AD9222 [ADI]

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter; 八通道,12位, 40/50 MSPS串行LVDS 1.8 VA / D转换器
AD9222
型号: AD9222
厂家: ADI    ADI
描述:

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
八通道,12位, 40/50 MSPS串行LVDS 1.8 VA / D转换器

转换器
文件: 总56页 (文件大小:2237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-Bit, 40/50 MSPS  
Serial LVDS 1.8 V A/D Converter  
AD9222  
FEATURES  
8 ADCs integrated into 1 package  
93 mW ADC power per channel at 50 MSPS  
SNR = 70 dB (to Nyquist)  
ENOB = 11.3 bits  
SFDR = 84 dBc  
Excellent linearity  
DNL = 0.3 LSB (typical)  
INL = 0.4 LSB (typical)  
Serial LVDS (ANSI-644, default)  
Low power reduced signal option, IEEE 1596.3 similar  
Data and frame clock outputs  
325 MHz full power analog bandwidth  
2 V p-p input voltage range  
1.8 V supply operation  
Serial port control  
Full-chip and individual-channel power-down modes  
Flexible bit orientation  
Built-in and custom digital test pattern generation  
Programmable clock and data alignment  
Programmable output resolution  
Standby mode  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DRVDD  
DRGND  
AD9222  
12  
VIN+A  
VIN–A  
D+A  
D–A  
SERIAL  
LVDS  
ADC  
ADC  
12  
12  
VIN+B  
VIN–B  
D+B  
D–B  
SERIAL  
LVDS  
VIN+C  
VIN–C  
D+C  
D–C  
SERIAL  
LVDS  
ADC  
12  
12  
VIN+D  
VIN–D  
D+D  
D–D  
SERIAL  
LVDS  
ADC  
ADC  
ADC  
VIN+E  
VIN–E  
SERIAL  
LVDS  
D+E  
D–E  
12  
12  
VIN+F  
VIN–F  
D+F  
D–F  
SERIAL  
LVDS  
VIN+G  
VIN–G  
D+G  
D–G  
SERIAL  
LVDS  
ADC  
ADC  
12  
VIN+H  
VIN–H  
D+H  
D–H  
SERIAL  
LVDS  
APPLICATIONS  
VREF  
Medical imaging and nondestructive ultrasound  
Portable ultrasound and digital beam forming systems  
Quadrature radio receivers  
Diversity radio receivers  
FCO+  
FCO–  
SENSE  
0.5V  
DATA RATE  
REFT  
REFB  
REF  
SELECT  
MULTIPLIER  
SERIAL PORT  
INTERFACE  
DCO+  
DCO–  
Tape drives  
Optical networking  
Test equipment  
SCLK/  
DTP  
RBIAS AGND CSB SDIO/  
ODM  
CLK+  
CLK–  
Figure 1.  
GENERAL DESCRIPTION  
The ADC contains several features designed to maximize  
The AD9222 is an octal, 12-bit, 40/50 MSPS analog-to-digital  
converter (ADC) with an on-chip sample-and-hold circuit that  
is designed for low cost, low power, small size, and ease of use.  
The product operates at a conversion rate of up to 50 MSPS and  
is optimized for outstanding dynamic performance and low  
power in applications where a small package size is critical.  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom user-  
defined test patterns entered via the serial port interface (SPI®).  
The AD9222 is available in a Pb-free, 64-lead LFCSP package. It is  
specified over the industrial temperature range of −40°C to +85°C.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Eight ADCs are contained in a small, space-  
saving package; low power of 93 mW/channel at 50 MSPS.  
2. Ease of Use. A data clock output (DCO) operates up to  
300 MHz and supports double data rate operation (DDR).  
3. User Flexibility. Serial port interface (SPI) control offers a wide  
range of flexible features to meet specific system requirements.  
The ADC automatically multiplies the sample rate clock for  
the appropriate LVDS serial data rate. A data clock (DCO)  
for capturing data on the output and a frame clock (FCO) for  
signaling a new output byte are provided. Individual channel  
power-down is supported and typically consumes less than  
2 mW when all channels are disabled.  
4. Pin-Compatible Family. This includes the AD9212 (10-bit),  
and AD9252 (14-bit).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
AD9222  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagrams.............................................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Impedance..................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Equivalent Circuits......................................................................... 12  
Typical Performance Characteristics ........................................... 14  
Theory of Operation ...................................................................... 18  
Analog Input Considerations ................................................... 18  
Clock Input Considerations...................................................... 21  
Serial Port Interface (SPI).............................................................. 29  
Hardware Interface..................................................................... 30  
Memory Map .................................................................................. 32  
Reading the Memory Map Table.............................................. 32  
Reserved Locations .................................................................... 32  
Default Values............................................................................. 32  
Logic Levels................................................................................. 32  
Evaluation Board ............................................................................ 36  
Power Supplies............................................................................ 36  
Input Signals................................................................................ 36  
Output Signals ............................................................................ 36  
Default Operation and Jumper Selection Settings................. 37  
Alternative Analog Input Drive Configuration...................... 38  
Outline Dimensions....................................................................... 55  
Ordering Guide .......................................................................... 55  
REVISION HISTORY  
9/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 56  
AD9222  
SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 1.  
AD9222-40  
Min Typ  
AD9222-50  
Min Typ  
Parameter1  
Temperature  
Max  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
±1  
±3  
±0.ꢀ  
±0.3  
Guaranteed  
±1  
±3  
±1.5  
±0.3  
±±  
±±  
±1.2  
±0.ꢁ  
±0.5  
±1  
±±  
mV  
±±  
mV  
±2.5  
±0.ꢁ  
% FS  
% FS  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Reference Voltage (1 V Mode)  
REFERENCE  
±0.25  
±0.ꢀ  
±0.3  
±0.ꢀ  
±0.65 LSB  
±1  
LSB  
Full  
Full  
Full  
±2  
±1ꢁ  
±21  
±2  
±1ꢁ  
±21  
ppm/°C  
ppm/°C  
ppm/°C  
Output Voltage Error (VREF = 1 V)  
Load Regulation @ 1.0 mA (VREF = 1 V)  
Input Resistance  
Full  
Full  
Full  
±2  
3
6
±30  
±2  
3
6
±30  
mV  
mV  
kΩ  
ANALOG INPUTS  
Differential Input Voltage Range (VREF = 1 V)  
Common-Mode Voltage  
Differential Input Capacitance  
Analog Bandwidth, Full Power  
POWER SUPPLY  
Full  
Full  
Full  
Full  
2
2
V p-p  
V
pF  
AVDD/2  
325  
AVDD/2  
325  
MHz  
AVDD  
DRVDD  
IAVDD  
IDRVDD  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.ꢁ  
1.ꢁ  
1.±  
1.±  
33±  
51  
ꢁ00  
2
1.9  
1.9  
3ꢀ±.5  
53.6  
ꢁ22  
11  
1.ꢁ  
1.ꢁ  
1.±  
1.±  
35ꢁ.5  
53.5  
ꢁꢀ0  
2
1.9  
1.9  
V
V
36ꢁ.5 mA  
56.2  
ꢁ60  
11  
mA  
mW  
mW  
mW  
dB  
Total Power Dissipation (Including Output Drivers)  
Power-Down Dissipation  
Standby Dissipation2  
CROSSTALK  
±3  
±9  
−90  
−90  
−90  
−90  
CROSSTALK (Overrange Condition)3  
dB  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 Can be controlled via SPI.  
3 Overrange condition is specific with 6 dB of the full-scale input range.  
Rev. 0 | Page 3 of 56  
AD9222  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 2.  
AD9222-40  
Typ  
AD9222-50  
Typ  
Parameter1  
Temperature Min  
Max Min  
Max Unit  
dB  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.ꢀ MHz  
Full  
ꢁ0.3  
ꢁ0.ꢀ  
fIN = 19.ꢁ MHz Full  
69.5  
ꢁ0.3  
69.5  
ꢁ0.3  
dB  
fIN = 35 MHz  
fIN = ꢁ0 MHz  
Full  
Full  
Full  
69.9  
6±.±  
ꢁ0.0  
69.0  
dB  
dB  
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD) fIN = 2.ꢀ MHz  
ꢁ0.0  
ꢁ0.0  
dB  
fIN = 19.ꢁ MHz Full  
6±.ꢁ  
ꢁ0.0  
6±.5  
ꢁ0.0  
dB  
fIN = 35 MHz  
fIN = ꢁ0 MHz  
fIN = 2.ꢀ MHz  
Full  
Full  
Full  
69.5  
6±.0  
69.±  
6±.5  
dB  
dB  
EFFECTIVE NUMBER OF BITS (ENOB)  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
WORST HARMONIC (Second or Third)  
WORST OTHER (Excluding Second or Third)  
11.3±  
11.25 11.3±  
11.32  
11.ꢀ  
11.25 11.3±  
11.33  
Bits  
Bits  
Bits  
Bits  
fIN = 19.ꢁ MHz Full  
fIN = 35 MHz  
fIN = ꢁ0 MHz  
fIN = 2.ꢀ MHz  
Full  
Full  
Full  
11.1ꢀ  
11.1ꢁ  
±5  
±5  
±0  
ꢁ6  
±5  
±ꢀ  
±3  
ꢁꢁ  
dBc  
dBc  
dBc  
dBc  
fIN = 19.ꢁ MHz Full  
ꢁ3  
ꢁ3  
fIN = 35 MHz  
fIN = ꢁ0 MHz  
fIN = 2.ꢀ MHz  
Full  
Full  
Full  
−±5  
−±5  
−±0  
−ꢁ6  
−92  
−92  
−92  
−90  
±0.0  
−±5  
−±ꢀ  
−±3  
−ꢁꢁ  
−92  
−92  
−92  
−90  
±0.0  
dBc  
−ꢁ3 dBc  
dBc  
fIN = 19.ꢁ MHz Full  
−ꢁꢀ  
−±0  
fIN = 35 MHz  
fIN = ꢁ0 MHz  
fIN = 2.ꢀ MHz  
fIN = 19.ꢁ MHz Full  
fIN = 35 MHz  
fIN = ꢁ0 MHz  
Full  
Full  
Full  
dBc  
dBc  
−±0 dBc  
dBc  
Full  
Full  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)— fIN1 = 15 MHz, 25°C  
dBc  
AIN1 AND AIN2 = −ꢁ.0 dBFS  
fIN2 = 16 MHz  
fIN1 = ꢁ0 MHz, 25°C  
fIN2 = ꢁ1 MHz  
ꢁꢁ.0  
ꢁꢁ.0  
dBc  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
Rev. 0 | Page ꢀ of 56  
AD9222  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 3.  
AD9222-40  
Typ Max  
AD9222-50  
Typ Max  
Parameter1  
Temperature  
Min  
Min  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
25°C  
25°C  
250  
250  
mV p-p  
V
kΩ  
pF  
1.2  
20  
1.5  
1.2  
20  
1.5  
LOGIC INPUTS (PDWN, SCLK/DTP)  
Logic 1 Voltage  
Logic 0 Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
1.2  
0
3.6  
0.3  
1.2  
1.2  
3.6  
0.3  
V
V
kΩ  
pF  
30  
0.5  
30  
0.5  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
3.6  
0.3  
3.6  
0.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
ꢁ0  
0.5  
ꢁ0  
0.5  
kΩ  
pF  
LOGIC INPUT (SDIO/ODM)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
DRVDD + 0.3 1.2  
DRVDD + 0.3  
0.3  
V
V
0.3  
0
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
30  
2
kΩ  
pF  
LOGIC OUTPUT (SDIO/ODM)3  
Logic 1 Voltage (IOH = ±00 μA)  
Logic 0 Voltage (IOL = 50 μA)  
DIGITAL OUTPUTS (D+, D−), (ANSI-6ꢀꢀ)1  
Logic Compliance  
Full  
Full  
1.ꢁ9  
0.05  
1.ꢁ9  
0.05  
V
V
LVDS  
LVDS  
Differential Output Voltage (VOD  
)
Full  
Full  
2ꢀꢁ  
1.125  
ꢀ5ꢀ  
1.3ꢁ5  
2ꢀꢁ  
1.125  
ꢀ5ꢀ  
1.3ꢁ5  
mV  
V
Output Offset Voltage (VOS  
)
Output Coding (Default)  
Offset binary  
Offset binary  
DIGITAL OUTPUTS (D+, D−),  
(Low Power, Reduced Signal Option)1  
Logic Compliance  
LVDS  
LVDS  
Differential Output Voltage (VOD  
)
Full  
Full  
150  
1.10  
250  
1.30  
150  
1.10  
250  
1.30  
mV  
V
Output Offset Voltage (VOS  
)
Output Coding (Default)  
Offset binary  
Offset binary  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
3 This is specified for 13 SDIO pins sharing the same connection.  
Rev. 0 | Page 5 of 56  
AD9222  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 4.  
AD9222-40  
Typ  
AD9222-50  
Typ  
Parameter1  
CLOCK2  
Temp  
Min  
Max  
Min  
Max  
Unit  
Maximum Clock Rate  
Minimum Clock Rate  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
Full  
Full  
Full  
Full  
ꢀ0  
50  
MSPS  
MSPS  
ns  
10  
10  
12.5  
12.5  
10.0  
10.0  
ns  
OUTPUT PARAMETERS2, 3  
Propagation Delay (tPD)  
Full  
Full  
Full  
Full  
Full  
1.5  
1.5  
2.3  
3.1  
3.1  
1.5  
1.5  
2.3  
3.1  
3.1  
ns  
ps  
ps  
ns  
ns  
Rise Time (tR) (20% to ±0%)  
Fall Time (tF) (20% to ±0%)  
FCO Propagation Delay (tFCO  
300  
300  
2.3  
300  
300  
2.3  
)
DCO Propagation Delay (tCPD  
)
tFCO  
+
tFCO  
+
(tSAMPLE/2ꢀ)  
(tSAMPLE/2ꢀ)  
Full  
Full  
Full  
(tSAMPLE/2ꢀ) − 300 (tSAMPLE/2ꢀ) (tSAMPLE/2ꢀ) + 300 (tSAMPLE/2ꢀ) − 300 (tSAMPLE/2ꢀ) (tSAMPLE/2ꢀ) + 300 ps  
(tSAMPLE/2ꢀ) − 300 (tSAMPLE/2ꢀ) (tSAMPLE/2ꢀ) + 300 (tSAMPLE/2ꢀ) − 300 (tSAMPLE/2ꢀ) (tSAMPLE/2ꢀ) + 300 ps  
DCO to Data Delay (tDATA  
)
DCO to FCO Delay (tFRAME  
Data to Data Skew  
)
±50  
±200  
±50  
±200  
ps  
(tDATA-MAX − tDATA-MIN  
)
Wake-Up Time (Standby)  
25°C  
25°C  
Full  
600  
3ꢁ5  
±
600  
3ꢁ5  
±
ns  
μs  
Wake-Up Time (Power Down)  
Pipeline Latency  
CLK  
cycles  
APERTURE  
Aperture Delay (tA)  
25°C  
25°C  
25°C  
ꢁ50  
<1  
1
ꢁ50  
<1  
1
ps  
Aperture Uncertainty (Jitter)  
Out-of-Range Recovery Time  
ps rms  
CLK  
cycles  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and how these tests were completed.  
2 Can be adjusted via the SPI interface.  
3 Measurements were made using a part soldered to FRꢀ material.  
tSAMPLE/2ꢀ is based on the number of bits divided by 2 because the delays are based on half duty cycles.  
Rev. 0 | Page 6 of 56  
AD9222  
TIMING DIAGRAMS  
N – 1  
AIN  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D–  
D+  
MSB  
N – 8  
D10  
N – 8  
D9  
N – 8  
D8  
N – 8  
D7  
N – 8  
D6  
N – 8  
D5  
N – 8  
D4  
N – 8  
D3  
N – 8  
D2  
N – 8  
D1  
N – 8  
D0  
N – 8  
MSB  
N – 7  
D10  
N – 7  
Figure 2. 12-Bit Data Serial Stream (Default)  
N – 1  
AIN  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
D–  
tPD  
tDATA  
MSB  
N – 8  
D8  
N – 8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D8  
D7  
D6  
D5  
N – 8 N – 8  
N – 8 N – 8 N – 8 N – 8  
N – 8 N – 8 N – 7 N – 7  
N – 7 N – 7 N – 7  
D+  
Figure 3. 10-Bit Data Serial Stream  
Rev. 0 | Page ꢁ of 56  
AD9222  
N – 1  
AIN  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D–  
D+  
LSB  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
LSB  
D0  
(N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 8) (N – 7) (N – 7)  
Figure 4. 12-Bit Data Serial Stream, LSB First  
Rev. 0 | Page ± of 56  
AD9222  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
With  
Respect To  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
Rating  
AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−2.0 V to +2.0 V  
−0.3 V to +2.0 V  
DRGND  
DRGND  
DRVDD  
DRGND  
AVDD  
Digital Outputs  
THERMAL IMPEDANCE  
(D+, D−, DCO+,  
DCO−, FCO+, FCO−)  
CLK+, CLK−  
VIN+, VIN−  
SDIO/ODM  
PDWN, SCLK/DTP, CSB  
REFT, REFB, RBIAS  
VREF, SENSE  
Table 6.  
Air Flow  
Velocity (m/s)  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
1
θJA  
θJB  
θJC  
0.0  
1.0  
2.5  
1ꢁ.ꢁ°C/W  
15.5°C/W  
13.9°C/W  
±.ꢁ°C/W  
0.6°C/W  
1 θJA for a ꢀ-layer PCB with solid ground plane (simulated). Exposed pad  
soldered to PCB.  
ENVIRONMENTAL  
Operating Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
−ꢀ0°C to +±5°C  
150°C  
ESD CAUTION  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
Storage Temperature  
Range (Ambient)  
−65°C to +150°C  
Rev. 0 | Page 9 of 56  
AD9222  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
AVDD  
VIN+G  
VIN–G  
AVDD  
VIN–H  
VIN+H  
AVDD  
AVDD  
CLK–  
CLK+ 10  
AVDD 11  
AVDD 12  
DRGND 13  
DRVDD 14  
D–H 15  
1
2
3
4
5
6
7
8
9
48 AVDD  
47 VIN+B  
46 VIN–B  
45 AVDD  
44 VIN–A  
43 VIN+A  
42 AVDD  
41 PDWN  
40 CSB  
39 SDIO/ODM  
38 SCLK/DTP  
37 AVDD  
36 DRGND  
35 DRVDD  
34 D+A  
EXPOSED PADDLE, PIN 0  
(BOTTOM OF PACKAGE)  
AD9222  
TOP VIEW  
(Not to Scale)  
D+H 16  
33 D–A  
NC = NO CONNECT  
Figure 5. 64-Lead LFCSP Top View  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND  
AVDD  
Analog Ground (Exposed Paddle)  
1.± V Analog Supply  
1, ꢀ, ꢁ, ±, 11,  
12, 3ꢁ, ꢀ2, ꢀ5,  
ꢀ±, 51, 59, 62  
13, 36  
1ꢀ, 35  
2
3
5
DRGND  
DRVDD  
VIN+G  
VIN−G  
VIN−H  
VIN+H  
CLK−  
CLK+  
D−H  
D+H  
D−G  
D+G  
D−F  
D+F  
D−E  
D+E  
DCO−  
DCO+  
FCO−  
FCO+  
D−D  
Digital Output Driver Ground  
1.± V Digital Output Driver Supply  
ADC G Analog Input—True  
ADC G Analog Input—Complement  
ADC H Analog Input—Complement  
ADC H Analog Input—True  
6
9
Input Clock—Complement  
Input Clock—True  
10  
15  
16  
1ꢁ  
1±  
19  
20  
21  
22  
23  
2ꢀ  
25  
26  
2ꢁ  
2±  
29  
30  
31  
32  
33  
ADC H Digital Output—Complement  
ADC H True Digital Output—True  
ADC G Digital Output—Complement  
ADC G True Digital Output—True  
ADC F Digital Output—Complement  
ADC F True Digital Output—True  
ADC E Digital Output—Complement  
ADC E True Digital Output—True  
Data Clock Digital Output—Complement  
Data Clock Digital Output—True  
Frame Clock Digital Output—Complement  
Frame Clock Digital Output—True  
ADC D Digital Output—Complement  
ADC D True Digital Output—True  
ADC C Digital Output—Complement  
ADC C True Digital Output  
D+D  
D−C  
D+C  
D−B  
D+B  
D−A  
ADC B Digital Output—Complement  
ADC B True Digital Output—True  
ADC A Digital Output—Complement  
Rev. 0 | Page 10 of 56  
AD9222  
Pin No.  
3ꢀ  
3±  
39  
ꢀ0  
ꢀ1  
ꢀ3  
ꢀꢀ  
ꢀ6  
ꢀꢁ  
ꢀ9  
50  
52  
53  
5ꢀ  
55  
56  
5ꢁ  
5±  
60  
61  
63  
6ꢀ  
Mnemonic  
D+A  
SCLK/DTP  
SDIO/ODM  
CSB  
PDWN  
VIN+A  
VIN−A  
VIN−B  
VIN+B  
VIN+C  
VIN−C  
VIN−D  
VIN+D  
RBIAS  
Description  
ADC A True Digital Output—True  
Serial Clock/Digital Test Pattern  
Serial Data Input-Output/Output Driver Mode  
Chip Select Bar  
Power Down  
ADC A Analog Input—True  
ADC A Analog Input—Complement  
ADC B Analog Input—Complement  
ADC B Analog Input—True  
ADC C Analog Input—True  
ADC C Analog Input—Complement  
ADC D Analog Input—Complement  
ADC D Analog Input—True  
External Resistor to Set the Internal ADC Core Bias Current  
Reference Mode Selection  
Voltage Reference Input/Output  
Differential Reference (Negative)  
Differential Reference (Positive)  
ADC E Analog Input—True  
ADC E Analog Input—Complement  
ADC F Analog Input—Complement  
ADC F Analog Input—True  
SENSE  
VREF  
REFB  
REFT  
VIN+E  
VIN−E  
VIN−F  
VIN+F  
Rev. 0 | Page 11 of 56  
AD9222  
EQUIVALENT CIRCUITS  
DRVDD  
V
V
D–  
D+  
VIN  
V
V
DRGND  
Figure 9. Equivalent Digital Output Circuit  
Figure 6. Equivalent Analog Input Circuit  
10  
CLK  
10kΩ  
10kΩ  
1.25V  
1k  
SCLK/DTP OR PDWN  
10Ω  
CLK  
30kΩ  
Figure 7. Equivalent Clock Input Circuit  
Figure 10. Equivalent SCLK/DTP or PDWN Input Circuit  
100  
RBIAS  
350  
SDIO/ODM  
30kΩ  
Figure 11. Equivalent RBIAS Circuit  
Figure 8. Equivalent SDIO/ODM Input Circuit  
Rev. 0 | Page 12 of 56  
AD9222  
AVDD  
70k  
1kΩ  
CSB  
VREF  
6k  
Figure 12. Equivalent CSB Input Circuit  
Figure 14. Equivalent VREF Circuit  
1k  
SENSE  
Figure 13. Equivalent SENSE Circuit  
Rev. 0 | Page 13 of 56  
AD9222  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
–20  
0
AIN = –0.5dBFS  
SNR = 70.35dB  
ENOB = 11.40 BITS  
SFDR = 83.86dBc  
AIN = –0.5dBFS  
SNR = 70.79dB  
ENOB = 11.47 BITS  
–20  
SFDR = 84.71dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 18. Single-Tone 32k FFT with fIN = 35 MHz, AD9222-50  
Figure 15. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9222-40  
0
0
AIN = –0.5dBFS  
SNR = 70.02dB  
ENOB = 11.45 BITS  
AIN = –0.5dBFS  
SNR = 70.32dB  
ENOB = 11.39 BITS  
–20  
–20  
–40  
SFDR = 86.3dBc  
SFDR = 84.28dBc  
–40  
–60  
–80  
–60  
–80  
–100  
–100  
–120  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Single-Tone 32k FFT with fIN = 19.7 MHz, AD9222-40  
Figure 19. Single-Tone 32k FFT with fIN = 70 MHz, AD9222-50  
0
0
AIN = –0.5dBFS  
SNR = 70.72dB  
ENOB = 11.45 BITS  
AIN = –0.5dBFS  
SNR = 69.25dB  
ENOB = 11.21 BITS  
–20  
–20  
–40  
SFDR = 85.79dBc  
SFDR = 72.85dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. Single-Tone 32k FFT with fIN = 2.3 MHz, AD9222-50  
Figure 20. Single-Tone 32k FFT with fIN = 120 MHz, AD9222-50  
Rev. 0 | Page 1ꢀ of 56  
AD9222  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
F
F
= 35MHz  
IN  
SAMPLE  
= 50MSPS  
2V p-p, SFDR  
2V p-p, SFDR  
80dB  
REFERENCE  
2V p-p, SNR  
2V p-p, SNR  
10  
15  
20  
25  
30  
35  
40  
45  
50  
–60  
–50  
–40  
–30  
–20  
–10  
0
ENCODE (MSPS)  
INPUT AMPLITUDE (dBFS)  
Figure 21. SNR/SFDR vs. fSAMPLE, fIN = 2.61 MHz, AD9222-50  
Figure 24. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, AD9222-50  
90  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 89.87dB  
IMD2 = 96.07dBc  
85  
80  
75  
70  
65  
60  
–20  
–40  
IMD3 = 90.16dBc  
2V p-p, SFDR  
–60  
–80  
2V p-p, SNR  
–100  
–120  
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
ENCODE (MSPS)  
FREQUENCY (MHz)  
Figure 22. SNR/SFDR vs. fSAMPLE, fIN = 20.1 MHz, AD9222-50  
Figure 25. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
AD9222-40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
F
F
= 10.3MHz  
AIN1 AND AIN2 = –7dBFS  
SFDR = 77.24dB  
IMD2 = 91.66dBc  
IN  
SAMPLE  
= 50MSPS  
–20  
–40  
IMD3 = 77.72dBc  
2V p-p, SFDR  
80dB  
REFERENCE  
–60  
–80  
2V p-p, SNR  
–100  
–120  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 23. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, AD9222-50  
Figure 26. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz,  
AD9222-40  
Rev. 0 | Page 15 of 56  
AD9222  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
AIN1 AND AIN2 = –7dBFS  
SFDR = 84.49dB  
IMD2 = 85.83dBc  
IMD3 = 84.54dBc  
–20  
–40  
2V p-p, SFDR  
2V p-p, SINAD  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 27. Two-Tone 32k FFT with fIN1 = 15 MHz and  
fIN2 = 16 MHz, AD9222-50  
Figure 30. SINAD/SFDR vs. Temperature, fIN = 2.61 MHz, AD9222-50  
90  
85  
0
–20  
AIN1 AND AIN2 = –7dBFS  
SFDR = 80.42dB  
IMD2 = 83.92dBc  
IMD3 = 80.60dBc  
2V p-p, SFDR  
80  
–40  
75  
–60  
2V p-p, SINAD  
70  
–80  
65  
–100  
–120  
60  
–40  
–20  
0
20  
40  
60  
80  
0
5
10  
15  
20  
25  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 31. SINAD/SFDR vs. Temperature, fIN = 20.1 MHz, AD9222-50  
Figure 28. Two-Tone 32k FFT with fIN1 = 70 MHz and  
fIN2 = 71 MHz, AD9222-50  
1.0  
0.8  
90  
85  
80  
75  
70  
65  
60  
0.6  
SFDR  
SNR  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 29. SNR/SFDR vs. fIN, AD9222-50  
Figure 32. INL, fIN = 2.3 MHz, AD9222-50  
Rev. 0 | Page 16 of 56  
AD9222  
0
–20  
0.5  
0.4  
NPR = 60.3dB  
NOTCH = 18.0MHz  
NOTCH WIDTH = 3.0MHz  
0.3  
0.2  
–40  
0.1  
–60  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
FREQUENCY (MHz)  
Figure 36. Noise Power Ratio (NPR), AD9222-50  
Figure 33. DNL, fIN = 2.3 MHz, AD9222-50  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
0
–1  
–3dB BANDWIDTH = 325MHz  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–11  
0
5
10  
15  
20  
25  
30  
35  
40  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 37. Full Power Bandwidth vs. Frequency, AD9222-50  
Figure 34. CMRR vs. Frequency, AD9222-50  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.27 LSB rms  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
CODE  
Figure 35. Input Referred Noise Histogram, AD9222-50  
Rev. 0 | Page 1ꢁ of 56  
AD9222  
THEORY OF OPERATION  
The AD9222 architecture consists of a pipelined ADC that is  
divided into three sections: a 4-bit first stage followed by eight  
1.5-bit stages and a final 3-bit flash. Each stage provides  
sufficient overlap to correct for flash errors in the preceding  
stages. The quantized outputs from each stage are combined  
into a final 12-bit result in the digital correction logic. The  
pipelined architecture permits the first stage to operate on a  
new input sample while the remaining stages operate on preceding  
samples. Sampling occurs on the rising edge of the clock.  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 38). When the input  
circuit is switched into sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
input can help reduce the peak transient current injected from  
the output stage of the driving source. In addition, low-Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
the high differential capacitance seen at the analog inputs, thus  
realizing the maximum bandwidth of the ADC. Such use of  
low-Q inductors or ferrite beads is required when driving the  
converter front end at high IF frequencies. Either a shunt capacitor  
or two single-ended capacitors can be placed on the inputs to  
provide a matching passive network. This ultimately creates a  
low-pass filter at the input to limit any unwanted broadband  
noise. See the AN-742 Application Note, the AN-827 Application  
Note, and the Analog Dialogue article “Transformer-Coupled  
Front-End for Wideband A/D Converters” for more information  
on this subject. In general, the precise values depend on the  
application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
The output staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers. The data is  
then serialized and aligned to the frame and output clock.  
ANALOG INPUT CONSIDERATIONS  
The analog inputs of the AD9222 are not internally dc-biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = AVDD/2 is recom-  
mended for optimum performance, but the device can function  
over a wider range with reasonable performance, as shown in  
Figure 39 and Figure 40.  
The analog input to the AD9222 is a differential switched-capacitor  
circuit designed for processing differential input signals. The input  
can support a wide common-mode range and maintain excellent  
performance. An input common-mode voltage of midsupply  
minimizes signal-dependent errors and provides optimum  
performance.  
H
CPAR  
H
VIN+  
CSAMPLE  
S
S
S
S
CSAMPLE  
VIN–  
H
CPAR  
H
Figure 38. Switched-Capacitor Input Circuit  
Rev. 0 | Page 1± of 56  
AD9222  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
SFDR (dBc)  
SFDR (dBc)  
SNR (dB)  
SNR (dB)  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 39. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 2.3 MHz, AD9222-50  
Figure 40. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 35 MHz, AD9222-50  
Rev. 0 | Page 19 of 56  
AD9222  
ADT1–1WT  
1:1 Z RATIO  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC. An internal reference  
buffer creates the positive and negative reference voltages, REFT  
and REFB, respectively, that define the span of the ADC core.  
The output common-mode of the reference buffer is set to  
midsupply, and the REFT and REFB voltages and span are  
defined as  
C
R
VIN+  
VIN–  
ADC  
1
2Vp-p  
49.9  
C
DIFF  
C
AD9222  
R
AVDD  
1kꢀ  
AGND  
1kꢀ  
0.1μF  
1
C
IS OPTIONAL.  
DIFF  
Figure 41. Differential Transformer-Coupled Configuration  
for Baseband Applications  
REFT = 1/2 (AVDD + VREF)  
REFB = 1/2 (AVDD VREF)  
Span = 2 × (REFT REFB) = 2 × VREF  
ADT1–1WT  
1:1 Z RATIO  
2Vp-p  
16nH  
16nH 0.1μF  
33ꢀ  
VIN+  
It can be seen from these equations that the REFT and REFB  
voltages are symmetrical about the midsupply voltage and, by  
definition, the input span is twice the value of the VREF voltage.  
65ꢀ  
ADC  
499ꢀ  
16nH  
2.2pF  
1kꢀ  
AD9222  
33ꢀ  
VIN–  
AVDD  
Maximum SNR performance is always achieved by setting the  
ADC to the largest span in a differential configuration. In the  
case of the AD9222, the largest input span available is 2 V p-p.  
1kꢀ  
1kꢀ  
0.1μF  
Figure 42. Differential Transformer-Coupled Configuration for IF Applications  
Differential Input Configurations  
Single-Ended Input Configuration  
There are several ways in which to drive the AD9222 either  
actively or passively. In either case, the optimum performance is  
achieved by driving the analog input differentially. One example  
is by using the AD8334 differential driver. It provides excellent  
performance and a flexible interface to the ADC (see Figure 44)  
for baseband applications. This configuration is common for  
medical ultrasound systems.  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance degrade due to the large input common-  
mode swing. If the application requires a single-ended input  
configuration, ensure that the source impedances on each input  
are well matched in order to achieve the best possible performance.  
A full-scale input of 2 V p-p can still be applied to the ADCs VIN+  
pin while the VIN− pin is terminated. Figure 43 details a typical  
single-ended input configuration.  
However, the noise performance of most amplifiers is not  
adequate to achieve the true performance of the AD9222. For  
applications where SNR is a key parameter, differential transfor-  
mer coupling is the recommended input configuration. Two  
examples are shown in Figure 41 and Figure 42.  
AVDD  
C
R
VIN+  
In any configuration, the value of the shunt capacitor, C, is  
dependent on the input frequency and may need to be reduced  
or removed.  
0.1µF  
AVDD  
1kꢀ  
2V p-p  
49.9ꢀ  
ADC  
1
C
DIFF  
AD9222  
1kꢀ  
25ꢀ  
R
C
VIN–  
0.1µF  
1kꢀ  
1
C
IS OPTIONAL.  
DIFF  
Figure 43. Single-Ended Input Configuration  
0.1μF  
LOP  
VIP  
0.1μF  
187ꢀ  
374ꢀ  
R
R
VOH  
VOL  
0.1μF 120nH  
INH  
VIN+  
1V p-p  
AD8334  
1.0kꢀ  
1.0kꢀ  
22pF  
ADC  
AD9222  
LNA  
VGA  
C
LMD  
VIN–  
VREF  
0.1μF  
187ꢀ  
0.1μF  
0.1μF  
10μF  
LON  
VIN  
274ꢀ  
18nF  
0.1μF  
Figure 44. Differential Input Configuration Using the AD8334  
Rev. 0 | Page 20 of 56  
AD9222  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be directly driven from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 48). Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages up to 3.3 V, making the  
selection of the drive logic voltage very flexible.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9222 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
and require no additional bias.  
Figure 45 shows one preferred method for clocking the AD9222.  
The low jitter clock source is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD9222 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9222 and preserves the fast  
rise and fall times of the signal, which are critical to low jitter  
performance.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
CLOCK  
CLK  
INPUT  
OPTIONAL  
100ꢀ  
0.1µF  
1
50ꢀ  
CLK+  
CMOS DRIVER  
CLK  
ADC  
AD9222  
0.1µF  
CLK–  
0.1µF  
39kꢀ  
1
50RESISTOR IS OPTIONAL.  
MIN-CIRCUITS  
ADT1–1WT, 1:1Z  
Figure 48. Single-Ended 1.8 V CMOS Sample Clock  
0.1µF  
0.1µF  
XFMR  
AD9510/AD9511/  
AD9512/AD9513/  
CLOCK  
INPUT  
CLK+  
100  
ADC  
AD9222  
CLK–  
50ꢀ  
AD9514/AD9515  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK  
OPTIONAL  
100ꢀ  
0.1µF  
1
50ꢀ  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
CLK+  
CMOS DRIVER  
CLK  
ADC  
AD9222  
Figure 45. Transformer-Coupled Differential Clock  
0.1µF  
0.1µF  
CLK–  
If a low jitter clock is available, another option is to ac-couple a  
differential PECL signal to the sample clock input pins as shown  
in Figure 46. The AD9510/AD9511/AD9512/AD9513/AD9514/  
AD9515 family of clock drivers offers excellent jitter performance.  
1
50RESISTOR IS OPTIONAL.  
Figure 49. Single-Ended 3.3 V CMOS Sample Clock  
Clock Duty Cycle Considerations  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9222 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9222. When the DCS is on, noise and distortion perfor-  
mance are nearly flat for a wide range of duty cycles. However,  
some applications may require the DCS function to be off. If so,  
keep in mind that the dynamic range performance can be affected  
when operated in this mode. See the Memory Map section for  
more details on using this feature.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
AD9222  
100ꢀ  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
1
1
240ꢀ  
240ꢀ  
50ꢀ  
50ꢀ  
1
50RESISTORS ARE OPTIONAL.  
Figure 46. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK  
ADC  
AD9222  
100ꢀ  
LVDS DRIVER  
CLK  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles  
to allow the DLL to acquire and lock to the new rate.  
1
1
50ꢀ  
50ꢀ  
1
50RESISTORS ARE OPTIONAL.  
Figure 47. Differential LVDS Sample Clock  
Rev. 0 | Page 21 of 56  
AD9222  
Clock Jitter Considerations  
Power Dissipation and Power-Down Mode  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
As shown in Figure 51, the power dissipated by the AD9222 is  
proportional to its sample rate. The digital power dissipation  
does not vary much because it is determined primarily by the  
DRVDD supply and bias current of the LVDS output drivers.  
SNR degradation = 20 × log 10 [1/2 × π × fA × tJ]  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.800  
0.750  
0.700  
0.650  
0.600  
0.550  
0.500  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 50).  
AVDD CURRENT  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9222.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
TOTAL POWER  
DRVDD CURRENT  
10  
15  
20  
25  
30  
35  
40  
45  
50  
ENCODE (MSPS)  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs (visit www.analog.com).  
Figure 51. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, AD9222- 50  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
14 BITS  
12 BITS  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 50. Ideal SNR vs. Input Frequency and Jitter  
Rev. 0 | Page 22 of 56  
AD9222  
By asserting the PDWN pin high, the AD9222 is placed in  
power-down mode. In this state, the ADC typically dissipates  
11 mW. During power-down, the LVDS output drivers are placed  
in a high impedance state. The AD9222 returns to normal  
operating mode when the PDWN pin is pulled low. This pin is  
both 1.8 V and 3.3 V tolerant.  
100 Ω termination resistor placed as close to the receiver as  
possible. No far-end receiver termination and poor differential  
trace routing may result in timing errors. It is recommended  
that the trace length is no longer than 24 inches and that the  
differential output traces are kept close together and at equal  
lengths. An example of the FCO and data stream with proper  
trace length and position can be found in Figure 52.  
In power-down mode, low power dissipation is achieved by  
shutting down the reference, reference buffer, PLL, and biasing  
networks. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in the power-down  
mode; shorter cycles result in proportionally shorter wake-up  
times. With the recommended 0.1 ꢀF and 4.7 ꢀF decoupling  
capacitors on REFT and REFB, it takes approximately 1 sec to  
fully discharge the reference buffer decoupling capacitors and  
375 ꢀs to restore full operation.  
There are a number of other power-down options available  
when using the SPI port interface. The user can individually  
power down each channel or put the entire device into standby  
mode. This allows the user to keep the internal PLL powered  
when fast wake-up times (~600 ns) are required. See the  
Memory Map section for more details on using these features.  
5.0ns/DIV  
CH1 500mV/DIV = FCO  
CH2 500mV/DIV = DCO  
CH3 500mV/DIV = DATA  
Figure 52. LVDS Output Timing Example in ANSI Mode (Default), AD9222-50  
An example of the LVDS output using the ANSI standard (default)  
data eye and a time interval error (TIE) jitter histogram with  
trace lengths less than 24 inches on regular FR-4 material is  
shown in Figure 53. Figure 54 shows an example of when the  
trace lengths exceed 24 inches on regular FR-4 material. Notice  
that the TIE jitter histogram reflects the decrease of the data eye  
opening as the edge deviates from the ideal position. It is up to  
the user to determine if the waveforms meet the timing budget  
of the design when the trace lengths exceed 24 inches. Additional  
SPI options allow the user to further increase the internal ter-  
mination (increasing the current) of all eight outputs in order to  
drive longer trace lengths (see Figure 55). Even though this  
produces sharper rise and fall times on the data edges and is less  
prone to bit errors, the power dissipation of the DRVDD supply  
increases when this option is used. Also notice in Figure 55 that  
the histogram has improved.  
Digital Outputs and Timing  
The AD9222 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This can be changed to a low power,  
reduced signal option similar to the IEEE 1596.3 standard using the  
SDIO/ODM pin or via the SPI. This LVDS standard can further  
reduce the overall power dissipation of the device by approximately  
36 mW. See the SDIO/ODM Pin section or Table 15 in the  
Memory Map section for more information. The LVDS driver  
current is derived on-chip and sets the output current at each  
output equal to a nominal 3.5 mA. A 100 Ω differential termination  
resistor placed at the LVDS receiver inputs results in a nominal  
350 mV swing at the receiver.  
The AD9222 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capability  
for superior switching performance in noisy environments.  
Single point-to-point net topologies are recommended with a  
In cases that require increased driver strength to the DCO and  
FCO outputs because of load mismatch, Register 15 allows the  
user to increase the drive strength by 2×. To do this, set the  
appropriate bit in Register 5. Note that this feature cannot be  
used with Bit 4 and Bit 5 in Register 15. Bit 4 and Bit 5 will take  
precedence over this feature. See the Memory Map section for  
more details.  
Rev. 0 | Page 23 of 56  
AD9222  
500  
400  
300  
EYE: ALL BITS  
ULS: 12071/12071  
EYE: ALL BITS  
ULS: 12072/12072  
400  
300  
200  
200  
100  
100  
0
0
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
–150ps  
–100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
Figure 55. Data Eye for LVDS Outputs in ANSI Mode with 100 Ω Termination  
on and Trace Lengths Greater than 24 Inches on Standard FR-4, AD9222-50  
Figure 53. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths Less  
than 24 Inches on Standard FR-4, AD9222-50  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 8.  
If it is desired to change the output data format to twos  
complement, see the Memory Map section.  
500  
EYE: ALL BITS  
ULS: 12067/12067  
400  
300  
200  
100  
Table 8. Digital Output Coding  
0
(VIN+) − (VIN−), Input  
Digital Output Offset Binary  
(D11 ... D0)  
–100  
–200  
–300  
–400  
–500  
Code Span = 2 V p-p (V)  
ꢀ095  
20ꢀ±  
20ꢀꢁ  
0
+1.00  
1111 1111 1111  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
0.00  
−0.000ꢀ±±  
−1.00  
–1.5ns  
–1.0ns  
–0.5ns  
0ns  
0.5ns  
1.0ns  
1.5ns  
Data from each ADC is serialized and provided on a separate  
channel. The data rate for each serial stream is equal to 12 bits  
times the sample clock rate, with a maximum of 600 Mbps  
(12 bits × 50 MSPS = 600 Mbps). The lowest typical conversion  
rate is 10 MSPS. However, if lower sample rates are required for  
a specific application, the PLL can be set up for encode rates  
lower than 10 MSPS via the SPI. This allows encode rates as low  
as 5 MSPS. See the Memory Map section to enable this feature.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–200ps  
–100ps  
0ps  
100ps  
200ps  
Figure 54. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4, AD9222-50  
Rev. 0 | Page 2ꢀ of 56  
AD9222  
Two output clocks are provided to assist in capturing data from  
the AD9222. The DCO is used to clock the output data and is  
equal to six times the sampling clock (CLK) rate. Data is  
clocked out of the AD9222 and must be captured on the rising  
and falling edges of the DCO that supports double data rate  
(DDR) capturing. The frame clock out (FCO) is used to signal  
the start of a new output byte and is equal to the sampling clock  
rate. See the timing diagram shown in Figure 2 for more  
information.  
Table 9. Flex Output Test Modes  
Subject  
to Data  
Format  
Output Test  
Mode Bit  
Sequence  
Pattern Name  
Off (default)  
Digital Output Word 1  
Digital Output Word 2  
Select  
0000  
N/A  
N/A  
N/A  
0001  
Midscale short  
1000 0000 (±-bit)  
Same  
Yes  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
10 0000 0000 0000 (1ꢀ-bit)  
0010  
0011  
0100  
+Full-scale short  
−Full-scale short  
Checker board  
1111 1111 (±-bit)  
Same  
Same  
Yes  
Yes  
No  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (1ꢀ-bit)  
0000 0000 (±-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 0000 (1ꢀ-bit)  
1010 1010 (±-bit)  
0101 0101 (±-bit)  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 1010 (1ꢀ-bit)  
N/A  
N/A  
01 0101 0101 (10-bit)  
0101 0101 0101 (12-bit)  
01 0101 0101 0101 (1ꢀ-bit)  
N/A  
N/A  
0101  
0110  
0111  
PN sequence long1  
PN sequence short1  
One/zero word toggle  
Yes  
Yes  
No  
1111 1111 (±-bit)  
0000 0000 (±-bit)  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (1ꢀ-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 0000 (1ꢀ-bit)  
1000  
1001  
User input  
One/zero bit toggle  
Register 0x19 to Register 0x1A  
1010 1010 (±-bit)  
Register 0x1B to Register 0x1C  
N/A  
No  
No  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 1010 (1ꢀ-bit)  
1010  
1011  
1100  
1× sync  
0000 1111 (±-bit)  
N/A  
N/A  
N/A  
No  
No  
No  
00 0001 1111 (10-bit)  
0000 0011 1111 (12-bit)  
00 0000 0111 1111 (1ꢀ-bit)  
One bit high  
Mixed frequency  
1000 0000 (±-bit)  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
10 0000 0000 0000 (1ꢀ-bit)  
1010 0011 (±-bit)  
10 0110 0011 (10-bit)  
1010 0011 0011 (12-bit)  
10 1000 0110 0111 (1ꢀ-bit)  
1 PN, or pseudorandom number, sequence is determined by the number of bits in the shift register. The long sequence is 23 bits and the short sequence is  
9 bits. How the sequence is generated and utilized is described in the ITU O.150 standard. In general, the polynomial, X23 + X1± + 1 (long) and X9 + X5 + 1  
(short), defines the pseudorandom sequence.  
Rev. 0 | Page 25 of 56  
AD9222  
When using the serial port interface (SPI), the DCO phase can  
be adjusted in 60° increments relative to the data edge. This  
enables the user to refine system timing margins if required.  
The default DCO timing, as shown in Figure 2, is 90° relative to  
the output data edge.  
Table 10. Output Driver Mode Pin Settings  
Resulting  
Resulting  
Selected ODM ODM Voltage  
Normal  
operation  
Output Standard FCO and DCO  
10 kΩ to AGND ANSI-6ꢀꢀ  
ANSI-6ꢀꢀ  
(default)  
(default)  
ODM  
AVDD  
Low power,  
reduced signal  
option  
Low power,  
reduced  
signal  
An 8-, 10-, and 14-bit serial stream can also be initiated from  
the SPI. This allows the user to implement and test compatibility  
to lower and higher resolution systems. When changing the  
resolution to an 8- or 10-bit serial stream, the data stream is  
shortened. See Figure 3 for the 10-bit example. However, when  
using the 14-bit option, the data stream stuffs two 0s at the end  
of the normal 14-bit serial data.  
option  
SCLK/DTP Pin  
This pin is for applications that do not require SPI mode operation.  
The serial clock/digital test pattern (SCLK/DTP) pin can enable  
a single digital test pattern if this pin and the CSB pin are held  
high during device power-up. When the DTP is tied to AVDD,  
all the ADC channel outputs shift out the following pattern:  
1000 0000 0000. The FCO and DCO outputs still work as usual  
while all channels shift out the repeatable test pattern. This pattern  
allows the user to perform timing alignment adjustments among  
the FCO, DCO, and output data. For normal operation, this pin  
should be tied to AGND through a 10 kΩ resistor. This pin is  
both 1.8 V and 3.3 V tolerant.  
When using the SPI, all of the data outputs can also be inverted  
from their nominal state. This is not to be confused with  
inverting the serial stream to an LSB-first mode. In default  
mode, as shown in Figure 2, the MSB is represented first in the  
data output serial stream. However, this can be inverted so that  
the LSB is represented first in the data output serial stream (see  
Figure 4).  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This is a useful feature when  
validating receiver capture and timing. Refer to Table 9 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various  
ways, depending on the test pattern chosen. It should be noted  
that some patterns may not adhere to the data format select  
option. In addition, customer user patterns can be assigned in  
the 0x19, 0x1A, 0x1B, and 0x1C register addresses. All test mode  
options can support 8- to 14-bit word lengths in order to verify  
data capture to the receiver.  
Table 11. Digital Test Pattern Pin Settings  
Resulting  
Resulting  
FCO and DCO  
Selected DTP DTP Voltage  
Normal  
operation  
DTP  
D+ and D−  
10 kΩ to AGND Normal  
Normal operation  
operation  
AVDD  
1000 0000 0000 Normal operation  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map  
section to choose from the different options available.  
Please consult the Memory Map section for information on how  
to change these additional digital output timing features through  
the serial port interface or SPI.  
CSB Pin  
The chip select bar (CSB) pin should be tied to AVDD for  
applications that do not require SPI mode operation. By tying  
CSB high, all SCLK and SDIO information is ignored. This pin  
is both 1.8 V and 3.3 V tolerant.  
SDIO/ODM Pin  
This pin is for applications that do not require SPI mode operation.  
The SDIO/ODM pin can enable a low power, reduced signal option  
similar to the IEEE 1596.3 reduced range link output standard if  
this pin and the CSB pin are tied to AVDD during device power-  
up. This option should only be used when the digital output trace  
lengths are less than 2 inches from the LVDS receiver. The FCO,  
DCO, and outputs function normally, but the LVDS signal swing  
of all channels is reduced from 350 mV p-p to 200 mV p-p. This  
output mode allows the user to further lower the power on the  
DRVDD supply. For applications where this pin is not used, it  
should be tied low. In this case, the device pin can be left open,  
and the 30 kΩ internal pull-down resistor pulls this pin low. This  
pin is only 1.8 V tolerant. If applications require this pin to be  
driven from a 3.3 V logic level, insert a 1 kΩ resistor in series  
with this pin to limit the current.  
RBIAS Pin  
To set the internal core bias current of the ADC, place a resistor  
(nominally equal to 10.0 kΩ) to ground at the RBIAS pin. The  
resistor current is derived on-chip and sets the ADCs AVDD  
current to a nominal 358 mA at 50 MSPS. Therefore, it is  
imperative that at least a 1% tolerance on this resistor be used to  
achieve consistent performance. If SFDR performance is not as  
critical as power, simply adjust the ADC core current to achieve  
a lower power. Figure 56 and Figure 57 show the relationship  
between the dynamic range and power as the RBIAS resistance  
is changed. Nominally, a 10.0 kΩ value is used, as indicated by  
the dashed line.  
Rev. 0 | Page 26 of 56  
AD9222  
90  
85  
80  
75  
70  
65  
60  
Internal Reference Operation  
A comparator within the AD9222 detects the potential at the  
SENSE pin and configures the reference. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 58), setting VREF to 1 V.  
SFDR  
The REFT and REFB pins establish their input span of the ADC  
core from the reference configuration. The analog input full-  
scale range of the ADC equals twice the voltage at the reference  
pin for either an internal or an external reference configuration.  
SNR  
If the reference of the AD9222 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 60  
depicts how the internal reference voltage is affected by loading.  
0
5
10  
15  
(k)  
20  
25  
R
BIAS  
Figure 56. SNR/SFDR vs. RBIAS, FIN = 10.3 MHz, AD9222-50  
VIN+  
1.0  
VIN–  
REFT  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1µF  
+
ADC  
CORE  
0.1µF  
2.2µF  
REFB  
0.1µF  
V
REF  
1µF  
0.1µF  
0.5V  
SELECT  
LOGIC  
SENSE  
0
5
10  
15  
(k)  
20  
25  
R
BIAS  
Figure 58. Internal Reference Configuration  
Figure 57. IAVDD vs. RBIAS, AD9222-50  
VIN+  
VIN–  
Voltage Reference  
A stable and accurate 0.5 V voltage reference is built into the  
AD9222. This is gained up by a factor of 2 internally, setting  
REFT  
0.1µF  
0.1µF  
REFB  
+
ADC  
CORE  
2.2µF  
VREF to 1.0 V, which results in a full-scale differential input span  
of 2 V p-p. The VREF is set internally by default; however, the  
VREF pin can be driven externally with a 1.0 V reference to  
achieve more accuracy.  
EXTERNAL  
REFERENCE  
0.1µF  
V
REF  
1
1
1µF  
0.1µF  
0.5V  
When applying the decoupling capacitors to the VREF, REFT,  
and REFB pins, use ceramic low ESR capacitors. These capacitors  
should be close to the ADC pins and on the same layer of the  
PCB as the AD9222. The recommended capacitor values and  
configurations for the AD9222 reference pin can be found in  
Figure 58.  
SELECT  
LOGIC  
AVDD  
SENSE  
1
OPTIONAL.  
Figure 59. External Reference Operation  
Table 12. Reference Settings  
Resulting  
Selected  
Mode  
SENSE  
Voltage  
Resulting  
VREF (V)  
Differential  
Span (V p-p)  
External  
AVDD  
N/A  
2 × external  
reference  
Reference  
Internal,  
2 V p-p FSR  
AGND to 0.2 V  
1.0  
2.0  
Rev. 0 | Page 2ꢁ of 56  
AD9222  
0.02  
0
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 61 shows the typical drift characteristics of the  
internal reference in 1 V mode.  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. The external  
reference is loaded with an equivalent 6 kΩ load. An internal  
reference buffer generates the positive and negative full-scale  
references, REFT and REFB, for the ADC core. Therefore, the  
external reference must be limited to a nominal of 1.0 V.  
5
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
0
–5  
Figure 61. Typical VREF Drift, AD9222-50  
–10  
–15  
–20  
–25  
–30  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
CURRENT LOAD (mA)  
Figure 60. VREF Accuracy vs. Load, AD9222-50  
Rev. 0 | Page 2± of 56  
AD9222  
SERIAL PORT INTERFACE (SPI)  
CSB remains low until the communication cycle is complete.  
The AD9222 serial port interface allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. This gives  
the user added flexibility and customization depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that can be further divided down into fields, as doc-  
umented in the Memory Map section. Detailed operational  
information can be found in the Analog Devices, Inc., user  
manual Interfacing to High Speed ADCs via SPI.  
However, if connected to a slow device, CSB can be brought  
high between bytes, allowing older microcontrollers enough  
time to transfer data into shift registers. CSB can be stalled  
when transferring one, two, or three bytes of data. When W0  
and W1 are set to 11, the device enters streaming mode and  
continues to process data, either reading or writing, until the  
CSB is taken high to end the communication cycle. This allows  
complete memory transfers without having to provide additional  
instructions. Regardless of the mode, if CSB is taken high in the  
middle of any byte transfer, the SPI state machine is reset and  
the device waits for a new instruction.  
There are three pins that define the serial port interface, or SPI,  
to this particular ADC. They are the SCLK, SDIO, and CSB  
pins. The SCLK (serial clock) is used to synchronize the read  
and write data presented to the ADC. The SDIO (serial data  
input/output) is a dual-purpose pin that allows data to be sent  
to and read from the internal ADC memory map registers. The  
CSB (chip select bar) is an active low control that enables or  
disables the read and write cycles (see Table 13).  
In addition to the operation modes, the SPI port can be  
configured to operate in different manners. For applications  
that do not require a control port, the CSB line can be tied and  
held high. This places the remainder of the SPI pins in their  
secondary mode as defined in the Serial Port Interface (SPI)  
section. CSB can also be tied low to enable 2-wire mode. When  
CSB is tied low, SCLK and SDIO are the only pins required for  
communication. Although the device is synchronized during  
power-up, caution must be exercised when using this mode to  
ensure that the serial port remains synchronized with the CSB  
line. When operating in 2-wire mode, it is recommended to use  
a 1-, 2-, or 3-byte transfer exclusively. Without an active CSB  
line, streaming mode can be entered but not exited.  
Table 13. Serial Port Pins  
Pin  
Function  
SCLK  
Serial Clock. The serial shift clock in. SCLK is used to  
synchronize serial interface reads and writes.  
SDIO  
CSB  
Serial Data Input/Output. A dual-purpose pin. The  
typical role for this pin is an input or output, depending  
on the instruction sent and the relative position in the  
timing frame.  
Chip Select Bar (Active Low). This control gates the read  
and write cycles.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and read the contents  
of the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the serial data input/output (SDIO)  
pin to change direction from an input to an output at the  
appropriate point in the serial frame.  
The falling edge of the CSB in conjunction with the rising edge  
of the SCLK determines the start of the framing sequence. During  
an instruction phase, a 16-bit instruction is transmitted, followed  
by one or more data bytes, which is determined by Bit Fields  
W0 and W1. An example of the serial timing and its definitions  
can be found in Figure 63 and Table 14. In normal operation,  
CSB is used to signal to the device that SPI commands are to be  
received and processed. When CSB is brought low, the device  
processes SCLK and SDIO to process instructions. Normally,  
Data can be sent in MSB- or LSB-first mode. MSB-first mode  
is the default at power-up and can be changed by adjusting the  
configuration register. For more information about this and  
other features, see the user manual Interfacing to High Speed  
ADCs via SPI.  
Rev. 0 | Page 29 of 56  
AD9222  
This interface is flexible enough to be controlled by either serial  
PROMS or PIC mirocontrollers. This provides the user an  
alternative method, other than a full SPI controller, to program  
the ADC (see the AN-812 Application Note).  
HARDWARE INTERFACE  
The pins described in Table 13 compose the physical interface  
between the users programming device and the serial port of  
the AD9222. The SCLK and CSB pins function as inputs when  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during readback.  
If the user chooses not to use the SPI interface, these pins serve  
a dual function and are associated with secondary functions  
when the CSB is strapped to AVDD during device power-up.  
See the Theory of Operation section for details on which pin-  
strappable functions are supported on the SPI pins.  
If multiple SDIO pins share a common connection, care should  
be taken to ensure that proper VOH levels are met. Assuming the  
same load as the AD9222, Figure 62 shows the number of SDIO  
pins that can be connected together and the resulting VOH level.  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.765  
1.760  
1.755  
1.750  
1.745  
1.740  
1.735  
1.730  
1.725  
1.720  
1.715  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
NUMBER OF SDIO PINS CONNECTED TOGETHER  
Figure 62. SDIO Pin Loading  
Rev. 0 | Page 30 of 56  
AD9222  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 63. Serial Timing Details  
Table 14. Serial Timing Definitions  
Parameter  
Timing (minimum, ns)  
Description  
tDS  
5
2
ꢀ0  
5
Set-up time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Set-up time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
1
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure 63)  
tDIS_SDIO  
5
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge (not shown in Figure 63)  
Rev. 0 | Page 31 of 56  
AD9222  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Undefined memory locations should not be written to except  
when writing the default values suggested in this data sheet.  
Addresses that have values marked as 0 should be considered  
reserved and have a 0 written into their registers during power-up.  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: chip  
configuration register map (Address 0x00 to Address 0x02), device  
index and transfer register map (Address 0x05 and Address 0xFF),  
and program register map (Address 0x08 to Address 0x25).  
DEFAULT VALUES  
The left-hand column of the memory map indicates the register  
address number in hexadecimal. The default value of this address is  
shown in hexadecimal in the right-hand column. The Bit 7 (MSB)  
column is the start of the default hexadecimal value given. For  
example, Hexadecimal Address 0x09, Clock, has a hexadecimal  
default value of 0x01. This means Bit 7 = 0, Bit 6 = 0, Bit 5 = 0,  
Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001  
in binary. This setting is the default for the duty cycle stabilizer in  
the on condition. By writing a 0 to Bit 6 at this address, the duty  
cycle stabilizer turns off. For more information on this and other  
functions, consult the user manual Interfacing to High Speed  
ADCs via SPI.  
Coming out of reset, critical registers are preloaded with default  
values. These values are indicated in Table 15, where an X refers  
to an undefined feature.  
LOGIC LEVELS  
An explanation of various registers follows: “Bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
Rev. 0 | Page 32 of 56  
AD9222  
Table 15. Memory Map Register  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
Bit 7  
Bit 0  
(LSB)  
Default Notes/  
Comments  
Parameter Name (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
00  
chip_port_config  
0
LSB first  
1 = on  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
1 = on  
0
0x1±  
The nibbles  
should be  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
1 = on  
0 = off  
(default)  
0 = off  
(default)  
mirrored so that  
LSB- or MSB-first  
mode registers  
correctly  
regardless of  
shift mode.  
01  
02  
chip_id  
±-bit Chip ID Bits ꢁ:0  
(AD9222 = 0x0ꢁ), (default)  
Read  
only  
Default is unique  
chip ID, different  
for each device.  
This is a read-  
only register.  
chip_grade  
X
Child ID 6:ꢀ  
X
X
X
X
Read  
only  
Child ID used to  
differentiate  
graded devices.  
(identify device variants of Chip ID)  
011 = 50 MSPS  
001 = ꢀ0 MSPS  
Device Index and Transfer Registers  
0ꢀ  
05  
FF  
device_index_2  
device_index_1  
device_update  
X
X
X
X
X
X
X
X
Data  
Channel  
H
1 = on  
(default)  
0 = off  
Data  
Channel  
G
Data  
Channel  
F
Data  
Channel  
E
0x0F  
0x0F  
0x00  
Bits are set to  
determine which  
on-chip device  
receives the next  
write command.  
1 = on  
1 = on  
1 = on  
(default) (default) (default)  
0 = off  
0 = off  
0 = off  
Clock  
Channel  
DCO  
1 = on  
0 = off  
Clock  
Channel  
FCO  
1 = on  
0 = off  
Data  
Channel  
D
Data  
Channel  
C
Data  
Channel  
B
Data  
Channel  
A
Bits are set to  
determine which  
on-chip device  
receives the next  
write command.  
1 = on  
1 = on  
1 = on  
1 = on  
(default) (default) (default) (default)  
(default) (default) 0 = off  
0 = off  
0 = off  
0 = off  
X
X
X
X
X
SW  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
transfer  
1 = on  
0 = off  
(default)  
ADC Functions  
0±  
modes  
X
X
X
X
X
X
X
X
X
X
Internal power-down mode  
000 = chip run (default)  
001 = full power-down  
010 = standby  
0x00  
0x01  
Determines  
various generic  
modes of chip  
operation.  
011 = reset  
09  
clock  
X
X
Duty  
Turns the  
cycle  
internal duty  
cycle stabilizer  
on and off.  
stabilizer  
1 = on  
(default)  
0 = off  
0D  
test_io  
User test mode  
00 = off (default)  
Reset PN Reset  
long gen PN short Digital Outputs and Timing section  
Output test mode—see Table 9 in the  
0x00  
When set, the  
test data is  
01 = on, single alternate 1 = on  
gen  
1 = on  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
placed on the  
output pins in  
place of normal  
data.  
10 = on, single once  
11 = on, alternate once  
0 = off  
(default) 0 = off  
(default) 0011 = −FS short  
0100 = checker board output  
0101 = PN 23 sequence  
0110 = PN 9  
0111 = one/zero word toggle  
1000 = user input  
1001 = one/zero bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
(format determined by output_mode)  
Rev. 0 | Page 33 of 56  
AD9222  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
Bit 7  
Parameter Name (MSB)  
output_mode X  
Bit 0  
(LSB)  
Default Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
1ꢀ  
0 = LVDS  
ANSI  
(default)  
1 = LVDS  
low  
X
X
X
Output  
invert  
1 = on  
0 = off  
(default)  
00 = offset binary  
(default)  
0x00  
Configures the  
outputs and the  
format of the  
data.  
01 = twos  
complement  
power,  
(IEEE  
1596.3  
similar)  
15  
output_adjust  
X
X
Output driver  
termination  
00 = none (default)  
01 = 200 Ω  
10 = 100 Ω  
11 = 100 Ω  
X
X
X
DCO and 0x00  
FCO  
2× Drive  
Strength  
1 = on  
Determines  
LVDS or other  
output properties.  
Primarily func-  
tions to set the  
LVDS span and  
common-mode  
levels in place of  
an external  
0 = off  
(default)  
resistor.  
16  
output_phase  
X
X
X
X
0011 = output clock phase adjust  
(0000 through 1010)  
0x03  
On devices that  
utilize global  
clock divide,  
determines  
which phase of  
the divider  
output is used to  
supply the  
output clock.  
Internal latching  
is unaffected.  
(Default: 1±0° relative to DATA edge)  
0000 = 0° relative to DATA edge  
0001 = 60° relative to DATA edge  
0010 = 120° relative to DATA edge  
0011 = 1±0° relative to DATA edge  
0100 = 2ꢀ0° relative to DATA edge  
0101 = 300° relative to DATA edge  
0110 = 360° relative to DATA edge  
0111 = ꢀ20° relative to DATA edge  
1000 = ꢀ±0° relative to DATA edge  
1001 = 5ꢀ0° relative to DATA edge  
1010 = 600° relative to DATA edge  
1011 to 1111 = 660° relative to DATA edge  
19  
1A  
1B  
1C  
21  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
serial_control  
Bꢁ  
B6  
B1ꢀ  
B6  
B5  
B13  
B5  
Bꢀ  
B12  
Bꢀ  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B±  
B0  
B±  
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB.  
B15  
Bꢁ  
B11  
B3  
B10  
B2  
User-defined  
pattern, 1 MSB.  
User-defined  
pattern, 2 LSB.  
B15  
B1ꢀ  
X
B13  
X
B12  
X
B11  
B10  
User-defined  
pattern, 2 MSB.  
LSB first  
1 = on  
0 = off  
<10  
MSPS,  
low  
encode  
rate  
000 = 12 bits (default, normal bit  
stream)  
001 = ± bits  
010 = 10 bits  
011 = 12 bits  
Serial stream  
control. Default  
causes MSB first  
and the native  
bit stream  
(default)  
mode  
1 = on  
0 = off  
(default)  
100 = 1ꢀ bits  
(global).  
22  
serial_ch_stat  
X
X
X
X
X
X
Channel  
output  
reset  
Channel  
power-  
down  
0x00  
Used to power  
down individual  
sections of a  
1 = on  
0 = off  
1 = on  
0 = off  
converter (local).  
(default) (default)  
Rev. 0 | Page 3ꢀ of 56  
AD9222  
Power and Ground Recommendations  
Exposed Paddle Thermal Heat Slug Recommendations  
When connecting power to the AD9222, it is recommended  
that two separate 1.8 V supplies be used: one for analog (AVDD)  
and one for digital (DRVDD). If only one supply is available, it  
should be routed to the AVDD first and then tapped off and  
isolated with a ferrite bead or a filter choke preceded by  
decoupling capacitors for the DRVDD. The user can employ  
several different decoupling capacitors to cover both high and  
low frequencies. These should be located close to the point of  
entry at the PC board level and close to the parts with minimal  
trace length.  
It is required that the exposed paddle on the underside of the  
ADC is connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9222. An  
exposed continuous copper plane on the PCB should mate to  
the AD9222 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder filled or plugged.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
several tie points between the two during the reflow process.  
Using one continuous plane with no partitions only guarantees  
one tie point between the ADC and PCB. See Figure 64 for a  
PCB layout example. For detailed information on packaging  
and the PCB layout of chip scale packages, see the AN-772  
Application Note, A Design and Manufacturing Guide for the  
Lead Frame Chip Scale Package (LFCSP), at www.analog.com.  
A single PC board ground plane should be sufficient when  
using the AD9222. With proper decoupling and smart parti-  
tioning of the PC boards analog, digital, and clock sections,  
optimum performance is easily achieved.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 64. Typical PCB Layout  
Rev. 0 | Page 35 of 56  
AD9222  
EVALUATION BOARD  
The AD9222 evaluation board provides all of the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially through a  
transformer (default) or through the AD8334 driver. The ADC  
can also be driven in a single-ended fashion. Separate power pins  
are provided to isolate the DUT from the AD8334 drive circuitry.  
Each input configuration can be selected by proper connection  
of various jumpers (see Figure 67 to Figure 71). Figure 65 shows  
the typical bench characterization setup used to evaluate the ac  
performance of the AD9222. It is critical that the signal sources  
used for the analog input and clock have very low phase noise  
(<1 ps rms jitter) to realize the optimum performance of the  
converter. Proper filtering of the analog input signal to remove  
harmonics and lower the integrated or broadband noise at the  
input is also necessary to achieve the specified noise performance.  
capability for AVDD_DUT and DRVDD_DUT; however, it is  
recommended that separate supplies be used for both analog  
and digital. To operate the evaluation board using the VGA  
option, a separate 5.0 V analog supply is needed. The 5.0 V  
supply, or AVDD_5 V, should have a 1 A current capability. To  
operate the evaluation board using the SPI and alternate clock  
options, a separate 3.3 V analog supply is needed in addition to  
the other supplies. The 3.3 V supply, or AVDD_3.3 V, should  
have a 1 A current capability as well.  
INPUT SIGNALS  
When connecting the clock and analog source, use clean signal  
generators with low phase noise, such as Rohde & Schwarz SMHU  
or HP8644 signal generators or the equivalent. Use a 1 m, shielded,  
RG-58, 50 Ω coaxial cable for making connections to the evalu-  
ation board. Enter the desired frequency and amplitude from the  
ADC specifications tables. Typically, most Analog Devices  
evaluation boards can accept ~2.8 V p-p or 13 dBm sine wave  
input for the clock. When connecting the analog input source, it  
is recommended to use a multipole, narrow-band, band-pass  
filter with 50 Ω terminations. Analog Devices uses TTE, Allen  
Avionics, and K&L types of band-pass filters. The filter should  
be connected directly to the evaluation board if possible.  
See Figure 67 to Figure 77 for the complete schematics and  
layout diagrams that demonstrate the routing and grounding  
techniques that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board comes with a wall-mountable switching  
power supply that provides a 6 V, 2 A maximum output. Simply  
connect the supply to the rated 100 V ac to 240 V ac wall outlet  
at 47 Hz to 63 Hz. The other end is a 2.1 mm inner diameter  
jack that connects to the PCB at P701. Once on the PC board,  
the 6 V supply is fused and conditioned before connecting to  
three low dropout linear regulators that supply the proper bias  
to each of the various sections on the board.  
OUTPUT SIGNALS  
The default setup uses the HSC-ADC-FPGA high speed  
deserialization board to deserialize the digital output data and  
convert it to parallel CMOS. These two channels interface  
directly with the Analog Devices standard dual-channel FIFO  
data capture board (HSC-ADC-EVALA-DC). Two of the eight  
channels can then be evaluated at the same time. For more  
information on channel settings on these boards and their  
optional settings, visit www.analog.com/FIFO.  
When operating the evaluation board in a nondefault condition,  
L701 to L704 can be removed to disconnect the switching  
power supply. This enables the user to bias each section of the  
board individually. Use P702 to connect a different supply for  
each section. At least one 1.8 V supply is needed with a 1 A current  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
6V DC  
2A MAX  
5.0V  
1.8V  
1.8V  
3.3V  
3.3V  
1.5V  
3.3V  
+
+
+
+
+
+
+
SWITCHING  
POWER  
SUPPLY  
PC  
RUNNING  
ADC  
ANALYZER  
AND SPI  
USER  
ROHDE & SCHWARZ,  
HSC-ADC-FPGA  
HIGH SPEED  
DESERIALIZATION  
HSC-ADC-EVALA-DC  
FIFO DATA  
SMHU,  
2V p-p SIGNAL  
SYNTHESIZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
CAPTURE  
BOARD  
AD9222  
EVALUATION BOARD  
BOARD  
CHA TO CHH  
12-BIT  
SOFTWARE  
2-CH  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMHU,  
12-BIT  
PARALLEL  
CMOS  
CLK  
SERIAL  
LVDS  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
SPI  
Figure 65. Evaluation Board Connection  
Rev. 0 | Page 36 of 56  
AD9222  
50 Ω terminated and ac-coupled to handle single-ended  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
sine wave types of inputs. The transformer converts the  
single-ended input to a differential signal that is clipped  
before entering the ADC clock inputs.  
The following is a list of the default and optional settings or  
modes allowed on the AD9222 Rev. A evaluation board.  
A differential LVPECL clock can also be used to clock the  
ADC input using the AD9515 (U401). Simply populate  
R406 and R407 with 0 Ω resistors and remove R215 and  
R216 to disconnect the default clock path inputs. In addition,  
populate C205 and C206 with a 0.1 μF capacitor and remove  
C409 and C410 to disconnect the default cloth path outputs.  
The AD9515 has many pin-strappable options that are set  
to a default working condition. Consult the AD9515 data  
sheet for more information about these and other options.  
POWER: Connect the switching power supply that is  
supplied in the evaluation kit between a rated 100 V ac  
to 240 V ac wall outlet at 47 Hz to 63 Hz and P701.  
AIN: The evaluation board is set up for a transformer-  
coupled analog input with optimum 50 Ω impedance  
matching out to 150 MHz (see Figure 66). For more  
bandwidth response, the differential capacitor across the  
analog inputs can be changed or removed. The common  
mode of the analog inputs is developed from the center  
tap of the transformer or AVDD_DUT/2.  
If using an oscillator, two oscillator footprint options are  
also available (OSC401) to check the ADC performance.  
J401 gives the user flexibility in using the enable pin, which  
is common on most oscillators.  
0
–2  
–3dB CUTOFF = 150MHz  
–4  
–6  
PDWN: To enable the power-down feature, simply short  
J301 to the on position (AVDD) on the PDWN pin.  
SCLK/DTP: To enable a digital test pattern on the digital  
outputs of the ADC, use J304. If J304 is tied to AVDD during  
device power-up, Test Pattern 1000 0000 0000 will be enabled.  
See the SCLK/DTP Pin section for details.  
–8  
–10  
–12  
–14  
–16  
–18  
SDIO/ODM: To enable the low power, reduced signal option  
similar to the IEEE 1595.3 reduced range link LVDS output  
standard, use J303. If J303 is tied to AVDD during device  
power-up, it enables the LVDS outputs in a low power,  
reduced signal option from the default ANSI standard.  
This option changes the signal swing from 350 mV p-p to  
200 mV p-p, which reduces the power of the DRVDD supply.  
See the SDIO/ODM Pin section for more details.  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 66. Evaluation Board Full Power Bandwidth, AD9222-50  
VREF: VREF is set to 1.0 V by tying the SENSE pin to  
ground, R317. This causes the ADC to operate in 2.0 V p-p  
full-scale range. A separate external reference option using  
the ADR510 or ADR520 is also included on the evaluation  
board. Simply populate R312 and R313 and remove C307.  
Proper use of the VREF options is noted in the Voltage  
Reference section.  
CSB: To enable the SPI information on the SDIO and  
SCLK pins that is to be processed, simply tie J302 low in  
the always enable mode. To ignore the SDIO and SCLK  
information, tie J302 to AVDD.  
Non-SPI Mode: For users who wish to operate the DUT  
without using SPI, simply remove Jumpers J302, J303, and  
J304. This disconnects the CSB, SCLK/DTP, and SDIO/OMD  
pins from the control bus, allowing the DUT to operate in  
its simplest mode. Each of these pins has internal termination  
and will float to its respective level.  
RBIAS: RBIAS has a default setting of 10 kΩ (R301) to  
ground and is used to set the ADC core bias current. To  
further lower the core power (excluding the LVDS driver  
supply) simply change the resistor setting. However,  
performance of the ADC will degrade depending on the  
resistor chosen. See RBIAS section for more information.  
D+, D−: If an alternative data capture method to the setup  
described in Figure 67 is used, optional receiver terminations,  
R318, R320 to R328, can be installed next to the high speed  
backplane connector.  
CLOCK: The default clock input circuitry is derived from a  
simple transformer-coupled circuit using a high bandwidth  
1:1 impedance ratio transformer (T401) that adds a very  
low amount of jitter to the clock path. The clock input is  
Rev. 0 | Page 3ꢁ of 56  
AD9222  
Populate R101, R114, R127, R140, R201, R217, R233 and  
R251 with 0 Ω resistors in the analog input path.  
ALTERNATIVE ANALOG INPUT DRIVE  
CONFIGURATION  
The following is a brief description of the alternative analog  
input drive configuration using the AD8334 dual VGA. If this  
particular drive option is in use, some components may need to  
be populated, in which case all the necessary components are  
listed in Table 16. For more details on the AD8334 dual VGA,  
including how it works and its optional pin settings, consult the  
AD8334 data sheet.  
Populate R106, R107, R119, R120, R132, R133, R144, R145,  
R206, R207, R223, R224, R239, R240, R257 and R258 with  
10 kΩ resistors to provide an input common-mode level to  
the analog input.  
Populate R105, R113, R118, R124, R131, R137, R151, and  
R160, R205, R213, R221, R222, R255, R256 with 0 Ω resistors  
in the analog input path.  
To configure the analog input to drive the VGA instead of the  
default transformer option, the following components need to  
be removed and/or changed.  
Currently, L505 to L520 and L605 to L620 are populated with 0 Ω  
resistors to allow signal connection. This area allows the user to  
design a filter if additional requirements are necessary.  
Remove R102, R115, R128, R141, R202, R218, R234, R252,  
T101, T102, T103, T104, T201, T202, T203, and T204 in  
the default analog input path.  
Rev. 0 | Page 3± of 56  
AD9222  
7 2 0 7 - 0 5 9 6  
Figure 67. Evaluation Board Schematic, DUT Analog Inputs  
Rev. 0 | Page 39 of 56  
AD9222  
7 3 0 7 - 0 5 9 6  
Figure 68. Evaluation Board Schematic, DUT Analog Inputs (Continued)  
Rev. 0 | Page ꢀ0 of 56  
AD9222  
7 4 0 7 - 9 6 0 5  
2
2
2
2
R307  
10k  
R306  
100kΩ  
AVDD_DUT  
R302  
DNP  
R305  
100kΩ  
CW  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
0
VIN+C  
VINC  
AVDD  
VIND  
VIN+D  
RBIAS  
SENSE  
VREF  
REFB  
REFT  
AVDD  
VIN+E  
VINE  
AVDD  
VINF  
VIN+F  
SLUG  
VIN_C  
VIN_C  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CHB  
D+B  
DB  
CHB  
CHC  
AVDD_DUT  
VIN_D  
D+C  
DC  
CHC  
CHD  
GND  
R301  
10kΩ  
VIN_D  
D+D  
DD  
CHD  
FCO  
VSENSE_DUT  
VREF_DUT  
FCO+  
FCO−  
DCO+  
DCO−  
D+E  
FCO  
DCO  
DCO  
AVDD_DUT  
VIN_E  
CHE  
CHE  
DE  
VIN_E  
D+F  
CHF  
AVDD_DUT  
DF  
CHF  
CHG  
VIN_F  
VIN_F  
D+G  
DG  
CHG  
Figure 69. Evaluation Board Schematic, DUT, VREF, and Digital Output Interface  
Rev. 0 | Page ꢀ1 of 56  
AD9222  
5
0 - 7 6 7 0 5 9  
25  
16  
15  
14  
13  
12  
11  
10  
9
S0  
S1  
S2  
S3  
1
2
33  
31  
1
S4  
3
S5  
GND  
VS  
S6  
S7  
S8  
8
S9  
32  
7
RSET  
S10  
VREF  
6
Figure 70. Evaluation Board Schematic, Clock Circuitry  
Rev. 0 | Page ꢀ2 of 56  
AD9222  
7 6 0 - 6 7 5 9  
R524  
10k  
R523  
10kΩ  
R513  
187Ω  
C512  
10µF  
C511  
0.1µF  
C533  
10µF  
C534  
0.1µF  
C535  
10µF  
C536  
0.1µF  
C510  
10µF  
C509  
0.1µF  
R512  
10kΩ  
R511  
10kΩ  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCM2  
VCM1  
EN34  
NC  
VCM3  
VCM4  
HILO  
R504  
10kΩ  
R505  
10kΩ  
AVDD_5V  
EN12  
CLMP12  
GAIN12  
VPS1  
VIN1  
CLMP34  
GAIN34  
VPS4  
VG34  
VG12  
AVDD_5V  
AVDD_5V  
VIN4  
VIP1  
VIP4  
LOP1  
LON1  
COM1X  
LMD1  
INH1  
LOP4  
LON4  
COM4X  
LMD4  
INH4  
R509  
274Ω  
C505  
0.1µF  
COM1  
COM2  
COM4  
COM3  
C527  
0.018µF  
C526  
22pF  
L504  
120nH  
0.1µF  
C525  
R503  
274Ω  
R508  
274Ω  
R507  
274Ω  
C502  
0.018µF  
C521  
0.018µF  
C515  
0.018µF  
C503  
22pF  
L501  
120nH  
C520  
22pF  
C514  
22pF  
0.1µF  
C501  
L503  
120nH  
L502  
120nH  
0.1µF  
C519  
0.1µF  
C513  
AVDD_5V  
AVDD_5V  
CW  
CW  
GND  
GND  
VG34  
VG12  
Variable Gain Circuit  
(01.0V DC)  
Variable Gain Circuit  
(01.0V DC)  
VG34  
VG12  
External  
Variable Gain Drive  
External  
Variable Gain Drive  
Figure 71. Evaluation Board Schematic, Optional DUT Analog Input Drive  
Rev. 0 | Page ꢀ3 of 56  
AD9222  
7 7 0 7 - 9 6 0 5  
R613  
187Ω  
C612  
10µF  
C611  
0.1µF  
C633  
10µF  
C634  
0.1µF  
C635  
10µF  
C636  
0.1µF  
C610  
10µF  
C609  
0.1µF  
VCM2  
NC  
VCM3  
VCM4  
HILO  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VCM1  
EN34  
EN12  
10kΩ  
R604  
R612  
10kΩ  
R611  
10kΩ  
R605  
10kΩ  
AVDD_5V  
CLMP12  
GAIN12  
VPS1  
CLMP34  
GAIN34  
VPS4  
VG56  
VG78  
AVDD_5V  
AVDD_5V  
VIN1  
VIN4  
VIP1  
VIP4  
LOP1  
LOP4  
LON1  
COM1X  
LMD1  
INH1  
LON4  
COM4X  
LMD4  
INH4  
R609  
274Ω  
C605  
0.1µF  
62  
63  
COM1  
COM2  
COM4  
COM3  
64  
C627  
0.018µF  
C626  
22pF  
L604  
120nH  
0.1µF  
C625  
R603  
274Ω  
R608  
274Ω  
R607  
274Ω  
C602  
0.018µF  
C621  
0.018µF  
C615  
0.018µF  
C603  
22pF  
L601  
120nH  
C620  
22pF  
C614  
22pF  
0.1µF  
C601  
L603  
120nH  
L602  
120nH  
0.1µF  
C619  
0.1µF  
C613  
AVDD_5V  
AVDD_5V  
CW  
CW  
GND  
GND  
VG78  
VG56  
Variable Gain Circuit  
(01.0V DC)  
Variable Gain Circuit  
(01.0V DC)  
VG78  
VG56  
External  
Variable Gain Drive  
External  
Variable Gain Drive  
Figure 72. Evaluation Board Schematic, Optional DUT Analog Input Drive (Continued)  
Rev. 0 | Page ꢀꢀ of 56  
AD9222  
7 8 0 - 6 7 5 9  
CR702  
GREEN  
C702  
0.1µF  
C703  
0.1µF  
GND  
GND  
1
1
R709  
0Ω  
0Ω  
SDO_CHA  
SDI_CHA  
R708  
R707  
R706  
0Ω  
0Ω  
SCLK_CHA  
CSB1_CHA  
PICVCC  
1
3
5
7
9
2
4
PICVCC  
GP1  
GP1  
GP0  
6
GP0  
MCLR/GP3  
8
MCLR/GP3  
10  
GND  
GND  
CR701  
2
OPTIONAL GREEN  
Figure 73. Evaluation Board Schematic, Power Supply Inputs and SPI Interface Circuitry  
Rev. 0 | Page ꢀ5 of 56  
AD9222  
Figure 74. Evaluation Board Layout, Primary Side  
Rev. 0 | Page ꢀ6 of 56  
AD9222  
Figure 75. Evaluation Board Layout, Ground Plane  
Rev. 0 | Page ꢀꢁ of 56  
AD9222  
Figure 76. Evaluation Board Layout, Power Plane  
Rev. 0 | Page ꢀ± of 56  
AD9222  
Figure 77. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. 0 | Page ꢀ9 of 56  
AD9222  
Table 16. Evaluation Board Bill of Materials (BOM)1  
Qnty.  
per  
Item Board REFDES  
Device  
Pkg.  
PCB  
ꢀ02  
Value  
Mfg.  
Mfg. Part Number  
1
2
1
11±  
AD9222-50EBZ  
PCB  
PCB  
C101, C102, C10ꢁ, Capacitor  
C10±, C109, C11ꢀ,  
C115, C116, C121,  
C122, C123, C12±,  
C201, C202, C20ꢁ,  
C20±, C209, C21ꢀ,  
C215, C216, C221,  
C222, C223, C22±,  
C301, C302, C30ꢀ,  
C305, C306, Cꢀ01,  
Cꢀ02, Cꢀ03, Cꢀ09,  
Cꢀ10, Cꢀ11, Cꢀ12,  
Cꢀ13, Cꢀ1ꢀ, Cꢀ15,  
Cꢀ16, Cꢀ1ꢁ, Cꢀ1±,  
C501, C50ꢀ, C505,  
C506, C50±, C509,  
C511, C513, C51±,  
C519, C522, C523,  
C52ꢀ, C525, C52±,  
C529, C530, C532,  
C53ꢀ, C536, C53ꢁ,  
C53±, C601, C60ꢀ,  
C605, C606, C60±,  
C609, C611, C613,  
C616, C61ꢁ, C61±,  
C619, C622, C623,  
C62ꢀ, C625, C62±,  
C629, C630, C632,  
C63ꢀ, C636, Cꢁ01,  
Cꢁ02, Cꢁ03, Cꢁ06,  
Cꢁ0±, Cꢁ10, Cꢁ12,  
Cꢁ23, Cꢁ2ꢀ, Cꢁ25,  
Cꢁ26, Cꢁ2ꢁ, Cꢁ30,  
Cꢁ31, Cꢁ32, Cꢁ33,  
Cꢁ3ꢀ, Cꢁ35, Cꢁꢀ0,  
Cꢁꢀ1, Cꢁꢀ2, Cꢁꢀ3,  
Cꢁꢀꢀ, Cꢁꢀ5, Cꢁꢀ6,  
Cꢁꢀꢁ, Cꢁꢀ±, Cꢁꢀ9,  
Cꢁ50, Cꢁ51, Cꢁ52,  
Cꢁ53  
0.1 μF, ceramic, X5R,  
10 V, 10% tol  
Murata  
GRM155Rꢁ1C10ꢀKA±±D  
3
±
±
C10ꢀ, C111, C11±, Capacitor  
C125, C20ꢀ, C211,  
C21±, C225  
C510, C512, C533, Capacitor  
C535, C610, C612,  
ꢀ02  
±05  
2.2 pF, ceramic, COG,  
0.25 pF tol, 50 V  
Murata  
Murata  
GRM1555C1H2R20CZ01D  
GRM219R60J106KE19D  
10 μF, 6.3 V ±10%  
ceramic, X5R  
C633, C635  
5
6
1
±
C303  
Capacitor  
603  
ꢀ02  
ꢀ02  
ꢀ.ꢁ μF, ceramic, X5R,  
6.3 V, 10% tol  
1000 pF, ceramic, XꢁR,  
25 V, 10% tol  
0.01± μF, ceramic, XꢁR,  
16 V, 10% tol  
Murata  
Murata  
AVX  
GRM1±±R60Jꢀꢁ5KE19D  
GRM155Rꢁ1H102KA01D  
0ꢀ02YC1±3KAT2A  
C50ꢁ, C531, C60ꢁ, Capacitor  
C631  
C502, C515, C521, Capacitor  
C52ꢁ, C602, C615,  
C621, C62ꢁ  
Rev. 0 | Page 50 of 56  
AD9222  
Qnty.  
per  
Item Board REFDES  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
±
±
C503, C51ꢀ, C520, Capacitor  
C526, C603, C61ꢀ,  
ꢀ02  
22 pF, ceramic, NPO,  
5% tol, 50 V  
Murata  
GRM1555C1H220JZ01D  
C620, C626  
9
1
9
Cꢁ0ꢀ  
Capacitor  
1206  
603  
10 μF, tantalum,  
16 V, 20% tol  
1 μF, ceramic, X5R,  
6.3 V, 10% tol  
Rohm  
TCA1C106M±R  
10  
C30ꢁ, Cꢁ1ꢀ, Cꢁ15, Capacitor  
Cꢁ16, Cꢁ1ꢁ, Cꢁ19,  
Murata  
GRM1±±R61C105KA93D  
Cꢁ20, Cꢁ21, Cꢁ22  
11  
16  
C5ꢀ0, C5ꢀ1, C5ꢀꢀ, Capacitor  
C5ꢀ5, C5ꢀ±, C5ꢀ9,  
C552, C553, C6ꢀ0,  
C6ꢀ1, C6ꢀꢀ, C6ꢀ5,  
C6ꢀ±, C6ꢀ9, C652,  
C653  
±05  
0.1 μF, ceramic, XꢁR,  
50 V, 10% tol  
Murata  
Murata  
GRM21BRꢁ1H10ꢀKA01L  
12  
13  
1
Cꢁ05, Cꢁ0ꢁ, Cꢁ09, Capacitor  
Cꢁ11  
603  
10 μF, ceramic, X5R,  
6.3 V, 20% tol  
30 V, 20 mA, dual  
Schottky  
GRM1±±R60J106MEꢀꢁD  
HSMS-2±12-TR1G  
CRꢀ01  
Diode  
SOT-23  
603  
Agilent  
Technologies  
Panasonic  
Micro  
1ꢀ  
15  
2
1
CRꢁ01, CRꢁ02  
Dꢁ02  
LED  
Diode  
Green, V, 5 m candela  
LNJ31ꢀG±TRA  
SK33-TP  
DO-21ꢀAB 3 A, 30 V, SMC  
Commercial Co.  
16  
1ꢁ  
1±  
19  
1
Dꢁ01  
Diode  
DO-21ꢀAA 5 A, 50 V, SMC  
Micro  
Commercial Co.  
Tyco/Raychem  
Murata  
S2A-TP  
1
Fꢁ01  
Fuse  
1210  
2020  
603  
6.0 V, 2.2 A trip-current  
resettable fuse  
NANOSMDC110F-2  
DLW5BSN191SQ2L  
BLM1±BA100SN1D  
1
FERꢁ01  
Choke coil  
Ferrite bead  
10 μH, 5 A, 50 V, 190 Ω  
@ 100 MHz  
10 Ω, test frequency  
100 MHz, 25% tol,  
500 mA  
2ꢀ  
FB101, FB102,  
FB103, FB10ꢀ,  
FB105, FB106,  
FB10ꢁ, FB10±,  
FB109, FB110,  
FB111, FB112,  
FB201, FB202,  
FB203, FB20ꢀ,  
FB205, FB206,  
FB20ꢁ, FB20±,  
FB209, FB210,  
FB211, FB212  
Murata  
20  
21  
23  
6
1
JP501, JP502,  
JP601, JP602  
J301, J302, J303,  
J30ꢀ, Jꢀ01, Jꢁ01  
Connector  
Connector  
Connector  
2-pin  
3-pin  
10-pin  
100 mil header jumper,  
2-pin  
100 mil header jumper,  
3-pin  
100 mil header, male,  
2 × 5 double row  
straight  
Samtec  
Samtec  
Samtec  
TSW-102-0ꢁ-G-S  
TSW-103-0ꢁ-G-S  
TSW-105-0±-G-D  
Jꢁ02  
2ꢀ  
25  
±
±
Lꢁ01, Lꢁ02, Lꢁ03,  
Lꢁ0ꢀ, Lꢁ05, Lꢁ06,  
Lꢁ0ꢁ, Lꢁ0±  
L501, L502, L503,  
L50ꢀ, L601, L602,  
L603, L60ꢀ  
Ferrite bead  
Inductor  
1210  
ꢀ02  
10 μH, bead core 3.2 ×  
2.5 × 1.6 SMD, 2 A  
Murata  
Murata  
BLM31PG500SN1L  
LQG15HNR12J02D  
120 nH, test freq  
100 MHz, 5% tol,  
150 mA  
Rev. 0 | Page 51 of 56  
AD9222  
Qnty.  
per  
Item Board REFDES  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
26  
20  
L505, L506, L50ꢁ,  
L50±, L509, L510,  
L511, L512, L513,  
L51ꢀ, L515, L516,  
L51ꢁ, L51±, L519,  
L520, L605, L606,  
L60ꢁ, L60±, L609,  
L610, L611, L612,  
L613, L61ꢀ, L615,  
L616, L61ꢁ, L61±,  
L619, L620  
Resistor  
±05  
0 Ω, 1/± W, 5% tol  
NIC  
Components  
Corp.  
NRC0ꢀZ0TRF  
2ꢁ  
2±  
29  
1
9
1
OSCꢀ01  
Oscillator  
Connector  
Connector  
SMT  
Clock oscillator,  
50.00 MHz, 3.3 V,  
±5% duty cycle  
Side-mount SMA for  
0.063" board thickness  
Valphey Fisher  
VFAC3H-L-50MHz  
1ꢀ2-0ꢁ01-±51  
6ꢀ69169-1  
P101, P103, P105,  
P10ꢁ, P201, P203,  
P205, P20ꢁ, Pꢀ01  
SMA  
Johnson  
Components  
P301  
HEADER  
1ꢀ69169-1, right angle  
2-pair, 25 mm, header  
assembly  
Tyco  
30  
31  
1
Pꢁ01  
Connector  
Resistor  
0.1", PCMT RAPCꢁ22, power  
supply connector  
Switchcraft  
RAPCꢁ22X  
21  
R301, R30ꢁ, Rꢀ01,  
Rꢀ02, Rꢀ10, Rꢀ13,  
R50ꢀ, R505, R511,  
R512, R523, R52ꢀ,  
R60ꢀ, R605, R611,  
R612, R623, R62ꢀ,  
Rꢁ11, Rꢁ1ꢀ, Rꢁ15  
ꢀ02  
10 kΩ, 1/16 W,  
5% tol  
NIC  
Components  
Corp.  
NRC0ꢀJ103TRF  
32  
1±  
R103, R11ꢁ, R129,  
R1ꢀ2, R203, R219,  
R235, R253, R31ꢁ,  
Rꢀ05, Rꢀ15, Rꢀ16,  
Rꢀ1ꢁ, Rꢀ1±, Rꢁ06,  
Rꢁ0ꢁ, Rꢁ0±, Rꢁ09  
Resistor  
ꢀ02  
0 Ω, 1/16 W,  
5% tol  
NIC  
Components  
Corp.  
NRC0ꢀZ0TRF  
33  
3ꢀ  
35  
±
R102, R115, R12±,  
R1ꢀ1, R202, R21±,  
R23ꢀ, R252  
R10ꢀ, R116, R130,  
R1ꢀ3, R20ꢀ, R220,  
R236, R25ꢀ  
R109, R111, R112,  
R123, R125, R126,  
R135, R13±, R139,  
R1ꢀ±, R1ꢀ9, R150,  
R211, R212, R21ꢀ,  
R22±, R231, R232,  
R2ꢀ6, R2ꢀ9, R250,  
R262, R265, R266,  
R319, Rꢁ10, Rꢁ12,  
Rꢁ13  
Resistor  
Resistor  
Resistor  
ꢀ02  
603  
ꢀ02  
6ꢀ.9 Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC0ꢀF6ꢀR9TRF  
NRC06Z0TRF  
±
0 Ω, 1/10 W,  
5% tol  
2±  
1 kΩ, 1/16 W,  
1% tol  
NRC0ꢀF1001TRF  
36  
16  
R10±, R110, R121,  
R122, R13ꢀ, R136,  
R1ꢀ6, R1ꢀꢁ, R209,  
R210, R226, R22ꢁ,  
R2ꢀ2, R2ꢀ5, R260,  
R261  
Resistor  
ꢀ02  
33 Ω, 1/16 W,  
5% tol  
NIC  
Components  
Corp.  
NRC0ꢀJ330TRF  
Rev. 0 | Page 52 of 56  
AD9222  
Qnty.  
per  
Item Board REFDES  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
3ꢁ  
3±  
39  
±
3
1
R161, R162, R163,  
R16ꢀ, R20±, R225,  
R2ꢀ1, R259  
Resistor  
ꢀ02  
ꢀ99 Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC0ꢀFꢀ990TRF  
NRC0ꢀF1003TRF  
NRC0ꢀFꢀ121TRF  
R303, R305, R306  
Resistor  
Resistor  
ꢀ02  
ꢀ02  
100 kΩ, 1/16 W,  
1% tol  
Rꢀ1ꢀ  
ꢀ.12 kΩ, 1/16W,  
1% tol  
ꢀ0  
ꢀ1  
1
1
Rꢀ0ꢀ  
R309  
Resistor  
Resistor  
ꢀ02  
ꢀ02  
ꢀ9.9 Ω, 1/16 W,  
0.5% tol  
ꢀ.99 kΩ, 1/16 W,  
5% tol  
Susumu  
RR0510R-ꢀ9R9-D  
NRC0ꢀFꢀ991TRF  
NIC  
Components  
Corp.  
ꢀ2  
ꢀ3  
ꢀꢀ  
ꢀ5  
2
R310, R501, R535,  
R601, R63ꢀ  
Potentiometer  
Resistor  
3-lead  
ꢀ02  
10 kΩ, Cermet trimmer  
potentiometer, 1± turn  
top adjust, 10%, 1/2 W  
ꢀꢁ0 kΩ, 1/16 W,  
5% tol  
COPAL  
ELECTRONICS  
CT9ꢀEW103  
1
R30±  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC0ꢀJꢀꢁꢀTRF  
NRC0ꢀJ393TRF  
NRC0ꢀF1±ꢁ0TRF  
R502, R536, R602,  
R635  
Resistor  
ꢀ02  
39 kΩ, 1/16 W,  
5% tol  
16  
R513, R51ꢀ, R51±,  
R519, R525, R526,  
R530, R531, R613,  
R61ꢀ, R61±, R619,  
R625, R626, R630,  
R631  
Resistor  
ꢀ02  
1±ꢁ Ω, 1/16 W,  
1% tol  
ꢀ6  
ꢀꢁ  
ꢀ±  
±
R515, R520, R52ꢁ,  
R532, R615, R620,  
R62ꢁ, R632  
R503, R50ꢁ, R50±,  
R509, R603, R60ꢁ,  
R60±, R609  
Rꢀ25,Rꢀ2ꢁ, Rꢀ29,  
Rꢀ31, Rꢀ33, Rꢀ35,  
Rꢀ36, Rꢀ39, Rꢀꢀ1,  
Rꢀꢀ3, Rꢀꢀ5  
Resistor  
Resistor  
Resistor  
ꢀ02  
ꢀ02  
201  
3ꢁꢀ Ω, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC0ꢀF3ꢁꢀ0TRF  
NRC0ꢀF2ꢁꢀ0TRF  
NRC02Z0TRF  
±
2ꢁꢀ Ω, 1/16 W,  
1% tol  
11  
0 Ω, 1/20 W,  
5% tol  
ꢀ9  
50  
51  
52  
53  
5ꢀ  
1
1
2
2
1
Rꢁ01  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Switch  
ꢀ02  
ꢀ02  
603  
ꢀ02  
ꢀ02  
SMD  
ꢀ.ꢁ kΩ, 1/16 W,  
1% tol  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NIC  
Components  
Corp.  
NRC0ꢀJꢀꢁ2TRF  
NRC0ꢀF2610TRF  
NRC06F261OTRF  
NRC0ꢀJ2ꢀ1TRF  
NRC0ꢀF1000TRF  
EVQ-PLDA15  
Rꢁ02  
261 Ω, 1/16 W,  
1% tol  
Rꢁ16  
261 Ω, 1/16 W,  
1% tol  
Rꢀ20, Rꢀ21  
Rꢀ22, Rꢀ23  
Sꢁ01  
2ꢀ0 Ω, 1/16 W,  
5% tol  
100 Ω, 1/16 W,  
1% tol  
LIGHT TOUCH,  
100GE, 5 mm  
Panasonic  
Rev. 0 | Page 53 of 56  
AD9222  
Qnty.  
per  
Item Board REFDES  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
55  
56  
5ꢁ  
9
2
2
T101, T102, T103,  
T10ꢀ, T201, T202,  
T203, T20ꢀ, Tꢀ01  
Transformer  
CD5ꢀ2  
ADT1-1WT+,  
1:1 impedance ratio  
transformer  
ADP33339AKC-1.±-RL,  
1.5 A, 1.± V LDO  
regulator  
AD±33ꢀACPZ-REEL,  
ultralow noise  
Mini-Circuits  
ADT1-1WT+  
Uꢁ0ꢀ, Uꢁ0ꢁ  
IC  
IC  
SOT-223  
CP-6ꢀ-3  
Analog Devices  
Analog Devices  
ADP3339AKCZ-1.±-RL  
AD±33ꢀACPZ-REEL  
U501, U601  
precision dual VGA  
5±  
59  
60  
1
1
1
Uꢁ06  
Uꢁ05  
U301  
IC  
IC  
IC  
SOT-223  
SOT-223  
CP-6ꢀ-3  
ADP33339AKC-5-RLꢁ  
ADP33339AKC-3.3-RL  
AD9222BCPZ-50, octal,  
12-bit, 50 MSPS serial  
LVDS 1.± V ADC  
Analog Devices  
Analog Devices  
Analog Devices  
ADP3339AKCZ-5-RLꢁ  
ADP3339AKCZ-3.3-RL  
AD9222BCPZ-50  
61  
1
U302  
IC  
SOT-23  
ADR510ARTZ, 1.0 V,  
precision low noise  
shunt voltage  
Analog Devices  
ADR510ARTZ  
reference  
62  
63  
6ꢀ  
65  
1
1
1
1
Uꢀ01  
Uꢁ02  
Uꢁ03  
Uꢁ01  
IC  
IC  
IC  
IC  
LFCSP  
CP-32-2  
SCꢁ0,  
MAA06A  
SCꢁ0,  
MAA06A  
±-SOIC  
AD9515BCPZ, 1.6 GHz  
clock distribution IC  
NCꢁWZ0ꢁP6X_NL,  
UHS dual buffer  
NCꢁWZ16P6X_NL,  
UHS dual buffer  
Flash prog  
Analog Devices  
Fairchild  
AD9515BCPZ  
NCꢁWZ0ꢁP6X_NL  
NCꢁWZ16P6X_NL  
PIC12F629-I/SNG  
Fairchild  
Microchip  
mem 1kx1ꢀ,  
RAM size 6ꢀ × ±,  
20 MHz speed, PIC12F  
controller series  
1 This BOM is RoHS compliant.  
Rev. 0 | Page 5ꢀ of 56  
AD9222  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
7.25  
7.10 SQ  
6.95  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.45  
0.40  
0.35  
33  
16  
17  
32  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.50 BSC  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 78. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Octal  
(CP-64-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
6ꢀ-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6ꢀ-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Tape and Reel  
6ꢀ-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
6ꢀ-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Tape and Reel  
Evaluation Board  
Package Option  
CP-6ꢀ-3  
CP-6ꢀ-3  
CP-6ꢀ-3  
CP-6ꢀ-3  
AD9222BCPZ-ꢀ01  
AD9222BCPZRLꢁ-ꢀ01  
AD9222BCPZ-501  
AD9222BCPZRLꢁ-501  
AD9222-50EBZ  
−ꢀ0°C to +±5°C  
−ꢀ0°C to +±5°C  
−ꢀ0°C to +±5°C  
−ꢀ0°C to +±5°C  
1 Z = Pb-free part.  
Rev. 0 | Page 55 of 56  
AD9222  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05967-0-9/06(0)  
Rev. 0 | Page 56 of 56  

相关型号:

AD9222-50EBZ

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222-65EB1

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9222-65EBZ

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222ABCPZ-40

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222ABCPZ-50

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222ABCPZ-65

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222ABCPZRL7-40

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222ABCPZRL7-50

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222ABCPZRL7-65

Octal, 12-Bit, 40/50/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZ-40

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZ-50

Octal, 12-Bit, 40/50 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9222BCPZ-65

IC 8-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC64, 9 X 9 MM, ROHS COMPLIANT, MO-220VMMD-4, LFCSP-64, Analog to Digital Converter
ADI