AD9226_01 [ADI]

Complete 12-Bit, 65 MSPS ADC Converter; 完整的12位, 65 MSPS ADC转换器
AD9226_01
型号: AD9226_01
厂家: ADI    ADI
描述:

Complete 12-Bit, 65 MSPS ADC Converter
完整的12位, 65 MSPS ADC转换器

转换器
文件: 总28页 (文件大小:985K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 12-Bit, 65 MSPS  
ADC Converter  
a
AD9226  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Signal-to-Noise Ratio: 69 dB @ fIN = 31 MHz  
Spurious-Free Dynamic Range: 85 dB @ fIN = 31 MHz  
Intermodulation Distortion of –75 dBFS @ fIN = 140 MHz  
ENOB = 11.1 @ fIN = 10 MHz  
Low-Power Dissipation: 475 mW  
No Missing Codes Guaranteed  
Differential Nonlinearity Error: ؎0.6 LSB  
Integral Nonlinearity Error: ؎0.6 LSB  
Clock Duty Cycle Stabilizer  
Patented On-Chip Sample-and-Hold with  
Full Power Bandwidth of 750 MHz  
Straight Binary or Two’s Complement Output Data  
28-Lead SSOP, 48-Lead LQFP  
DRVDD  
AVDD  
CLK  
DUTY CYCLE STABILIZER  
SHA  
VINA  
VINB  
8-STAGE  
MDAC1  
A/D  
1-1/2-BIT PIPELINE  
4
A/D  
3
16  
CAPT  
CAPB  
CALIBRATION  
ROM  
CORRECTION LOGIC  
12  
VREF  
OTR  
OUTPUT BUFFERS  
BIT 1  
(MSB)  
SENSE  
1V  
REF  
SELECT  
MODE  
SELECT  
BIT 12  
(LSB)  
AD9226  
Single 5 V Analog Supply, 3 V/5 V Driver Supply  
Pin-Compatible to AD9220, AD9221, AD9223,  
AD9224, AD9225  
REFCOM  
MODE  
AVSS  
DRVSS  
PRODUCT DESCRIPTION  
The AD9226 has two important mode functions. One will set  
the data format to binary or two’s complement. The second will  
make the ADC immune to clock duty cycle variations.  
The AD9226 is a monolithic, single-supply, 12-bit, 65 MSPS  
analog-to-digital converter with an on-chip, high-performance  
sample-and-hold amplifier and voltage reference. The AD9226  
uses a multistage differential pipelined architecture with a pat-  
ented input stage and output error correction logic to provide  
12-bit accuracy at 65 MSPS data rates. There are no missing  
codes over the full operating temperature range (guaranteed).  
PRODUCT HIGHLIGHTS  
IF Sampling—The patented SHA input can be configured for  
either single-ended or differential inputs. It will maintain out-  
standing AC performance up to input frequencies of 300 MHz.  
The input of the AD9226 allows for easy interfacing to both  
imaging and communications systems. With a truly differential  
input structure, the user can select a variety of input ranges and  
offsets including single-ended applications.  
Low Power—The AD9226 at 475 mW consumes a fraction of  
the power presently available in existing, high-speed monolithic  
solutions.  
Out of Range (OTR)—The OTR output bit indicates when  
The sample-and-hold amplifier (SHA) is well suited for IF  
undersampling schemes such as in single-channel communi-  
cation applications with input frequencies up to and well  
beyond Nyquist frequencies.  
the input signal is beyond the AD9226’s input range.  
Single Supply—The AD9226 uses a single 5 V power supply  
simplifying system power supply design. It also features a sepa-  
rate digital output driver supply line to accommodate 3 V and  
5 V logic families.  
The AD9226 has an on-board programmable reference. For sys-  
tem design flexibility, an external reference can also be chosen.  
Pin Compatibility—The AD9226 is similar to the AD9220,  
A single clock input is used to control all internal conversion  
cycles. An out-of-range signal indicates an overflow condition  
that can be used with the most significant bit to determine low  
or high overflow.  
AD9221, AD9223, AD9224, and AD9225 ADCs.  
Clock Duty Cycle Stabilizer—Makes conversion immune to  
varying clock pulsewidths.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2001  
AD9226–SPECIFICATIONS  
(AVDD = 5 V, DRVDD = 3 V, fSAMPLE = 65 MSPS, VREF = 2.0 V, Differential inputs, TMIN to TMAX unless otherwise  
DC SPECIFICATIONS noted.)  
P
arameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
RESOLUTION  
12  
Bits  
ACCURACY  
Integral Nonlinearity (INL)  
Full  
25°C  
Full  
25°C  
Full  
Full  
25°C  
25°C  
Full  
V
I
V
I
I
V
I
0.6  
0.6  
LSB  
LSB  
LSB  
LSB  
1.6  
1.0  
Differential Nonlinearity (DNL)  
No Missing Codes Guaranteed  
Zero Error  
12  
Bits  
0.3  
0.6  
% FSR  
% FSR  
% FSR  
% FSR  
1.4  
2.0  
Gain Error  
I
V
TEMPERATURE DRIFT  
Zero Error  
Full  
Full  
Full  
V
V
V
2
26  
0.4  
ppm/°C  
ppm/°C  
ppm/°C  
Gain Error1  
Gain Error2  
POWER SUPPLY REJECTION  
AVDD (5 V 0.25 V)  
Full  
25°C  
V
I
0.05  
% FSR  
% FSR  
0.4  
INPUT REFERRED NOISE  
VREF = 1.0 V  
VREF = 2.0 V  
Full  
Full  
V
V
0.5  
0.25  
LSB rms  
LSB rms  
ANALOG INPUT  
Input Span (VREF = 1 V)  
(VREF = 2 V)  
Input (VINA or VINB) Range  
Input Capacitance  
Full  
Full  
Full  
Full  
V
V
IV  
V
1
2
V p-p  
V p-p  
V
0
AVDD  
7
pF  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Output Voltage Tolerance (1 V Mode)  
Output Voltage (2.0 V Mode)  
Output Voltage Tolerance (2.0 V Mode)  
Output Current (Available for External Loads)  
Load Regulation3  
Full  
25°C  
Full  
25°C  
Full  
Full  
V
I
V
I
V
V
I
1.0  
2.0  
V
mV  
V
mV  
mA  
mV  
mV  
15  
29  
1.0  
0.7  
25°C  
1.5  
REFERENCE INPUT RESISTANCE  
Full  
V
5
5
kΩ  
POWER SUPPLIES  
Supply Voltages  
AVDD  
Full  
Full  
V
V
4.75  
2.85  
5.25  
5.25  
V ( 5% AVDD Operating)  
V ( 5% DRVDD Operating)  
DRVDD  
Supply Current  
IAVDD4  
Full  
25°C  
Full  
V
I
V
I
86  
mA (2 V External VREF)  
mA (2 V External VREF)  
mA (2 V External VREF)  
mA (2 V External VREF)  
90.5  
16.5  
IDRVDD5  
14.6  
25°C  
POWER CONSUMPTION4, 5  
Full  
25°C  
V
I
475  
500  
mW (2 V External VREF)  
NOTES  
1Includes internal voltage reference error.  
2Excludes internal voltage reference error.  
3Load regulation with 1 mA load current (in addition to that required by the AD9226).  
4AVDD = 5 V  
5DRVDD = 3 V  
Specifications subject to change without notice.  
–2–  
REV. B  
AD9226  
(AVDD = 5 V, DRVDD = 3 V, fSAMPLE = 65 MSPS, VREF = 2.0 V, TMIN to TMAX, unless otherwise noted.)  
DIGITAL SPECIFICATIONS  
Parameters  
Temp  
Test Level Min  
Typ  
Max  
Unit  
LOGIC INPUTS (Clock, DFS1, Duty Cycle1, and  
Output Enable1)  
High-Level Input Voltage  
Low-Level Input Voltage  
Full  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
2.4  
V
V
µA  
µA  
pF  
V
0.8  
+10  
+10  
High-Level Input Current (VIN = AVDD)  
Low-Level Input Current (VIN = 0 V)  
Input Capacitance  
–10  
–10  
5
Output Enable1  
IV  
DRVDD  
DRVDD  
+ 0.5  
0.5  
2
2
LOGIC OUTPUTS (With DRVDD = 5 V)  
High-Level Output Voltage (IOH = 50 µA)  
High-Level Output Voltage (IOH = 0.5 mA)  
Low-Level Output Voltage (IOL = 1.6 mA)  
Low-Level Output Voltage (IOL = 50 µA)  
Output Capacitance  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
4.5  
2.4  
V
V
V
V
0.4  
0.1  
5
pF  
LOGIC OUTPUTS (With DRVDD = 3 V)  
High-Level Output Voltage (IOH = 50 µA)  
High-Level Output Voltage (IOH = 0.5 mA)  
Low-Level Output Voltage (IOL = 1.6 mA)  
Low-Level Output Voltage (IOL = 50 µA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
2.95  
2.80  
V
V
V
V
0.4  
0.05  
NOTES  
1LQFP package.  
Specifications subject to change without notice.  
(TMIN to TMAX with AVDD = 5 V, DRVDD = 3 V, CL = 20 pF)  
SWITCHING SPECIFICATIONS  
Parameters  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
Max Conversion Rate  
Clock Period1  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
V
V
65  
15.38  
3
3
MHz  
ns  
ns  
ns  
CLOCK Pulsewidth High2  
CLOCK Pulsewidth Low2  
Output Delay  
3.5  
7
ns  
Pipeline Delay (Latency)  
7
15  
Clock Cycles  
ns  
Output Enable Delay3  
NOTES  
1The clock period may be extended to 10 µs without degradation in specified performance @ 25°C.  
2When MODE pin is tied to AVDD or grounded, the AD9226 SSOP is not affected by clock duty cycle.  
3LQFP package.  
Specifications subject to change without notice.  
n+2  
n+1  
n+3  
n
n+8  
ANALOG  
INPUT  
n+4  
n+7  
n+5  
n+6  
CLOCK  
DATA  
OUT  
n–2  
n
n–8  
n–7  
n–6  
n–5  
n–4  
n–3  
n–1  
n+1  
TOD = 7.0 MAX  
3.5 MIN  
Figure 1. Timing Diagram  
–3–  
REV. B  
AD9226–SPECIFICATIONS  
(AVDD = 5 V, DRVDD = 3 V, fSAMPLE = 65 MSPS, VREF = 2.0 V, TMIN to TMAX, Differential Input unless otherwise noted.)  
AC SPECIFICATIONS  
Parameter  
Temp  
Test Level  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO  
fIN = 2.5 MHz  
Full  
25°C  
Full  
25°C  
Full  
Full  
Full  
V
I
V
I
V
V
V
68.9  
68.4  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
68  
fIN = 15 MHz  
67.4  
f
IN = 31 MHz  
68  
68  
65  
fIN = 60 MHz  
fIN = 200 MHz1  
SIGNAL-TO-NOISE RATIO AND DISTORTION  
fIN = 2.5 MHz  
Full  
25°C  
Full  
25°C  
Full  
Full  
Full  
V
I
V
I
V
V
V
68.8  
68.3  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
67.9  
67.3  
fIN = 15 MHz  
fIN = 31 MHz  
fIN = 60 MHz  
fIN = 200 MHz1  
67  
67  
60  
TOTAL HARMONIC DISTORTION  
fIN = 2.5 MHz  
Full  
25°C  
Full  
25°C  
Full  
Full  
Full  
V
I
V
I
V
V
V
84  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
77.0  
76.0  
f
IN = 15 MHz  
82.3  
fIN = 31 MHz  
68  
68  
61  
f
IN = 60 MHz  
fIN = 200 MHz1  
SECOND AND THIRD HARMONIC DISTORTION  
f
IN = 2.5 MHz  
Full  
25°C  
Full  
25°C  
Full  
Full  
Full  
V
I
V
I
V
V
V
86.5  
86.7  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
78  
76  
f
IN = 15 MHz  
fIN = 31 MHz  
83  
82  
75  
f
IN = 60 MHz  
fIN = 200 MHz1  
SPURIOUS FREE DYNAMIC RANGE  
fIN = 2.5 MHz  
Full  
25°C  
Full  
25°C  
Full  
Full  
Full  
V
I
V
I
V
V
V
86.4  
85.5  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
78  
76  
f
IN = 15 MHz  
fIN = 31 MHz  
82  
81  
60  
f
IN = 60 MHz  
fIN = 200 MHz1  
ANALOG INPUT BANDWIDTH  
25°C  
V
750  
MHz  
NOTES  
11.0 V Reference and Input Span  
Specifications subject to change without notice.  
–4–  
REV. B  
AD9226  
ABSOLUTE MAXIMUM RATINGS1  
With  
EXPLANATION OF TEST LEVELS  
Test Level  
I. 100% production tested.  
Pin Name  
Respect to Min  
Max  
Unit  
II. 100% production tested at 25°C and sample tested at  
AVDD  
DRVDD  
AVSS  
AVSS  
0.3  
0.3  
0.3  
6.5  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
+6.5  
+6.5  
+0.3  
+6.5  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
°C  
°C  
°C  
specified temperatures. AC testing done on sample basis.  
DRVSS  
DRVSS  
DRVDD  
AVSS  
AVSS  
DRVSS  
AVSS  
AVSS  
AVSS  
AVSS  
III. Sample tested only.  
AVDD  
IV. Parameter is guaranteed by design and characterization  
testing.  
REFCOM  
CLK, MODE  
Digital Outputs  
VINA, VINB  
VREF  
+0.3  
AVDD + 0.3  
DRVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
DRVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
150  
V. Parameter is a typical value only.  
VI. All devices are 100% production tested at 25°C; sample tested  
at temperature extremes.  
SENSE  
CAPB, CAPT  
OEB2  
DRVSS  
AVSS  
AVSS  
THERMAL RESISTANCE  
CM LEVEL2  
VR2  
θ
θ
θ
θ
JC SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23°C/W  
JA SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63.3°C/W  
JC LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17°C/W  
JA LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76.2°C/W  
Junction Temperature  
Storage Temperature  
Lead Temperature (10 sec)  
65  
+150  
300  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
2LQFP package.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD9226ARS  
AD9226AST  
AD9226-EB  
40°C to +85°C  
40°C to +85°C  
28-Lead Shrink Small Outline (SSOP)  
48-Lead Thin Plastic Quad Flatpack (LQFP)  
Evaluation Board (SSOP)  
RS-28  
ST-48  
AD9226-LQFP-EB  
Evaluation Board (LQFP)  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9226 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–5–  
REV. B  
AD9226  
PIN CONNECTION  
48-Lead LQFP  
PIN CONNECTION  
28-Lead SSOP  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
CLK  
(LSB) BIT 12  
BIT 11  
BIT 10  
BIT 9  
DRVDD  
DRVSS  
AVDD  
3
4
AVSS  
48 47 46 45 44 43 42 41 40 39 38 37  
5
VINB  
6
BIT 8  
VINA  
1
2
AVSS  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SENSE  
AD9226  
TOP VIEW  
(Not to Scale)  
PIN 1  
IDENTIFIER  
7
AVSS  
AVDD  
AVDD  
NC  
BIT 7  
MODE  
CAPT  
MODE2  
AVDD  
3
8
BIT 6  
4
AVSS  
9
BIT 5  
CAPB  
5
AVSS  
10  
11  
12  
13  
14  
BIT 4  
AD9226  
TOP VIEW  
(Not to Scale)  
REFCOM (AVSS)  
VREF  
6
NC  
AVDD  
BIT 3  
7
CLK  
NC  
DRVSS  
DRVDD  
OTR  
BIT 1 (MSB)  
BIT 2  
8
BIT 2  
SENSE  
AVSS  
9
OEB  
NC  
(MSB) BIT 1  
OTR  
10  
11  
AVDD  
NC  
(LSB) BIT 12 12  
BIT 3  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
48-PIN FUNCTION DESCRIPTIONS  
28-PIN FUNCTION DESCRIPTIONS  
Pin  
Number  
Pin  
Number  
Name  
Description  
Name  
Description  
1, 2, 32, 33 AVSS  
3, 4, 31, 34 AVDD  
5, 6, 8, 10, NC  
11, 44  
Analog Ground  
5 V Analog Supply  
No Connect  
1
2
312  
13  
14  
CLK  
BIT 12  
Clock Input Pin  
Least Significant Data Bit (LSB)  
BITS 112 Data Output Bits  
BIT 1  
OTR  
Most Significant Data Bit (MSB)  
Out of Range  
7
CLK  
Clock Input Pin  
9
12  
13  
OEB  
BIT 12  
BIT 11  
Output Enable (Active Low)  
Least Significant Data Bit (LSB)  
Data Output Bit  
Digital Output Driver Ground  
3 V to 5 V Digital Output  
Driver Supply  
15, 26  
16, 25  
17  
18  
19  
AVDD  
AVSS  
SENSE  
VREF  
5 V Analog Supply  
Analog Ground  
Reference Select  
14, 22, 30 DRVSS  
15, 23, 29 DRVDD  
Input Span Select (Reference I/O)  
REFCOM Reference Common  
(AVSS)  
1621,  
2426  
27  
28  
35  
36  
37  
38  
BITS 105,  
BITS 42  
BIT 1  
Data Output Bits  
20  
21  
22  
23  
24  
27  
28  
CAPB  
Noise Reduction Pin  
Noise Reduction Pin  
Data Format Select/Clock Stabilizer  
Analog Input Pin (+)  
CAPT  
MODE  
VINA  
VINB  
DRVSS  
Most Significant Data Bit (MSB)  
Out of Range  
Data Format Select  
Reference Select  
Reference In/Out  
OTR  
MODE2  
SENSE  
VREF  
REFCOM  
(AVSS)  
CAPB  
Analog Input Pin ()  
Digital Output Driver Ground  
3 V to 5 V Digital Output  
Driver Supply  
DRVDD  
Reference Common  
39, 40  
41, 42  
43  
45  
46  
47  
48  
Noise Reduction Pin  
Noise Reduction Pin  
Clock Stabilizer  
Midsupply Reference  
Analog Input Pin (+)  
Analog Input Pin ()  
Noise Reduction Pin  
CAPT  
MODE1  
CM LEVEL  
VINA  
VINB  
VR  
–6–  
REV. B  
AD9226  
DEFINITIONS OF SPECIFICATIONS  
EFFECTIVE NUMBER OF BITS (ENOB)  
INTEGRAL NONLINEARITY (INL)  
For a sine wave, SINAD can be expressed in terms of the num-  
ber of bits. Using the following formula,  
INL refers to the deviation of each individual code from a line  
drawn from negative full scalethrough positive full scale.”  
The point used as negative full scaleoccurs 1/2 LSB before  
the first code transition. Positive full scaleis defined as a level  
1 1/2 LSB beyond the last code transition. The deviation is  
measured from the middle of each particular code to the true  
straight line.  
N = (SINAD 1.76)/6.02  
it is possible to obtain a measure of performance expressed as  
N, the effective number of bits.  
Thus, effective number of bits for a device for sine wave inputs  
at a given input frequency can be calculated directly from its  
measured SINAD.  
DIFFERENTIAL NONLINEARITY (DNL, NO MISSING  
CODES)  
TOTAL HARMONIC DISTORTION (THD)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 12-bit resolution indicates that all 4096  
codes, respectively, must be present over all operating ranges.  
THD is the ratio of the rms sum of the first six harmonic com-  
ponents to the rms value of the measured input signal and is  
expressed as a percentage or in decibels.  
SIGNAL-TO-NOISE RATIO (SNR)  
ZERO ERROR  
SNR is the ratio of the rms value of the measured input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
The major carry transition should occur for an analog value  
1/2 LSB below VINA = VINB. Zero error is defined as the  
deviation of the actual transition from that point.  
GAIN ERROR  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
SFDR is the difference in dB between the rms amplitude of the  
input signal and the peak spurious signal.  
The first code transition should occur at an analog value  
1/2 LSB above negative full scale. The last transition should  
occur at an analog value 1 1/2 LSB below the positive full scale.  
Gain error is the deviation of the actual difference between first  
and last code transitions and the ideal difference between first  
and last code transitions.  
ENCODE PULSEWIDTH DUTY CYCLE  
Pulsewidth high is the minimum amount of time that the clock  
pulse should be left in the logic 1state to achieve rated per-  
formance; pulsewidth low is the minimum time the clock pulse  
should be left in the low state. At a given clock rate, these specs  
define an acceptable clock duty cycle.  
TEMPERATURE DRIFT  
The temperature drift for zero error and gain error specifies the  
maximum change from the initial (25°C) value to the value at  
TMIN or TMAX.  
MINIMUM CONVERSION RATE  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
POWER SUPPLY REJECTION  
The specification shows the maximum change in full scale from  
the value with the supply at the minimum limit to the value with  
the supply at its maximum limit.  
MAXIMUM CONVERSION RATE  
The encode rate at which parametric testing is performed.  
APERTURE JITTER  
OUTPUT PROPAGATION DELAY  
Aperture jitter is the variation in aperture delay for successive  
samples and can be manifested as noise on the input to the ADC.  
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
APERTURE DELAY  
TWO TONE SFDR  
Aperture delay is a measure of the sample-and-hold amplifier  
(SHA) performance and is measured from the rising edge of the  
clock input to when the input signal is held for conversion.  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal levels are lowered) or in dBFS (always  
related back to converter full scale).  
SIGNAL-TO-NOISE AND DISTORTION (S/N+D, SINAD)  
RATIO  
S/N+D is the ratio of the rms value of the measured input  
signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc.  
The value for S/N+D is expressed in decibels.  
–7–  
REV. B  
AD9226  
DRVDD  
DRVDD  
DRVDD  
AVDD  
AVSS  
DRVSS  
DRVSS  
b. Three-State (OEB)  
a. D0–D11, OTR  
c. CLK  
AVDD  
AVDD  
AVSS  
AVSS  
d. AIN  
e. CAPT, CAPB, MODE, SENSE, VREF  
Figure 2. Equivalent Circuits  
–8–  
REV. B  
Typical Performance CharacteristicsAD9226  
(AVDD = 5.0 V, DRVDD = 3.0 V, fSAMPLE = 65 MSPS with CLK Stabilizer Enabled, TA = 25؇C, 2 V Differential Input Span, VCM = 2.5 V, AIN = 0.5 dBFS,  
VREF = 2.0 V, unless otherwise noted.)  
0
10  
100  
90  
SNR = 69.9dBc  
SINAD = 69.8dBc  
ENOB = 11.4BITS  
THD = 86.4dBc  
SFDR = 88.7dBc  
SFDR dBFS  
SFDR dBc  
20  
30  
40  
80  
70  
60  
50  
40  
SNR dBFS  
50  
60  
70  
80  
SNR dBc  
90  
100  
110  
120  
0
6.5  
13  
19.5  
26  
32.5  
5  
25  
20  
0
30  
15  
10  
FREQUENCY MHz  
A
dBFS  
IN  
TPC 1. Single-Tone 8K FFT with fIN = 5 MHz  
TPC 4. Single-Tone SNR/SFDR vs. AIN with fIN = 5 MHz  
0
100  
SNR = 70.4dBFS  
SFDR = 87.5dBFS  
10  
SFDR dBFS  
90  
20  
SFDR dBc  
30  
40  
80  
SNR dBFS  
50  
60  
70  
70  
80  
60  
90  
SNR dBc  
100  
110  
120  
50  
40  
5  
6.5  
13  
19.5  
26  
32.5  
25  
20  
0
30  
15  
10  
0
A
dBFS  
FREQUENCY MHz  
IN  
TPC 2. Dual-Tone 8K FFT with fIN–1 = 18 MHz and  
TPC 5. Dual-Tone SNR/SFDR vs. AIN with fIN–1 = 18 MHz  
and fIN–2 = 20 MHz  
f
IN–2 = 20 MHz (AIN–1 = AIN–2 = –6.5 dBFS)  
0
100  
10  
20  
SNR = 69.5dBc  
SINAD = 69.4dBc  
ENOB = 11.3BITS  
THD = 85dBc  
SFDR dBFS  
90  
30  
40  
SFDR = 87.6dBc  
80  
70  
60  
50  
40  
SNR dBFS  
50  
60  
70  
80  
SNR dBc  
90  
SFDR dBc  
100  
110  
120  
5  
25  
20  
0
30  
15  
10  
0
6.5  
13  
19.5  
26  
32.5  
A
dBFS  
FREQUENCY MHz  
IN  
TPC 3. Single-Tone 8K FFT with fIN = 31 MHz  
TPC 6. Single-Tone SNR/SFDR vs. AIN with fIN = 31 MHz  
–9–  
REV. B  
AD9226  
12.2  
11.4  
10.6  
9.8  
75  
71  
70  
69  
2V SPAN, DIFFERENTIAL  
2V SPAN, DIFFERENTIAL  
70  
1V SPAN,  
DIFFERENTIAL  
68  
67  
66  
65  
64  
63  
62  
61  
2V SPAN, SINGLE-ENDED  
65  
60  
1V SPAN,  
DIFFERENTIAL  
1V SPAN,  
SINGLE-ENDED  
8.9  
55  
50  
1V SPAN,  
SINGLE-ENDED  
8.1  
7.3  
2V SPAN, SINGLE-ENDED  
45  
1
100  
FREQUENCY MHz  
10  
1000  
1
10  
100  
1000  
FREQUENCY MHz  
TPC 7. SINAD/ENOB vs. Frequency  
TPC 10. SNR vs. Frequency  
95  
90  
85  
45  
50  
2V SPAN, SINGLE-ENDED  
1V SPAN,  
DIFFERENTIAL  
55  
60  
65  
70  
75  
80  
85  
1V SPAN,  
SINGLE-ENDED  
80  
75  
2V SPAN,  
DIFFERENTIAL  
70  
65  
60  
55  
2V SPAN,  
DIFFERENTIAL  
1V SPAN,  
SINGLE-ENDED  
2V SPAN, SINGLE-ENDED  
1V SPAN,  
DIFFERENTIAL  
50  
45  
90  
100  
10  
FREQUENCY MHz  
1
1000  
100  
10  
FREQUENCY MHz  
1
1000  
TPC 8. THD vs. Frequency  
TPC 11. SFDR vs. Frequency  
72  
70  
70  
72  
74  
76  
78  
40؇C  
+25؇C  
68  
66  
64  
+85؇C  
+85؇C  
80  
82  
84  
+25؇C  
86  
88  
90  
40؇C  
62  
1
100  
10  
FREQUENCY MHz  
1000  
10  
100  
1
FREQUENCY MHz  
TPC 9. SNR vs. Temperature and Frequency  
TPC 12. THD vs. Temperature and Frequency  
–10–  
REV. B  
AD9226  
70.5  
105  
95  
4th HARMONIC  
70.25  
f
= 2MHz  
IN  
70  
f
= 12MHz  
IN  
85  
69.75  
3RD HARMONIC  
75  
65  
55  
69.5  
f
= 20MHz  
IN  
69.25  
69  
2ND HARMONIC  
10  
20  
30  
40  
50  
60  
70  
100  
10  
FREQUENCY MHz  
1
1000  
SAMPLE RATE MSPS  
TPC 13. Harmonics vs. Frequency  
TPC 16. SINAD vs. Sample Rate  
100  
95  
90  
85  
SFDR CLOCK STABILIZER ON  
80  
75  
70  
65  
60  
55  
50  
45  
SFDR CLOCK STABILIZER OFF  
SINAD CLOCK STABILIZER ON  
f
= 2MHz  
IN  
f
= 12MHz  
IN  
90  
85  
80  
SINAD CLOCK STABILIZER OFF  
f
= 20MHz  
IN  
30  
35  
40  
45  
50  
55  
60  
65  
70  
10  
20  
30  
40  
50  
60  
70  
% POSITIVE DUTY CYCLE  
SAMPLE RATE MSPS  
TPC 14. SFDR vs. Sample Rate  
TPC 17. SINAD/SFDR vs. Duty Cycle @ fIN = 20 MHz  
1.0  
0.8  
1
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0.2  
0.4  
0.6  
0.8  
1  
0
500  
1000  
1500  
2000 2500  
CODE  
3000  
3500 4000  
1k  
0
500  
1500  
2k  
CODE  
2500  
3k  
3500  
4k  
TPC 15. Typical INL  
TPC 18. Typical DNL  
–11–  
REV. B  
AD9226Typical IF Sampling Performance Characteristics  
(AVDD = 5.0 V, DRVDD = 3.0 V, fSAMPLE = 65 MSPS with CLK Stabilizer Enabled, TA = 25؇C, 2 V Differential Input Span, VCM = 2.5 V, AIN = 6.5 dBFS,  
VREF = 2.0 V, unless otherwise noted.)  
0
10  
20  
170.1  
165.1  
160.1  
155.1  
150.1  
145.1  
95  
90  
SNR = 70.2dBFS  
SFDR = 89dBFS  
NOISE FLOOR = 145.33dBFS/Hz  
SFDR 2V SPAN  
30  
40  
85  
80  
75  
70  
65  
50  
60  
70  
80  
SNR/NOISE FLOOR 2V SPAN  
90  
100  
110  
120  
140.1  
21  
15  
12  
9  
24  
18  
6  
4
8
20  
FREQUENCY MHz  
32  
0
12  
16  
24  
28  
A
dBFS  
IN  
TPC 19. Dual-Tone 8K FFT with fIN–1 = 44.2 MHz and  
fIN–2 = 45.6 MHz  
TPC 22. Dual-Tone SNR and SFDR with fIN–1 = 44.2 MHz  
and fIN–2 = 45.6 MHz  
0
165.1  
160.1  
155.1  
150.1  
90  
85  
SNR = 68.5dBFS  
10  
20  
SFDR 2V SPAN  
SFDR = 75dBFS  
NOISE FLOOR = 143.6dBFS/Hz  
30  
40  
80  
75  
SFDR 1V SPAN  
50  
60  
70  
SNR/NOISE FLOOR 2V SPAN  
145.1  
140.1  
135.1  
80  
70  
65  
60  
90  
100  
110  
120  
SNR/NOISE FLOOR 1V SPAN  
21  
15  
12  
9  
24  
18  
6  
20  
FREQUENCY MHz  
32  
0
4
8
12  
16  
24  
28  
A
dBFS  
IN  
TPC 20. Dual-Tone 8K FFT with fIN–1 = 69.2 MHz and  
TPC 23. Dual-Tone SNR and SFDR with fIN–1 = 69.2 MHz  
and fIN–2 = 70.6 MHz  
f
IN–2 = 70.6 MHz  
0
10  
20  
165.1  
160.1  
155.1  
150.1  
145.1  
140.1  
90  
85  
SNR = 67.5dBFS  
SFDR 2V SPAN  
SFDR = 75dBFS  
NOISE FLOOR = 142.6dBFS/Hz  
30  
40  
80  
75  
70  
65  
60  
SFDR 1V SPAN  
50  
60  
SNR/NOISE FLOOR 2V SPAN  
70  
80  
90  
SNR/NOISE FLOOR 1V SPAN  
100  
110  
120  
135.1  
21  
15  
12  
9  
18  
6  
4
8
20  
FREQUENCY MHz  
32  
24  
0
12  
16  
24  
28  
A
dBFS  
IN  
TPC 21. Dual-Tone 8K FFT with fIN–1 = 139.2 MHz and  
IN–2 = 140.7 MHz  
TPC 24. Dual-Tone SNR and SFDR with fIN–1 = 139.2 MHz  
and fIN–2 = 140.7 MHz  
f
–12–  
REV. B  
AD9226  
165.1  
0
10  
20  
90  
85  
SFDR 2V SPAN  
f
f
= 190.82MHz  
IN  
SAMPLE  
= 61.44MSPS  
160.1  
30  
40  
155.1  
80  
75  
SFDR 1V SPAN  
50  
60  
150.1  
SNR/NOISE FLOOR 2V SPAN  
70  
80  
145.1  
140.1  
135.1  
70  
65  
60  
90  
100  
110  
120  
SNR/NOISE FLOOR 1V SPAN  
21  
15  
dBFS  
12  
9  
24  
18  
6  
25  
0
5
10  
15  
20  
30  
FREQUENCY MHz  
A
IN  
TPC 25. Single-Tone 8K FFT at IF = 190 MHz–WCDMA  
(fIN = 190.82 MHz, fSAMPLE = 61.44 MSPS)  
TPC 28. Single-Tone SNR and SFDR vs. AIN at IF= 190 MHz  
–WCDMA (fIN–1 = 190.8 MHz, fSAMPLE = 61.44 MSPS)  
0
85  
80  
75  
70  
65  
60  
55  
160.1  
155.1  
SNR = 65.1dBFS  
10  
20  
SFDR = 59dBFS  
SFDR 2V SPAN  
NOISE FLOOR = 140.2dBFS/Hz  
30  
40  
150.1  
145.1  
140.1  
SFDR 1V SPAN  
50  
60  
SNR/NOISE FLOOR 2V SPAN  
70  
80  
90  
SNR/NOISE FLOOR 1V SPAN  
100  
110  
120  
135.1  
130.1  
4
8
20  
FREQUENCY MHz  
32  
21  
0
12  
16  
24  
28  
24  
18  
15  
dBFS  
12  
9  
6  
A
IN  
TPC 26. Dual-Tone 8K FFT with fIN–1 = 239.1 MHz and  
fIN–2 = 240.7 MHz  
TPC 29. Dual-Tone SNR and SFDR with fIN–1 = 239.1 MHz  
and fIN–2 = 240.7 MHz  
35  
45  
55  
65  
INPUT SPAN = 2V pp  
75  
85  
95  
INPUT SPAN = 1V pp  
1
10  
FREQUENCY MHz  
100  
1000  
TPC 27. CMRR vs. Frequency (AIN = –0 dBFS and  
CML = 2.5 V)  
–13–  
REV. B  
AD9226  
and/or shunt capacitor can help limit the wideband noise at the  
ADCs input by forming a low-pass filter. The source imped-  
ance driving VINA and VINB should be matched. Failure to  
provide matching will result in degradation of the AD9226s  
SNR, THD, and SFDR.  
THEORY OF OPERATION  
The AD9226 is a high-performance, single-supply 12-bit ADC.  
The analog input of the AD9226 is very flexible allowing for both  
single-ended or differential inputs of varying amplitudes that can  
be ac- or dc-coupled.  
It utilizes a nine-stage pipeline architecture with a wideband,  
sample-and-hold amplifier (SHA) implemented on a cost-  
effective CMOS process. A patented structure is used in the  
SHA to greatly improve high frequency SFDR/distortion. This  
also improves performance in IF undersampling applications.  
Each stage of the pipeline, excluding the last stage, consists of a  
low resolution flash ADC connected to a switched capacitor  
DAC and interstage residue amplifier (MDAC). The residue  
amplifier amplifies the difference between the reconstructed DAC  
output and the flash input for the next stage in the pipeline. One  
bit of redundancy is used in each of the stages to facilitate digital  
correction of flash errors. The last stage simply consists of a  
flash ADC.  
C
H
Q
S2  
C
C
PIN  
C
Q
S
S1  
PAR  
VINA  
VINB  
Q
C
Q
H1  
S
S1  
C
C
PIN  
Q
S2  
PAR  
C
H
Figure 3. Equivalent Input Circuit  
V
V
CC  
Factory calibration ensures high linearity and low distortion.  
R
S
AD9226  
33  
VINA  
ANALOG INPUT OPERATION  
15pF  
R
33⍀  
S
Figure 3 shows the equivalent analog input of the AD9226 which  
consists of a 750 MHz differential SHA. The differential input  
structure of the SHA is highly flexible, allowing the device to be  
easily configured for either a differential or single-ended input.  
The analog inputs, VINA and VINB, are interchangeable with  
the exception that reversing the inputs to the VINA and VINB  
pins results in a data inversion (complementing the output word).  
EE  
VINB  
VREF  
0.1F  
10F  
SENSE  
REFCOM  
Figure 4. Series Resistor Isolates Switched-Capacitor  
SHA Input from Op Amp; Matching Resistors Improve  
SNR Performance  
The optimum noise and dc linearity performance for either  
differential or single-ended inputs is achieved with the largest input  
signal voltage span (i.e., 2 V input span) and matched input  
impedance for VINA and VINB. Only a slight degradation in  
dc linearity performance exists between the 2 V and 1 V input  
spans.  
OVERVIEW OF INPUT AND REFERENCE  
CONNECTIONS  
The overall input span of the AD9226 is equal to the potential  
at the VREF pin. The VREF potential may be obtained from  
the internal AD9226 reference or an external source (see  
Reference Operation section).  
High frequency inputs may find the 1 V span better suited to  
achieve superior SFDR performance. (See Typical Perfor-  
mance Characteristics.)  
The ADC samples the analog input on the rising edge of the clock  
input. During the clock low time (between the falling edge and  
rising edge of the clock), the input SHA is in the sample mode;  
during the clock high time it is in hold. System disturbances just  
prior to the rising edge of the clock and/or excessive clock jitter  
on the rising edge may cause the input SHA to acquire the wrong  
value and should be minimized.  
In differential applications, the center point of the span is  
obtained by the common-mode level of the signals. In single-  
ended applications, the center point is the dc potential applied  
to one input pin while the signal is applied to the opposite input  
pin. Figures 5a5f show various system configurations.  
DRIVING THE ANALOG INPUTS  
When the ADC is driven by an op amp and a capacitive load is  
switched onto the output of the op amp, the output will momen-  
tarily drop due to its effective output impedance. As the output  
recovers, ringing may occur. To remedy the situation, a series  
resistor can be inserted between the op amp and the SHA  
input as shown in Figure 4. A shunt capacitance also acts like  
a charge reservoir, sinking or sourcing the additional charge  
required by the hold capacitor, CH, further reducing current  
transients seen at the op amps output.  
The AD9226 has a very flexible input structure allowing it to  
interface with single-ended or differential input interface circuitry.  
The optimum mode of operation, analog input range, and asso-  
ciated interface circuitry will be determined by the particular  
applications performance requirements as well as power sup-  
ply options.  
DIFFERENTIAL DRIVER CIRCUITS  
Differential operation requires that VINA and VINB be simulta-  
neously driven with two equal signals that are 180؇ out of phase  
with each other.  
The optimum size of this resistor is dependent on several factors,  
including the ADC sampling rate, the selected op amp, and the  
particular application. In most applications, a 30 to 100 Ω  
resistor is sufficient.  
Differential modes of operation (ac- or dc-coupled input) provide  
the best THD and SFDR performance over a wide frequency  
range. They should be considered for the most demanding  
spectral-based applications (e.g., direct IF conversion to digital).  
For noise-sensitive applications, the very high bandwidth of the  
AD9226 may be detrimental and the addition of a series resistor  
–14–  
REV. B  
AD9226  
1.5V  
0.5V  
2.5V  
AD9226  
VINA  
CMLEVEL  
33  
15pF  
3.0V  
2.5V  
2.0V  
0.1F  
AD9226  
(LQFP)  
0.1F  
0.1F  
33⍀  
VINB  
VINA  
33⍀  
1V  
CAPT  
CAPB  
49.9⍀  
15pF  
0.1F  
VREF  
10F  
VINB  
CAPT  
CAPB  
33⍀  
0.1F  
10F  
SENSE  
REFCOM  
0.1F  
10F  
2V  
0.1F  
0.1F  
VREF  
3.0V  
2.5V  
2.0V  
10F  
0.1F  
SENSE  
Figure 5a. 1 V Single-Ended Input, Common-Mode  
Voltage = 1 V  
Figure 5e. 2 V Differential Input, Common-Mode  
Voltage = 2.5 V  
1.25V  
AD9226  
0.75V  
33  
10k10k⍀  
VINA  
AVDD  
0.1F  
0.1F  
49.9⍀  
15pF  
0.1F  
CAPT  
CAPB  
VINB  
33⍀  
2.5V  
33⍀  
2.75V  
2.5V  
2.0V  
10F  
AD9226  
1V  
0.1F  
VREF  
1.25V  
0.75V  
VINA  
10F  
0.1F  
0.1F  
0.1F  
49.9⍀  
15pF  
SENSE  
VINB  
CAPT  
CAPB  
33⍀  
10F  
1V  
0.1F  
VREF  
Figure 5b. 1 V Differential Input, Common-Mode  
Voltage = 1 V  
2.75V  
2.5V  
2.25V  
10F  
0.1F  
SENSE  
Figure 5f. 1 V Differential Input, Common-Mode  
2.5V  
AD9226  
1.5V  
Voltage = 2.5 V (Recommended for IF Undersampling)  
33⍀  
VINA  
0.1F  
0.1F  
49.9⍀  
15pF  
The differential input characterization for this data sheet was  
performed using the configuration shown in Figure 7.  
VINB  
CAPT  
CAPB  
33⍀  
10F  
2V  
0.1F  
Since not all applications have a signal preconditioned for  
differential operation, there is often a need to perform a single-  
ended-to-differential conversion. In systems that do not need to  
be dc-coupled, an RF transformer with a center tap is the best  
method to generate differential inputs for the AD9226. It pro-  
vides all the benefits of operating the ADC in the differential  
mode without contributing additional noise or distortion. An RF  
transformer also has the added benefit of providing electrical  
isolation between the signal source and the ADC. An improvement  
in THD and SFDR performance can be realized by operating  
the AD9226 in the differential mode. The performance enhance-  
ment between the differential and single-ended mode is most  
noteworthy as the input frequency approaches and goes beyond  
the Nyquist frequency (i.e., fIN > FS /2).  
VREF  
2.5V  
1.5V  
10F  
0.1F  
SENSE  
Figure 5c. 2 V Differential Input, Common-Mode  
Voltage = 2 V  
3.0V  
AD9226  
VINA  
1.0V  
33⍀  
15pF  
0.1F  
0.1F  
VINB  
33⍀  
CAPT  
CAPB  
The circuit shown in Figure 6a is an ideal method of applying  
a differential dc drive to the AD9226. It uses an AD8138 to  
derive a differential signal from a single-ended one. Figure 6b  
illustrates its performance.  
2V  
VREF  
10F  
0.1F  
10F  
SENSE  
REFCOM  
0.1F  
Figure 7 presents the schematic of the suggested transformer  
circuit. The circuit uses a Minicircuits RF transformer, model  
T1-1T, which has an impedance ratio of four (turns ratio of 2).  
The schematic assumes that the signal source has a 50 source  
impedance. The center tap of the transformer provides a con-  
venient means of level-shifting the input signal to a desired  
common-mode voltage. In Figure 7 the transformer centertap  
is connected to a resistor divider at the midsupply voltage.  
Figure 5d. 2 V Single-Ended Input, Common-Mode  
Voltage = 2 V  
–15–  
REV. B  
AD9226  
10F  
SINGLE-ENDED DRIVER CIRCUITS  
5V  
0.1F  
1k⍀  
The AD9226 can be configured for single-ended operation using  
dc- or ac-coupling. In either case, the input of the ADC must be  
driven from an operational amplifier that will not degrade the  
ADCs performance. Because the ADC operates from a single  
supply, it will be necessary to level-shift ground-based bipolar  
signals to comply with its input requirements. Both dc- and  
ac-coupling provide this necessary function, but each method  
results in different interface issues which may influence the  
system design and performance.  
10F  
0.1F  
0.1F  
1k⍀  
0.1F  
AVDD  
VINA  
499⍀  
1V p-p  
0V  
450⍀  
499⍀  
CAPT  
0.1F  
0.1F  
AD8138  
AD9226  
CAPB  
49.9⍀  
10F  
VINB  
Single-ended operation requires that VINA be ac- or dc-coupled  
to the input signal source, while VINB of the AD9226 be biased  
to the appropriate voltage corresponding to the middle of the input  
span. The single-ended specifications for the AD9226 are char-  
acterized using Figure 9a circuitry with input spans of 1 V and  
2 V. The common-mode level is 2.5 V.  
499⍀  
Figure 6a. Direct-Coupled Drive Circuit with AD8138  
Differential Op Amp  
0
SNR = 66.9dBc  
SFDR = 70.0dBc  
If the analog inputs exceed the supply limits, internal parasitic  
diodes will turn on. This will result in transient currents within  
the device. Figure 8 shows a simple means of clamping an input.  
It uses a series resistor and two diodes. An optional capacitor is  
shown for ac-coupled applications. A larger series resistor can  
be used to limit the fault current through D1 and D2. This  
can cause a degradation in overall performance. A similar  
clamping circuit can also be used for each input if a differen-  
tial input signal is being applied. A better method to ensure  
the input is not overdriven is to use amplifiers powered by a single  
5 V supply such as the AD8138.  
20  
40  
60  
80  
100  
120  
OPTIONAL  
AC-COUPLING  
CAPACITOR  
0
4
8
12  
16  
MHz  
20  
24  
28  
32  
AVDD  
D2  
V
CC  
R
30  
R
20⍀  
S1  
S2  
Figure 6b. FS = 65 MSPS, fIN = 30 MHz, Input Span = 1 V p-p  
AD9226  
The same midsupply potential may be obtained from the  
CMLEVEL pin of the AD9226 in the LQFP package.  
D1  
V
EE  
Referring to Figure 7, a series resistor, RS, is inserted between the  
AD9226 and the secondary of the transformer. The value of  
33 ohm was selected to specifically optimize both the THD and  
SNR performance of the ADC. RS and the internal capacitance  
help provide a low-pass filter to block high-frequency noise.  
Figure 8. Simple Clamping Circuit  
AC-COUPLING AND INTERFACE ISSUES  
For applications where ac-coupling is appropriate, the op amp  
output can be easily level-shifted by means of a coupling  
capacitor. This has the advantage of allowing the op amps com-  
mon-mode level to be symmetrically biased to its midsupply  
level (i.e., (AVDD/2). Op amps that operate symmetrically with  
respect to their power supplies typically provide the best ac  
performance as well as greatest input/output span. Various high-  
speed performance amplifiers that are restricted to +5 V/5 V  
operation and/or specified for 5 V single-supply operation can be  
easily configured for the 2 V or 1 V input span of the AD9226.  
Transformers with other turns ratios may also be selected to  
optimize the performance of a given application. For example, a  
given input signal source or amplifier may realize an improve-  
ment in distortion performance at reduced output power levels  
and signal swings. By selecting a transformer with a higher  
impedance ratio (e.g., Minicircuits T16-6T with a 1:16 imped-  
ance ratio), the signal level is effectively stepped upthus  
further reducing the driving requirements of signal source.  
Simple AC Interface  
AVDD  
Figure 9a shows a typical example of an ac-coupled, single-  
ended configuration of the SSOP package. The bias voltage  
shifts the bipolar, ground-referenced input signal to approxi-  
mately AVDD/2. The capacitors, C1 and C2, are 0.1 µF ceramic  
and 10 µF tantalum capacitors in parallel to achieve a low  
cutoff frequency while maintaining a low impedance over a  
wide frequency range. The combination of the capacitor and the  
resistor form a high-pass network with a high-pass 3 dB fre-  
quency determined by the equation,  
R
33  
1k⍀  
S
0.1F  
0.1F  
VINA  
CAPT  
AD9226  
10F  
49.9⍀  
0.1F  
15pF  
1k⍀  
CAPB  
0.1F  
VINB  
R
MINICIRCUITS  
T1-1T  
S
33⍀  
Figure 7. Transformer-Coupled Input  
f
3 dB = 1/(2 × π × R × (C1 + C2))  
–16–  
REV. B  
AD9226  
The low-impedance VREF output can be used to provide dc  
bias levels to the fixed VINB pin and the signal on VINA. Fig-  
ure 9b shows the VREF configured for 2.0 V, thus the input  
range of the ADC is 1.0 V to 3.0 V. Other input ranges could  
be selected by changing VREF.  
Figure 10 illustrates the relation between common-mode voltage  
and THD. Note that optimal performance occurs when the  
reference voltage is set to 2.0 V (input span = 2.0 V).  
DC-COUPLING AND INTERFACE ISSUES  
Many applications require the analog input signal to be dc-coupled  
to the AD9226. An operational amplifier can be configured to  
rescale and level-shift the input signal to make it compatible  
with the selected input range of the ADC.  
When the inputs are biased from the reference (Figure 9b),  
there may be a slight degeneration of dynamic performance. A  
midsupply output level is available at the CM LEVEL pin of the  
LQFP package.  
The selected input range of the AD9226 should be considered  
with the headroom requirements of the particular op amp to  
prevent clipping of the signal. Many of the new high-performance  
op amps are specified for only 5 V operation and have limited  
input/output swing capabilities. Also, since the output of a dual  
supply amplifier can swing below absolute minimum (0.3 V),  
clamping its output should be considered in some applications  
(see Figure 8). When single-ended, dc-coupling is needed, the  
use of the AD8138 in a differential configuration (Figure 9a) is  
highly recommended.  
+1V  
C1  
V
V
0V  
10F  
1V  
R
R
+5V  
V
IN  
R
S
0.1F  
VINA  
C2  
0.1F  
CAPT  
5V  
15pF  
0.1F  
0.1F  
10F  
AD9226  
CAPB  
R
S
VINB  
R
R
0.1F  
10F  
VREF  
Simple Op Amp Buffer  
In the simplest case, the input signal to the AD9226 will already  
be biased at levels in accordance with the selected input range. It  
is necessary to provide an adequately low source impedance for  
the VINA and VINB analog pins of the ADC.  
3.5  
2.5  
1.5  
10F  
0.1F  
Figure 9a. AC-Coupled Input Configuration  
REFERENCE OPERATION  
0.1F  
The AD9226 contains an on-board bandgap reference that  
provides a pin-strappable option to generate either a 1 V or  
2 V output. With the addition of two external resistors, the user  
can generate reference voltages between 1 V and 2 V. See  
Figures 5a-5f for a summary of the pin-strapping options for the  
AD9226 reference configurations. Another alternative is to use  
an external reference for designs requiring enhanced accuracy  
and/or drift performance described later in this section.  
V
IN  
10F  
AD9226  
R
S
VINA  
0.1F  
0.1F  
1k⍀  
CAPT  
15pF  
10F  
1k⍀  
CAPB  
R
S
0.1F  
VINB  
0.1F  
Figure 11a shows a simplified model of the internal voltage refer-  
ence of the AD9226. A reference amplifier buffers a 1 V fixed  
reference. The output from the reference amplifier, A1, appears  
on the VREF pin. The voltage on the VREF pin determines  
the full-scale input span of the ADC. This input span equals,  
10F  
VREF  
10F  
0.1F  
Full-Scale Input Span = VREF  
Figure 9b. Alternate AC-Coupled Input Configuration  
The voltage appearing at the VREF pin, and the state of the  
internal reference amplifier, A1, are determined by the voltage  
appearing at the SENSE pin. The logic circuitry contains com-  
parators that monitor the voltage at the SENSE pin. If the  
SENSE pin is tied to AVSS, the switch is connected to the  
internal resistor network thus providing a VREF of 2.0 V. If the  
SENSE pin is tied to the VREF pin via a short or resistor, the  
switch will connect to the SENSE pin. This connection will pro-  
vide a VREF of 1.0 V. An external resistor network will provide  
an alternative VREF between 1.0 V and 2.0 V (see Figure 12).  
Another comparator controls internal circuitry that will disable  
the reference amplifier if the SENSE pin is tied to AVDD.  
Disabling the reference amplifier allows the VREF pin to be  
driven by an external voltage reference.  
84  
83  
82  
81  
80  
79  
78  
77  
76  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
Volts  
Figure 10. THD vs. Common-Mode Voltage  
(2 V Differential Input Span, fIN = 10 MHz)  
–17–  
REV. B  
AD9226  
to determine appropriate values for R1 and R2. These resistors  
should be in the 2 kto 10 krange. For the example shown,  
R1 equals 2.5 kand R2 equals 5 k. From the equation above,  
the resultant reference voltage on the VREF pin is 1.5 V. This  
sets the input span to be 1.5 V p-p. The midscale voltage can  
also be set to VREF by connecting VINB to VREF. Alterna-  
tively, the midscale voltage can be set to 2.5 V by connecting  
VINB to a low-impedance 2.5 V source as shown in Figure 12.  
AD9226  
A2  
TO  
A/D  
CAPT  
CAPB  
2.5V  
VREF  
AD9226  
VINA  
33  
15pF  
3.25V  
1.75V  
A1  
1V  
0.1F  
0.1F  
2.5V  
VINB  
33⍀  
CAPT  
CAPB  
SENSE  
1.5V  
DISABLE  
A1  
VREF  
SENSE  
LOGIC  
R1  
2.5k⍀  
10F  
0.1F  
10F  
REFCOM  
R2  
5k⍀  
0.1F  
REFCOM  
Figure 11a. Equivalent Reference Circuit  
Figure 12. Resistor Programmable Reference (1.5 V p-p  
Input Span, Differential Input VCM = 2.5 V)  
0.1F  
VREF  
CAPT  
10F  
10F  
0.1F  
0.1F  
AD9226  
USING AN EXTERNAL REFERENCE  
CAPB  
The AD9226 contains an internal reference buffer, A2 (see  
Figure 11b), that simplifies the drive requirements of an external  
reference. The external reference must be able to drive about  
5 k( 20%) load. Note that the bandwidth of the reference  
buffer is deliberately left small to minimize the reference noise  
contribution. As a result, it is not possible to rapidly change the  
reference voltage in this mode.  
0.1F  
Figure 11b. CAPT and CAPB DC-Coupling  
The actual reference voltages used by the internal circuitry of the  
AD9226 appear on the CAPT and CAPB pins. The voltages  
on these pins are symmetrical about the analog supply. For  
proper operation when using an internal or external reference, it  
is necessary to add a capacitor network to decouple these pins.  
Figure 11b shows the recommended decoupling network. The  
turn-on time of the reference voltage appearing between CAPT  
and CAPB is approximately 10 ms and should be evaluated in  
any power-down mode of operation.  
Figure 13 shows an example of an external reference driving  
both VINB and VREF. In this case, both the common-mode  
voltage and input span are directly dependent on the value of  
VREF. Both the input span and the center of the input span are  
equal to the external VREF. Thus the valid input range extends  
from (VREF + VREF/2) to (VREF VREF/2). For example,  
if the REF191, a 2.048 V external reference, is selected, the  
input span extends to 2.048 V. In this case, 1 LSB of the AD9226  
corresponds to 0.5 mV. It is essential that a minimum of a 10 µF  
capacitor, in parallel with a 0.1 µF low-inductance ceramic  
capacitor, decouple the reference output to ground.  
USING THE INTERNAL REFERENCE  
The AD9226 can be easily configured for either a 1 V p-p input  
span or 2 V p-p input span by setting the internal reference.  
Other input spans can be realized with two external gain-  
setting resistors as shown in Figure 12 of this data sheet, or  
using an external reference.  
To use an external reference, the SENSE pin must be connected  
to AVDD. This connection will disable the internal reference.  
Pin Programmable Reference  
By shorting the VREF pin directly to the SENSE pin, the inter-  
nal reference amplifier is placed in a unity-gain mode and the  
resultant VREF output is 1 V. By shorting the SENSE pin  
directly to the REFCOM pin, the internal reference amplifier is  
configured for a gain of 2.0 and the resultant VREF output is  
2.0 V. The VREF pin should be bypassed to the REFCOM pin  
with a 10 µF tantalum capacitor in parallel with a low-inductance  
0.1 µF ceramic capacitor as shown in Figure 11b.  
AD9226  
VINA  
VINA+VREF/2  
33  
15pF  
33⍀  
VINBVREF/2  
0.1F  
0.1F  
5V  
0.1F  
VREF  
VINB  
CAPT  
CAPB  
10F  
10F  
VREF  
SENSE  
0.1F  
0.1F  
5V  
Resistor Programmable Reference  
Figure 12 shows an example of how to generate a reference  
voltage other than 1.0 V or 2.0 V with the addition of two exter-  
nal resistors. Use the equation,  
Figure 13. Using an External Reference  
VREF = 1 V × (1 + R1/R2)  
–18–  
REV. B  
AD9226  
MODE CONTROLS  
Clock Stabilizer  
DIGITAL INPUTS AND OUTPUTS  
Digital Outputs  
The clock stabilizer is a circuit that desensitizes the ADC from  
clock duty cycle variations. The AD9226 eases system clock  
constraints by incorporating a circuit that restores the internal duty  
cycle to 50%, independent of the input duty cycle. Low jitter on  
the rising edge (sampling edge) of the clock is preserved while  
the noncritical falling edge is generated on-chip.  
Table IV details the relationship among the ADC input, OTR, and  
straight binary output.  
Table IV. Output Data Format  
Two’s  
Binary  
Complement  
It may be desirable to disable the clock stabilizer, and may be  
necessary when the clock frequency speed is varied or completely  
stopped. Once the clock frequency is changed, over 100 clock  
cycles may be required for the clock stabilizer to settle to a dif-  
ferent speed. When the stabilizer is disabled, the internal switching  
will be directly affected by the clock state. If the external clock is  
high, the SHA will be in hold. If the clock pulse is low, the SHA  
will be in track. TPC 16 shows the benefits of using the clock  
stabilizer. See Tables I and III.  
Input (V)  
Condition (V)  
Output Mode Mode  
OTR  
VINAVINB < VREF  
VINAVINB = VREF  
VINAVINB = 0  
0000 0000 0000 1000 0000 0000  
0000 0000 0000 1000 0000 0000  
1000 0000 0000 0000 0000 0000  
1
0
0
0
1
VINAVINB = + VREF 1 LSB 1111 1111 1111 0111 1111 1111  
VINAVINB + VREF  
1111 1111 1111 0111 1111 1111  
Out of Range (OTR)  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the converter. OTR is a digital  
output that is updated along with the data output corresponding  
to the particular sampled analog input voltage. Hence, OTR has  
the same pipeline delay (latency) as the digital data. It is LOW  
when the analog input voltage is within the analog input range.  
It is HIGH when the analog input voltage exceeds the input  
range as shown in Figure 14. OTR will remain HIGH until the  
analog input returns within the input range and another conversion  
is completed. By logical ANDing OTR with the MSB and its  
complement, overrange high or underrange low conditions can be  
detected. Table V is a truth table for the over/underrange  
circuit in Figure 15, which uses NAND gates. Systems requiring  
programmable gain conditioning of the AD9226 input signal  
can immediately detect an out-of-range condition, thus elimi-  
nating gain selection iterations. Also, OTR can be used for  
digital offset and gain calibration.  
Data Format Select (DFS)  
The AD9226 may be set for binary or twos complement data  
output formats. See Tables I and II.  
SSOP Package  
The SSOP mode control (Pin 22) has two functions. It enables/  
disables the clock stabilizer and determines the output data format.  
The exact functions of the mode pin are outlined in Table I.  
Table I. Mode Select (SSOP)  
Mode  
DFS  
Clock Duty Cycle Shaping  
DNC  
AVDD  
GND  
10 kΩ  
Resistor  
Binary  
Binary  
Clock Stabilizer Disabled  
Clock Stabilizer Enabled  
Twos Complement Clock Stabilizer Enabled  
Twos Complement Clock Stabilizer Disabled  
To GND  
Table V. Out-of-Range Truth Table  
LQFP Package  
OTR  
MSB  
Analog Input Is  
Pin 35 of the LQFP package determines the output data format  
(DFS). If it is connected to AVSS, the output word will be straight  
binary. If it is connected to AVDD, the output data format will  
be twos complement. See Table II.  
0
0
1
1
0
1
0
1
In Range  
In Range  
Underrange  
Overrange  
Pin 43 of the LQFP package controls the clock stabilizer function  
of the AD9226. If the pin is connected to AVSS, both clock  
edges will be used in the conversion architecture. When Pin 43  
is connected to AVDD, the internal duty cycle will be determined  
by the clock stabilizer function within the ADC. See Table III.  
+FS 1 1/2 LSB  
OTR DATA OUTPUTS  
OTR  
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
1
0
0
FS +1/2 LSB  
Table II. DFS Pin Controls  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0
0
1
DFS Function  
Pin 35 Connection  
FS  
FS 1/2 LSB  
+FS  
Straight Binary  
Twos Complement  
AVSS  
AVDD  
+FS 1/2 LSB  
Figure 14. OTR Relation to Input Voltage and Output Data  
Table III. Clock Stabilizer Pin  
MSB  
OVER = 1  
Clock Restore Function  
Pin 43 Connection  
OTR  
UNDER = 1  
Clock Stabilizer Enabled  
Clock Stabilizer Disabled  
AVDD  
AVSS  
MSB  
Figure 15. Overrange or Underrange Logic  
–19–  
REV. B  
AD9226  
Digital Output Driver Considerations  
3. The inherent distributed capacitor formed by the power  
plane, PCB insulation, and ground plane.  
The AD9226 output drivers can be configured to interface with  
5 V or 3.3 V logic families by setting DRVDD to 5 V or 3.3 V  
respectively. The output drivers are sized to provide sufficient  
output current to drive a wide variety of logic families. However,  
large drive currents tend to cause glitches on the supplies and may  
affect converter performance. Applications requiring the ADC to  
drive large capacitive loads or large fan outs may require external  
buffers or latches.  
It is important to design a layout that prevents noise from cou-  
pling onto the input signal. Digital signals should not be run in  
parallel with input signal traces and should be routed away from  
the input circuitry. While the AD9226 features separate analog  
and driver ground pins, it should be treated as an analog com-  
ponent. The AVSS and DRVSS pins must be joined together  
directly under the AD9226. A solid ground plane under the  
ADC is acceptable if the power and ground return currents are  
carefully managed.  
OEB Function (Three-State)  
The LQFP-packaged AD9226 has Three-State (OEB) ability. If  
the OEB pin is held low, the output data drivers are enabled. If  
the OEB pin is high, the output data drivers are placed in a high  
impedance state. It is not intended for rapid access to buss.  
AVDD  
10F  
0.1F  
AD9226  
Clock Input Considerations  
AVSS  
High-speed, high-resolution ADCs are sensitive to the quality of  
the clock input. The clock input should be treated as an analog  
signal in cases where aperture jitter may affect the dynamic  
performance of the AD9226. Power supplies for clock drivers  
should be separated from the ADC output driver supplies to  
avoid modulating the clock signal with digital noise. Low-jitter  
crystal controlled oscillators make the best clock sources.  
Figure 17. Analog Supply Decoupling  
Analog and Digital Driver Supply Decoupling  
The AD9226 features separate analog and digital supply and  
ground pins, helping to minimize digital corruption of sensitive  
analog signals. In general, AVDD (analog power) should be  
decoupled to AVSS (analog ground). The AVDD and AVSS  
pins are adjacent to one another. Also, DRVDD (digital power)  
should be decoupled to DRVDD (digital ground). The decoupling  
capacitors (especially 0.1 µF) should be located as close to the  
pins as possible. Figure 17 shows the recommended decoupling  
for the pair of analog supplies; 0.1 µF ceramic chip and 10 µF  
tantalum capacitors should provide adequately low impedance  
over a wide frequency range.  
The quality of the clock input, particularly the rising edge, is  
critical in realizing the best possible jitter performance of the  
part. Faster rising edges often have less jitter.  
Clock Input and Power Dissipation  
Most of the power dissipated by the AD9226 is from the analog  
power supplies. However, lower clock speeds will reduce digital  
current. Figure 16 shows the relationship between power and  
clock rate.  
600  
550  
CML  
VR  
AD9226  
0.1F  
0.1F  
500  
Figure 18. CML Decoupling (LQFP)  
Bias Decoupling  
DRVDD = 5V  
450  
400  
The CML and VR are analog bias points used internally by the  
AD9226. These pins must be decoupled with at least a 0.1 µF  
capacitor as shown in Figure 18. The dc level of CML is approxi-  
mately AVDD/2. This voltage should be buffered if it is to be  
used for any external biasing. CML and VR outputs are only  
available in the LQFP package.  
DRVDD = 3V  
350  
300  
250  
200  
65  
75  
5
15  
25  
35  
45  
55  
DRVDD  
SAMPLE RATE Msps  
10F  
0.1F  
AD9226  
DRVSS  
Figure 16. Power Consumption vs. Sample Rate  
GROUNDING AND DECOUPLING  
Analog and Digital Grounding  
Figure 19. Digital Supply Decoupling  
Proper grounding is essential in any high-speed, high-resolution  
system. Multilayer printed circuit boards (PCBs) are recom-  
mended to provide optimal grounding and power schemes. The  
use of ground and power planes offers distinct advantages:  
CML  
The LQFP-packaged AD9226 has a midsupply reference point.  
This midsupply point is used within the internal architecture of  
the AD9226 and must be decoupled with a 0.1 µF capacitor. It  
will source or sink a load of up to 300 µA. If more current is  
required, it should be buffered with a high impedance amplifier.  
1. The minimization of the loop area encompassed by a signal  
and its return path.  
2. The minimization of the impedance associated with ground  
and power paths.  
–20–  
REV. B  
AD9226  
VR  
The clock input signal to the AD9226 evaluation board can be  
applied to one of two inputs, CLOCK and AUXCLK. The  
CLOCK input should be selected if the frequency of the input  
clock signal is at the target sample rate of the AD9226. The  
input clock signal is ac-coupled and level-shifted to the switch-  
ing threshold of a 74VHC02 clock driver. The AUXCLK input  
should be selected in applications requiring the lowest jitter and  
SNR performance (i.e., IF Undersampling characterization). It  
allows the user to apply a clock input signal that is 4× the target  
sample rate of the AD9226. A low-jitter, differential divide-by-4  
counter, the MC100EL33D, provides a 1× clock output that is  
subsequently returned back to the CLOCK input via JP7. For  
example, a 260 MHz signal (sinusoid) will be divided down to  
a 65 MHz signal for clocking the ADC. Note, R1 must be  
removed with the AUXCLK interface. Lower jitter is often  
achieved with this interface since many RF signal generators  
display improved phase noise at higher output frequencies and  
the slew rate of the sinusoidal output signal is 4× that of a 1×  
signal of equal amplitude.  
VR is an internal bias point on the LQFP package. It must be  
decoupled to ground with a 0.1 µF capacitor.  
The digital activity on the AD9226 chip falls into two general  
categories: correction logic and output drivers. The internal  
correction logic draws relatively small surges of current, mainly  
during the clock transitions. The output drivers draw large  
current impulses while the output bits are changing. The size  
and duration of these currents are a function of the load on the  
output bits: large capacitive loads are to be avoided.  
For the digital decoupling shown in Figure 19, 0.1 µF ceramic  
chip and 10 µF tantalum capacitors are appropriate. Reason-  
able capacitive loads on the data pins are less than 20 pF per  
bit. Applications involving greater digital loads should consider  
increasing the digital decoupling proportionally and/or using  
external buffers/latches.  
A complete decoupling scheme will also include large tantalum  
or electrolytic capacitors on the power supply connector to  
reduce low-frequency ripple to negligible levels.  
Figure 20 shows the bench characterization setup used to evalu-  
ate the AD9226s ac performance for many of the data sheet  
characterization curves. Signal and Clock RF generators A and  
B are high-frequency, verylow-phase noise frequency sources.  
These generators should be phase locked by sharing the same  
10 MHz REF signal (located on the instruments back panel) to  
allow for nonwindowed, coherent FFTs. Also, the AUXCLK  
option on the AD9226 evaluation board should be used to  
achieve the best SNR performance. Since the distortion and  
broadband noise of an RF generator can often be a limiting  
factor in measuring the true performance of an ADC, a high Q  
passive bandpass filter should be inserted between the generator  
and AD9226 evaluation board.  
EVALUATION BOARD AND TYPICAL BENCH  
CHARACTERIZATION TEST SETUP  
The AD9226 evaluation board is configured to operate upon  
applying both power and the analog and clock input signals. It  
provides three possible analog input interfaces to characterize  
the AD9226s ac and dc performance. For ac characterization, it  
provides a transformer coupled input with the common-mode  
input voltage (CMV) set to AVDD/2. Note, the evaluation  
board is shipped with a transformer coupled interface and a 2 V  
input span. For differential dc coupled applications, the evalua-  
tion board has provisions to be driven by the AD8138 amplifier.  
If a single-ended input is desired, it may be driven through the  
S3 connector. The various input signal options are accessible by  
the jumper connections. Refer to the Evaluation Board schematic.  
5V  
5V  
3V  
3V  
AVDD  
GND DUT GND DUT  
DVDD  
AVDD  
DVDD  
S4  
INPUT  
xFMR  
SIGNAL SYNTHESIZER  
65(OR 260MHz), 4V p-p  
HP8644  
1MHz  
BANDPASS FILTER  
REFIN  
AD9226  
EVALUATION BOARD  
OUTPUT  
WORD  
(P1)  
DSP  
EQUIPMENT  
S4  
AUX CLOCK  
(،4)  
S1  
INPUT  
CLOCK  
CLK SYNTHESIZER  
65(OR 260MHz), 4V p-p  
HP8644  
10MHz  
REFOUT  
Figure 20. Evaluation Board Connections  
–21–  
REV. B  
AD9226  
DUTAVDD  
TP5  
WHT  
JP23  
JP25  
JP24  
JP22  
C1  
10F  
10V  
C36  
0.1F  
C39  
0.001F  
AD9226LQFP  
R3  
10k⍀  
28  
27  
26  
25  
24  
21  
20  
19  
18  
17  
16  
13  
12  
11  
10  
8
3
4
AVDD1  
AVDD2  
AVSS1  
AVSS2  
SENSE  
VREF  
OTR  
MSB-B1  
B2  
OTR0  
D130  
D120  
D110  
D100  
D90  
1
C21  
10F  
10V  
R4  
10k⍀  
C35  
0.1F  
2
B3  
36  
37  
38  
39  
40  
41  
42  
45  
46  
47  
B4  
B5  
REFCOM  
CAPB1  
CAPB2  
CAPT1  
CAPT2  
CML  
B6  
C34  
0.1F  
D80  
B7  
D70  
C20  
B8  
D60  
C33  
0.1F  
10F  
B9  
D50  
10V  
B10  
B11  
B12  
B13  
LSB-B14  
NC3  
OEB  
VR  
D40  
C32  
0.1F  
D30  
AVDD  
U1  
C50  
0.1F  
VINA  
VINA  
D20  
JP6  
JP1  
JP2  
SHEET 3  
TP2  
VINB  
VINB  
D10  
FBEAD L1  
2
RED  
5
1
NC1  
D00  
DUTAVDDIN TB1  
2
DUTAVDD  
6
32  
33  
31  
34  
30  
29  
23  
22  
C58  
22F  
25V  
C59  
0.1F  
NC2  
9
AVSS3  
AVSS4  
AVDD3  
AVDD4  
DRVSS3  
DRVDD3  
AGND TB1  
3
1
48  
35  
43  
7
DUTAVDD  
C2  
0.1F  
R42  
1k⍀  
DFS  
DUTY  
CLK  
NC4  
TP1  
C23  
10F  
10V  
FBEAD L2  
2
RED  
C38  
0.1F  
C41  
0.001F  
1
R6  
AVDDIN  
TB1  
AVDD  
C47  
22F  
25V  
1k⍀  
C52  
0.1F  
44  
15  
14  
R10  
1k⍀  
DRVDD1 DRVDD2  
DRVSS1 DRVSS2  
DUTCLK  
TP3  
FBEAD L3  
2
RED  
DUTDRVDD  
WHT  
TP6  
1
DRVDDIN TB1  
AGND TB1  
5
4
DUTDRVDD  
C48  
22F  
25V  
C3  
10F  
10V  
C53  
0.1F  
C37  
0.1F  
C40  
0.001F  
NC = NO CONNECT  
TP4  
FBEAD L4  
RED  
DVDD  
TP12  
2
1
DVDDIN  
TB1  
6
C6  
22F  
25V  
C14  
0.1F  
TP11  
BLK  
TP13  
BLK  
TP14  
BLK  
BLK  
Figure 21. AD9226 Evaluation Board  
–22–  
REV. B  
AD9226  
C12  
DVDD  
0.1F  
10V  
2
10F  
1
C4  
74VHC541  
1
20  
10  
18  
17  
16  
15  
14  
13  
12  
11  
RP1  
G1  
VCC  
GND  
Y1  
22⍀  
AUXCLK  
1
2
3
4
5
6
7
16  
15  
14  
13  
12  
11  
10  
19  
1
3
5
7
9
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
P1  
2
4
6
8
1N5712  
D2  
S5  
T11T  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
RP1  
22⍀  
6
5
4
1
2
3
1
2
3
4
5
6
7
8
9
D13  
D12  
D11  
D10  
D9  
2
2
R11  
RP1  
22⍀  
49.9⍀  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
2
D1  
T2  
U6  
RP1  
22⍀  
1N5712  
RP1  
22⍀  
P1 10  
P1 12  
P1 14  
MC100EL33D  
RP1  
22⍀  
D8  
8
7
6
5
1
2
3
4
VCC  
OUT  
REF  
VEE  
NC  
INA  
INB  
AVDD  
11 P1  
13 P1  
D7  
U3  
RP1  
22⍀  
D6  
RP1  
INCOM  
22⍀  
8
1
2
3
4
5
6
9
15 P1  
17 P1  
19 P1  
21 P1  
23 P1  
25 P1  
27 P1  
29 P1  
31 P1  
33 P1  
35 P1  
37 P1  
39 P1  
P1 16  
P1 18  
P1 20  
P1 22  
P1 24  
C11  
0.1F  
RP2  
22⍀  
AVDD  
AVDD  
R12  
AVDD  
16  
15  
14  
13  
12  
11  
C26  
10F  
10V  
C18  
0.1F  
10V  
10F  
C5  
RP2  
22⍀  
2
1
C17  
0.1F  
R13  
113⍀  
113⍀  
C19  
0.1F  
U3  
DECOUPLING  
RP2  
22⍀  
74VHC541  
1
R14  
90⍀  
R15  
90⍀  
20  
10  
18  
17  
16  
15  
14  
13  
12  
11  
G1  
VCC  
GND  
Y1  
19  
JP7  
RP2  
22⍀  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
2
3
4
5
6
7
8
9
D5  
D4  
RP2  
22⍀  
R19 R2 R18  
4k5k4k⍀  
Y2  
P1 26  
P1 28  
P1 30  
P1 32  
P1 34  
P1 36  
P1 38  
P1 40  
AVDD  
U7  
Y3  
D3  
RP2  
22⍀  
Y4  
JP17  
B
D2  
3
1
A
Y5  
D1  
2
CLOCK  
S1  
TP7  
C13  
R7  
22⍀  
10  
WHT  
13  
8a  
8b  
0.10F  
DUTCLK  
Y6  
D0  
1
12  
11  
Y7  
2
OTR  
R9  
22⍀  
R1  
49.9⍀  
74VHC04  
74VHC04  
8c  
JP4  
JP3  
Y8  
RP2  
22⍀  
8
7
9
1
2
74VHC04  
AVDD  
8d  
9
8
C3  
10F  
10V  
74VHC04  
8e  
C10  
0.1F  
5
6
RP2  
22⍀  
U8  
10  
74VHC04  
8f  
DECOUPLING  
NC = NO CONNECT  
3
4
74VHC04  
Figure 22. AD9226 Evaluation Board  
–23–  
REV. B  
AD9226  
RP3  
22  
1
2
3
4
8
7
6
5
OTRO  
D130  
D120  
D110  
OTR  
D13  
D12  
D11  
RP3  
22⍀  
JP5  
RP3  
22⍀  
AVDD  
SINGLE  
INPUT  
C9  
0.33F  
R40  
1k⍀  
C7  
0.1F  
RP3  
22⍀  
S3  
1
JP42  
2
R5  
49.9⍀  
R41  
1k⍀  
RP4  
C15  
10F  
10V  
JP40  
JP45  
JP46  
22⍀  
1
2
3
4
8
7
6
5
AVDD  
AVDD  
D100  
D90  
D80  
D70  
D10  
D9  
RP4  
22⍀  
C44  
TBD  
R21  
22⍀  
1
2
R32  
10k⍀  
RP4  
22⍀  
VINA  
C24  
50pF  
VINB  
C69  
0.1F  
R22  
22⍀  
SHEET 1  
D8  
RP4  
22⍀  
C8  
0.1F  
R33  
10k⍀  
R37  
499⍀  
D7  
C43  
JP41  
JP43  
TBD  
3
R34  
523⍀  
VCC  
W  
1
8
4
RP5  
22⍀  
1
2
3
4
8
VO؉  
VDC  
VO–  
2
D60  
D6  
D5  
D4  
AMP INPUT  
R35  
499⍀  
U2  
RP5  
22⍀  
S2  
1
7
6
5
؉W  
VEE  
D50  
D40  
5
2
RP5  
22⍀  
XFMR INPUT  
DUTAVDD  
R31  
49.9⍀  
AD8138  
R36  
499⍀  
S4  
T11T  
6
R38  
1k⍀  
6
5
4
1
2
3
1
RP5  
22⍀  
2
R24  
49.9⍀  
C25  
0.33F  
C16  
0.1F  
R8  
1k⍀  
T2  
RP6  
22⍀  
1
2
3
4
8
7
6
5
D30  
D20  
D10  
D00  
D3  
D2  
D1  
D0  
RP6  
22⍀  
RP6  
22⍀  
RP6  
22⍀  
Figure 23. AD9226 Evaluation Board  
Figure 24. Evaluation Board Component Side Layout (Not to Scale)  
–24–  
REV. B  
AD9226  
Figure 25. Evaluation Board Solder Side Layout (Not to Scale)  
Figure 26. Evaluation Board Power Plane  
–25–  
REV. B  
AD9226  
Figure 27. Evaluation Board Ground Plane  
Figure 28. Evaluation Board Component Side (Not to Scale)  
–26–  
REV. B  
AD9226  
Figure 29. Evaluation Board Solder Side (Not to Scale)  
–27–  
REV. B  
AD9226  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28-Lead Shrink Small Outline  
(RS-28)  
48-Lead Thin Plastic Quad Flatpack  
(ST-48)  
0.407 (10.34)  
0.397 (10.08)  
0.063 (1.60)  
MAX  
0.354 (9.00) BSC SQ  
0.030 (0.75)  
0.018 (0.45)  
37  
48  
36  
1
28  
15  
14  
0.276  
(7.00)  
BSC  
SQ  
TOP VIEW  
(PINS DOWN)  
1
COPLANARITY  
0.003 (0.08)  
12  
25  
0؇  
MIN  
13  
24  
0.011 (0.27)  
0.006 (0.17)  
0.019 (0.5)  
BSC  
0.008 (0.2)  
0.004 (0.09)  
0.07 (1.79)  
0.066 (1.67)  
0.078 (1.98)  
0.068 (1.73)  
PIN 1  
0.057 (1.45)  
0.053 (1.35)  
7؇  
0؇  
0.03 (0.762)  
0.022 (0.558)  
8°  
0°  
0.006 (0.15)  
0.002 (0.05)  
SEATING  
PLANE  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
–28–  
REV. B  

相关型号:

AD9228

Quad, 12-bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9228-65EB

Quad, 12-bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9228-65EB1

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9228-65EBZ

Quad, 12-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9228ABCPZ-40

Quad, 12-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9228ABCPZ-40

4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, 7 X 7 MM, ROHS COMPLIANT, MO-220VKKD-2, LFCSP-48
ROCHESTER

AD9228ABCPZ-65

4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, 7 X 7 MM, ROHS COMPLIANT, MO-220VKKD-2, LFCSP-48
ROCHESTER

AD9228ABCPZ-65

Serial LVDS 1.8 V A/D Converter
ADI

AD9228ABCPZRL7-40

Serial LVDS 1.8 V A/D Converter
ADI

AD9228ABCPZRL7-65

Serial LVDS 1.8 V A/D Converter
ADI

AD9228BCPZ-40

Quad, 12-bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI

AD9228BCPZ-65

Quad, 12-bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
ADI