AD9228_07 [ADI]

Quad, 12-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter; 四通道,12位,六十五分之四十○ MSPS串行LVDS 1.8 VA / D转换器
AD9228_07
型号: AD9228_07
厂家: ADI    ADI
描述:

Quad, 12-Bit, 40/65 MSPS Serial LVDS 1.8 V A/D Converter
四通道,12位,六十五分之四十○ MSPS串行LVDS 1.8 VA / D转换器

转换器
文件: 总52页 (文件大小:2032K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-Bit, 40/65 MSPS  
Serial LVDS 1.8 V A/D Converter  
AD9228  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
PDWN  
DRVDD  
DRGND  
4 ADCs integrated into 1 package  
119 mW ADC power per channel at 65 MSPS  
SNR = 70 dB (to Nyquist)  
AD9228  
12  
VIN + A  
VIN – A  
SERIAL  
LVDS  
D + A  
D – A  
PIPELINE  
ADC  
ENOB = 11.3 bits  
SFDR = 82 dBc (to Nyquist)  
Excellent linearity  
DNL = 0.3 LSB (typical)  
12  
12  
VIN + B  
VIN – B  
PIPELINE  
ADC  
SERIAL  
LVDS  
D + B  
D – B  
VIN + C  
VIN – C  
SERIAL  
LVDS  
D + C  
D – C  
INL = 0.4 LSB (typical)  
PIPELINE  
ADC  
Serial LVDS (ANSI-644, default)  
Low power, reduced signal option (similar to IEEE 1596.3)  
Data and frame clock outputs  
315 MHz full-power analog bandwidth  
2 V p-p input voltage range  
12  
VIN + D  
VIN – D  
SERIAL  
LVDS  
D + D  
D – D  
PIPELINE  
ADC  
VREF  
FCO+  
FCO–  
SENSE  
+
0.5V  
DATA RATE  
MULTIPLIER  
1.8 V supply operation  
Serial port control  
REFT  
REFB  
REF  
SELECT  
SERIAL PORT  
INTERFACE  
DCO+  
DCO–  
Full-chip and individual-channel power-down modes  
Flexible bit orientation  
SCLK/DTP  
RBIASAGND CSB SDIO/ODM  
CLK+ CLK–  
Built-in and custom digital test pattern generation  
Programmable clock and data alignment  
Programmable output resolution  
Standby mode  
Figure 1.  
capturing data on the output and a frame clock output (FCO)  
for signaling a new output byte are provided. Individual-  
channel power-down is supported and typically consumes less  
than 2 mW when all channels are disabled.  
APPLICATIONS  
Medical imaging and nondestructive ultrasound  
Portable ultrasound and digital beam-forming systems  
Quadrature radio receivers  
Diversity radio receivers  
Tape drives  
Optical networking  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom user-  
defined test patterns entered via the serial port interface (SPI).  
Test equipment  
GENERAL DESCRIPTION  
The AD9228 is available in an RoHS compliant, 48-lead LFCSP. It is  
specified over the industrial temperature range of −40°C to +85°C.  
The AD9228 is a quad, 12-bit, 40/65 MSPS analog-to-digital con-  
verter (ADC) with an on-chip sample-and-hold circuit designed  
for low cost, low power, small size, and ease of use. The product  
operates at a conversion rate of up to 65 MSPS and is optimized for  
outstanding dynamic performance and low power in applications  
where a small package size is critical.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Four ADCs are contained in a small, space-  
saving package.  
2. Low power of 119 mW/channel at 65 MSPS.  
3. Ease of Use. A data clock output (DCO) is provided that  
operates at frequencies of up to 390 MHz and supports  
double data rate (DDR) operation.  
4. User Flexibility. The SPI control offers a wide range of flexible  
features to meet specific system requirements.  
5. Pin-Compatible Family. This includes the AD9287 (8-bit),  
AD9219 (10-bit), and AD9259 (14-bit).  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock output (DCO) for  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2006–2007 Analog Devices, Inc. All rights reserved.  
 
AD9228  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagrams.............................................................................. 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Impedance..................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Equivalent Circuits......................................................................... 12  
Typical Performance Characteristics ........................................... 14  
Theory of Operation ...................................................................... 19  
Analog Input Considerations ................................................... 19  
Clock Input Considerations...................................................... 22  
Serial Port Interface (SPI).............................................................. 30  
Hardware Interface..................................................................... 30  
Memory Map .................................................................................. 32  
Reading the Memory Map Table.............................................. 32  
Reserved Locations .................................................................... 32  
Default Values............................................................................. 32  
Logic Levels................................................................................. 32  
Evaluation Board ............................................................................ 36  
Power Supplies............................................................................ 36  
Input Signals................................................................................ 36  
Output Signals ............................................................................ 36  
Default Operation and Jumper Selection Settings................. 37  
Alternative Analog Input Drive Configuration...................... 38  
Outline Dimensions....................................................................... 52  
Ordering Guide .......................................................................... 52  
REVISION HISTORY  
Changes to Digital Outputs and Timing Section....................... 27  
Added Table 10 ............................................................................... 27  
Changes to RBIAS Pin Section ..................................................... 28  
Deleted Figure 62 and Figure 63 .................................................. 27  
Changes to Figure 67...................................................................... 29  
Changes to Hardware Interface Section ...................................... 30  
Added Figure 68 ............................................................................. 31  
Changes to Table 15 ....................................................................... 31  
Changes to Reading the Memory Map Table Section ............... 32  
Change to Input Signals Section................................................... 36  
Changes to Output Signals Section.............................................. 36  
Changes to Figure 71...................................................................... 36  
Changes to Default Operation and  
Jumper Selection Settings Section........................................... 37  
Changes to Alternative Analog Input  
Drive Configuration Section.................................................... 38  
Changes to Figure 74...................................................................... 40  
Changes to Table 17 ....................................................................... 48  
Changes to Ordering Guide.......................................................... 52  
7/07—Rev. A to Rev. B  
Changes to Figure 3.......................................................................... 7  
Change to Table 7 ........................................................................... 10  
5/07—Rev. 0 to Rev. A  
Changes to Features.......................................................................... 1  
Change to Effective Number of Bits (ENOB)............................... 4  
Changes to Logic Output (SDIO/ODM) Section......................... 5  
Added Endnote 3 to Table 3............................................................ 5  
Changes to Pipeline Latency ........................................................... 6  
Added Endnote 2 to Table 4............................................................ 6  
Changes to Figure 2 to Figure 4...................................................... 7  
Changes to Figure 10...................................................................... 12  
Changes to Figure 15, Figure 17 to Figure 19, Figure 37, and  
Figure 39 ..................................................................................... 14  
Changes to Figure 23 to Figure 26 Captions............................... 15  
Change to Figure 35 Caption ........................................................ 17  
Added Figure 46 and Figure 47..................................................... 20  
Changes to Figure 51...................................................................... 21  
Changes to Clock Duty Cycle Considerations Section.............. 22  
Changes to Power Dissipation and Power-Down Mode Section...23  
Changes to Figure 61 to Figure 63 Captions............................... 25  
Changes to Table 9 Endnote.......................................................... 26  
4/06—Revision 0: Initial Version  
Rev. B | Page 2 of 52  
 
AD9228  
SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 1.  
AD9228-40  
Min Typ  
AD9228-65  
Max Min Typ  
Parameter1  
Temperature  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
±1  
±2  
±ꢀ.ꢁ  
±ꢀ.3  
Guaranteed  
±1  
±2  
±±  
±±  
±1.2  
±ꢀ.ꢂ  
±ꢀ.5  
±1  
±±  
mV  
±±  
mV  
±2  
±3.5  
±ꢀ.ꢂ  
% FS  
% FS  
Gain Matching  
±ꢀ.3  
±ꢀ.3  
±ꢀ.ꢁ  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Reference Voltage (1 V Mode)  
REFERENCE  
±ꢀ.25  
±ꢀ.ꢁ  
±ꢀ.ꢃ5 LSB  
±1  
LSB  
Full  
Full  
Full  
±2  
±1ꢂ  
±21  
±2  
±1ꢂ  
±21  
ppm/°C  
ppm/°C  
ppm/°C  
Output Voltage Error (VREF = 1 V)  
Load Regulation at 1.ꢀ mA (VREF = 1 V)  
Input Resistance  
Full  
Full  
Full  
±2  
3
±3ꢀ  
±2  
3
±3ꢀ  
mV  
mV  
kΩ  
ANALOG INPUTS  
Differential Input Voltage (VREF = 1 V)  
Common-Mode Voltage  
Differential Input Capacitance  
Analog Bandwidth, Full Power  
POWER SUPPLY  
Full  
Full  
Full  
Full  
2
2
V p-p  
V
pF  
AVDD/2  
315  
AVDD/2  
315  
MHz  
AVDD  
DRVDD  
IAVDD  
IDRVDD  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.ꢂ  
1.ꢂ  
1.±  
1.±  
155  
31  
335  
2
1.9  
1.9  
1ꢂꢀ  
3ꢁ  
3ꢃꢂ  
5.±  
1.ꢂ  
1.ꢂ  
1.±  
1.±  
232  
3ꢁ  
ꢁꢂ±  
2
1.9  
1.9  
2ꢁ5  
3±  
51ꢀ  
5.±  
V
V
mA  
mA  
mW  
mW  
mW  
dB  
Total Power Dissipation (Including Output Drivers)  
Power-Down Dissipation  
Standby Dissipation2  
CROSSTALK  
ꢂ2  
ꢂ2  
−1ꢀꢀ  
−1ꢀꢀ  
−1ꢀꢀ  
−1ꢀꢀ  
CROSSTALK (Overrange Condition)3  
dB  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Can be controlled via the SPI.  
3 Overrange condition is specific with ꢃ dB of the full-scale input range.  
Rev. B | Page 3 of 52  
 
AD9228  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 2.  
AD9228-40  
Typ  
AD9228-65  
Typ  
Parameter1  
Temperature  
Min  
Max  
Min  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.ꢁ MHz  
fIN = 19.ꢂ MHz  
fIN = 35 MHz  
fIN = ꢂꢀ MHz  
Full  
Full  
Full  
Full  
ꢂꢀ.5  
ꢂꢀ.2  
ꢂꢀ.2  
ꢂꢀ.ꢀ  
ꢂꢀ.2  
ꢂꢀ.ꢀ  
ꢂꢀ.ꢀ  
ꢃ9.5  
dB  
dB  
dB  
dB  
ꢃ±.5  
ꢃ±.5  
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)  
fIN = 2.ꢁ MHz  
fIN = 19.ꢂ MHz  
fIN = 35 MHz  
fIN = ꢂꢀ MHz  
Full  
Full  
Full  
Full  
ꢂꢀ.3  
ꢃ9.±  
ꢃ9.ꢂ  
ꢃ9.5  
ꢂꢀ.ꢀ  
ꢂꢀ.ꢀ  
ꢃ9.±  
ꢃ9.ꢀ  
dB  
dB  
dB  
dB  
ꢃ±.ꢀ  
11.1  
ꢂ2  
ꢃ±.ꢀ  
11.1  
ꢂ3  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.ꢁ MHz  
fIN = 19.ꢂ MHz  
fIN = 35 MHz  
fIN = ꢂꢀ MHz  
Full  
Full  
Full  
Full  
11.ꢁ2  
11.3ꢂ  
11.3ꢂ  
11.33  
11.3ꢂ  
11.33  
11.33  
11.25  
Bits  
Bits  
Bits  
Bits  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.ꢁ MHz  
fIN = 19.ꢂ MHz  
fIN = 35 MHz  
fIN = ꢂꢀ MHz  
Full  
Full  
Full  
Full  
±5  
±2  
±ꢀ  
±ꢀ  
±5  
±5  
±ꢁ  
ꢂꢁ  
dBc  
dBc  
dBc  
dBc  
WORST HARMONIC (Second or Third)  
fIN = 2.ꢁ MHz  
fIN = 19.ꢂ MHz  
fIN = 35 MHz  
fIN = ꢂꢀ MHz  
Full  
Full  
Full  
Full  
−±5  
−±2  
−±ꢀ  
−±ꢀ  
−±5  
−±5  
−±ꢁ  
−ꢂꢁ  
dBc  
dBc  
dBc  
dBc  
−ꢂ2  
−±ꢀ  
−ꢂ3  
−ꢂ9  
WORST OTHER (Excluding Second or Third)  
fIN = 2.ꢁ MHz  
fIN = 19.ꢂ MHz  
fIN = 35 MHz  
fIN = ꢂꢀ MHz  
Full  
Full  
Full  
Full  
−9ꢀ  
−9ꢀ  
−9ꢀ  
−9ꢀ  
−9ꢀ  
−9ꢀ  
−9ꢀ  
−±±  
dBc  
dBc  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD)—  
AIN1 AND AIN2 = −ꢂ.ꢀ dBFS  
fIN1 = 15 MHz, fIN2 = 1ꢃ MHz  
fIN1 = ꢂꢀ MHz, fIN2 = ꢂ1 MHz  
25°C  
25°C  
±ꢀ.±  
ꢂ5.ꢀ  
ꢂꢂ.±  
ꢂꢂ.ꢀ  
dBc  
dBc  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
Rev. B | Page ꢁ of 52  
 
AD9228  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 3.  
AD9228-40  
Typ Max  
AD9228-65  
Typ Max  
Parameter1  
Temperature  
Min  
Min  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
25°C  
25°C  
25ꢀ  
25ꢀ  
mV p-p  
V
kΩ  
pF  
1.2  
2ꢀ  
1.5  
1.2  
2ꢀ  
1.5  
LOGIC INPUTS (PDWN, SCLK/DTP)  
Logic 1 Voltage  
Logic ꢀ Voltage  
Input Resistance  
Input Capacitance  
Full  
Full  
25°C  
25°C  
1.2  
3.ꢃ  
ꢀ.3  
1.2  
1.2  
3.ꢃ  
ꢀ.3  
V
V
kΩ  
pF  
3ꢀ  
ꢀ.5  
3ꢀ  
ꢀ.5  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic ꢀ Voltage  
Full  
Full  
1.2  
3.ꢃ  
ꢀ.3  
3.ꢃ  
ꢀ.3  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
ꢂꢀ  
ꢀ.5  
ꢂꢀ  
ꢀ.5  
kΩ  
pF  
LOGIC INPUT (SDIO/ODM)  
Logic 1 Voltage  
Logic ꢀ Voltage  
Full  
Full  
1.2  
DRVDD + ꢀ.3 1.2  
DRVDD + ꢀ.3  
ꢀ.3  
V
V
ꢀ.3  
Input Resistance  
Input Capacitance  
25°C  
25°C  
3ꢀ  
2
3ꢀ  
2
kΩ  
pF  
LOGIC OUTPUT (SDIO/ODM)3  
Logic 1 Voltage (IOH = ±ꢀꢀ μA)  
Logic ꢀ Voltage (IOL = 5ꢀ μA)  
DIGITAL OUTPUTS (D + x, D − x), (ANSI-ꢃꢁꢁ)  
Logic Compliance  
Full  
Full  
1.ꢂ9  
ꢀ.ꢀ5  
1.ꢂ9  
ꢀ.ꢀ5  
V
V
LVDS  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
2ꢁꢂ  
1.125  
ꢁ5ꢁ  
1.3ꢂ5  
Offset binary  
2ꢁꢂ  
1.125  
ꢁ5ꢁ  
1.3ꢂ5  
Offset binary  
mV  
V
DIGITAL OUTPUTS (D + x, D − x),  
(Low Power, Reduced Signal Option)  
Logic Compliance  
LVDS  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
15ꢀ  
1.1ꢀ  
25ꢀ  
1.3ꢀ  
Offset binary  
15ꢀ  
1.1ꢀ  
25ꢀ  
1.3ꢀ  
Offset binary  
mV  
V
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
3 This is specified for 13 SDIO pins sharing the same connection.  
Rev. B | Page 5 of 52  
 
AD9228  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −0.5 dBFS, unless otherwise noted.  
Table 4.  
AD9228-40  
Typ  
AD9228-65  
Typ  
Parameter1, 2  
CLOCK3  
Temp  
Min  
Max  
Min  
Max  
Unit  
Maximum Clock Rate  
Minimum Clock Rate  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
Full  
Full  
Full  
Full  
ꢁꢀ  
ꢃ5  
MSPS  
MSPS  
ns  
1ꢀ  
1ꢀ  
12.5  
12.5  
ꢂ.ꢂ  
ꢂ.ꢂ  
ns  
OUTPUT PARAMETERS3  
Propagation Delay (tPD)  
Full  
Full  
Full  
Full  
Full  
2.ꢀ  
2.ꢀ  
2.ꢂ  
3.5  
3.5  
2.ꢀ  
2.ꢀ  
2.ꢂ  
3.5  
3.5  
ns  
ps  
ps  
ns  
ns  
Rise Time (tR) (2ꢀ% to ±ꢀ%)  
Fall Time (tF) (2ꢀ% to ±ꢀ%)  
FCO Propagation Delay (tFCO  
3ꢀꢀ  
3ꢀꢀ  
2.ꢂ  
3ꢀꢀ  
3ꢀꢀ  
2.ꢂ  
)
DCO Propagation Delay (tCPD  
)
tFCO  
+
tFCO  
+
(tSAMPLE/2ꢁ)  
(tSAMPLE/2ꢁ)  
Full  
Full  
Full  
(tSAMPLE/2ꢁ) − 3ꢀꢀ (tSAMPLE/2ꢁ) (tSAMPLE/2ꢁ) + 3ꢀꢀ (tSAMPLE/2ꢁ) − 3ꢀꢀ (tSAMPLE/2ꢁ) (tSAMPLE/2ꢁ) + 3ꢀꢀ ps  
(tSAMPLE/2ꢁ) − 3ꢀꢀ (tSAMPLE/2ꢁ) (tSAMPLE/2ꢁ) + 3ꢀꢀ (tSAMPLE/2ꢁ) − 3ꢀꢀ (tSAMPLE/2ꢁ) (tSAMPLE/2ꢁ) + 3ꢀꢀ ps  
DCO to Data Delay (tDATA  
)
DCO to FCO Delay (tFRAME  
Data to Data Skew  
)
±5ꢀ  
±15ꢀ  
±5ꢀ  
±15ꢀ  
ps  
(tDATA-MAX − tDATA-MIN  
)
Wake-Up Time (Standby)  
25°C  
25°C  
Full  
ꢃꢀꢀ  
3ꢂ5  
±
ꢃꢀꢀ  
3ꢂ5  
±
ns  
μs  
Wake-Up Time (Power-Down)  
Pipeline Latency  
CLK  
cycles  
APERTURE  
Aperture Delay (tA)  
25°C  
25°C  
25°C  
5ꢀꢀ  
<1  
1
5ꢀꢀ  
<1  
2
ps  
Aperture Uncertainty (Jitter)  
Out-of-Range Recovery Time  
ps rms  
CLK  
cycles  
1 See the AN-±35 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured on standard FR-ꢁ material.  
3 Can be adjusted via the SPI.  
tSAMPLE/2ꢁ is based on the number of bits divided by 2 because the delays are based on half duty cycles.  
Rev. B | Page ꢃ of 52  
 
AD9228  
TIMING DIAGRAMS  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D – x  
D + x  
MSB  
N – 9  
D10  
N – 9  
D9  
N – 9  
D8  
N – 9  
D7  
N – 9  
D6  
N – 9  
D5  
N – 9  
D4  
N – 9  
D3  
N – 9  
D2  
N – 9  
D1  
N – 9  
D0  
N – 9  
MSB  
N – 8  
D10  
N – 8  
Figure 2. 12-Bit Data Serial Stream, MSB First (Default)  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
D – x  
tPD  
tDATA  
MSB  
N – 9  
D8  
N – 9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D8  
D7  
D6  
D5  
N – 8  
N – 9 N – 9  
N – 9 N – 9 N – 9 N – 9  
N – 9 N – 9 N – 8 N – 8  
N – 8 N – 8  
D + x  
Figure 3. 10-Bit Data Serial Stream, MSB First  
Rev. B | Page ꢂ of 52  
 
 
 
AD9228  
N – 1  
VIN ± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFRAME  
tFCO  
FCO–  
FCO+  
tPD  
tDATA  
D – x  
D + x  
LSB  
N – 9  
D0  
N – 9  
D1  
N – 9  
D2  
N – 9  
D3  
N – 9  
D4  
N – 9  
D5  
N – 9  
D6  
N – 9  
D7  
N – 9  
D8  
N – 9  
D9  
N – 9  
D10  
N – 9  
LSB  
N – 8  
D0  
N – 8  
Figure 4. 12-Bit Data Serial Stream, LSB First  
Rev. B | Page ± of 52  
 
AD9228  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
With  
Respect To  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
Rating  
AGND  
−ꢀ.3 V to +2.ꢀ V  
−ꢀ.3 V to +2.ꢀ V  
−ꢀ.3 V to +ꢀ.3 V  
−2.ꢀ V to +2.ꢀ V  
−ꢀ.3 V to +2.ꢀ V  
DRGND  
DRGND  
DRVDD  
DRGND  
AVDD  
Digital Outputs  
(D + x, D − x, DCO+,  
DCO−, FCO+, FCO−)  
THERMAL IMPEDANCE  
Table 6.  
Air Flow Velocity (m/sec)  
ꢀ.ꢀ  
1.ꢀ  
2.5  
CLK+, CLK−  
VIN + x, VIN − x  
SDIO/ODM  
PDWN, SCLK/DTP, CSB  
REFT, REFB, RBIAS  
VREF, SENSE  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
−ꢀ.3 V to +3.9 V  
−ꢀ.3 V to +2.ꢀ V  
−ꢀ.3 V to +2.ꢀ V  
−ꢀ.3 V to +3.9 V  
−ꢀ.3 V to +2.ꢀ V  
−ꢀ.3 V to +2.ꢀ V  
1
θJA  
2ꢁ  
21  
19  
θJB  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
12.ꢃ  
1.2  
1 θJA for a ꢁ-layer PCB with solid ground plane (simulated). Exposed pad  
soldered to PCB.  
ENVIRONMENTAL  
Operating Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
−ꢁꢀ°C to +±5°C  
15ꢀ°C  
ESD CAUTION  
Lead Temperature  
(Soldering, 1ꢀ sec)  
3ꢀꢀ°C  
Storage Temperature  
Range (Ambient)  
−ꢃ5°C to +15ꢀ°C  
Rev. B | Page 9 of 52  
 
AD9228  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
1
2
AVDD  
AVDD  
VIN – D  
VIN + D  
AVDD  
AVDD  
CLK–  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AVDD  
AVDD  
3
VIN – A  
VIN + A  
AVDD  
EXPOSED PADDLE, PIN 0  
(BOTTOM OF PACKAGE)  
4
5
6
PDWN  
AD9228  
TOP VIEW  
7
CSB  
8
CLK+  
SDIO/ODM  
SCLK/DTP  
AVDD  
9
AVDD  
AVDD  
DRGND  
DRVDD  
10  
11  
12  
DRGND  
DRVDD  
Figure 5. 48-Lead LFCSP Pin Configuration, Top View  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
AGND  
AVDD  
Analog Ground (Exposed Paddle)  
1.± V Analog Supply  
1, 2, 5, ꢃ, 9, 1ꢀ, 2ꢂ, 32,  
35, 3ꢃ, 39, ꢁ5, ꢁꢃ  
11, 2ꢃ  
12, 25  
3
DRGND  
DRVDD  
VIN − D  
VIN + D  
CLK−  
Digital Output Driver Ground  
1.± V Digital Output Driver Supply  
ADC D Analog Input Complement  
ADC D Analog Input True  
Input Clock Complement  
±
CLK+  
Input Clock True  
13  
1ꢁ  
15  
1ꢃ  
1ꢂ  
1±  
19  
2ꢀ  
21  
22  
23  
2ꢁ  
2±  
29  
3ꢀ  
31  
33  
3ꢁ  
D − D  
D + D  
D − C  
D + C  
D − B  
D + B  
D − A  
D + A  
ADC D Digital Output Complement  
ADC D Digital Output True  
ADC C Digital Output Complement  
ADC C Digital Output True  
ADC B Digital Output Complement  
ADC B Digital Output True  
ADC A Digital Output Complement  
ADC A Digital Output True  
Frame Clock Output Complement  
Frame Clock Output True  
Data Clock Output Complement  
Data Clock Output True  
Serial Clock/Digital Test Pattern  
Serial Data IO/Output Driver Mode  
Chip Select Bar  
FCO−  
FCO+  
DCO−  
DCO+  
SCLK/DTP  
SDIO/ODM  
CSB  
PDWN  
VIN + A  
VIN − A  
Power-Down  
ADC A Analog Input True  
ADC A Analog Input Complement  
Rev. B | Page 1ꢀ of 52  
 
AD9228  
Pin No.  
3ꢂ  
3±  
ꢁꢀ  
ꢁ1  
ꢁ2  
ꢁ3  
ꢁꢁ  
ꢁꢂ  
Mnemonic  
VIN − B  
VIN + B  
RBIAS  
SENSE  
VREF  
REFB  
REFT  
VIN + C  
VIN − C  
Description  
ADC B Analog Input Complement  
ADC B Analog Input True  
External resistor sets the internal ADC core bias current  
Reference Mode Selection  
Voltage Reference Input/Output  
Differential Reference (Negative)  
Differential Reference (Positive)  
ADC C Analog Input True  
ꢁ±  
ADC C Analog Input Complement  
Rev. B | Page 11 of 52  
AD9228  
EQUIVALENT CIRCUITS  
DRVDD  
V
V
D–  
D+  
VIN ± x  
V
V
DRGND  
Figure 9. Equivalent Digital Output Circuit  
Figure 6. Equivalent Analog Input Circuit  
10  
CLK+  
10kΩ  
10kΩ  
1.25V  
SCLK/DTP  
1k  
AND  
10Ω  
PDWN  
30kΩ  
CLK–  
Figure 7. Equivalent Clock Input Circuit  
Figure 10. Equivalent SCLK/DTP and PDWN Input Circuit  
100  
RBIAS  
350  
SDIO/ODM  
30kΩ  
Figure 8. Equivalent SDIO/ODM Input Circuit  
Figure 11. Equivalent RBIAS Circuit  
Rev. B | Page 12 of 52  
 
AD9228  
AVDD  
70kΩ  
1kΩ  
CSB  
VREF  
6k  
Figure 14. Equivalent VREF Circuit  
Figure 12. Equivalent CSB Input Circuit  
1k  
SENSE  
Figure 13. Equivalent SENSE Circuit  
Rev. B | Page 13 of 52  
AD9228  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
–40  
–60  
–80  
AIN = –0.5dBFS  
SNR = 70.51dB  
AIN = –0.5dBFS  
SNR = 69.62dB  
ENOB = 11.27 BITS  
SFDR = 72.48dBc  
ENOB = 11.42 BITS  
SFDR = 86.00dBc  
–20  
–40  
–60  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Single-Tone 32k FFT with fIN = 2.4 MHz, fSAMPLE = 40 MSPS  
Figure 18. Single-Tone 32k FFT with fIN = 70 MHz, fSAMPLE = 65 MSPS  
0
0
AIN = –0.5dBFS  
SNR = 68.74dB  
ENOB = 11.12 BITS  
SFDR = 72.99dBc  
AIN = –0.5dBFS  
SNR = 70.38dB  
ENOB = 11.40 BITS  
SFDR = 81.13dBc  
–20  
–40  
–20  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Single-Tone 32k FFT with fIN = 35 MHz, fSAMPLE = 40 MSPS  
Figure 19. Single-Tone 32k FFT with fIN = 120 MHz, fSAMPLE = 65 MSPS  
0
0
AIN = –0.5dBFS  
AIN = –0.5dBFS  
SNR = 70.53dB  
SNR = 67.68dB  
ENOB = 11.42 BITS  
SFDR = 86.04dBc  
ENOB = 10.95 BITS  
SFDR = 62.23dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Single-Tone 32k FFT with fIN = 170 MHz, fSAMPLE = 65 MSPS  
Figure 17. Single-Tone 32k FFT with fIN = 2.3 MHz, fSAMPLE = 65 MSPS  
Rev. B | Page 1ꢁ of 52  
 
AD9228  
84  
82  
80  
78  
76  
74  
72  
70  
68  
0
–20  
AIN = –0.5dBFS  
SNR = 67.58dB  
ENOB = 10.93 BITS  
SFDR = 68.39dBc  
2V p-p, SFDR  
–40  
–60  
–80  
–100  
–120  
2V p-p, SNR  
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
ENCODE (MSPS)  
FREQUENCY (MHz)  
Figure 24. SNR/SFDR vs. Encode, fIN = 35 MHz, fSAMPLE = 40 MSPS  
Figure 21. Single-Tone 32k FFT with fIN = 190 MHz, fSAMPLE = 65 MSPS  
0
90  
85  
AIN = –0.5dBFS  
SNR = 65.56dB  
ENOB = 10.6 BITS  
SFDR = 62.72dBc  
–20  
2V p-p, SFDR  
–40  
–60  
80  
75  
70  
–80  
–100  
–120  
65  
2V p-p, SNR  
60  
10  
0
5
10  
15  
20  
25  
30  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 22. Single-Tone 32k FFT with fIN = 250 MHz, fSAMPLE = 65 MSPS  
Figure 25. SNR/SFDR vs. Encode, fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
90  
84  
2V p-p, SFDR  
82  
85  
2V p-p, SFDR  
80  
78  
76  
74  
72  
80  
75  
70  
2V p-p, SNR  
65  
60  
70  
2V p-p, SNR  
68  
10  
10  
15  
20  
25  
30  
35  
40  
20  
30  
40  
50  
60  
ENCODE (MSPS)  
ENCODE (MSPS)  
Figure 23. SNR/SFDR vs. Encode, fIN = 10.3 MHz, fSAMPLE = 40 MSPS  
Figure 26. SNR/SFDR vs. Encode, fIN = 35 MHz, fSAMPLE = 65 MSPS  
Rev. B | Page 15 of 52  
AD9228  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
fIN = 35MHz  
fSAMPLE = 65MSPS  
fIN = 10.3MHz  
fSAMPLE = 40MSPS  
2V p-p, SFDR  
2V p-p, SFDR  
80dB  
REFERENCE  
2V p-p, SNR  
2V p-p, SNR  
80dB  
REFERENCE  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
ANALOG INPUT LEVEL (dBFS)  
ANALOG INPUT LEVEL (dBFS)  
Figure 30. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, fSAMPLE = 65 MSPS  
Figure 27. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, fSAMPLE = 40 MSPS  
0
100  
AIN1 AND AIN2 = –7dBFS  
SFDR = 80.75dBc  
IMD2 = 85.53dBc  
fIN = 35MHz  
90  
fSAMPLE = 40MSPS  
–20  
IMD3 = 80.83dBc  
80  
2V p-p, SFDR  
70  
–40  
–60  
–80  
60  
50  
80dB  
REFERENCE  
2V p-p, SNR  
40  
30  
20  
10  
0
–100  
–120  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
ANALOG INPUT LEVEL (dBFS)  
FREQUENCY (MHz)  
Figure 28. SNR/SFDR vs. Analog Input Level, fIN = 35 MHz, fSAMPLE = 40 MSPS  
Figure 31. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
fSAMPLE = 40 MSPS  
100  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 74.76dBc  
IMD2 = 81.03dBc  
fIN = 10.3MHz  
90  
fSAMPLE = 65MSPS  
2V p-p, SFDR  
–20  
80  
70  
60  
IMD3 = 75.00dBc  
–40  
–60  
–80  
50  
40  
30  
20  
10  
0
80dB  
REFERENCE  
2V p-p, SNR  
–100  
–120  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
ANALOG INPUT LEVEL (dBFS)  
FREQUENCY (MHz)  
Figure 29. SNR/SFDR vs. Analog Input Level, fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
Figure 32. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz,  
SAMPLE = 40 MSPS  
f
Rev. B | Page 1ꢃ of 52  
AD9228  
0
–20  
–40  
–60  
90  
85  
80  
75  
70  
65  
60  
AIN1 AND AIN2 = –7dBFS  
SFDR = 78.15dBc  
IMD2 = 77.84dBc  
IMD3 = 88.94dBc  
2V p-p, SFDR  
–80  
–100  
–120  
2V p-p, SINAD  
0
5
10  
15  
20  
25  
30  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 33. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
Figure 36. SINAD/SFDR vs. Temperature, fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
f
SAMPLE = 65 MSPS  
1.0  
0.8  
0
–20  
–40  
–60  
AIN1 AND AIN2 = –7dBFS  
SFDR = 76.75dBc  
IMD2 = 77.56dBc  
IMD3 = 77.01dBc  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
FREQUENCY (MHz)  
Figure 34. Two-Tone 32k FFT with fIN1 = 70 MHz and fIN2 = 71 MHz,  
fSAMPLE = 65 MSPS  
Figure 37. INL, fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
90  
0.5  
0.4  
85  
2V p-p, SFDR  
0.3  
80  
0.2  
75  
0.1  
70  
0
2V p-p, SNR  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
65  
60  
55  
50  
1
10  
100  
1000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
FREQUENCY (MHz)  
Figure 35. SNR/SFDR vs. Frequency, fSAMPLE = 65 MSPS  
Figure 38. DNL, fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Rev. B | Page 1ꢂ of 52  
AD9228  
0
–20  
–45.0  
–45.5  
–46.0  
–46.5  
–47.0  
–47.5  
NPR = 60.83dB  
NOTCH = 18.0MHz  
NOTCH WIDTH = 3.0MHz  
–40  
–60  
–80  
–100  
–120  
–48.0  
10  
0
5
10  
15  
20  
25  
30  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 39. CMRR vs. Frequency, fSAMPLE = 65 MSPS  
Figure 41. Noise Power Ratio (NPR), fSAMPLE = 65 MSPS  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
0.26 LSB rms  
–3dB CUTOFF = 315MHz  
–8  
–9  
–10  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
CODE  
Figure 40. Input-Referred Noise Histogram, fSAMPLE = 65 MSPS  
Figure 42. Full-Power Bandwidth vs. Frequency, fSAMPLE = 65 MSPS  
Rev. B | Page 1± of 52  
AD9228  
THEORY OF OPERATION  
The AD9228 architecture consists of a pipelined ADC divided into  
three sections: a 4-bit first stage followed by eight 1.5-bit stages and  
a final 3-bit flash. Each stage provides sufficient overlap to correct  
for flash errors in the preceding stage. The quantized outputs from  
each stage are combined into a final 12-bit result in the digital  
correction logic. The pipelined architecture permits the first stage  
to operate with a new input sample while the remaining stages  
operate with preceding samples. Sampling occurs on the rising  
edge of the clock.  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 43). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
input can help reduce the peak transient current injected from  
the output stage of the driving source. In addition, low-Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
high differential capacitance at the analog inputs and therefore  
achieve the maximum bandwidth of the ADC. Such use of low-  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a shunt capacitor or two  
single-ended capacitors can be placed on the inputs to provide a  
matching passive network. This ultimately creates a low-pass  
filter at the input to limit unwanted broadband noise. See the  
AN-742 Application Note, the AN-827 Application Note, and the  
Analog Dialogue article “Transformer-Coupled Front-End for  
Wideband A/D Converters” (Volume 39, April 2005) for more  
information. In general, the precise values depend on the  
application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction of  
flash errors. The last stage simply consists of a flash ADC.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
The analog inputs of the AD9228 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 44 to Figure 47.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9228 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
H
CPAR  
H
VIN + x  
CSAMPLE  
S
S
S
S
CSAMPLE  
VIN – x  
H
CPAR  
H
Figure 43. Switched-Capacitor Input Circuit  
Rev. B | Page 19 of 52  
 
 
 
AD9228  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBc)  
SFDR (dBc)  
SNR (dB)  
SNR (dB)  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 44. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Figure 46. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 2.4 MHz, fSAMPLE = 40 MSPS  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR (dBc)  
SFDR (dBc)  
SNR (dB)  
SNR (dB)  
0.8  
0.2  
0.4  
0.6  
1.0  
1.2  
1.4  
1.6  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
Figure 45. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 30 MHz, fSAMPLE = 65 MSPS  
Figure 47. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 30 MHz, fSAMPLE = 40 MSPS  
Rev. B | Page 2ꢀ of 52  
 
 
AD9228  
ADT1-1WT  
1:1 Z RATIO  
For best dynamic performance, the source impedances driving  
VIN + x and VIN − x should be matched such that common-  
mode settling errors are symmetrical. These errors are reduced  
by the common-mode rejection of the ADC. An internal  
reference buffer creates the positive and negative reference  
voltages, REFT and REFB, respectively, that define the span of  
the ADC core. The output common-mode of the reference buffer  
is set to midsupply, and the REFT and REFB voltages and span  
are defined as  
C
R
VIN + x  
ADC  
AD9228  
2Vp-p  
49.9  
*C  
R
DIFF  
AVDD  
1kꢀ  
VIN – x  
AGND  
C
*C  
DIFF IS OPTIONAL  
1kꢀ  
0.1μF  
Figure 48. Differential Transformer-Coupled Configuration  
for Baseband Applications  
REFT = 1/2 (AVDD + VREF)  
REFB = 1/2 (AVDD VREF)  
Span = 2 × (REFT REFB) = 2 × VREF  
ADT1-1WT  
2Vp-p  
16nH  
16nH 0.1μF  
1:1 Z RATIO  
33ꢀ  
VIN + x  
65ꢀ  
ADC  
AD9228  
499ꢀ  
16nH  
2.2pF  
1kꢀ  
It can be seen from these equations that the REFT and REFB  
voltages are symmetrical about the midsupply voltage and, by  
definition, the input span is twice the value of the VREF voltage.  
33ꢀ  
VIN – x  
AVDD  
1kꢀ  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9228, the largest input span available is 2 V p-p.  
0.1μF  
1kꢀ  
Figure 49. Differential Transformer-Coupled Configuration  
for IF Applications  
Differential Input Configurations  
Single-Ended Input Configuration  
There are several ways to drive the AD9228 either actively or  
passively; however, optimum performance is achieved by driving  
the analog input differentially. For example, using the AD8332  
differential driver to drive the AD9228 provides excellent perfor-  
mance and a flexible interface to the ADC (see Figure 51) for  
baseband applications. This configuration is commonly used  
for medical ultrasound systems.  
A single-ended input may provide adequate performance in cost-  
sensitive applications. In this configuration, SFDR and distortion  
performance degrade due to the large input common-mode swing.  
If the application requires a single-ended input configuration,  
ensure that the source impedances on each input are well matched  
in order to achieve the best possible performance. A full-scale  
input of 2 V p-p can be applied to the ADCs VIN + x pin while  
the VIN − x pin is terminated. Figure 50 details a typical single-  
ended input configuration.  
For applications where SNR is a key parameter, differential  
transformer coupling is the recommended input configuration  
(see Figure 48 and Figure 49), because the noise performance of  
most amplifiers is not adequate to achieve the true performance  
of the AD9228.  
AVDD  
C
R
VIN + x  
0.1µF  
AVDD  
1k  
25ꢀ  
2V p-p  
49.9ꢀ  
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
ADC  
*C  
DIFF  
AD9228  
1kꢀ  
R
C
VIN – x  
0.1µF  
1kꢀ  
*C  
DIFF IS OPTIONAL  
Figure 50. Single-Ended Input Configuration  
0.1μF  
LOP  
VIP  
AVDD  
10kꢀ  
33ꢀ  
680nH  
68pF  
187ꢀ  
187ꢀ  
VOH  
VOL  
0.1μF 120nH  
INH  
VIN + x  
1V p-p  
AD8332  
10kꢀ  
AVDD  
1kꢀ  
22pF  
+
ADC  
AD9228  
LNA  
VGA  
10kꢀ  
10kꢀ  
33ꢀ  
LMD  
VIN – x  
0.1μF  
680nH  
LPF  
LON  
VIN  
274ꢀ  
18nF  
0.1μF  
Figure 51. Differential Input Configuration Using the AD8332 with Two-Pole, 16 MHz Low-Pass Filter  
Rev. B | Page 21 of 52  
 
 
 
 
AD9228  
CLOCK INPUT CONSIDERATIONS  
in parallel with a 39 kΩ resistor (see Figure 55). Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages of up to 3.3 V and  
therefore offers several selections for the drive logic voltage.  
For optimum performance, the AD9228 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled to the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
and require no additional biasing.  
AD9510/AD9511/  
AD9512/AD9513/  
0.1µF  
AD9514/AD9515  
CLK+  
CLK  
OPTIONAL  
100  
Figure 52 shows a preferred method for clocking the AD9228. The  
low jitter clock source is converted from a single-ended signal  
to a differential signal using an RF transformer. The back-to-  
back Schottky diodes across the secondary transformer limit  
clock excursions into the AD9228 to approximately 0.8 V p-p  
differential. This helps prevent the large voltage swings of the  
clock from feeding through to other portions of the AD9228,  
and it preserves the fast rise and fall times of the signal, which  
are critical to low jitter performance.  
50*  
CMOS DRIVER  
CLK+  
0.1µF  
ADC  
AD9228  
CLK  
0.1µF  
CLK–  
0.1µF  
39kꢀ  
*50RESISTOR IS OPTIONAL  
Figure 55. Single-Ended 1.8 V CMOS Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
50*  
CLK+  
CLK  
OPTIONAL  
®
Mini-Circuits  
100ꢀ  
ADT1-1WT, 1:1Z  
CMOS DRIVER  
CLK  
CLK+  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
XFMR  
ADC  
AD9228  
CLK+  
CLK+  
100  
ADC  
AD9228  
CLK–  
0.1µF  
50ꢀ  
CLK–  
0.1µF  
*50RESISTOR IS OPTIONAL  
SCHOTTKY  
DIODES:  
0.1µF  
HSM2812  
Figure 56. Single-Ended 3.3 V CMOS Sample Clock  
Figure 52. Transformer-Coupled Differential Clock  
Clock Duty Cycle Considerations  
Another option is to ac-couple a differential PECL signal to the  
sample clock input pins as shown in Figure 53. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515 family of clock  
drivers offers excellent jitter performance.  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to the clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9228 contains a duty cycle stabilizer (DCS)  
that retimes the nonsampling edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9228. When the DCS is on, noise and distortion perfor-  
mance are nearly flat for a wide range of duty cycles. However,  
some applications may require the DCS function to be off. If so,  
keep in mind that the dynamic range performance can be affected  
when operated in this mode. See the Memory Map section for  
more details on using this feature.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLK+  
CLK  
CLK+  
ADC  
AD9228  
100  
PECL DRIVER  
0.1µF  
0.1µF  
CLK–  
CLK–  
CLK  
240ꢀ  
240ꢀ  
50*  
50*  
*50RESISTORS ARE OPTIONAL  
Figure 53. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
Jitter in the rising edge of the input is an important concern, and it  
is not reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates of less than  
20 MHz nominal. The loop has a time constant associated with  
it that must be considered in applications where the clock rate  
can change dynamically. This requires a wait time of 1.5 ꢀs to  
5 ꢀs after a dynamic clock frequency increase (or decrease)  
before the DCS loop is relocked to the input signal. During the  
period that the loop is not locked, the DCS loop is bypassed and  
the internal device timing is dependent on the duty cycle of the  
input clock signal. In such applications, it may be appropriate to  
disable the duty cycle stabilizer. In all other applications,  
enabling the DCS circuit is recommended to maximize ac  
performance.  
AD9514/AD9515  
0.1µF  
0.1µF  
CLK+  
CLK–  
CLK  
CLK+  
ADC  
AD9228  
100  
LVDS DRIVER  
CLK  
0.1µF  
0.1µF  
CLK–  
50*  
50*  
*50RESISTORS ARE OPTIONAL  
Figure 54. Differential LVDS Sample Clock  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be driven directly from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
Rev. B | Page 22 of 52  
 
 
 
 
AD9228  
Clock Jitter Considerations  
Power Dissipation and Power-Down Mode  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency (fA)  
due only to aperture jitter (tJ) can be calculated by  
As shown in Figure 58 and Figure 59, the power dissipated by  
the AD9228 is proportional to its sample rate. The digital power  
dissipation does not vary significantly because it is determined  
primarily by the DRVDD supply and bias current of the LVDS  
output drivers.  
SNR Degradation = 20 × log 10(1/2 × π × fA × tJ)  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter. IF undersampling applications  
are particularly sensitive to jitter (see Figure 57).  
180  
160  
140  
120  
100  
80  
360  
340  
320  
300  
280  
260  
240  
220  
200  
180  
AVDD CURRENT  
TOTAL POWER  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9228.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators are  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or another method), it  
should be retimed by the original clock during the last step.  
60  
40  
DRVDD CURRENT  
20  
0
10  
15  
20  
25  
30  
35  
40  
ENCODE (MSPS)  
Refer to the AN-501 Application Note and to the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
Figure 58. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, fSAMPLE = 40 MSPS  
250  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
130  
RMS CLOCK JITTER REQUIREMENT  
AVDD CURRENT  
120  
110  
200  
TOTAL POWER  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
150  
100  
14 BITS  
12 BITS  
10 BITS  
50  
0
DRVDD CURRENT  
0.125 ps  
0.25 ps  
0.5 ps  
1.0 ps  
10  
20  
30  
40  
50  
60  
2.0 ps  
ENCODE (MSPS)  
30  
1
10  
100  
1000  
Figure 59. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
ANALOG INPUT FREQUENCY (MHz)  
Figure 57. Ideal SNR vs. Input Frequency and Jitter  
Rev. B | Page 23 of 52  
 
 
 
AD9228  
By asserting the PDWN pin high, the AD9228 is placed into  
power-down mode. In this state, the ADC typically dissipates  
3 mW. During power-down, the LVDS output drivers are placed  
into a high impedance state. If any of the SPI features are changed  
before the power-down feature is enabled, the chip continues to  
function after PDWN is pulled low without requiring a reset. The  
AD9228 returns to normal operating mode when the PDWN pin  
is pulled low. This pin is both 1.8 V and 3.3 V tolerant.  
placed as close to the receiver as possible. If there is no far-end  
receiver termination or there is poor differential trace routing,  
timing errors may result. To avoid such timing errors, it is  
recommended that the trace length be less than 24 inches and  
that the differential output traces be close together and at equal  
lengths. An example of the FCO and data stream with proper  
trace length and position is shown in Figure 60.  
In power-down mode, low power dissipation is achieved by  
shutting down the reference, reference buffer, PLL, and biasing  
networks. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in the power-down  
mode: shorter cycles result in proportionally shorter wake-up  
times. With the recommended 0.1 ꢀF and 2.2 ꢀF decoupling  
capacitors on REFT and REFB, approximately 1 sec is required  
to fully discharge the reference buffer decoupling capacitors and  
approximately 375 ꢀs is required to restore full operation.  
2.5ns/DIV  
CH1 200mV/DIV = DCO  
CH2 200mV/DIV = DATA  
CH3 500mV/DIV = FCO  
There are several other power-down options available when  
using the SPI. The user can individually power down each  
channel or put the entire device into standby mode. The latter  
option allows the user to keep the internal PLL powered when  
fast wake-up times (~600 ns) are required. See the Memory  
Map section for more details on using these features.  
Figure 60. AD9228-65, LVDS Output Timing Example in ANSI-644 Mode (Default)  
An example of the LVDS output using the ANSI-644 standard  
(default) data eye and a time interval error (TIE) jitter histogram  
with trace lengths less than 24 inches on standard FR-4 material is  
shown in Figure 61. Figure 62 shows an example of trace lengths  
exceeding 24 inches on standard FR-4 material. Notice that the  
TIE jitter histogram reflects the decrease of the data eye opening  
as the edge deviates from the ideal position. It is the users respon-  
sibility to determine if the waveforms meet the timing budget of  
the design when the trace lengths exceed 24 inches. Additional SPI  
options allow the user to further increase the internal termination  
(increasing the current) of all four outputs in order to drive longer  
trace lengths (see Figure 63). Even though this produces sharper  
rise and fall times on the data edges and is less prone to bit errors,  
the power dissipation of the DRVDD supply increases when this  
option is used. In addition, notice in Figure 63 that the histogram  
is improved compared with that shown in Figure 62. See the  
Memory Map section for more details.  
Digital Outputs and Timing  
The AD9228 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This can be changed to a low power,  
reduced signal option (similar to the IEEE 1596.3 standard) via the  
SDIO/ODM pin or SPI. The LVDS standard can further reduce the  
overall power dissipation of the device by approximately 15 mW.  
See the SDIO/ODM Pin section or Table 16 in the Memory Map  
section for more information. The LVDS driver current is derived  
on-chip and sets the output current at each output equal to a  
nominal 3.5 mA. A 100 Ω differential termination resistor placed at  
the LVDS receiver inputs results in a nominal 350 mV swing at  
the receiver.  
The AD9228 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
Rev. B | Page 2ꢁ of 52  
 
 
AD9228  
EYE: ALL BITS  
EYE: ALL BITS  
ULS: 9599/15599  
ULS: 10000/15600  
400  
200  
500  
0
0
–200  
–400  
–500  
–1ns  
–0.5ns  
0ns  
0.5ns  
1ns  
–1ns  
–0.5ns  
0ns  
0.5ns  
1ns  
100  
100  
50  
0
50  
0
–150ps –100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
–100ps  
0ps  
100ps  
Figure 61. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Less than 24 Inches on Standard FR-4, External 100 Ω Far Termination Only  
Figure 63. Data Eye for LVDS Outputs in ANSI-644 Mode with 100 Ω Internal  
Termination on and Trace Lengths Greater than 24 Inches on Standard FR-4,  
External 100 Ω Far Termination Only  
ULS: 9600/15600  
EYE: ALL BITS  
200  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 8.  
To change the output data format to twos complement, see the  
Memory Map section.  
0
Table 8. Digital Output Coding  
(VIN + x) − (VIN − x),  
Code Input Span = 2 V p-p (V)  
Digital Output Offset Binary  
(D11 ... D0)  
ꢁꢀ95  
2ꢀꢁ±  
2ꢀꢁꢂ  
+1.ꢀꢀ  
1111 1111 1111  
1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
ꢀ111 1111 1111  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ  
–200  
100  
ꢀ.ꢀꢀ  
−ꢀ.ꢀꢀꢀꢁ±±  
−1.ꢀꢀ  
–1ns  
–0.5ns  
0ns  
0.5ns  
1ns  
Data from each ADC is serialized and provided on a separate  
channel. The data rate for each serial stream is equal to 12 bits  
times the sample clock rate, with a maximum of 780 Mbps  
(12 bits × 65 MSPS = 780 Mbps). The lowest typical conversion  
rate is 10 MSPS. However, if lower sample rates are required for  
a specific application, the PLL can be set up via the SPI to allow  
encode rates as low as 5 MSPS. See the Memory Map section for  
details on enabling this feature.  
50  
0
–150ps –100ps  
–50ps  
0ps  
50ps  
100ps  
150ps  
Figure 62. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4, External 100 Ω Far Termination Only  
Rev. B | Page 25 of 52  
 
 
 
AD9228  
Two output clocks are provided to assist in capturing data from  
the AD9228. The DCO is used to clock the output data and is  
equal to six times the sample clock (CLK) rate. Data is clocked  
out of the AD9228 and must be captured on the rising and  
falling edges of the DCO that supports double data rate (DDR)  
capturing. The FCO is used to signal the start of a new output  
byte and is equal to the sample clock rate. See the timing  
diagram shown in Figure 2 for more information.  
Table 9. Flexible Output Test Modes  
Output Test Mode  
Bit Sequence  
Subject to Data  
Format Select  
Pattern Name  
Off (default)  
Midscale short  
Digital Output Word 1  
Digital Output Word 2  
ꢀꢀꢀꢀ  
ꢀꢀꢀ1  
N/A  
N/A  
Same  
N/A  
Yes  
1ꢀꢀꢀ ꢀꢀꢀꢀ (±-bit)  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢀ-bit)  
1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (12-bit)  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢁ-bit)  
ꢀꢀ1ꢀ  
ꢀꢀ11  
ꢀ1ꢀꢀ  
+Full-scale short  
−Full-scale short  
Checkerboard  
1111 1111 (±-bit)  
Same  
Same  
Yes  
Yes  
No  
11 1111 1111 (1ꢀ-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (1ꢁ-bit)  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ (±-bit)  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢀ-bit)  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (12-bit)  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢁ-bit)  
1ꢀ1ꢀ 1ꢀ1ꢀ (±-bit)  
ꢀ1ꢀ1 ꢀ1ꢀ1 (±-bit)  
1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ (1ꢀ-bit)  
1ꢀ1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ (12-bit)  
1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ (1ꢁ-bit)  
N/A  
N/A  
ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1 (1ꢀ-bit)  
ꢀ1ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1 (12-bit)  
ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1 ꢀ1ꢀ1 (1ꢁ-bit)  
N/A  
N/A  
ꢀ1ꢀ1  
ꢀ11ꢀ  
ꢀ111  
PN sequence long1  
PN sequence short1  
One-/zero-word toggle  
Yes  
Yes  
No  
1111 1111 (±-bit)  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ (±-bit)  
11 1111 1111 (1ꢀ-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 1111 (1ꢁ-bit)  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢀ-bit)  
ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (12-bit)  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢁ-bit)  
1ꢀꢀꢀ  
1ꢀꢀ1  
User input  
1-/ꢀ-bit toggle  
Register ꢀx19 to Register ꢀx1A  
1ꢀ1ꢀ 1ꢀ1ꢀ (±-bit)  
Register ꢀx1B to Register ꢀx1C  
N/A  
No  
No  
1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ (1ꢀ-bit)  
1ꢀ1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ (12-bit)  
1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ 1ꢀ1ꢀ (1ꢁ-bit)  
1ꢀ1ꢀ  
1ꢀ11  
11ꢀꢀ  
1× sync  
ꢀꢀꢀꢀ 1111 (±-bit)  
N/A  
N/A  
N/A  
No  
No  
No  
ꢀꢀ ꢀꢀꢀ1 1111 (1ꢀ-bit)  
ꢀꢀꢀꢀ ꢀꢀ11 1111 (12-bit)  
ꢀꢀ ꢀꢀꢀꢀ ꢀ111 1111 (1ꢁ-bit)  
One bit high  
Mixed frequency  
1ꢀꢀꢀ ꢀꢀꢀꢀ (±-bit)  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢀ-bit)  
1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (12-bit)  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ (1ꢁ-bit)  
1ꢀ1ꢀ ꢀꢀ11 (±-bit)  
1ꢀ ꢀ11ꢀ ꢀꢀ11 (1ꢀ-bit)  
1ꢀ1ꢀ ꢀꢀ11 ꢀꢀ11 (12-bit)  
1ꢀ 1ꢀꢀꢀ ꢀ11ꢀ ꢀ111 (1ꢁ-bit)  
1 All test mode options except PN sequence short and PN sequence long can support ±- to 1ꢁ-bit word lengths in order to verify data capture to the receiver.  
Rev. B | Page 2ꢃ of 52  
 
AD9228  
Table 10. PN Sequence  
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 90° relative to the  
output data edge.  
Initial  
Value  
First Three Output Samples  
(MSB First)  
Sequence  
PN Sequence Short  
PN Sequence Long  
ꢀxꢀdf  
ꢀxdf9, ꢀx353, ꢀx3ꢀ1  
ꢀx591, ꢀxfdꢂ, ꢀxꢀa3  
ꢀx29b±ꢀa  
Consult the Memory Map section for information on how to  
change these additional digital output timing features through  
the SPI.  
An 8-, 10-, or 14-bit serial stream can also be initiated from the  
SPI. This allows the user to implement and test compatibility to  
lower and higher resolution systems. When changing the  
resolution to an 8- or 10-bit serial stream, the data stream is  
shortened. See Figure 3 for the 10-bit example. However, when  
using the 14-bit option, the data stream stuffs two 0s at the end  
of the 14-bit serial data.  
SDIO/ODM Pin  
The SDIO/ODM pin is for use in applications that do not require  
SPI mode operation. This pin can enable a low power, reduced  
signal option (similar to the IEEE 1596.3 reduced range link  
output standard) if it and the CSB pin are tied to AVDD during  
device power-up. This option should only be used when the  
digital output trace lengths are less than 2 inches from the LVDS  
receiver. When this option is used, the FCO, DCO, and outputs  
function normally, but the LVDS signal swing of all channels is  
reduced from 350 mV p-p to 200 mV p-p, allowing the user to  
further reduce the power on the DRVDD supply.  
When the SPI is used, all of the data outputs can also be  
inverted from their nominal state. This is not to be confused  
with inverting the serial stream to an LSB-first mode. In default  
mode, as shown in Figure 2, the MSB is first in the data output  
serial stream. However, this can be inverted so that the LSB is  
first in the data output serial stream (see Figure 4).  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This is a useful feature when  
validating receiver capture and timing. Refer to Table 9 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various  
ways, depending on the test pattern chosen. Note that some  
patterns do not adhere to the data format select option. In  
addition, custom user-defined test patterns can be assigned in  
the 0x19, 0x1A, 0x1B, and 0x1C register addresses. All test mode  
options except PN sequence short and PN sequence long can  
support 8- to 14-bit word lengths in order to verify data capture  
to the receiver.  
For applications where this pin is not used, it should be tied low.  
In this case, the device pin can be left open, and the 30 kΩ internal  
pull-down resistor pulls this pin low. This pin is only 1.8 V tolerant.  
If applications require this pin to be driven from a 3.3 V logic level,  
insert a 1 kΩ resistor in series with this pin to limit the current.  
Table 11. Output Driver Mode Pin Settings  
Resulting  
Resulting  
Selected ODM ODM Voltage  
Output Standard FCO and DCO  
Normal  
Operation  
1ꢀ kΩ to AGND ANSI-ꢃꢁꢁ  
ANSI-ꢃꢁꢁ  
(default)  
(default)  
ODM  
AVDD  
Low power,  
reduced  
Low power,  
reduced  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A  
signal option  
signal option  
description of the PN sequence and how it is generated can be  
found in Section 5.1 of the ITU-T 0.150 (05/96) standard. The  
only difference is that the starting value must be a specific value  
instead of all 1s (see Table 10 for the initial values).  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.6 of the ITU-T 0.150 (05/96) standard. The  
only differences are that the starting value must be a specific  
value instead of all 1s (see Table 10 for the initial values) and the  
AD9228 inverts the bit stream with relation to the ITU standard.  
Rev. B | Page 2ꢂ of 52  
 
 
AD9228  
SCLK/DTP Pin  
RBIAS Pin  
The SCLK/DTP pin is for use in applications that do not require  
SPI mode operation. This pin can enable a single digital test  
pattern if it and the CSB pin are held high during device power-  
up. When SCLK/DTP is tied to AVDD, the ADC channel  
outputs shift out the following pattern: 1000 0000 0000. The  
FCO and DCO function normally while all channels shift out the  
repeatable test pattern. This pattern allows the user to perform  
timing alignment adjustments among the FCO, DCO, and output  
data. For normal operation, this pin should be tied to AGND  
through a 10 kΩ resistor. This pin is both 1.8 V and 3.3 V tolerant.  
To set the internal core bias current of the ADC, place a resistor  
(nominally equal to 10.0 kΩ) to ground at the RBIAS pin. The  
resistor current is derived on-chip and sets the AVDD current of  
the ADC to a nominal 232 mA at 65 MSPS. Therefore, it is  
imperative that at least a 1% tolerance on this resistor be used to  
achieve consistent performance.  
Voltage Reference  
A stable, accurate 0.5 V voltage reference is built into the  
AD9228. It is gained up internally by a factor of 2, setting VREF  
to 1.0 V, which results in a full-scale differential input span of  
2 V p-p. The VREF is set internally by default; however, the VREF  
pin can be driven externally with a 1.0 V reference to improve  
accuracy.  
Table 12. Digital Test Pattern Pin Settings  
Resulting  
Resulting  
Selected DTP DTP Voltage  
D + x and D − x FCO and DCO  
Normal  
1ꢀ kΩ to AGND Normal  
Normal operation  
Operation  
operation  
When applying the decoupling capacitors to the VREF, REFT,  
and REFB pins, use ceramic low ESR capacitors. These capacitors  
should be close to the ADC pins and on the same layer of the  
PCB as the AD9228. The recommended capacitor values and  
configurations for the AD9228 reference pin are shown in  
Figure 64.  
DTP  
AVDD  
1ꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ Normal operation  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map  
section for information about the options available.  
CSB Pin  
Table 13. Reference Settings  
The CSB pin should be tied to AVDD for applications that do  
not require SPI mode operation. By tying CSB high, all SCLK  
and SDIO information is ignored. This pin is both 1.8 V and  
3.3 V tolerant.  
Resulting  
Differential  
Selected Mode SENSE Voltage Resulting VREF (V) Span (V p-p)  
External  
AVDD  
N/A  
2 × external  
reference  
Reference  
Internal,  
AGND to ꢀ.2 V  
1.ꢀ  
2.ꢀ  
2 V p-p FSR  
Rev. B | Page 2± of 52  
 
 
AD9228  
External Reference Operation  
Internal Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or to improve thermal drift  
characteristics. Figure 67 shows the typical drift characteristics  
of the internal reference in 1 V mode.  
A comparator within the AD9228 detects the potential at the  
SENSE pin and configures the reference. If SENSE is grounded,  
the reference amplifier switch is connected to the internal  
resistor divider (see Figure 64), setting VREF to 1 V.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. The external  
reference is loaded with an equivalent 6 kΩ load. An internal  
reference buffer generates the positive and negative full-scale  
references, REFT and REFB, for the ADC core. Therefore, the  
external reference must be limited to a nominal 1.0 V.  
The REFT and REFB pins establish the input span of the ADC  
core from the reference configuration. The analog input full-  
scale range of the ADC equals twice the voltage of the reference  
pin for either an internal or an external reference configuration.  
If the reference of the AD9228 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 66  
depicts how the internal reference voltage is affected by loading.  
5
0
–5  
VIN + x  
VIN – x  
REFT  
–10  
–15  
–20  
–25  
–30  
0.1µF  
+
ADC  
CORE  
0.1µF  
2.2µF  
REFB  
0.1µF  
VREF  
0.1µF  
1µF  
0.5V  
SELECT  
LOGIC  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SENSE  
CURRENT LOAD (mA)  
Figure 66. VREF Accuracy vs. Load  
0.02  
0
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–0.14  
–0.16  
–0.18  
Figure 64. Internal Reference Configuration  
VIN + x  
VIN – x  
REFT  
0.1µF  
0.1µF  
REFB  
+
ADC  
CORE  
2.2µF  
0.1µF  
VREF  
1µF  
0.1µF  
AVDD  
0.5V  
–40  
–20  
0
20  
40  
60  
80  
SELECT  
LOGIC  
TEMPERATURE (°C)  
SENSE  
Figure 67. Typical VREF Drift  
Figure 65. External Reference Operation  
Rev. B | Page 29 of 52  
 
 
 
AD9228  
SERIAL PORT INTERFACE (SPI)  
The AD9228 serial port interface allows the user to configure the  
converter for specific functions or operations through a structured  
register space provided in the ADC. This may provide the user  
with additional flexibility and customization, depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, as documented  
in the Memory Map section. Detailed operational information  
can be found in the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
In addition to the operation modes, the SPI port configuration  
influences how the AD9228 operates. For applications that do  
not require a control port, the CSB line can be tied and held high.  
This places the remainder of the SPI pins into their secondary  
modes, as defined in the SDIO/ODM Pin and SCLK/DTP Pin  
sections. CSB can also be tied low to enable 2-wire mode. When  
CSB is tied low, SCLK and SDIO are the only pins required for  
communication. Although the device is synchronized during  
power-up, the user should ensure that the serial port remains  
synchronized with the CSB line when using this mode. When  
operating in 2-wire mode, it is recommended to use a 1-, 2-,  
or 3-byte transfer exclusively. Without an active CSB line,  
streaming mode can be entered but not exited.  
There are three pins that define the SPI: SCLK, SDIO, and CSB  
(see Table 14). The SCLK pin is used to synchronize the read  
and write data presented to the ADC. The SDIO pin is a dual-  
purpose pin that allows data to be sent to and read from the  
internal ADC memory map registers. The CSB pin is an active  
low control that enables or disables the read and write cycles.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip and read the contents  
of the on-chip memory. If the instruction is a readback operation,  
performing a readback causes the SDIO pin to change from an  
input to an output at the appropriate point in the serial frame.  
Table 14. Serial Port Pins  
Pin  
Function  
SCLK  
Serial Clock. The serial shift clock input. SCLK is used to  
synchronize serial interface reads and writes.  
Serial Data Input/Output. A dual-purpose pin. The typical  
role for this pin is as an input or output, depending on  
the instruction sent and the relative position in the  
timing frame.  
Data can be sent in MSB- or LSB-first mode. MSB-first mode  
is the default at power-up and can be changed by adjusting the  
configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
SDIO  
CSB  
Chip Select Bar (Active Low). This control gates the read  
and write cycles.  
HARDWARE INTERFACE  
The pins described in Table 14 compose the physical interface  
between the users programming device and the serial port of  
the AD9228. The SCLK and CSB pins function as inputs when  
using the SPI. The SDIO pin is bidirectional, functioning as an  
input during write phases and as an output during readback.  
The falling edge of the CSB in conjunction with the rising edge of  
the SCLK determines the start of the framing sequence. During an  
instruction phase, a 16-bit instruction is transmitted followed by  
one or more data bytes, which is determined by Bit Field W0 and  
Bit Field W1. An example of the serial timing and its definitions  
can be found in Figure 69 and Table 15. During normal operation,  
CSB is used to signal to the device that SPI commands are to be  
received and processed. When CSB is brought low, the device  
processes SCLK and SDIO to obtain instructions. Normally,  
CSB remains low until the communication cycle is complete.  
However, if connected to a slow device, CSB can be brought  
high between bytes, allowing older microcontrollers enough  
time to transfer data into shift registers. CSB can be stalled  
when transferring one, two, or three bytes of data. When W0  
and W1 are set to 11, the device enters streaming mode and  
continues to process data, either reading or writing, until  
CSB is taken high to end the communication cycle. This allows  
complete memory transfers without requiring additional instruc-  
tions. Regardless of the mode, if CSB is taken high in the middle  
of a byte transfer, the SPI state machine is reset and the device  
waits for a new instruction.  
If multiple SDIO pins share a common connection, care should  
be taken to ensure that proper VOH levels are met. Assuming the  
same load for each AD9228, Figure 68 shows the number of  
SDIO pins that can be connected together and the resulting VOH  
level. This interface is flexible enough to be controlled by either  
serial PROMS or PIC mirocontrollers, providing the user with  
an alternative method, other than a full SPI controller, to  
program the ADC (see the AN-812 Application Note).  
Rev. B | Page 3ꢀ of 52  
 
 
AD9228  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.765  
1.760  
1.755  
1.750  
1.745  
1.740  
1.735  
1.730  
1.725  
1.720  
1.715  
If the user chooses not to use the SPI, these dual-function pins  
serve their secondary functions when the CSB is strapped to  
AVDD during device power-up. See the Theory of Operation  
section for details on which pin-strappable functions are  
supported on the SPI pins.  
For users who wish to operate the ADC without using the  
SPI, remove any connections from the CSB, SCLK/DTP, and  
SDIO/ODM pins. By disconnecting these pins from the control  
bus, the ADC can function in its most basic operation. Each  
of these pins has an internal termination that floats to its  
respective level.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
NUMBER OF SDIO PINS CONNECTED TOGETHER  
Figure 68. SDIO Pin Loading  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 69. Serial Timing Details  
Table 15. Serial Timing Definitions  
Parameter  
Timing (Minimum, ns)  
Description  
tDS  
5
2
ꢁꢀ  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHI  
tLO  
tEN_SDIO  
1ꢃ  
1ꢃ  
1ꢀ  
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure ꢃ9)  
tDIS_SDIO  
1ꢀ  
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge (not shown in Figure ꢃ9)  
Rev. B | Page 31 of 52  
 
 
 
AD9228  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Each row in the memory map register table (Table 16) has eight  
address locations. The memory map is divided into three sections:  
the chip configuration register map (Address 0x00 to Address 0x02),  
the device index and transfer register map (Address 0x05 and  
Address 0xFF), and the ADC functions register map (Address 0x08  
to Address 0x22).  
Undefined memory locations should not be written to except  
when writing the default values suggested in this data sheet.  
Addresses that have values marked as 0 should be considered  
reserved and have a 0 written into their registers during power-up.  
DEFAULT VALUES  
When the AD9228 comes out of a reset, critical registers are  
preloaded with default values. These values are indicated in  
Table 16, where an X refers to an undefined feature.  
The leftmost column of the memory map indicates the register  
address number, and the default value is shown in the second  
rightmost column. The (MSB) Bit 7 column is the start of the  
default hexadecimal value given. For example, Address 0x09, the  
clock register, has a default value of 0x01, meaning that Bit 7 = 0,  
Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0, Bit 2 = 0, Bit 1 = 0, and  
Bit 0 = 1, or 0000 0001 in binary. This setting is the default for  
the duty cycle stabilizer in the on condition. By writing a 0 to Bit 6  
of this address followed by a 0x01 in Register 0xFF (transfer bit),  
the duty cycle stabilizer turns off. It is important to follow each  
writing sequence with a transfer bit to update the SPI registers. For  
more information on this and other functions, consult the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
LOGIC LEVELS  
An explanation of various registers follows: “Bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
Rev. B | Page 32 of 52  
 
 
AD9228  
Table 16. Memory Map Register  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
Default Notes/  
Comments  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
ꢀꢀ  
chip_port_config  
LSB first  
1 = on  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
1 = on  
ꢀx1±  
The nibbles  
should be  
ꢀ = off  
(default)  
1 = on  
ꢀ = off  
(default)  
1 = on  
ꢀ = off  
(default)  
ꢀ = off  
(default)  
mirrored so that  
LSB- or MSB-first  
mode is set cor-  
rectly regardless  
of shift mode.  
ꢀ1  
ꢀ2  
chip_id  
±-bit Chip ID Bits [ꢂ:ꢀ]  
(AD922± = ꢀxꢀ2), (default)  
ꢀxꢀ2  
Default is unique  
chip ID, different  
for each device.  
This is a read-  
only register.  
chip_grade  
X
Child ID [ꢃ:ꢁ]  
X
X
X
X
Read  
only  
Child ID used to  
differentiate  
graded devices.  
(identify device variants of Chip ID)  
ꢀꢀꢀ = ꢃ5 MSPS  
ꢀꢀ1 = ꢁꢀ MSPS  
Device Index and Transfer Registers  
ꢀ5  
device_index_A  
X
X
X
Clock  
Channel  
DCO  
1 = on  
ꢀ = off  
Clock  
Channel  
FCO  
1 = on  
ꢀ = off  
Data  
Channel  
D
Data  
Channel  
C
Data  
Channel  
B
Data  
Channel  
A
ꢀxꢀF  
ꢀxꢀꢀ  
Bits are set to  
determine which  
on-chip device  
receives the next  
write command.  
1 = on  
1 = on  
1 = on  
1 = on  
(default) (default) (default) (default)  
(default) (default) ꢀ = off  
ꢀ = off  
ꢀ = off  
ꢀ = off  
FF  
device_update  
X
X
X
X
X
X
SW  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
transfer  
1 = on  
ꢀ = off  
(default)  
ADC Functions  
ꢀ±  
modes  
X
X
X
X
X
X
X
X
X
X
Internal power-down mode  
ꢀꢀꢀ = chip run (default)  
ꢀꢀ1 = full power-down  
ꢀ1ꢀ = standby  
ꢀxꢀꢀ  
ꢀxꢀ1  
Determines  
various generic  
modes of chip  
operation.  
ꢀ11 = reset  
ꢀ9  
clock  
X
X
Duty  
Turns the  
cycle  
internal duty  
cycle stabilizer  
on and off.  
stabilizer  
1 = on  
(default)  
ꢀ = off  
ꢀD  
test_io  
User test mode  
ꢀꢀ = off (default)  
ꢀ1 = on, single alternate 1 = on  
1ꢀ = on, single once  
11 = on, alternate once  
Reset PN Reset  
long gen PN short  
ꢀxꢀꢀ  
When this reg-  
ister is set, the  
test data is placed  
on the output  
pins in place of  
normal data.  
Output test mode—see Table 9 in the  
Digital Outputs and Timing section  
ꢀꢀꢀꢀ = off (default)  
ꢀꢀꢀ1 = midscale short  
ꢀꢀ1ꢀ = +FS short  
gen  
ꢀ = off  
1 = on  
(default) ꢀ = off  
(default)  
ꢀꢀ11 = −FS short  
ꢀ1ꢀꢀ = checkerboard output  
ꢀ1ꢀ1 = PN 23 sequence  
ꢀ11ꢀ = PN 9 sequence  
ꢀ111 = one-/zero-word toggle  
1ꢀꢀꢀ = user input  
1ꢀꢀ1 = 1-/ꢀ-bit toggle  
1ꢀ1ꢀ = 1× sync  
1ꢀ11 = one bit high  
11ꢀꢀ = mixed bit frequency  
(format determined by output_mode)  
Rev. B | Page 33 of 52  
 
AD9228  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
(MSB)  
Bit 7  
(LSB)  
Bit 0  
Default Notes/  
Comments  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
1ꢁ  
output_mode  
X
ꢀ = LVDS  
ANSI-ꢃꢁꢁ  
(default)  
1 = LVDS  
low power  
(IEEE  
X
X
X
Output  
invert  
1 = on  
ꢀ = off  
(default)  
ꢀꢀ = offset binary  
(default)  
ꢀ1 = twos  
ꢀxꢀꢀ  
Configures the  
outputs and the  
format of the  
data.  
complement  
159ꢃ.3  
similar)  
15  
output_adjust  
X
X
Output driver  
termination  
ꢀꢀ = none (default)  
ꢀ1 = 2ꢀꢀ Ω  
1ꢀ = 1ꢀꢀ Ω  
11 = 1ꢀꢀ Ω  
X
X
X
X
ꢀxꢀꢀ  
Determines  
LVDS or other  
output properties.  
Primarily func-  
tions to set the  
LVDS span and  
common-mode  
levels in place of  
an external  
resistor.  
1ꢃ  
output_phase  
X
X
X
X
ꢀꢀ11 = output clock phase adjust  
(ꢀꢀꢀꢀ through 1ꢀ1ꢀ)  
ꢀꢀꢀꢀ = ꢀ° relative to data edge  
ꢀꢀꢀ1 = ꢃꢀ° relative to data edge  
ꢀꢀ1ꢀ = 12ꢀ° relative to data edge  
ꢀꢀ11 = 1±ꢀ° relative to data edge (default)  
ꢀ1ꢀꢀ = 2ꢁꢀ° relative to data edge  
ꢀ1ꢀ1 = 3ꢀꢀ° relative to data edge  
ꢀ11ꢀ = 3ꢃꢀ° relative to data edge  
ꢀ111 = ꢁ2ꢀ° relative to data edge  
1ꢀꢀꢀ = ꢁ±ꢀ° relative to data edge  
1ꢀꢀ1 = 5ꢁꢀ° relative to data edge  
1ꢀ1ꢀ = ꢃꢀꢀ° relative to data edge  
1ꢀ11 to 1111 = ꢃꢃꢀ° relative to data edge  
ꢀxꢀ3  
On devices that  
utilize global  
clock divide,  
determines  
which phase of  
the divider  
output is used to  
supply the  
output clock.  
Internal latching  
is unaffected.  
19  
1A  
1B  
1C  
21  
user_patt1_lsb  
user_patt1_msb  
user_patt2_lsb  
user_patt2_msb  
serial_control  
Bꢂ  
Bꢃ  
B1ꢁ  
Bꢃ  
B5  
B13  
B5  
Bꢁ  
B12  
Bꢁ  
B3  
B2  
B1  
B9  
B1  
B9  
Bꢀ  
B±  
Bꢀ  
B±  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
ꢀxꢀꢀ  
User-defined  
pattern, 1 LSB.  
B15  
Bꢂ  
B11  
B3  
B1ꢀ  
B2  
User-defined  
pattern, 1 MSB.  
User-defined  
pattern, 2 LSB.  
B15  
B1ꢁ  
X
B13  
X
B12  
X
B11  
B1ꢀ  
User-defined  
pattern, 2 MSB.  
LSB first  
1 = on  
ꢀ = off  
<1ꢀ  
MSPS,  
low  
encode  
rate  
ꢀꢀꢀ = 12 bits (default, normal bit  
stream)  
ꢀꢀ1 = ± bits  
ꢀ1ꢀ = 1ꢀ bits  
ꢀ11 = 12 bits  
Serial stream  
control. Default  
causes MSB first  
and the native  
bit stream  
(default)  
mode  
1 = on  
ꢀ = off  
(default)  
1ꢀꢀ = 1ꢁ bits  
(global).  
22  
serial_ch_stat  
X
X
X
X
X
X
Channel  
output  
reset  
Channel  
power-  
down  
ꢀxꢀꢀ  
Used to power  
down individual  
sections of a  
1 = on  
ꢀ = off  
1 = on  
ꢀ = off  
converter (local).  
(default) (default)  
Rev. B | Page 3ꢁ of 52  
AD9228  
Power and Ground Recommendations  
Exposed Paddle Thermal Heat Slug Recommendations  
When connecting power to the AD9228, it is recommended  
that two separate 1.8 V supplies be used: one for analog (AVDD)  
and one for digital (DRVDD). If only one supply is available, it  
should be routed to the AVDD first and then tapped off and  
isolated with a ferrite bead or a filter choke preceded by  
decoupling capacitors for the DRVDD. The user can employ  
several different decoupling capacitors to cover both high and  
low frequencies. These should be located close to the point of  
entry at the PC board level and close to the parts, with minimal  
trace lengths.  
It is required that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9228. An  
exposed continuous copper plane on the PCB should mate to  
the AD9228 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
only guarantees one tie point. See Figure 70 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see the AN-772 Application Note,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP).  
A single PC board ground plane should be sufficient when  
using the AD9228. With proper decoupling and smart parti-  
tioning of the PC boards analog, digital, and clock sections,  
optimum performance can be easily achieved.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 70. Typical PCB Layout  
Rev. B | Page 35 of 52  
 
AD9228  
EVALUATION BOARD  
each section. At least one 1.8 V supply is needed for AVDD_DUT  
and DRVDD_DUT; however, it is recommended that separate  
supplies be used for analog and digital signals and that each  
supply have a current capability of 1 A. To operate the evaluation  
board using the VGA option, a separate 5.0 V analog supply  
(AVDD_5 V) is needed. To operate the evaluation board using  
the SPI and alternate clock options, a separate 3.3 V analog  
supply (AVDD_3.3 V) is needed in addition to the other  
supplies.  
The AD9228 evaluation board provides all of the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially using a  
transformer (default) or an AD8332 driver. The ADC can also be  
driven in a single-ended fashion. Separate power pins are provided  
to isolate the DUT from the drive circuitry of the AD8332. Each  
input configuration can be selected by changing the connection  
of various jumpers (see Figure 73 to Figure 77). Figure 71 shows  
the typical bench characterization setup used to evaluate the ac  
performance of the AD9228. It is critical that the signal sources  
used for the analog input and clock have very low phase noise  
(<1 ps rms jitter) to realize the optimum performance of the  
converter. Proper filtering of the analog input signal to remove  
harmonics and lower the integrated or broadband noise at the  
input is also necessary to achieve the specified noise performance.  
INPUT SIGNALS  
When connecting the clock and analog sources to the evaluation  
board, use clean signal generators with low phase noise, such as  
Rohde & Schwarz SMHU or HP8644B signal generators or the  
equivalent, as well as a 1 m, shielded, RG-58, 50 Ω coaxial cable.  
Enter the desired frequency and amplitude from the ADC speci-  
fications tables. Typically, most Analog Devices evaluation boards  
can accept approximately 2.8 V p-p or 13 dBm sine wave input  
for the clock. When connecting the analog input source, it is  
recommended to use a multipole, narrow-band, band-pass filter  
with 50 Ω terminations. Good choices of such band-pass filters are  
available from TTE, Allen Avionics, and K&L Microwave, Inc.  
The filter should be connected directly to the evaluation board  
if possible.  
See Figure 73 to Figure 81 for the complete schematics and  
layout diagrams demonstrating the routing and grounding  
techniques that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board has a wall-mountable switching power  
supply that provides a 6 V, 2 A maximum output. Connect the  
supply to the rated 100 V ac to 240 V ac wall outlet at 47 Hz to  
63 Hz. The other end of the supply is a 2.1 mm inner diameter  
jack that connects to the PCB at P503. Once on the PC board,  
the 6 V supply is fused and conditioned before connecting to  
three low dropout linear regulators that supply the proper bias  
to each of the various sections on the board.  
OUTPUT SIGNALS  
The default setup uses the Analog Devices, Inc., HSC-ADC-  
FPGA-4/HSC-ADC-FPGA-8 high speed deserialization board  
to deserialize the digital output data and convert it to parallel  
CMOS. These two channels interface directly with the Analog  
Devices standard dual-channel FIFO data capture board (HSC-  
ADC-EVALB-DC). Two of the four channels can then be evaluated  
at the same time. For more information on the channel settings  
and optional settings of these boards, visit www.analog.com/FIFO.  
When operating the evaluation board in a nondefault condition,  
L504 to L507 can be removed to disconnect the switching  
power supply. This enables the user to bias each section of the  
board individually. Use P501 to connect a different supply for  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
6V DC  
2A MAX  
5.0V  
1.8V  
1.8V  
3.3V  
3.3V  
1.5V  
3.3V  
+
+
+
+
+
+
+
SWITCHING  
POWER  
SUPPLY  
PC  
RUNNING  
ADC  
ROHDE & SCHWARZ,  
ANALYZER  
AND SPI  
USER  
HSC-ADC-FPGA-4/  
HSC-ADC-FPGA-8  
HIGH SPEED  
HSC-ADC-EVALB-DC  
FIFO DATA  
SMHU,  
2V p-p SIGNAL  
SYNTHESIZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
CAPTURE  
AD9228  
EVALUATION BOARD  
SOFTWARE  
DESERIALIZATION  
BOARD  
CH A TO CH D  
12-BIT  
BOARD  
2 CH  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMHU,  
12-BIT  
PARALLEL  
CMOS  
SERIAL  
CLK  
LVDS  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
SPI  
Figure 71. Evaluation Board Connection  
Rev. B | Page 3ꢃ of 52  
 
 
AD9228  
A differential LVPECL clock can also be used to clock the  
ADC input using the AD9515 (U202). Populate R225 and  
R227 with 0 Ω resistors and remove R217 and R218 to  
disconnect the default clock path inputs. In addition, populate  
C207 and C208 with a 0.1 μF capacitor and remove C210 and  
C211 to disconnect the default clock path outputs. The  
AD9515 has many pin-strappable options that are set to a  
default mode of operation. Consult the AD9515 data sheet  
for more information about these and other options.  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
The following is a list of the default and optional settings or  
modes allowed on the AD9228 Rev. A evaluation board.  
POWER: Connect the switching power supply that is  
provided with the evaluation kit between a rated 100 V  
ac to 240 V ac wall outlet at 47 Hz to 63 Hz and P503.  
AIN: The evaluation board is set up for a transformer-  
coupled analog input with an optimum 50 Ω impedance  
match of 200 MHz of bandwidth (see Figure 72). For more  
bandwidth response, the differential capacitor across the  
analog inputs can be changed or removed. The common  
mode of the analog inputs is developed from the center tap  
of the transformer or AVDD_DUT/2.  
In addition, an on-board oscillator is available on the OSC201  
and can act as the primary clock source. The setup is quick  
and involves installing R212 with a 0 Ω resistor and setting  
the enable jumper (J205) to the on position. If the user wishes  
to employ a different oscillator, two oscillator footprint options  
are available (OSC201) to check the ADC performance.  
0
PDWN: To enable the power-down feature, short J201 to  
AVDD on the PDWN pin.  
–2  
–3dB CUTOFF = 200MHz  
–4  
–6  
SCLK/DTP: To enable the digital test pattern on the digital  
outputs of the ADC, use J204. If J204 is tied to AVDD during  
device power-up, Test Pattern 1000 0000 0000 is enabled. See  
the SCLK/DTP Pin section for details.  
–8  
–10  
–12  
–14  
–16  
SDIO/ODM: To enable the low power, reduced signal option  
(similar to the IEEE 1595.3 reduced range link LVDS output  
standard), use J203. If J203 is tied to AVDD during device  
power-up, it enables the LVDS outputs in a low power,  
reduced signal option from the default ANSI-644 standard.  
This option changes the signal swing from 350 mV p-p to  
200 mV p-p, reducing the power of the DRVDD supply. See  
the SDIO/ODM Pin section for more details.  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 72. Evaluation Board Full-Power Bandwidth  
VREF: VREF is set to 1.0 V by tying the SENSE pin to  
ground, R237. This causes the ADC to operate in 2.0 V p-p  
full-scale range. A separate external reference option using  
the ADR510 or ADR520 is also included on the evaluation  
board. Populate R231 and R235 and remove C214. Proper use  
of the VREF options is noted in the Voltage Reference  
section.  
CSB: To enable processing of the SPI information on the  
SDIO and SCLK pins, tie J202 low in the always enable  
mode. To ignore the SDIO and SCLK information, tie J202  
to AVDD.  
Non-SPI Mode: For users who wish to operate the DUT  
without using SPI, remove Jumpers J302, J303, and J304.  
This disconnects the CSB, SCLK/DTP, and SDIO/ODM pins  
from the control bus, allowing the DUT to operate in its  
simplest mode. Each of these pins has internal termination  
and will float to its respective level.  
RBIAS: RBIAS has a default setting of 10 kΩ (R201) to  
ground and is used to set the ADC core bias current.  
CLOCK: The default clock input circuitry is derived from a  
simple transformer-coupled circuit using a high bandwidth  
1:1 impedance ratio transformer (T201) that adds a very  
low amount of jitter to the clock path. The clock input is  
50 Ω terminated and ac-coupled to handle single-ended  
sine wave types of inputs. The transformer converts the  
single-ended input to a differential signal that is clipped  
before entering the ADC clock inputs.  
D + x, D − x: If an alternative data capture method to the setup  
shown in Figure 73 is used, optional receiver terminations,  
R206 to R211, can be installed next to the high speed back-  
plane connector.  
Rev. B | Page 3ꢂ of 52  
 
 
AD9228  
ALTERNATIVE ANALOG INPUT DRIVE  
CONFIGURATION  
Populate R101, R114, R127, and R140 with 0 Ω resistors in  
the analog input path.  
The following is a brief description of the alternative analog input  
drive configuration using the AD8332 dual VGA. If this drive  
option is in use, some components may need to be populated, in  
which case all the necessary components are listed in Table 17. For  
more details on the AD8332 dual VGA, including how it works  
and its optional pin settings, consult the AD8332 data sheet.  
Populate R105, R113, R118, R124, R131, R137, R151, and  
R160 with 0 Ω resistors in the analog input path to connect  
the AD8332.  
Populate R152, R153, R154, R155, R156, R157, R158, R159,  
C103, C105, C110, C112, C117, C119, C124, and C126  
with 10 kΩ resistors to provide an input common-mode  
level to the ADC analog inputs.  
To configure the analog input to drive the VGA instead of the  
default transformer option, the following components need to  
be removed and/or changed.  
Remove R305, R306, R313, R314, R405, R406, R412, and  
R424 to configure the AD8332.  
Remove R102, R115, R128, R141, R161, R162, R163, R164,  
T101, T102, T103, and T104 in the default analog input path.  
In this configuration, L301 to L308 and L401 to L408 are  
populated with 0 Ω resistors to allow signal connection and use  
of a filter if additional requirements are necessary.  
Rev. B | Page 3± of 52  
 
AD9228  
AVDD_DUT  
R105  
DNP  
R152  
DNP  
CH_A  
C101  
FB102 R108  
R104  
0  
P102  
DNP  
T101  
0.1µF  
1033ꢀ  
VGA INPUT CONNECTION  
INH1  
1
6
VIN_A  
AIN  
R106  
DNP  
CHANNEL A  
P101  
R101  
DNP  
R161  
2
3
5
4
R109  
1kꢀ  
C103  
C104  
2.2pF  
CM1  
CM1  
499ꢀ  
DNP  
AIN  
R107  
DNP  
R113  
DNP  
FB101  
10ꢀ  
R103  
0ꢀ  
C102  
0.1µF  
R102  
64.9ꢀ  
VIN_A  
CH_A  
CM1  
FB103 R110  
C105  
DNP  
R156  
DNP  
10ꢀ  
33ꢀ  
E101  
AVDD_DUT  
C106  
DNP  
R111  
1kꢀ  
C107  
0.1µF  
R112  
1kꢀ  
AVDD_DUT  
AVDD_DUT  
R118  
DNP  
VGA INPUT CONNECTION  
INH2  
R153  
DNP  
CH_B  
CHANNEL B  
P103  
FB105 R121  
R114  
DNP  
T102  
1033ꢀ  
1
6
AIN  
VIN_B  
FB104  
10ꢀ  
R119  
DNP  
R115  
64.9ꢀ  
C108  
0.1µF  
R162  
2
3
5
4
R123  
1kꢀ  
P104  
DNP  
C110  
C111  
2.2pF  
CM2  
CM2  
499ꢀ  
DNP  
R120  
DNP  
R124  
DNP  
R116  
0ꢀ  
AIN  
C109  
0.1µF  
E102  
VIN_B  
CH_B  
CM2  
R117  
0ꢀ  
FB106 R122  
C112  
DNP  
R157  
DNP  
10ꢀ  
33ꢀ  
AVDD_DUT  
C113  
DNP  
R125  
1kꢀ  
C114  
0.1µF  
R126  
1kꢀ  
AVDD_DUT  
AVDD_DUT  
R131  
DNP  
R154  
DNP  
CH_C  
C115  
FB108 R134  
P106  
DNP  
R130  
0ꢀ  
T103  
0.1µF  
1033ꢀ  
VGA INPUT CONNECTION  
INH3  
1
6
VIN_C  
AIN  
R132  
DNP  
CHANNEL C  
P105  
R127  
DNP  
R163  
2
3
5
4
R135  
1kꢀ  
C117  
C118  
2.2pF  
CM3  
CM3  
499ꢀ  
DNP  
AIN  
R133  
DNP  
R137  
DNP  
FB107  
10ꢀ  
R129  
0ꢀ  
C116  
0.1µF  
R128  
64.9ꢀ  
VIN_C  
CH_C  
CM3  
FB109 R136  
C119  
DNP  
R158  
DNP  
10ꢀ  
33ꢀ  
E103  
AVDD_DUT  
C120  
DNP  
R138  
1kꢀ  
C121  
0.1µF  
R139  
1kꢀ  
AVDD_DUT  
AVDD_DUT  
R151  
DNP  
VGA INPUT CONNECTION  
INH4  
R155  
DNP  
CH_D  
CHANNEL D  
P107  
FB111 R146  
R140  
DNP  
T104  
1033ꢀ  
1
6
AIN  
VIN_D  
FB110  
R144  
DNP  
R141  
64.9ꢀ  
C122  
10ꢀ  
0.1µF  
R164  
499ꢀ  
2
3
5
4
R148  
1kꢀ  
C124  
DNP  
C125  
CM4  
P108  
CM4  
2.2pF  
DNP  
R145  
DNP  
R160  
DNP  
R143  
0ꢀ  
AIN  
C123  
0.1µF  
R142  
VIN_D  
CH_D  
CM4  
0ꢀ  
FB112 R147  
C126  
DNP  
R159  
DNP  
10ꢀ  
33ꢀ  
E104  
AVDD_DUT  
C127  
DNP  
R149  
1kꢀ  
C128  
0.1µF  
R150  
1kꢀ  
AVDD_DUT  
DNP: DO NOT POPULATE  
Figure 73. Evaluation Board Schematic, DUT Analog Inputs  
Rev. B | Page 39 of 52  
 
AD9228  
6
0 - 1 7 2 0 7 5  
AVDD_DUT  
CW  
S 0  
S 1  
S 2  
S 3  
S 4  
S 5  
S 6  
S 7  
S 8  
2 5  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
2
2
2
2
1
2
k 1 0  
3 3  
3 1  
1
2 0 R 5  
3
V –  
D
G N  
V S  
S E R T  
1 0 0 k  
2 0 R 4  
P N D - 1 0 0 k  
2 6 R 7  
9
P N D - 0 k 1 0  
1 0 0 k  
2 0 R 3  
S 9  
8
2 6 R 6  
0
S 1  
3 2  
7
E F V R  
6
– N B V I  
+ N B V I  
B _ N V I  
B _ N V I  
3 7  
3 8  
3 9  
4 0  
O
O
D C  
D C  
+ O D C  
– O D C  
+ O F C  
– O F C  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
D D A V  
U D T D D _ A V  
O
O
A
A
B
B
C
C
F C  
F C  
C H  
C H  
C H  
C H  
C H  
C H  
S A I R B  
S E S E N  
E F V R  
T U _ D S E V S E N  
4 1  
A
D +  
D –  
D +  
D –  
D +  
D –  
D +  
D –  
T U D _ E F V R  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
A
B F R E  
T F R E  
D D A V  
D D A V  
+ N C V I  
B
1
3
B
U D T D D _ A V  
U D T D D _ A V  
C
C
C _ N V I  
C _ N V I  
D
D
C H  
C H  
D
– N C V I  
D
Figure 74. Evaluation Board Schematic, DUT, VREF, Clock Inputs, and Digital Output Interface  
Rev. B | Page ꢁꢀ of 52  
AD9228  
POPULATE L301-L308 WITH 0  
RESISTORS OR DESIGN YOUR  
OWN FILTER.  
R301  
DNP  
R302  
DNP  
EXTERNAL VARIABLE GAIN DRIVE  
VG  
C302  
DNP  
C301  
DNP  
VARIABLE GAIN CIRCUIT  
L301  
0ꢀ  
L302 L303  
L304  
0ꢀ  
(0-1.0V DC)  
VG  
0ꢀ  
0ꢀ  
GND  
CW  
AVDD_5V  
C303  
DNP  
C304  
DNP  
L307  
0ꢀ  
L306  
0ꢀ  
L305  
0ꢀ  
L308  
0ꢀ  
R320  
39kꢀ  
R319  
10kꢀ  
R303  
DNP  
R304  
DNP  
C305  
0.1µF  
C306 C307  
0.1µF 0.1µF  
C308  
0.1µF  
R306  
374ꢀ  
R305  
R311  
C309  
374ꢀ  
10kꢀ  
1000pF  
C310  
0.1µF  
DNP  
R307  
187ꢀ  
R308  
187ꢀ  
R309  
187ꢀ  
R310  
187ꢀ  
R312  
10kꢀ  
U301  
25  
R313  
10kꢀ  
DNP  
R314  
ENBV  
ENBL  
HILO  
VCM1  
VIN1  
VIP1  
COM1  
LOP1  
RCLMP  
16  
26  
27  
28  
29  
30  
31  
32  
10kꢀ  
VG  
GAIN  
MODE  
VCM2  
VIN2  
VIP2  
COM2  
LOP2  
15  
14  
13  
12  
11  
10  
9
DNP  
AD8332  
C311  
0.1µF  
C313  
0.1µF  
C312  
0.1µF  
C314  
0.1µF  
R316  
C320  
0.1µF  
R317  
274ꢀ  
C321  
0.1µF  
274ꢀ  
R315 C315  
10k10µF  
C316  
0.1µF  
C325  
0.1µF  
C326  
10µF  
R318  
10kꢀ  
C317  
0.018µF  
C322  
0.018µF  
C318  
22pF  
C323  
22pF  
L309  
120nH  
L310  
120nH  
C319  
0.1µF  
C324  
0.1µF  
DNP: DO NOT POPULATE  
INH4  
INH3  
Figure 75. Evaluation Board Schematic, Optional DUT Analog Input Drive and SPI Interface Circuit  
Rev. B | Page ꢁ1 of 52  
AD9228  
C _ H A D S O  
0  
7
R 4 2  
C _ H A D S I  
0  
0  
0
8
R 4 2  
R 4 2  
A H C _ K L S C  
C H A B 1 _ C S  
0  
6
R 4 2  
J401  
PICVCC  
1
2
PICVCC  
GP1  
GP0  
3
5
4
6
GP1  
GP0  
MCLR/GP3  
7
9
8
10  
MCLR/GP3  
k 7 5 4 .  
R 4 1 8  
OPTIONAL  
PIC PROGRAMMING HEADER  
V
7 ± 5 m = = H N I P O L H I  
V 0 . 5 V 5 - 2 .  
V 0 . 1 -  
2
0
P E O = S L N I A  
P E O = S N L I A  
V I E T A G E G N  
V I E T G S I P O  
V m 0 5 ± = O L N I P = O L H I  
N
P M P A I L C R  
_ 5 V D D A V  
N
E D P I M O  
. R I L F T E O W N  
R U Y O N G E S D I R O S R O S T E S R I  
0 T H W 8 I 0 L - 4 1 0 4 L T E L A U O P P  
A _ C H  
F 8 µ 0 1 0 .  
R 4 1  
2 7 4  
0
C 4 2  
6
2 N L O  
M M C O  
2 H V O  
2 L V O  
8
1 7  
1 8  
1 9  
V P S 2  
7
_ 5 V D D A V  
N I H 2  
6
A _ C H  
B _ C H  
N C  
2 0  
2 D L M  
5
4
1 D L M  
V P S V  
1 L V O  
V
D V D A _ 5  
2 1  
2 2  
N I H 1  
V P S 1  
1 N L O  
1 H V O  
M M C O  
3
2
1
2 3  
2 4  
_ 5 V D D A V  
B _ C H  
)
E R W E L P B O S I A D V 1 = – ( 0  
N A E B N L W R E D W O O P  
E
_ 5 V D D A V  
0 V 1 . 0 - = E N G N A R I A G O L  
0 V 5 - . V 5 2 . 2 = E  
R N I A A N G G H I  
N I P O L H I  
B L N E  
D C H A A N L A N A N N E R O C H F T  
R C U C E I I V  
A G D R V I N A O I L T P O  
Figure 76. Evaluation Board Schematic, Optional DUT Analog Input Drive and SPI Interface Circuit (Continued)  
Rev. B | Page ꢁ2 of 52  
AD9228  
9
0 1 2 7 5 - 0 7  
D
G N  
D
G N  
1
1
D
G N  
D
G N  
1
1
Figure 77. Evaluation Board Schematic, Power Supply Inputs  
Rev. B | Page ꢁ3 of 52  
 
AD9228  
Figure 78. Evaluation Board Layout, Primary Side  
Rev. B | Page ꢁꢁ of 52  
AD9228  
Figure 79. Evaluation Board Layout, Ground Plane  
Rev. B | Page ꢁ5 of 52  
AD9228  
Figure 80. Evaluation Board Layout, Power Plane  
Rev. B | Page ꢁꢃ of 52  
AD9228  
Figure 81. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. B | Page ꢁꢂ of 52  
 
AD9228  
Table 17. Evaluation Board Bill of Materials (BOM)1  
Manufacturers  
Manufacturer Part Number  
Item  
Qty.  
1
ꢂ5  
Reference Designator  
Device  
PCB  
Capacitor  
Package  
PCB  
ꢁꢀ2  
Value  
1
2
AD922±LFCSP_REVA  
PCB  
ꢀ.1 μF, ceramic,  
C1ꢀ1, C1ꢀ2, C1ꢀꢂ,  
C1ꢀ±, C1ꢀ9, C11ꢁ,  
C115, C11ꢃ, C121,  
C122, C123, C12±,  
C2ꢀ1, C2ꢀ3, C2ꢀꢁ,  
C2ꢀ5, C2ꢀꢃ, C21ꢀ,  
C211, C212, C213,  
C21ꢃ, C21ꢂ, C21±,  
C219, C22ꢀ, C221,  
C222, C223, C22ꢁ,  
C31ꢀ, C311, C312,  
C313, C31ꢁ, C31ꢃ,  
C319, C32ꢀ, C321,  
C32ꢁ, C325, Cꢁꢀ9,  
Cꢁ1ꢀ, Cꢁ12, Cꢁ1ꢁ,  
Cꢁ1ꢃ, Cꢁ1ꢂ, Cꢁ19,  
Cꢁ22, Cꢁ23, Cꢁ2ꢁ,  
Cꢁ25, Cꢁ2ꢂ, Cꢁ2±,  
Cꢁ29, C5ꢀ3, C5ꢀ5,  
C5ꢀꢂ, C5ꢀ9, C51ꢃ,  
C51ꢂ, C51±, C519,  
C52ꢀ, C521, C522,  
C523, C52ꢁ, C525,  
C52ꢃ, C52ꢂ, C52±,  
C529, C53ꢀ, C531  
Murata  
GRM155Rꢂ1C1ꢀꢁKA±±D  
X5R, 1ꢀ V, 1ꢀ% tol  
3
C1ꢀꢁ, C111, C11±,  
C125  
Capacitor  
ꢁꢀ2  
2.2 pF, ceramic,  
COG, ꢀ.25 pF tol,  
5ꢀ V  
Murata  
GRM1555C1H2R2GZꢀ1B  
1
2
1
9
C315, C32ꢃ, Cꢁ13,  
Cꢁ2ꢃ  
C2ꢀ2  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
±ꢀ5  
ꢃꢀ3  
ꢁꢀ2  
ꢁꢀ2  
ꢁꢀ2  
12ꢀꢃ  
ꢃꢀ3  
1ꢀ μF, .3 V ±1ꢀ%  
ceramic, X5R  
2.2 μF, ceramic,  
X5R, ꢃ.3 V, 1ꢀ% tol  
1ꢀꢀꢀ pF, ceramic,  
XꢂR, 25 V, 1ꢀ% tol  
ꢀ.ꢀ1± μF, ceramic,  
XꢂR, 1ꢃ V, 1ꢀ% tol  
22 pF, ceramic,  
NPO, 5% tol, 5ꢀ V  
1ꢀ μF, tantalum,  
1ꢃ V, 2ꢀ% tol  
Murata  
Murata  
Murata  
AVX  
GRM219RꢃꢀJ1ꢀꢃKE19D  
GRM1±±CꢂꢀJ225KE2ꢀD  
GRM155Rꢂ1H1ꢀ2KAꢀ1D  
ꢀꢁꢀ2YC1±3KAT2A  
5
C3ꢀ9, Cꢁ11  
C31ꢂ, C322, Cꢁ15,  
Cꢁ2ꢀ  
C31±, C323, Cꢁ1±,  
Cꢁ21  
±
Murata  
Rohm  
GRM1555C1H22ꢀJZꢀ1D  
TCA1C1ꢀꢃM±R  
9
C5ꢀ1  
1ꢀ  
C21ꢁ, C512, C513,  
C51ꢁ, C515, C532,  
C533, C53ꢁ, C535  
1 μF, ceramic, X5R, Murata  
ꢃ.3 V, 1ꢀ% tol  
GRM1±±Rꢃ1C1ꢀ5KA93D  
11  
±
C3ꢀ5, C3ꢀꢃ, C3ꢀꢂ,  
C3ꢀ±, Cꢁꢀ5, Cꢁꢀꢃ,  
Cꢁꢀꢂ, Cꢁꢀ±  
C5ꢀ2, C5ꢀꢁ, C5ꢀꢃ,  
C5ꢀ±  
Capacitor  
±ꢀ5  
ꢀ.1 μF, ceramic,  
XꢂR, 5ꢀ V, 1ꢀ% tol  
Murata  
Murata  
GRM21BRꢂ1H1ꢀꢁKAꢀ1L  
12  
13  
1ꢁ  
15  
1ꢃ  
1
2
1
1
Capacitor  
Diode  
LED  
ꢃꢀ3  
1ꢀ μF, ceramic,  
X5R, ꢃ.3 V, 2ꢀ% tol  
3ꢀ V, 2ꢀ mA, dual  
Schottky  
Green, ꢁ V, 5 m  
candela  
GRM1±±RꢃꢀJ1ꢀꢃM  
HSMS2±12-TRIG  
LNJ31ꢁG±TRA  
SK33-TP  
CR2ꢀ1  
SOT-23  
ꢃꢀ3  
Agilent  
Technologies  
Panasonic  
CRꢁꢀ1, CR5ꢀ1  
D5ꢀ2  
Diode  
Diode  
DO-21ꢁAB 3 A, 3ꢀ V, SMC  
DO-21ꢁAA 2 A, 5ꢀ V, SMC  
Micro  
Commercial Co.  
Micro  
D5ꢀ1  
S2A-TP  
Commercial Co.  
Rev. B | Page ꢁ± of 52  
 
AD9228  
Manufacturers  
Manufacturer Part Number  
Item  
Qty.  
Reference Designator  
Device  
Package  
Value  
1ꢂ  
1
F5ꢀ1  
Fuse  
121ꢀ  
ꢃ.ꢀ V, 2.2 A trip-  
current resettable  
fuse  
Tyco/Raychem NANOSMDC11ꢀF-2  
1±  
19  
1
FER5ꢀ1  
Choke coil  
2ꢀ2ꢀ  
ꢃꢀ3  
1ꢀ μH, 5 A, 5ꢀ V,  
19ꢀ Ω @ 1ꢀꢀ MHz  
1ꢀ Ω, test freq  
1ꢀꢀ MHz, 25% tol,  
5ꢀꢀ mA  
Murata  
Murata  
DLW5BSN191SQ2L  
BLM1±BA1ꢀꢀSN1B  
12  
FB1ꢀ1, FB1ꢀ2, FB1ꢀ3,  
FB1ꢀꢁ, FB1ꢀ5, FB1ꢀꢃ,  
FB1ꢀꢂ, FB1ꢀ±, FB1ꢀ9,  
FB11ꢀ, FB111, FB112  
Ferrite bead  
2ꢀ  
21  
22  
1
2
1
JP3ꢀ1  
Connector  
Connector  
Connector  
2-pin  
3-pin  
12-pin  
1ꢀꢀ mil header  
jumper, 2-pin  
1ꢀꢀ mil header  
jumper, 3-pin  
1ꢀꢀ mil header  
male, ꢁ × 3 triple  
row straight  
Samtec  
Samtec  
Samtec  
TSW-1ꢀ2-ꢀꢂ-G-S  
TSW-1ꢀ3-ꢀꢂ-G-S  
TSW-1ꢀꢁ-ꢀ±-G-T  
J2ꢀ5, Jꢁꢀ2  
J2ꢀ1 to J2ꢀꢁ  
23  
2ꢁ  
25  
2ꢃ  
1
Jꢁꢀ1  
Connector  
1ꢀ-pin  
121ꢀ  
ꢁꢀ2  
1ꢀꢀ mil header,  
male, 2 × 5 double  
row straight  
1ꢀ μH, bead core  
3.2 × 2.5 × 1.ꢃ  
SMD, 2 A  
12ꢀ nH, test freq  
1ꢀꢀ MHz, 5% tol,  
15ꢀ mA  
Samtec  
Murata  
Murata  
TSW-1ꢀ5-ꢀ±-G-D  
BLM31PG5ꢀꢀSN1L  
LQG15HNR12Jꢀ2B  
NRC1ꢀZOTRF  
±
L5ꢀ1, L5ꢀ2, L5ꢀ3, L5ꢀꢁ, Ferrite bead  
L5ꢀ5, L5ꢀꢃ, L5ꢀꢂ, L5ꢀ±  
L3ꢀ9, L31ꢀ, Lꢁꢀ9, Lꢁ1ꢀ Inductor  
1ꢃ  
L3ꢀ1, L3ꢀ2, L3ꢀ3, L3ꢀꢁ, Resistor  
L3ꢀ5, L3ꢀꢃ, L3ꢀꢂ, L3ꢀ±,  
±ꢀ5  
ꢀ Ω, 1/± W, 5% tol  
NIC  
Components  
Lꢁꢀ1, Lꢁꢀ2, Lꢁꢀ3, Lꢁꢀꢁ,  
Lꢁꢀ5, Lꢁꢀꢃ, Lꢁꢀꢂ, Lꢁꢀ±  
2ꢂ  
2±  
1
5
OSC2ꢀ1  
Oscillator  
SMT  
SMA  
Clock oscillator,  
ꢃ5.ꢀꢀ MHz, 3.3 V  
Side-mount SMA  
for ꢀ.ꢀꢃ3" board  
thickness  
Valpey Fisher  
VFAC3H-L-ꢃ5MHz  
1ꢁ2-ꢀꢂ1ꢀ-±51  
P1ꢀ1, P1ꢀ3, P1ꢀ5,  
P1ꢀꢂ, P2ꢀ1  
Connector  
Johnson  
Components  
29  
1
P2ꢀ2  
Connector  
Header  
1ꢁꢃ91ꢃ9-1, right  
angle 2-pair,  
25 mm, header  
assembly  
Tyco  
ꢃꢁꢃ91ꢃ9-1  
3ꢀ  
31  
1
P5ꢀ3  
Connector  
Resistor  
ꢀ.1", PCMT SC1153, power  
supply connector  
Switchcraft  
RAPCꢂ22X  
15  
R2ꢀ1, R2ꢀ5, R21ꢁ,  
R215, R221, R239,  
R312, R315, R31±,  
Rꢁ11, Rꢁ1ꢁ, Rꢁ1ꢂ,  
Rꢁ25, Rꢁ29, Rꢁ3ꢀ  
ꢁꢀ2  
1ꢀ kΩ, 1/1ꢃ W,  
5% tol  
NIC  
Components  
NRCꢀꢁJ1ꢀ3TRF  
32  
1ꢁ  
R1ꢀ3, R11ꢂ, R129,  
R1ꢁ2, R21ꢃ, R21ꢂ,  
R21±, R223, R22ꢁ,  
R23ꢂ, Rꢁ2ꢀ, Rꢁ2ꢃ,  
Rꢁ2ꢂ, Rꢁ2±  
Resistor  
ꢁꢀ2  
ꢀ Ω, 1/1ꢃ W,  
5% tol  
NIC  
Components  
NRCꢀꢁZꢀTRF  
33  
3ꢁ  
R1ꢀ2, R115, R12±,  
R1ꢁ1  
R1ꢀꢁ, R11ꢃ, R13ꢀ,  
R1ꢁ3  
Resistor  
Resistor  
ꢁꢀ2  
ꢃꢀ3  
ꢃꢁ.9 Ω, 1/1ꢃ W,  
1% tol  
ꢀ Ω, 1/1ꢀ W,  
5% tol  
NIC  
Components  
NIC  
Components  
NRCꢀꢁFꢃꢁR9TRF  
NRCꢀꢃZꢀTRF  
Rev. B | Page ꢁ9 of 52  
AD9228  
Manufacturers  
Manufacturer Part Number  
Item  
Qty.  
Reference Designator  
Device  
Package  
Value  
35  
15  
R1ꢀ9, R111, R112,  
R123, R125, R12ꢃ,  
R135, R13±, R139,  
R1ꢁ±, R1ꢁ9, R15ꢀ,  
Rꢁ31, Rꢁ32, Rꢁ33  
Resistor  
ꢁꢀ2  
1 kΩ, 1/1ꢃ W,  
1% tol  
NIC  
Components  
NRCꢀꢁF1ꢀꢀ1TRF  
3ꢃ  
±
R1ꢀ±, R11ꢀ, R121,  
R122, R13ꢁ, R13ꢃ,  
R1ꢁꢃ, R1ꢁꢂ  
Resistor  
ꢁꢀ2  
33 Ω, 1/1ꢃ W, 5%  
tol  
NIC  
Components  
NRCꢀꢁJ33ꢀTRF  
3ꢂ  
3±  
39  
ꢁꢀ  
ꢁ1  
ꢁ2  
3
1
1
1
2
R1ꢃ1, R1ꢃ2, R1ꢃ3,  
R1ꢃꢁ  
R2ꢀ2, R2ꢀ3, R2ꢀꢁ  
Resistor  
ꢁꢀ2  
ꢁ99 Ω, 1/1ꢃ W,  
1% tol  
1ꢀꢀ kΩ, 1/1ꢃ W,  
1% tol  
ꢁ.12 kΩ, 1/1ꢃ W,  
1% tol  
ꢁ9.9 Ω, 1/1ꢃ W,  
ꢀ.5% tol  
ꢁ.99 kΩ, 1/1ꢃ W,  
5% tol  
1ꢀ kΩ, cermet  
trimmer  
NIC  
Components  
NIC  
Components  
NIC  
Components  
Susumu  
NRCꢀꢁFꢁ99ꢀTRF  
NRCꢀꢁF1ꢀꢀ3TRF  
NRCꢀꢁFꢁ121TRF  
RRꢀ51ꢀR-ꢁ9R9-D  
NRCꢀꢁFꢁ991TRF  
CT9ꢁEW1ꢀ3  
Resistor  
ꢁꢀ2  
R222  
Resistor  
ꢁꢀ2  
R213  
Resistor  
ꢁꢀ2  
R229  
Resistor  
ꢁꢀ2  
NIC  
Components  
BC  
R23ꢀ, R319  
Potentiometer  
3-lead  
Components  
potentiometer,  
1±-turn top adjust,  
1ꢀ%, 1/2 W  
ꢁ3  
ꢁꢁ  
ꢁ5  
1
1
±
R22±  
R32ꢀ  
Resistor  
Resistor  
Resistor  
ꢁꢀ2  
ꢁꢀ2  
ꢁꢀ2  
ꢁꢂꢀ kΩ, 1/1ꢃ W,  
5% tol  
39 kΩ, 1/1ꢃ W,  
5% tol  
1±ꢂ Ω, 1/1ꢃ W,  
1% tol  
NIC  
Components  
NIC  
Components  
NIC  
Components  
NRCꢀꢁJꢁꢂꢁTRF  
NRCꢀꢁJ393TRF  
NRCꢀꢁF1±ꢂꢀTRF  
R3ꢀꢂ, R3ꢀ±, R3ꢀ9,  
R31ꢀ, Rꢁꢀꢂ, Rꢁꢀ±,  
Rꢁꢀ9, Rꢁ1ꢀ  
ꢁꢃ  
ꢁꢂ  
ꢁ±  
R3ꢀ5, R3ꢀꢃ, Rꢁꢀ5,  
Rꢁꢀꢃ  
R31ꢃ, R31ꢂ, Rꢁ15,  
Rꢁ1ꢃ  
R2ꢁ5, R2ꢁꢂ, R2ꢁ9,  
R251, R253, R255,  
R25ꢂ, R259, R2ꢃ1,  
R2ꢃ3, R2ꢃ5  
Resistor  
Resistor  
Resistor  
ꢁꢀ2  
ꢁꢀ2  
2ꢀ1  
3ꢂꢁ Ω, 1/1ꢃ W,  
1% tol  
2ꢂꢁ Ω, 1/1ꢃ W,  
1% tol  
NIC  
Components  
NIC  
Components  
NRCꢀꢁF3ꢂꢁꢀTRF  
NRCꢀꢁF2ꢂꢁꢀTRF  
ERJ-1GEꢀRꢀꢀC  
11  
ꢀ Ω, 1/2ꢀ W, 5% tol  
Panasonic  
ꢁ9  
5ꢀ  
51  
52  
53  
5ꢁ  
55  
1
1
1
2
2
1
5
Rꢁ1±  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Switch  
ꢁꢀ2  
ꢁ.ꢂ5 kΩ, 1/1ꢃ W,  
1% tol  
2ꢃ1 Ω, 1/1ꢃ W,  
1% tol  
2ꢃ1 Ω, 1/1ꢃ W,  
1% tol  
2ꢁ3 Ω, 1/1ꢃ W,  
1% tol  
1ꢀꢀ Ω, 1/1ꢃ W,  
1% tol  
Light touch,  
1ꢀꢀGE, 5 mm  
ADT1-1WT, 1:1  
impedance ratio  
transformer  
NIC  
Components  
NIC  
Components  
NIC  
Components  
NIC  
Components  
NRCꢀꢁJꢁꢂ2TRF  
NRCꢀꢁF2ꢃ1ꢀTRF  
NRCꢀꢃF2ꢃ1ꢀTRF  
NRCꢀꢁF2ꢁ3ꢀTRF  
NRCꢀꢁF1ꢀꢀꢀTRF  
EVQ-PLDA15  
Rꢁ19  
ꢁꢀ2  
R5ꢀ1  
ꢃꢀ3  
R2ꢁꢀ, R2ꢁ1  
R2ꢁ2, R2ꢁ3  
Sꢁꢀ1  
ꢁꢀ2  
ꢁꢀ2  
NIC  
Components  
Panasonic  
SMD  
CD5ꢁ2  
T1ꢀ1, T1ꢀ2, T1ꢀ3, T1ꢀꢁ, Transformer  
T2ꢀ1  
Mini-Circuits  
ADT1-1WT+  
5ꢃ  
2
U5ꢀ1, U5ꢀ3  
IC  
SOT-223  
ADP33339AKC-1.±, Analog Devices ADP33339AKCZ-1.±  
1.5 A, 1.± V LDO  
regulator  
Rev. B | Page 5ꢀ of 52  
AD9228  
Manufacturers  
Manufacturer Part Number  
Item  
Qty.  
Reference Designator  
Device  
Package  
Value  
5ꢂ  
2
U3ꢀ1, Uꢁꢀ1  
IC  
LFCSP,  
CP-32  
AD±332ACP,  
ultralow noise  
precision dual  
VGA  
Analog Devices AD±332ACPZ  
5±  
59  
ꢃꢀ  
1
1
1
U5ꢀꢁ  
U5ꢀ2  
U2ꢀ1  
IC  
IC  
IC  
SOT-223  
SOT-223  
LFCSP,  
ADP3339AKC-5  
ADP3339AKC-3.3  
AD922±BCPZ-ꢃ5,  
quad, 12-bit, ꢃ5  
MSPS serial LVDS  
1.± V ADC  
Analog Devices ADP3339AKCZ-5  
Analog Devices ADP3339AKCZ-3.3  
Analog Devices AD922±BCPZ-ꢃ5  
CP-ꢁ±-1  
ꢃ1  
1
U2ꢀ3  
IC  
SOT-23  
ADR51ꢀARTZ, 1.ꢀ V, Analog Devices ADR51ꢀARTZ  
precision low  
noise shunt  
voltage reference  
ꢃ2  
ꢃ3  
ꢃꢁ  
ꢃ5  
1
1
1
1
U2ꢀ2  
Uꢁꢀ3  
Uꢁꢀꢁ  
Uꢁꢀ2  
IC  
IC  
IC  
IC  
LFCSP  
CP-32-2  
SCꢂꢀ,  
MAAꢀꢃA  
SCꢂꢀ,  
MAAꢀꢃA  
±-SOIC  
AD9515BCPZ  
Analog Devices AD9515BCPZ  
NCꢂWZꢀꢂ  
Fairchild  
Fairchild  
Microchip  
NCꢂWZꢀꢂPꢃX_NL  
NCꢂWZ1ꢃ  
NCꢂWZ1ꢃPꢃX_NL  
PIC12Fꢃ29-I/SN  
Flash prog  
mem 1k × 1ꢁ,  
RAM size ꢃꢁ × ±,  
2ꢀ MHz speed,  
PIC12F controller  
series  
1 This BOM is RoHS compliant.  
Rev. B | Page 51 of 52  
AD9228  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
5.25  
5.10 SQ  
4.95  
TOP  
VIEW  
6.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 82. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−ꢁꢀ°C to +±5°C  
−ꢁꢀ°C to +±5°C  
−ꢁꢀ°C to +±5°C  
−ꢁꢀ°C to +±5°C  
Package Description  
ꢁ±-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ±-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Tape and Reel  
ꢁ±-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ±-Lead Lead Frame Chip Scale Package [LFCSP_VQ] Tape and Reel  
Evaluation Board  
Package Option  
CP-ꢁ±-1  
CP-ꢁ±-1  
CP-ꢁ±-1  
CP-ꢁ±-1  
AD922±BCPZ-ꢁꢀ1  
AD922±BCPZRLꢂ-ꢁꢀ1  
AD922±BCPZ-ꢃ51  
AD922±BCPZRLꢂ-ꢃ51  
AD922±-ꢃ5EB  
AD922±-ꢃ5EBZ1  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2006–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05727-0-7/07(B)  
Rev. B | Page 52 of 52  
 
 
 

相关型号:

AD9228_17

Serial LVDS 1.8 V A/D Converter
ADI

AD9229

Quad 12-Bit, 50/65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9229-65EB1

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9229-65EBZ

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229/PCB

Quad 12-Bit, 50/65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9229ABCPZ-50

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229ABCPZ-65

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229ABCPZRL7-50

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229ABCPZRL7-65

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229BCP-50

Quad 12-Bit, 50/65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9229BCP-65

Quad 12-Bit, 50/65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9229BCPZ-50

4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER