  
201  
ꢀꢁ4 Ω, 1/16 W, 1% tol  
2ꢁ4 Ω, 1/16 W, 1% tol  
0 Ω, 1/20 W, 5% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC04Fꢀꢁ40TRF  
NRC04F2ꢁ40TRF  
NRC02Z0TRF  
±
11  
4ꢂ  
50  
51  
52  
5ꢀ  
54  
1
1
1
2
2
1
Rꢁ01  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Switch  
402  
402  
60ꢀ  
402  
402  
SMD  
4.ꢁ kΩ, 1/16 W, 1% tol  
261 Ω, 1/16 W, 1% tol  
261 Ω, 1/16 W, 1% tol  
240 Ω, 1/16 W, 5% tol  
100 Ω, 1/16 W, 1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
Panasonic  
NRC04J4ꢁ2TRF  
NRC04F2610TRF  
NRC06F261OTRF  
NRC04J241TRF  
NRC04F1000TRF  
EVQPLDA15  
Rꢁ02  
Rꢁ16  
R420, R421  
R422, R42ꢀ  
Sꢁ01  
Light Touch,  
100 GE, 5 mm  
Rev. E | Page 54 of 56  
Data Sheet  
AD9212  
Qty  
per  
Reference  
Manufacturer  
Manufacturer Part Number  
Mini-Circuits ADT1-1WT+  
Item Board Designator  
Device  
Package  
Value  
55  
56  
5ꢁ  
2
2
T101, T102, T10ꢀ,  
T104, T201, T202,  
T20ꢀ, T204, T401  
Transformer  
CD542  
ADT1-1WT+,  
1:1 impedance ratio  
transformer  
ADPꢀꢀꢀꢂAKC-1.±-RL,  
1.5 A, 1.± V LDO  
regulator  
AD±ꢀꢀ4ACPZ-REEL,  
ultralow noise  
Uꢁ04, Uꢁ0ꢁ  
IC  
IC  
SOT-22ꢀ  
CP-64-ꢀ  
Analog Devices ADPꢀꢀꢀꢂAKCZ-1.±-RL  
Analog Devices AD±ꢀꢀ4ACPZ-REEL  
U501, U601  
precision dual VGA  
5±  
5ꢂ  
60  
1
1
1
Uꢁ06  
Uꢁ05  
Uꢀ01  
IC  
IC  
IC  
SOT-22ꢀ  
SOT-22ꢀ  
CP-64-ꢀ  
ADPꢀꢀꢀꢂAKC-5-RLꢁ  
ADPꢀꢀꢀꢂAKC-ꢀ.ꢀ-RL  
ADꢂ212BCPZ-65, octal,  
10-bit, 65 MSPS serial  
LVDS 1.± V ADC  
Analog Devices ADPꢀꢀꢀꢂAKCZ-5-RLꢁ  
Analog Devices ADPꢀꢀꢀꢂAKCZ-ꢀ.ꢀ-RL  
Analog Devices ADꢂ212BCPZ-65  
61  
1
Uꢀ02  
IC  
SOT-2ꢀ  
ADR510ARTZ, 1.0 V,  
precision low noise  
shunt voltage  
Analog Devices ADR510ARTZ  
reference  
62  
6ꢀ  
64  
65  
1
1
1
1
U401  
Uꢁ02  
Uꢁ0ꢀ  
Uꢁ01  
IC  
IC  
IC  
IC  
LFCSP  
CP-ꢀ2-2  
SCꢁ0,  
MAA06A  
SCꢁ0,  
MAA06A  
±-SOIC  
ADꢂ515BCPZ, 1.6 GHz  
clock distribution IC  
NCꢁWZ0ꢁP6X_NL,  
UHS dual buffer  
NCꢁWZ16P6X_NL,  
UHS dual buffer  
Flash prog  
Analog Devices ADꢂ515BCPZ  
Fairchild  
Fairchild  
Microchip  
NCꢁWZ0ꢁP6X_NL  
NCꢁWZ16P6X_NL  
PIC12F62ꢂ-I/SNG  
mem 1k × 14,  
RAM size 64 × ±,  
20 MHz speed, PIC12F  
controller series  
1 This BOM is RoHS compliant.  
Rev. E | Page 55 of 56  
AD9212  
Data Sheet  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
7.55  
7.50 SQ  
7.45  
EXPOSED PAD  
(BOTTOM VIEW)  
8.75  
BSC SQ  
0.50  
0.40  
0.30  
16  
17  
33  
32  
0.22 MIN  
TOP VIEW  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 85. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Notes Range  
Package  
Option  
Model1  
Package Description  
ADꢂ212ABCPZ-40  
ADꢂ212ABCPZRLꢁ-40  
ADꢂ212ABCPZ-65  
ADꢂ212ABCPZRLꢁ-65  
ADꢂ212-65EBZ  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
−40°C to +±5°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] ꢁ”Tape and Reel CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] CP-64-6  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ] ꢁ”Tape and Reel CP-64-6  
Evaluation Board  
CP-64-6  
2
1 Z = RoHS Compliant Part.  
2 Interposer board (HSC-ADC-FIFO5-INTZ) is required to connect to HSC-ADC-EVALCZ data capture board.  
©2006–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05968-0-12/11(E)  
Rev. E | Page 56 of 56  
 
 
 
 
 

相关型号:

AD9214

10-Bit, 65/80/105 MSPS 3 V A/D Converter
ADI

AD9214-105PCB

10-Bit, 65/80/105 MSPS 3 V A/D Converter
ADI

AD9214-65PCB

10-Bit, 65/80/105 MSPS 3 V A/D Converter
ADI

AD9214BRS-105

10-Bit, 65/80/105 MSPS 3 V A/D Converter
ADI

AD9214BRS-105

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SSOP-28
ROCHESTER

AD9214BRS-65

10-Bit, 65/80/105 MSPS 3 V A/D Converter
ADI

AD9214BRS-65

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SSOP-28
ROCHESTER

AD9214BRS-80

10-Bit, 65/80/105 MSPS 3 V A/D Converter
ADI

AD9214BRS-80

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SSOP-28
ROCHESTER

AD9214BRS-RL105

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SSOP-28
ROCHESTER

AD9214BRS-RL65

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SSOP-28
ROCHESTER

AD9214BRS-RL80

1-CH 10-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PDSO28, PLASTIC, SSOP-28
ROCHESTER