AD9229ABCPZ-65 [ADI]

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter; 四通道,12位, 50/65 MSPS ,串行, LVDS , 3 VA / D转换器
AD9229ABCPZ-65
型号: AD9229ABCPZ-65
厂家: ADI    ADI
描述:

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
四通道,12位, 50/65 MSPS ,串行, LVDS , 3 VA / D转换器

转换器 模数转换器 PC
文件: 总40页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-Bit, 50/65 MSPS,  
Serial, LVDS, 3 V A/D Converter  
AD9229  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
PDWN  
DTP  
DRVDD  
DRGND  
Four ADCs in 1 package  
Serial LVDS digital output data rates  
to 780 Mbps (ANSI-644)  
Data and frame clock outputs  
SNR = 69.5 dB (to Nyquist)  
Excellent linearity  
DNL = 0.3 LSB (typical)  
INL = 0.4 LSB (typical)  
400 MHz full power analog bandwidth  
Power dissipation  
1,350 mW at 65 MSPS  
AD9229  
VIN+A  
VIN–A  
12  
12  
12  
12  
D+A  
D–A  
SERIAL  
PIPELINE  
ADC  
SHA  
LVDS  
VIN+B  
VIN–B  
D+B  
D–B  
SERIAL  
LVDS  
PIPELINE  
ADC  
SHA  
SHA  
SHA  
VIN+C  
VIN–C  
D+C  
D–C  
SERIAL  
LVDS  
PIPELINE  
ADC  
VIN+D  
VIN–D  
D+D  
D–D  
SERIAL  
LVDS  
PIPELINE  
ADC  
985 mW at 50 MSPS  
VREF  
1 V p-p to 2 V p-p input voltage range  
3.0 V supply operation  
SENSE  
FCO+  
FCO–  
0.5V  
Power-down mode  
Digital test pattern enable for timing alignments  
DATA RATE  
MULTIPLIER  
REFT  
REFB  
REF  
SELECT  
DCO+  
DCO–  
APPLICATIONS  
AGND LVDSBIAS  
CLK  
Digital beam-forming systems for ultrasound  
Wireless and wired broadband communications  
Communication test equipment  
Figure 1.  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9229 is a quad, 12-bit, 65 MSPS analog-to-digital  
converter (ADC) with an on-chip sample-and-hold circuit that  
is designed for low cost, low power, small size, and ease of use.  
The product operates at up to a 65 MSPS conversion rate and is  
optimized for outstanding dynamic performance in applications  
where a small package size is critical.  
1. Four ADCs are contained in a small, space-saving package.  
2. A data clock out (DCO) is provided, which operates up to  
390 MHz and supports double-data rate operation (DDR).  
3. The outputs of each ADC are serialized LVDS with data  
rates up to 780 Mbps (12 bits × 65 MSPS).  
The ADC requires a single 3 V power supply and TTL-/CMOS-  
compatible sample rate clock for full performance operation.  
No external reference or driver components are required for  
many applications.  
4. The AD9229 operates from a single 3.0 V power supply.  
5. Packaged in a Pb-free, 48-lead LFCSP package.  
6. The internal clock duty cycle stabilizer maintains  
performance over a wide range of input clock duty cycles.  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock (DCO) for  
capturing data on the output and a frame clock (FCO) trigger  
for signaling a new output byte are provided. Power-down is  
supported and typically consumes 3 mW when enabled.  
Fabricated with an advanced CMOS process, the AD9229 is  
available in a Pb-free, 48-lead LFCSP package. It is specified  
over the industrial temperature range of –40°C to +85°C.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 © 2005–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
AD9229  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagram ............................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Explanation of Test Levels........................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Equivalent Circuits......................................................................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology.................................................................................... 16  
Theory of Operation ...................................................................... 18  
Analog Input Considerations ................................................... 18  
Clock Input Considerations...................................................... 19  
Evaluation Board ............................................................................ 24  
Power Supplies............................................................................ 24  
Input Signals................................................................................ 24  
Output Signals ............................................................................ 24  
Default Operation and Jumper Selection Settings................. 25  
Alternate Analog Input Drive Configuration......................... 25  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
REVISION HISTORY  
5/10—Rev. A to Rev. B  
Change to Item 47 in Table 11 ...................................................... 38  
Updated Outline Dimensions....................................................... 39  
Change to Ordering Guide............................................................ 39  
9/05—Rev. 0 to Rev. A  
Change to Specifications.................................................................. 3  
Changes to Differential Input Configurations Section.............. 19  
Changes to Exposed Paddle Thermal Heat Slug  
Recommendations Section........................................................ 23  
Changes to Evaluation Board Section.......................................... 24  
Changes to Table 11........................................................................ 36  
3/05—Revision 0: Initial Version  
Rev. B | Page 2 of 40  
AD9229  
SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 1.  
AD9229-50  
Typ  
AD9229-65  
Min Typ  
Test  
Parameter  
Temperature Level Min  
Max  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error1  
Gain Matching1  
Full  
Full  
Full  
Full  
Full  
2±°C  
Full  
2±°C  
Full  
VI  
VI  
VI  
VI  
VI  
V
VI  
V
VI  
Guaranteed  
±±  
±±  
±0.3  
±0.2  
±0.3  
±0.3  
±0.ꢀ  
±0.ꢀ  
Guaranteed  
±±  
±±  
±0.3  
±0.2  
±0.3  
±0.3  
±0.4  
±0.4  
±2±  
±2±  
±2.±  
±1.±  
±2±  
±2±  
±2.±  
±1.±  
mV  
mV  
% FS  
% FS  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)  
±0.ꢀ  
±1  
±0.ꢁ  
±1  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
Offset Error  
Full  
Full  
Full  
V
V
V
±2  
±12  
±1ꢀ  
±3  
±12  
±1ꢀ  
ppm/°C  
ppm/°C  
ppm/°C  
Gain Error1  
Reference Voltage, VREF = 1 V  
REFERENCE  
Output Voltage Error, VREF = 1 V  
Load Regulation @ 1.0 mA, VREF = 1 V Full  
Output Voltage Error, VREF = 0.± V  
Load Regulation @ 0.± mA,  
VREF = 0.± V  
Full  
VI  
V
VI  
V
±10  
3
±ꢂ  
0.2  
±30  
±1ꢁ  
±10  
3
±ꢂ  
0.2  
±30  
±1ꢁ  
mV  
mV  
mV  
mV  
Full  
Full  
Input Resistance  
ANALOG INPUTS  
Full  
V
kΩ  
Differential Input Voltage Range  
VREF = 1 V  
Differential Input Voltage Range  
VREF = 0.± V  
Full  
Full  
VI  
VI  
2
1
2
1
V p-p  
V p-p  
Common Mode Voltage  
Input Capacitance2  
Analog Bandwidth, Full Power  
POWER SUPPLY  
AVDD  
DRVDD  
IAVDD  
DRVDD  
Full  
Full  
Full  
V
V
V
1.±  
400  
1.±  
400  
V
pF  
MHz  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
VI  
VI  
VI  
V
2.ꢁ  
2.ꢁ  
3.0  
3.0  
300  
2ꢂ  
9ꢂ±  
3
3.ꢀ  
3.ꢀ  
330  
31  
10ꢂ3  
2.ꢁ  
2.ꢁ  
3.0  
3.0  
420  
29  
13±0  
3
3.ꢀ  
3.ꢀ  
4±±  
33  
14ꢀ±  
V
V
mA  
mA  
mW  
mW  
dB  
Power Dissipation3  
Power-Down Dissipation  
CROSSTALK4  
V
–9±  
–9±  
1 Gain error and gain temperature coefficients are based on the ADC only, with a fixed 1.0 V external reference and a 2 V p-p differential analog input.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.  
3 Power dissipation measured with rated encode and 2.4 MHz analog input at –0.± dBFS.  
4 Typical specification over the first Nyquist zone.  
Rev. B | Page 3 of 40  
 
AD9229  
AC SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 2.  
AD9229-50  
AD9229-65  
Test  
Level  
Parameter  
Temperature  
Full  
2±°C  
Full  
Full  
2±°C  
Full  
2±°C  
Full  
Full  
2±°C  
Full  
Min  
Typ  
ꢁ0.4  
ꢁ0.4  
ꢀ9.ꢀ  
Max  
Min Typ  
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Bits  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 10.3 MHz  
fIN = 2± MHz  
fIN = 30 MHz  
fIN = ꢁ0 MHz  
fIN = 2.4 MHz  
fIN = 10.3 MHz  
fIN = 2± MHz  
fIN = 30 MHz  
fIN = ꢁ0 MHz  
fIN = 2.4 MHz  
IV  
V
VI  
VI  
V
ꢀ9.±  
ꢀ9.0 ꢁ0.2  
ꢁ0.2  
ꢀꢂ.ꢁ  
ꢀꢂ.0 ꢀ9.±  
ꢀꢁ.1  
ꢀꢁ.2  
ꢁ0.0  
ꢁ0.0  
ꢀ9.4  
SIGNAL-TO-NOISE RATIO (SINAD)  
V
V
VI  
VI  
V
ꢀ9.ꢂ  
ꢀ9.ꢂ  
ꢀꢂ.4  
ꢀꢁ.3 ꢀ9.0  
ꢀꢀ.ꢁ  
ꢀꢀ.ꢂ  
11.3  
EFFECTIVE NUMBER OF BITS  
(ENOB)  
V
11.3  
fIN = 10.3 MHz  
fIN = 2± MHz  
fIN = 30 MHz  
fIN = ꢁ0 MHz  
2±°C  
Full  
Full  
2±°C  
Full  
V
11.3  
11.2  
11.3  
Bits  
Bits  
Bits  
Bits  
dBc  
VI  
VI  
V
11.1  
10.9 11.2  
10.ꢂ  
ꢂ±  
10.ꢂ  
ꢂ±  
SPURIOUS-FREE DYNAMIC RANGE fIN = 2.4 MHz  
(SFDR)  
V
fIN = 10.3 MHz  
fIN = 2± MHz  
fIN = 30 MHz  
fIN = ꢁ0 MHz  
2±°C  
Full  
Full  
2±°C  
Full  
2±°C  
Full  
Full  
2±°C  
Full  
2±°C  
Full  
Full  
V
ꢂ±  
ꢂ±  
ꢂ±  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
VI  
VI  
V
ꢁꢀ  
ꢁ3  
ꢂ±  
ꢁꢁ  
ꢁꢂ  
WORST HARMONIC  
(Second or Third)  
fIN = 2.4 MHz  
fIN = 10.3 MHz  
fIN = 2± MHz  
fIN = 30 MHz  
fIN = ꢁ0 MHz  
fIN = 2.4 MHz  
fIN = 10.3 MHz  
fIN = 2± MHz  
fIN = 30 MHz  
fIN = ꢁ0 MHz  
fIN1 = 1± MHz  
V
V
VI  
VI  
V
V
V
VI  
VI  
V
–ꢂ±  
–ꢂ±  
–ꢂ±  
–ꢂ±  
–ꢂ±  
–ꢁꢀ  
–ꢂ±  
–ꢁꢁ  
–90  
–90  
–ꢁ3  
–ꢁꢂ  
–90  
–90  
–ꢂꢂ  
WORST OTHER  
(Excluding Second or Third)  
–ꢂ1.ꢁ  
–ꢂꢂ  
–ꢂ3  
–ꢁ3  
–ꢁ9.ꢁ  
2±°C  
2±°C  
–ꢂ±  
–ꢁ3  
TWO-TONE INTERMODULATION  
DISTORTION (IMD)  
V
AIN1 and AIN2 = –ꢁ.0 dBFS  
fIN2 = 1ꢀ MHz  
fIN1 = ꢀ9 MHz  
fIN2 = ꢁ0 MHz  
2±°C  
V
–ꢀꢂ.±  
–ꢀꢂ.±  
dBc  
Rev. B | Page 4 of 40  
 
AD9229  
DIGITAL SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 3.  
AD9229-50  
Typ  
AD9229-65  
Typ  
Test  
Level  
Parameter  
Temperature  
Min  
Max  
Min  
Max Unit  
CLOCK INPUT  
Logic Compliance  
TTL/CMOS  
2.0  
TTL/CMOS  
2.0  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
2±°C  
IV  
IV  
VI  
VI  
V
V
0.ꢂ  
±10  
±10  
0.ꢂ  
V
0.±  
0.±  
2
0.±  
0.±  
2
±10  
±10  
μA  
μA  
pF  
LOGIC INPUTS (PDWN)  
Logic 1 Voltage  
Logic 0 Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
2±°C  
IV  
IV  
IV  
IV  
V
2.0  
2.0  
V
V
μA  
μA  
pF  
0.ꢂ  
±10  
±10  
0.ꢂ  
±10  
±10  
0.±  
0.±  
2
0.±  
0.±  
2
DIGITAL OUTPUTS (D+, D–)  
Logic Compliance  
Differential Output Voltage  
Output Offset Voltage  
Output Coding  
LVDS  
2ꢀ0  
1.1±  
LVDS  
2ꢀ0  
1.1±  
Full  
Full  
Full  
VI  
VI  
VI  
440  
1.3±  
440  
1.3±  
mV  
V
1.2±  
Offset  
binary  
1.2±  
Offset  
binary  
Rev. B | Page ± of 40  
 
AD9229  
SWITCHING SPECIFICATIONS  
AVDD = 3.0 V, DRVDD = 3.0 V, maximum conversion rate, 2 V p-p differential input, 1.0 V internal reference, AIN = –0.5 dBFS, unless  
otherwise noted.  
Table 4.  
AD9229-50  
Typ  
AD9229-65  
Typ  
Test  
Temp Level  
Parameter  
Min  
Max  
Min  
Max  
Unit  
CLOCK  
Maximum Clock Rate  
Full  
Full  
Full  
VI  
IV  
VI  
±0  
ꢀ±  
MSPS  
MSPS  
ns  
Minimum Clock Rate  
10  
10  
Clock Pulse Width High  
(tEH)  
10  
10  
ꢀ.2  
ꢀ.2  
ꢁ.ꢁ  
ꢁ.ꢁ  
Clock Pulse Width Low  
(tEL)  
Full  
VI  
ns  
OUTPUT PARAMETERS  
Propagation Delay (tPD  
)
Full  
Full  
VI  
V
3.3  
ꢀ.±  
ꢁ.9  
3.3  
ꢀ.±  
ꢁ.9  
ns  
ps  
Rise Time (tR)  
(20% to ꢂ0%)  
2±0  
2±0  
Fall Time (tF)  
(20% to ꢂ0%)  
Full  
Full  
Full  
Full  
Full  
Full  
V
2±0  
ꢀ.±  
2±0  
ꢀ.±  
ps  
ns  
ns  
ps  
ps  
ps  
ms  
FCO Propagation Delay  
(tFCO  
DCO Propagation Delay  
(tCPD  
DCO-to-Data Delay (tDATA  
V
)
V
tFCO  
(tSAMPLE/24)  
+
tFCO +  
(tSAMPLE/24)  
)
)
IV  
IV  
IV  
(tSAMPLE/24) –  
2±0  
(tSAMPLE/24)  
(tSAMPLE/24) +  
2±0  
(tSAMPLE/24) –  
2±0  
(tSAMPLE/24)  
(tSAMPLE/24) +  
2±0  
DCO-to-FCO Delay (tFRAME  
Data-to-Data Skew  
)
(tSAMPLE/24) –  
2±0  
(tSAMPLE/24)  
±100  
(tSAMPLE/24) +  
2±0  
(tSAMPLE/24) –  
2±0  
(tSAMPLE/24)  
±100  
(tSAMPLE/24) +  
2±0  
±2±0  
±2±0  
(tDATA-MAX – tDATA-MIN  
)
Wake-Up Time  
2±°C  
Full  
V
4
4
Pipeline Latency  
IV  
10  
10  
CLK  
cycles  
APERTURE  
Aperture Delay (tA)  
2±°C  
2±°C  
V
V
1.ꢂ  
<1  
1.ꢂ  
<1  
ns  
Aperture Uncertainty  
(Jitter)  
ps  
rms  
OUT-OF-RANGE RECOVERY  
TIME  
2±°C  
V
2
2
CLK  
cycles  
Rev. B | Page ꢀ of 40  
 
AD9229  
TIMING DIAGRAM  
N – 1  
AIN  
N
tA  
tEH  
tEL  
CLK  
tCPD  
DCO–  
DCO+  
tFCO  
tFRAME  
FCO–  
FCO+  
tDATA  
D6  
tPD  
D–  
D+  
MSB D10 D9  
D8  
D7  
D5  
D4  
D3  
D2  
D1  
D0 MSB D10  
(N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 10) (N – 9) (N – 9)  
Figure 2. Timing Diagram  
Rev. B | Page ꢁ of 40  
 
 
AD9229  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
With  
Respect To  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
AVDD  
Digital Outputs (D+, D–,  
DCO+, DCO–, FCO+, FCO–)  
Rating  
AGND  
–0.3 V to +3.9 V  
–0.3 V to +3.9 V  
–0.3 V to +0.3 V  
–3.9 V to +3.9 V  
–0.3 V to DRVDD  
DRGND  
DRGND  
DRVDD  
DRGND  
EXPLANATION OF TEST LEVELS  
I. 100% production tested.  
LVDSBIAS  
CLK  
DRGND  
AGND  
AGND  
AGND  
AGND  
AGND  
–0.3 V to DRVDD  
–0.3 V to AVDD  
–0.3 V to AVDD  
–0.3 V to AVDD  
–0.3 V to AVDD  
–0.3 V to AVDD  
II. 100% production tested at 25°C and guaranteed by design  
and characterization at specified temperatures.  
VIN+, VIN–  
PDWN, DTP  
REFT, REFB  
VREF, SENSE  
ENVIRONMENTAL  
Operating Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
III. Sample tested only.  
IV. Parameter is guaranteed by design and characterization  
testing.  
–40°C to +ꢂ±°C  
1±0°C  
V. Parameter is a typical value only.  
VI. 100% production tested at 25°C and guaranteed by design  
and characterization for industrial temperature range.  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
Storage Temperature Range  
(Ambient)  
Thermal Impedance1  
–ꢀ±°C to +1±0°C  
2±°C/W  
1 θJA for a 4-layer PCB with a solid ground plane in still air.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page ꢂ of 40  
 
 
 
AD9229  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
DRGND  
DRVDD  
NC  
1
2
3
4
5
6
7
8
9
36 DRGND  
35 DRVDD  
34 LVDSBIAS  
33 AGND  
32 AVDD  
31 AGND  
30 CLK  
EXPOSED PADDLE, PIN 0  
(Bottom of Package)  
DTP  
AVDD  
AGND  
PDWN  
AVDD  
AGND  
AD9229  
TOP VIEW  
(Not to Scale)  
29 AVDD  
28 AGND  
27 VIN+D  
26 VIN–D  
25 AGND  
VIN+A 10  
VIN–A 11  
AGND 12  
NC = NO CONNECT  
Figure 3. LFCSP Top View  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Pin No.  
Mnemonic  
Description  
±, ꢂ, 1ꢀ, 21,  
29, 32  
AVDD  
Analog Supply  
2ꢀ  
VIN–D  
ADC D Analog Input—  
Complement  
ꢀ, 9, 12, 1±, 22, AGND  
2±, 2ꢂ, 31, 33  
Analog Ground  
2ꢁ  
30  
34  
VIN+D  
CLK  
LVDSBIAS  
ADC D Analog Input—True  
Input Clock  
LVDS Output Current Set  
Resistor Pin  
ADC D Complement Digital  
Output  
ADC D True Digital Output  
ADC C Complement Digital  
Output  
ADC C True Digital Output  
ADC B Complement Digital  
Output  
ADC B True Digital Output  
ADC A Complement Digital  
Output  
ADC A True Digital Output  
Frame Clock Indicator—  
Complement Output  
Frame Clock Indicator—True  
Output  
Data Clock Output—  
Complement  
Data Clock Output—True  
2, 3±  
1, 3ꢀ  
0
DRVDD  
DRGND  
AGND  
Digital Output Supply  
Digital Ground  
Exposed Paddle/Thermal Heat  
Slug (Located on Bottom of  
Package)  
No Connect  
Digital Test Pattern Enable  
Power-Down Selection (AVDD =  
Power Down)  
ADC A Analog Input—True  
ADC A Analog Input—  
Complement  
ADC B Analog Input—  
Complement  
ADC B Analog Input—True  
Reference Mode Selection  
Voltage Reference Input/Output  
Differential Reference (Bottom)  
Differential Reference (Top)  
ADC C Analog Input—True  
3ꢁ  
D–D  
3ꢂ  
39  
D+D  
D–C  
3
4
NC  
DTP  
PDWN  
40  
41  
D+C  
D–B  
10  
11  
VIN+A  
VIN–A  
42  
43  
D+B  
D–A  
13  
VIN–B  
44  
4±  
D+A  
FCO–  
14  
1ꢁ  
1ꢂ  
19  
20  
23  
24  
VIN+B  
SENSE  
VREF  
REFB  
REFT  
4ꢀ  
4ꢁ  
4ꢂ  
FCO+  
DCO–  
DCO+  
VIN+C  
VIN–C  
ADC C Analog Input—  
Complement  
Rev. B | Page 9 of 40  
 
AD9229  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
VIN+, VIN–  
V
V
D–  
D+  
V
V
AGND  
DRGND  
Figure 4. Equivalent Analog Input Circuit  
Figure 7. Equivalent Digital Output Circuit  
AVDD  
AVDD  
DTP  
375Ω  
100kΩ  
CLK  
170Ω  
AGND  
AGND  
Figure 5. Equivalent Clock Input Circuit  
Figure 8. Equivalent DTP Input Circuit  
AVDD  
PDWN  
375Ω  
AGND  
Figure 6. Equivalent Digital Input Circuit  
Rev. B | Page 10 of 40  
 
 
AD9229  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
AIN = –0.5dBFS  
SNR = 70.4dB  
AIN = –0.5dBFS  
SNR = 68.1dB  
ENOB = 11.4 BITS  
SFDR = 85.8dBC  
ENOB = 11.0 BITS  
SFDR = 77.0dBC  
–20  
–20  
–40  
–60  
–80  
–40  
–60  
–80  
–100  
–120  
–100  
–120  
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Single-Tone 32k FFT with fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Figure 12. Single-Tone 32k FFT with fIN = 120 MHz, fSAMPLE = 65 MSPS  
0
90  
1V p-p, SFDR (dBc)  
AIN = –0.5dBFS  
SNR = 69.6dB  
ENOB = 11.3 BITS  
SFDR = 82.4dBC  
–20  
85  
2V p-p, SFDR (dBc)  
–40  
80  
75  
–60  
–80  
2V p-p, SNR (dB)  
70  
–100  
–120  
65  
1V p-p, SNR (dB)  
AIN = –0.5dBFS  
40 45 50  
60  
10  
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
15  
20  
25  
30  
35  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 10. Single-Tone 32k FFT with fIN = 30 MHz, fSAMPLE = 65 MSPS  
Figure 13. SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz, fSAMPLE = 50 MSPS  
0
90  
1V p-p, SFDR (dBc)  
AIN = –0.5dBFS  
SNR = 68.5dB  
ENOB = 11.1 BITS  
SFDR = 81.3dBC  
–20  
85  
–40  
80  
75  
70  
2V p-p, SFDR (dBc)  
–60  
–80  
2V p-p, SNR (dB)  
1V p-p, SNR (dB)  
–100  
–120  
65  
60  
AIN = –0.5dBFS  
40 45 50  
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
10  
15  
20  
25  
30  
35  
FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 11. Single-Tone 32k FFT with fIN = 70 MHz, fSAMPLE = 65 MSPS  
Figure 14. SNR/SFDR vs. fSAMPLE, fIN = 25 MHz, fSAMPLE = 50 MSPS  
Rev. B | Page 11 of 40  
 
AD9229  
95  
90  
1V p-p, SFDR (dBc)  
2V p-p, SFDR (dBc)  
2V p-p, SFDR (dBc)  
80  
70  
60  
50  
90  
1V p-p, SFDR (dBc)  
85  
80  
40  
30  
80 dB REFERENCE  
75  
70  
2V p-p, SNR (dB)  
20  
2V p-p, SNR (dB)  
65  
60  
1V p-p, SNR (dB)  
1V p-p, SNR (dB)  
10  
0
AIN = –0.5dBFS  
50 55 60  
10 15  
20  
25  
30  
35  
40  
45  
65  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
0
ENCODE (MSPS)  
ANALOG INPUT LEVEL (dBFS)  
Figure 15. SNR/SFDR vs. fSAMPLE, fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
Figure 18. SNR/SFDR vs. Analog Input Level,  
fIN =25 MHz, fSAMPLE = 50 MSPS  
85  
90  
2V p-p, SFDR (dBc)  
2V p-p, SFDR (dBc)  
1V p-p, SFDR (dBc)  
80  
70  
60  
50  
80  
1V p-p, SFDR (dBc)  
75  
40  
30  
80 dB REFERENCE  
2V p-p, SNR (dB)  
70  
20  
65  
2V p-p, SNR (dB)  
1V p-p, SNR (dB)  
1V p-p, SNR (dB)  
10  
0
AIN = –0.5dBFS  
50 55 60  
60  
10 15  
20  
25  
30  
35  
40  
45  
65  
–60  
–50  
–40  
–30  
–20  
–10  
ENCODE (MSPS)  
ANALOG INPUT LEVEL (dBFS)  
Figure 16. SNR/SFDR vs. fSAMPLE, fIN = 30 MHz, fSAMPLE = 65 MSPS  
Figure 19. SNR/SFDR vs. Analog Input Level,  
fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
90  
90  
2V p-p, SFDR (dBc)  
80  
2V p-p, SFDR (dBc)  
80  
70  
60  
50  
70  
1V p-p, SFDR (dBc)  
1V p-p, SFDR (dBc)  
60  
50  
40  
30  
40  
80 dB REFERENCE  
80 dB REFERENCE  
30  
20  
20  
2V p-p, SNR (dB)  
2V p-p, SNR (dB)  
1V p-p, SNR (dB)  
1V p-p, SNR (dB)  
10  
10  
0
0
–60  
–60  
–50  
–40  
–30  
–20  
–10  
–50  
–40  
–30  
–20  
–10  
0
ANALOG INPUT LEVEL (dBFS)  
ANALOG INPUT LEVEL (dBFS)  
Figure 20. SNR/SFDR vs. Analog Input Level,  
fIN = 30 MHz, fSAMPLE = 65 MSPS  
Figure 17. SNR/SFDR vs. Analog Input Level,  
fIN = 10.3 MHz, fSAMPLE = 50 MSPS  
Rev. B | Page 12 of 40  
AD9229  
90  
80  
70  
85  
80  
75  
70  
SFDR (dBc)  
2V p-p, SFDR (dBc)  
60  
50  
40  
80 dB REFERENCE  
SNR (dB)  
65  
60  
30  
20  
1V p-p, SFDR (dBc)  
55  
10  
0
50  
45  
1
10  
100  
1000  
–60 –56 –52 –48 –44 –40 –36 –32 –28 –23 –19 –15 –10 –7  
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 21. SNR/SFDR vs. fIN, fSAMPLE = 65 MHz  
Figure 24. Two-Tone SFDR vs. Analog Input Level, fIN1 = 15 MHz and  
fIN2 = 16 MHz, fSAMPLE = 65 MSPS  
0
80  
AIN1 AND AIN2= –7.0dBFS  
SFDR = 73.0dBc  
IMD2 = 80.5dBc  
IMD3 = 73.0dBc  
70  
–20  
–40  
–60  
–80  
2V p-p, SFDR (dBc)  
60  
50  
40  
80 dB REFERENCE  
1V p-p, SFDR (dBc)  
30  
20  
–100  
–120  
10  
0
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
–60 –56 –52 –48 –44 –40 –36 –32 –28 –23 –19 –15 –10 –7  
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 22. Two-Tone 32k FFT with fIN1 = 15 MHz and fIN2 = 16 MHz,  
fSAMPLE = 65 MSPS  
Figure 25. Two-Tone SFDR vs. Analog Input Level, fIN1 = 69 MHz and  
fIN2 = 70 MHz, fSAMPLE = 65 MSPS  
0
90  
AIN1 AND AIN2= –7.0dBFS  
SFDR = 68.5dBc  
1V p-p, SFDR (dBc)  
IMD2 = 77.0dBc  
IMD3 = 68.5dBc  
–20  
85  
2V p-p, SFDR (dBc)  
–40  
80  
75  
–60  
–80  
2V p-p, SINAD (dB)  
70  
–100  
–120  
65  
1V p-p, SINAD (dB)  
60  
–40  
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 23. Two-Tone 32k FFT with fIN1 = 69 MHz and fIN2 = 70 MHz,  
fSAMPLE = 65 MSPS  
Figure 26. SINAD/SFDR vs. Temperature, fIN 10.3 MHz, fSAMPLE = 65 MSPS  
Rev. B | Page 13 of 40  
AD9229  
–40  
–50  
–60  
15  
10  
5
0
–5  
–10  
–70  
–80  
–15  
–20  
0
5
10  
15  
20  
25  
30  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 30. CMRR vs. Frequency, fSAMPLE = 65 MSPS  
Figure 27. Gain Error vs. Temperature  
10  
9
0.5  
0.36LSB rms  
0.4  
0.3  
0.2  
0.1  
0
8
7
6
5
4
–0.1  
3
–0.2  
–0.3  
2
1
0
–0.4  
–0.5  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
0
512  
1024 1536  
2048 2560  
CODE  
3072 3584  
4095  
CODE  
Figure 28. Typical INL, fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Figure 31. Input Referred Noise Histogram, fSAMPLE = 65 MSPS  
0.5  
0
NPR = 60.8dB  
NOTCH = 18MHz  
NOTCH WIDTH = 3MHz  
0.4  
0.3  
0.2  
0.1  
0
–20  
–40  
–60  
–80  
–0.1  
–0.2  
–0.3  
–100  
–120  
–0.4  
–0.5  
0
512  
1024 1536  
2048 2560  
CODE  
3072 3584  
4095  
0
4.1  
8.1  
12.2  
16.3  
20.3  
24.4  
28.4  
32.5  
FREQUENCY (MHz)  
Figure 29. Typical DNL, fIN = 2.4 MHz, fSAMPLE = 65 MSPS  
Figure 32. Noise Power Ratio (NPR), fSAMPLE = 65 MSPS  
Rev. B | Page 14 of 40  
AD9229  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
0
50  
100 150  
350 400 450 500  
200 250 300  
FREQUENCY (MHz)  
Figure 33. Full Power Bandwidth vs. Frequency, fSAMPLE = 65 MSPS  
Rev. B | Page 1± of 40  
AD9229  
TERMINOLOGY  
Analog Bandwidth  
Full Power Bandwidth  
Analog bandwidth is the analog input frequency at which the  
spectral power of the fundamental frequency (as determined by  
the FFT analysis) is reduced by 3 dB from full scale.  
Full power bandwidth is the measured –3 dB point at the analog  
front-end input relative to the frequency measured.  
Gain Error  
Aperture Delay  
The largest gain error is specified and is considered the  
difference between the measured and ideal full-scale input  
voltage range.  
Aperture delay is a measure of the sample-and-hold amplifier  
(SHA) performance and is measured from the 50% point rising  
edge of the clock input to the time at which the input signal is  
held for conversion.  
Gain Matching  
Expressed as a percentage of FSR and computed using the  
following equation:  
Aperture Uncertainty (Jitter)  
Aperture jitter is the variation in aperture delay for successive  
samples and can be manifested as frequency-dependent noise  
on the ADC input.  
FSR max FSR min  
FSR max + FSR min  
Gain Matching =  
×100%  
2
Clock Pulse Width and Duty Cycle  
where FSRMAX is the most positive gain error of the ADCs, and  
FSRMIN is the most negative gain error of the ADCs.  
Pulse width high is the minimum amount of time that the clock  
pulse should be left in the Logic 1 state to achieve rated  
performance. Pulse width low is the minimum time the clock  
pulse should be left in the low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Input-Referred Noise  
Input-referred noise is a measure of the wideband noise  
generated by the ADC core. Histograms of the output codes are  
created while a dc signal is applied to the ADC input. Input-  
referred noise is calculated using the standard deviation of the  
histograms and presented in terms of LSB rms.  
Common Mode Rejection Ratio (CMRR)  
CMRR is defined as the amount of rejection on the differential  
analog inputs when a common signal is applied. Typically  
expressed as 20 log (differential gain/common-mode gain).  
Integral Nonlinearity (INL)  
INL refers to the deviation of each individual code from a line  
drawn from negative full scale through positive full scale. The  
point used as negative full scale occurs 0.5 LSB before the first  
code transition. Positive full scale is defined as a level 1.5 LSB  
beyond the last code transition. The deviation is measured from  
the middle of each code to the true straight line.  
Crosstalk  
Crosstalk is defined as the measure of any feedthrough coupling  
onto the quiet channel when all other channels are driven by a  
full-scale signal.  
Differential Analog Input Voltage Range  
The peak-to-peak differential voltage that must be applied to  
the converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage on a pin and  
subtracting the voltage from a second pin that is 180° out of  
phase.  
Noise Power Ratio (NPR)  
NPR is the full-scale rms noise power injected into the ADC vs.  
the rejected band of interest (notch depth measured).  
Offset Error  
The largest offset error is specified and is considered the  
difference between the measured and ideal voltage at the analog  
input that produces the midscale code at the outputs.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to an n-bit resolution indicates that all 2n  
codes, respectively, must be present over all operating ranges.  
Offset Matching  
Expressed in millivolts and computed using the following  
equation:  
Effective Number of Bits (ENOB)  
For a sine wave, SINAD can be expressed in terms of the  
number of bits. Using the following formula, it is possible to  
obtain a measure of performance expressed as N, the effective  
number of bits:  
Offset Matching = OFFMAX OFFMIN  
where OFFMAX is the most positive offset error, and OFFMIN is  
the most negative offset error.  
N = (SINAD – 1.76)/6.02  
Rev. B | Page 1ꢀ of 40  
 
AD9229  
Out-of-Range Recovery Time  
Signal-to-Noise Ratio (SNR)  
Out-of-range recovery time is the time it takes for the ADC to  
reacquire the analog input after a transient from 10% above  
positive full scale to 10% above negative full scale, or from 10%  
below negative full scale to 10% below positive full scale.  
SNR is the ratio of the rms value of the measured input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
Output Propagation Delay  
Spurious-Free Dynamic Range (SFDR)  
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
SFDR is the difference in decibels between the rms amplitude of  
the input signal and the peak spurious signal.  
Second and Third Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
second or third harmonic component, reported in decibels  
relative to the carrier.  
Temperature Drift  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
at TMIN or TMAX  
.
Signal-to Noise and Distortion (SINAD) Ratio  
Two-Tone SFDR  
SINAD is the ratio of the rms value of the measured input  
signal to the rms sum of all other spectral components below  
the Nyquist frequency, including harmonics but excluding dc.  
The value for SINAD is expressed in decibels.  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. It may be reported in  
decibels relative to the carrier (that is, degrades as signal levels  
are lowered) or in decibels relative to full scale (always related  
back to converter full scale).  
Rev. B | Page 1ꢁ of 40  
AD9229  
THEORY OF OPERATION  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can  
be placed across the inputs to provide dynamic charging  
currents. This passive network creates a low-pass filter at the  
ADCs input; therefore, the precise values are dependent on  
the application.  
The AD9229 architecture consists of a front-end switched capa-  
citor sample-and-hold amplifier (SHA) followed by a pipelined  
ADC. The pipelined ADC is divided into three sections: a 4-bit  
first stage followed by eight 1.5-bit stages and a final 3-bit flash.  
Each stage provides sufficient overlap to correct for flash errors  
in the preceding stages. The quantized outputs from each stage  
are combined into a final 12-bit result in the digital correction  
logic. The pipelined architecture permits the first stage to  
operate on a new input sample while the remaining stages  
operate on preceding samples. Sampling occurs on the rising  
edge of the clock.  
The analog inputs of the AD9229 are not internally dc-biased.  
In ac-coupled applications, the user must provide this bias  
externally. For optimum performance, set the device so that  
V
CM = AVDD/2; however, the device can function over a wider  
range with reasonable performance (see Figure 35 and Figure 36).  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
90  
2V p-p, SFDR (dBc)  
85  
1V p-p, SFDR (dBc)  
80  
75  
The input stage contains a differential SHA that can be config-  
ured as ac- or dc-coupled in differential or single-ended modes.  
The output staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers. The data is  
then serialized and aligned to the frame and output clock.  
2V p-p, SNR (dB)  
70  
65  
60  
1V p-p, SNR (dB)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ANALOG INPUT CONSIDERATIONS  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
The analog input to the AD9229 is a differential switched-  
capacitor SHA that has been designed for optimum perfor-  
mance while processing a differential input signal. The SHA  
input can support a wide common-mode range and maintain  
excellent performance. An input common-mode voltage of  
midsupply minimizes signal-dependent errors and provides  
optimum performance.  
Figure 35. SNR/SFDR vs. Common-Mode Voltage, fIN = 2.4 MHz,  
fSAMPLE = 65 MSPS  
90  
2V p-p, SFDR (dBc)  
85  
80  
1V p-p, SFDR (dBc)  
75  
2V p-p, SNR (dB)  
H
70  
65  
1V p-p, SNR (dB)  
S
S
60  
55  
50  
VIN+  
VIN–  
C
PAR  
45  
40  
S
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
ANALOG INPUT COMMON-MODE VOLTAGE (V)  
C
PAR  
Figure 36. SNR/SFDR vs. Common-Mode Voltage, fIN = 30 MHz,  
fSAMPLE = 65 MSPS  
S
H
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
Figure 34. Switched-Capacitor SHA Input  
The clock signal alternately switches the SHA between sample  
mode and hold mode (see Figure 34). When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
Rev. B | Page 18 of 40  
 
 
 
 
AD9229  
An internal reference buffer creates the positive and negative  
reference voltages, REFT and REFB, respectively, that defines  
the span of the ADC core. The output common-mode of the  
reference buffer is set to midsupply, and the REFT and REFB  
voltages and span are defined as  
AVDD  
VIN+  
R
R
2Vp-p  
49.9Ω  
AD9229  
C
AVDD  
1kΩ  
VIN–  
AGND  
REFT = 1/2 (AVDD + VREF)  
REFB = 1/2 (AVDD VREF)  
1kΩ  
0.1μF  
Span = 2 × (REFT REFB) = 2 × VREF  
Figure 38. Differential Transformer—Coupled Configuration  
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage  
and, by definition, the input span is twice the value of the  
VREF voltage.  
Single-Ended Input Configuration  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance degrade due to the large input  
common-mode swing. However, if the source impedances  
on each input are matched, there should be little effect on  
SNR performance. Figure 39 details a typical single-ended  
input configuration.  
The internal voltage reference can be pin-strapped to fixed  
values of 0.5 V or 1.0 V or adjusted within the same range, as  
discussed in the Internal Reference Connection section.  
Maximum SNR performance is achieved by setting the AD9229  
to the largest input span of 2 V p-p.  
10μF  
The SHA should be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference  
voltage. The minimum and maximum common-mode input  
levels are defined in Figure 35 and Figure 36.  
AVDD  
1kΩ  
R
VIN+  
0.1μF  
AVDD  
1kΩ  
1kΩ  
2V p-p  
49.9Ω  
AD9229  
C
Differential Input Configurations  
R
Optimum performance is achieved by driving the AD9229 in a  
differential input configuration. For ultrasound applications,  
the AD8332 differential driver provides excellent performance  
and a flexible interface to the ADC (see Figure 37).  
VIN–  
AGND  
10μF  
0.1μF  
1kΩ  
Figure 39. Single-Ended Input Configuration  
0.1μF  
AVDD  
CLOCK INPUT CONSIDERATIONS  
LOP  
VIP  
AVDD  
VIN+  
0.1μF  
1.0kΩ  
1.0kΩ  
187Ω  
374Ω  
R
R
0.1μF 120nH  
VOH  
VOL  
INH  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be sensi-  
tive to clock duty cycle. Typically, a 10% tolerance is required on  
the clock duty cycle to maintain dynamic performance charac-  
teristics. The AD9229 has a self-contained clock duty cycle  
stabilizer that retimes the nonsampling edge, providing an  
internal clock signal with a nominal 50% duty cycle. This allows  
a wide range of clock input duty cycles without affecting the  
performance of the AD9229.  
1V p-p  
22p  
AD8332  
LNA  
VGA  
C
AD9229  
LMD  
VIN–  
VREF  
AGND  
0.1μF  
187nH  
0.1μF  
0.1μF  
10μF  
LON  
VIN  
274Ω  
18nF  
0.1μF  
Figure 37. Differential Input Configuration Using the AD8332  
However, the noise performance of most amplifiers is not  
adequate to achieve the true performance of the AD9229. For  
applications where SNR is a key parameter, differential transfor-  
mer coupling is the recommended input configuration. An  
example of this is shown in Figure 38.  
An on-board phase-locked loop (PLL) multiplies the input  
clock rate for the purpose of shifting the serial data out. The  
stability criteria for the PLL limits the minimum sample clock  
rate of the ADC to 10 MSPS. Assuming steady state operation of  
the input clock, any sudden change in the sampling rate could  
create an out-of-lock condition leading to invalid outputs at the  
DCO, FCO, and data out pins.  
In any configuration, the value of the shunt capacitor, C, is  
dependent on the input frequency and may need to be reduced  
or removed.  
Rev. B | Page 19 of 40  
 
 
 
 
AD9229  
1400  
1300  
500  
450  
400  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given full-scale  
input frequency (fA) due only to aperture jitter (tA) can be  
calculated with the following equation:  
I
AVDD  
350  
300  
1200  
1100  
1000  
SNR degradation = 20 × log 10 [1/2 × π × fA × tA]  
TOTAL POWER  
In the equation, the rms aperture jitter, tA, represents the root  
sum square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification.  
Applications that require undersampling are particularly  
sensitive to jitter.  
250  
200  
150  
100  
900  
800  
I
DRVDD  
50  
0
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9229. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other  
methods), it should be retimed by the original clock at the  
last step.  
10  
20  
30  
40  
50  
60  
ENCODE (MSPS)  
Figure 41. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, fSAMPLE = 65 MSPS  
By asserting the PDWN pin high, the AD9229 is placed in  
power-down mode. In this state, the ADC typically dissipates  
3 mW. During power-down, the LVDS output drivers are placed  
in a high impedance state. Reasserting the PDWN pin low  
returns the AD9229 to normal operating mode.  
Power Dissipation and Power-Down Mode  
In power-down mode, low power dissipation is achieved by  
shutting down the reference, reference buffer, PLL, and biasing  
networks. The decoupling capacitors on REFT and REFB are  
discharged when entering standby mode and then must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in the power-down  
mode; shorter cycles result in proportionally shorter wake-up  
times. With the recommended 0.1 μF and 10 μF decoupling  
capacitors on REFT and REFB, it takes approximately 1 sec to  
fully discharge the reference buffer decoupling capacitors and  
4 ms to restore full operation.  
As shown in Figure 40 and Figure 41, the power dissipated by  
the AD9229 is proportional to its sample rate. The digital power  
dissipation does not vary much because it is determined  
primarily by the DRVDD supply and bias current of the LVDS  
output drivers.  
1200  
350  
300  
250  
1100  
I
AVDD  
1000  
900  
200  
150  
100  
Digital Outputs  
TOTAL POWER  
The AD9229s differential outputs conform to the ANSI-644  
LVDS standard. To set the LVDS bias current, place a resistor  
(RSET is nominally equal to 4.0 kΩ) to ground at the  
800  
LVDSBIAS pin. The RSET resistor current is derived on-chip  
and sets the output current at each output equal to a nominal  
3.5 mA. A 100 Ω differential termination resistor placed at the  
LVDS receiver inputs results in a nominal 350 mV swing at the  
receiver. To adjust the differential signal swing, simply change  
the resistor to a different value, as shown in Table 7.  
700  
600  
50  
0
I
DRVDD  
10  
15  
20  
25  
30  
35  
40  
45  
50  
ENCODE (MSPS)  
Figure 40. Supply Current vs. fSAMPLE for fIN = 10.3 MHz, fSAMPLE = 50 MSPS  
Table 7. LVDSBIAS Pin Configuration  
RSET  
Differential Output Swing  
3.ꢁ kΩ  
3ꢁ± mV p-p  
4.0 (default)  
4.3 kΩ  
3±0 mV p-p  
32± mV p-p  
Rev. B | Page 20 of 40  
 
 
 
 
AD9229  
Table 9. Digital Test Pattern Pin Settings  
The AD9229s LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capa-  
bility for superior switching performance in noisy environ-  
ments. Single point-to-point net topologies are recommended  
with a 100 Ω termination resistor placed as close to the receiver  
as possible. It is recommended to keep the trace length no  
longer than 12 inches and to keep differential output traces  
close together and at equal lengths.  
Resulting  
Resulting  
FCO and DCO  
Selected DTP  
DTP Voltage D+ and D–  
Normal  
operation  
AGND  
Normal  
operation  
Normal  
operation  
DTP1  
AVDD/3  
2 × AVDD/3  
AVDD  
1000 0000 0000  
1010 1010 1010  
N/A  
Normal  
operation  
DTP2  
Normal  
operation  
Restricted  
N/A  
The format of the output data is offset binary. An example of  
the output coding format can be found in Table 8.  
Voltage Reference  
A stable and accurate 0.5 V voltage reference is built into the  
AD9229. The input range can be adjusted by varying the refer-  
ence voltage applied to the AD9229, using either the internal  
reference or an externally applied reference voltage. The input  
span of the ADC tracks reference voltage changes linearly.  
Table 8. Digital Output Coding  
(VIN+) − (VIN−),  
Input Span =  
Code 2 V p-p (V)  
(VIN+) − (VIN−),  
Input Span =  
1 V p-p (V)  
Digital Output  
Offset Binary  
(D11 ... D0)  
409±  
204ꢂ  
204ꢁ  
0
1.000  
0
0.±00  
1111 1111 1111  
1000 0000 0000  
0111 1111 1111  
0000 0000 0000  
0
When applying the decoupling capacitors to the VREF, REFT,  
and REFB pins, use ceramic, low ESR capacitors. These  
capacitors should be close to the ADC pins and on the same  
layer of the PCB as the AD9229. The recommended capacitor  
values and configurations for the AD9229 reference pin can be  
found in Figure 42 and Figure 43.  
−0.0004ꢂꢂ  
−1.00  
−0.000244  
−0.±000  
Timing  
Data from each ADC is serialized and provided on a separate  
channel. The data rate for each serial stream is equal to 12 bits  
times the sample clock rate, with a maximum of 780 bps (12 bits  
× 65 MSPS = 780 bps). The lowest typical conversion rate is  
10 MSPS.  
Table 10. Reference Settings  
Resulting  
Differential  
Span (V p-p)  
SENSE  
Voltage  
Resulting  
VREF (V)  
Selected Mode  
External Reference  
AVDD  
N/A  
2 × external  
reference  
Two output clocks are provided to assist in capturing data from  
the AD9229. The DCO is used to clock the output data and is  
equal to six times the sampling clock (CLK) rate. Data is  
clocked out of the AD9229 and can be captured on the rising  
and falling edges of the DCO that supports double-data rate  
(DDR) capturing. The frame clock out (FCO) is used to signal  
the start of a new output byte and is equal to the sampling clock  
rate. See the timing diagram shown in Figure 2 for more  
information.  
Internal, 1 V p-p FSR  
Programmable  
VREF  
0.±  
1.0  
0.2 V to  
VREF  
0.± × (1 +  
R2/R1)  
2 × VREF  
Internal, 2 V p-p FSR  
AGND to  
0.2 V  
1.0  
2.0  
Internal Reference Connection  
A comparator within the AD9229 detects the potential at the  
SENSE pin and configures the reference into four possible states  
(summarized in Table 10). If SENSE is grounded, the reference  
amplifier switch is connected to the internal resistor divider (see  
Figure 42), setting VREF to 1 V. Connecting the SENSE pin to  
the VREF pin switches the amplifier output to the SENSE pin,  
configuring the internal op amp circuit as a voltage follower and  
providing a 0.5 V reference output. If an external resistor  
divider is connected as shown in Figure 43, the switch is again  
set to the SENSE pin. This puts the reference amplifier in a  
noninverting mode and defines the VREF output as  
DTP Pin  
The digital test pattern (DTP) pin can be enabled for two types  
of test patterns, as summarized in Table 9. When the DTP is  
tied to AVDD/3, all the ADC channel outputs shift out the  
following pattern: 1000 0000 0000. When the DTP is tied to 2 ×  
AVDD/3, all the ADC channel outputs shift out the following  
pattern: 1010 1010 1010. The FCO and DCO outputs still work  
as usual while all channels shift out the test pattern. This  
pattern allows the user to perform timing alignment  
adjustments between the FCO, DCO, and the output data. For  
normal operation, this pin should be tied to AGND.  
R2  
R1  
VREF = 0.5× 1 +  
In all reference configurations, REFT and REFB establish their  
input span of the ADC core. The analog input full-scale range  
of the ADC equals twice the voltage at the reference pin for  
either an internal or an external reference configuration.  
Rev. B | Page 21 of 40  
 
 
 
 
 
 
AD9229  
External Reference Operation  
VIN+  
VIN–  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 45 shows the typical drift characteristics of the  
internal reference.  
REFT  
0.1μF  
0.1μF  
REFB  
+
ADC  
CORE  
10μF  
0.10  
0.08  
0.06  
0.04  
0.1μF  
VREF  
0.1μF  
10μF  
0.5V  
SELECT  
LOGIC  
SENSE  
VREF = 0.5V  
0.02  
0
–0.02  
–0.04  
VREF = 1.0V  
Figure 42. Internal Reference Configuration  
–0.06  
–0.08  
–0.10  
VIN+  
VIN–  
–40  
–25  
–10  
5
20  
35  
50  
65  
80  
REFT  
TEMPERATURE (°C)  
0.1μF  
0.1μF  
REFB  
Figure 45. Typical VREF Drift  
+
ADC  
CORE  
10μF  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. The external  
reference is loaded with an equivalent 7 kΩ load. An internal  
reference buffer generates the positive and negative full-scale  
references, REFT and REFB, for the ADC core. Therefore, the  
external reference must be limited to a maximum of 1 V.  
0.1μF  
VREF  
+
10μF  
0.1μF  
0.5V  
SELECT  
LOGIC  
R2  
SENSE  
R1  
Power and Ground Recommendations  
When connecting power to the AD9229, it is recommended  
that two separate 3.0 V supplies be used: one for analog  
(AVDD) and one for digital (DRVDD). If only one supply is  
available, it should be routed to the AVDD first and tapped off  
and isolated with a ferrite bead or filter choke with decoupling  
capacitors proceeding. The user can employ several different  
decoupling capacitors to cover both high and low frequencies.  
These should be located close to the point of entry at the PC  
board level and close to the parts with minimal trace length.  
Figure 43. Programmable Reference Configuration  
If the internal reference of the AD9229 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 44  
depicts how the internal reference voltage is affected by loading.  
0.05  
A single PC board ground plane should be sufficient when  
using the AD9229. With proper decoupling and smart parti-  
tioning of the PC boards analog, digital, and clock sections,  
optimum performance is easily achieved.  
0
–0.05  
VREF = 0.5V  
–0.10  
–0.15  
–0.20  
VREF = 1.0V  
–0.25  
–0.30  
–0.35  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
I
(mA)  
LOAD  
Figure 44. VREF Accuracy vs. Load  
Rev. B | Page 22 of 40  
 
 
 
 
AD9229  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Exposed Paddle Thermal Heat Slug Recommendations  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9229. A  
continuous exposed copper plane on the PCB should mate to  
the AD9229 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder or epoxy filled (plugged).  
Figure 46. Typical PCB Layout  
To maximize the solder coverage and adhesion between the  
ADC and PCB, overlay a silkscreen to partition the continuous  
copper plane on the PCB into several uniform sections. This  
provides several tie points between the two during the reflow  
process. Using one continuous plane with no silkscreen  
partitions only guarantees one tie point between the ADC and  
PCB. See Figure 46 for a PCB layout example. For detailed  
information on packaging and the PCB layout of chip scale  
packages, visit www.analog.com.  
Rev. B | Page 23 of 40  
 
AD9229  
EVALUATION BOARD  
power supply. This enables the user to individually bias each  
section of the board. Use P501 to connect a different supply for  
each section. At least one 3.0 V supply is needed with a 1 A  
current capability for AVDD_DUT and DRVDD_DUT;  
however, it is recommended that separate supplies be used for  
both analog and digital. To operate the evaluation board using  
the VGA option, a separate 5.0 V analog supply is needed in  
addition to the other 3.0 V supplies. The 5.0 V supply, or  
AVDD_VGA, should have a 1 A current capability as well.  
The AD9229 evaluation board provides all of the support cir-  
cuitry required to operate the ADC in its various modes and  
configurations. The converter can be driven differentially  
through a transformer (default) or through the AD8332 driver.  
The ADC can also be driven in a single-ended fashion. Separate  
power pins are provided to isolate the DUT from the AD8332  
drive circuitry. Each input configuration can be selected by  
proper connection of various jumpers (see Figure 48 to Figure 52).  
Figure 47 shows the typical bench characterization setup used  
to evaluate the ac performance of the AD9229. It is critical that  
the signal sources used for the analog input and clock have very  
low phase noise (<1 ps rms jitter) to realize the ultimate  
performance of the converter. Proper filtering of the analog  
input signal to remove harmonics and lower the integrated or  
broadband noise at the input is also necessary to achieve the  
specified noise performance.  
INPUT SIGNALS  
When connecting the clock and analog source, use clean signal  
generators with low phase noise, such as Rohde & Schwarz SMHU  
or HP8644 signal generators or the equivalent. Use 1 m long,  
shielded, RG-58, 50 Ω coaxial cable for making connections to  
the evaluation board. Dial in the desired frequency and amplitude  
within the ADCs specifications tables. Typically, most ADI  
evaluation boards can accept a ~2.8 V p-p or 13 dBm sine wave  
input for the clock. When connecting the analog input source, it  
is recommended to use a multipole, narrow-band band-pass  
filter with 50 Ω terminations. ADI uses TTE, Allen Avionics,  
and K&L types of band-pass filters. The filter should be  
connected directly to the evaluation board if possible.  
See Figure 47 to Figure 57 for complete schematics and layout  
plots that demonstrate the routing and grounding techniques  
that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board comes with a wall mountable switching  
power supply that provides a 6 V, 2 A maximum output. Simply  
connect the supply to the rated 100 V to 240 V ac wall outlet at  
47 Hz to 63 Hz. The other end is a 2.1 mm inner diameter jack  
that connects to the PCB at P503. Once on the PC board, the  
6 V supply is fused and conditioned before connecting to three  
low dropout linear regulators that supply the proper bias to each  
of the various sections on the board.  
OUTPUT SIGNALS  
The default setup uses the HSC-ADC-FPGA high speed  
deserialization board, which deserializes the digital output data  
and converts it to parallel CMOS. These two channels interface  
directly with ADIs standard dual-channel FIFO data capture  
board (HSC-ADC-EVALA-DC). Two of the four channels can  
then be evaluated at the same time. For more information on  
channel settings on these boards and their optional settings,  
visit www.analog.com/FIFO.  
When operating the evaluation board in a nondefault condition,  
L504 to L506 can be removed to disconnect the switching  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
6V DC  
2Amax  
5.0V  
3.0V  
3.0V  
+
+
+
SWITCHING  
POWER  
SUPPLY  
HSC-ADC-FPGA  
HIGH SPEED  
DESERIALIZATION  
BOARD  
HSC-ADC-EVALA-DC  
FIFO DATA  
PC  
RUNNING  
ADC  
CAPTURE  
BOARD  
ROHDE & SCHWARZ,  
ANALYZER  
SMHU,  
2V p-p SIGNAL  
SYNTHESIZER  
BAND-PASS  
FILTER  
XFMR  
INPUT  
CHA–CHD  
12-BIT  
SERIAL  
LVDS  
2 CH  
12-BIT  
PARALLEL  
CMOS  
AD9229  
USB  
CONNECTION  
EVALUATION BOARD  
ROHDE & SCHWARZ,  
SMHU,  
CLK  
2V p-p SIGNAL  
SYNTHESIZER  
Figure 47. Evaluation Board Connections  
Rev. B | Page 24 of 40  
 
 
 
 
 
AD9229  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
DTP: To enable one of the two digital test patterns on  
digital outputs of the ADC, use JP202. If Pins 2 and 3 on  
JP202 are tied together (1.0 V source), this enables test  
pattern 1000 0000 0000. If Pins 1 and 2 on JP202 are tied  
together (2.0 V source), this enables test pattern 1010 1010  
1010. See the DTP Pin section for more details.  
The following is a list of the default and optional settings or  
modes allowed on the AD9229 Rev C evaluation board.  
POWER: Connect the switching power supply that is  
supplied in the evaluation kit between a rated 100 V to  
240 V ac wall outlet at 47 Hz to 63 Hz and P503.  
LVDSBIAS: To change the level of the LVDS output level  
swing, simply change the value of R204. Other recom-  
mended values can be found in the Digital Outputs  
section.  
AIN: The evaluation board is set up for a transformer  
coupled analog input with optimum 50 Ω impedance  
matching out to 400 MHz. For more bandwidth response,  
the 2.2 pF differential capacitor across the analog inputs  
could be changed or removed. The common mode of the  
analog inputs is developed from the center tap of the  
transformer or AVDD_DUT/2.  
D+, D–: If an alternate data capture method to the setup  
described in Figure 47 is used, optional receiver  
terminations, R205 to R210, can be installed next to the  
high speed backplane connector.  
ALTERNATE ANALOG INPUT DRIVE  
CONFIGURATION  
VREF: VREF is set to 1.0 V by tying the SENSE pin to  
ground, R224. This causes the ADC to operate in 2.0 V p-p  
full-scale range. A number of other VREF options are  
available on the evaluation board, including 1.0 V p-p full-  
scale range, a variable range that the user can set by  
choosing R219 and R220 as well as a separate external  
reference option using the ADR510 or ADR520. Simply  
populate R218 and R222 and remove C208. To use these  
optional VREF modes, switch the jumper setting on R221  
to R224. Proper use of the VREF options is noted in the  
Voltage Reference section.  
The following is a brief description of the alternate analog input  
drive configuration using the AD8332 dual VGA. This parti-  
cular drive option may need to be populated, in which case all  
the necessary components are listed in Table 11. This table lists  
the necessary settings to properly configure the evaluation  
board for this option. For more details on the AD8332 dual  
VGA, how it works, and its optional pin settings, consult the  
AD8332 data sheet.  
To configure the analog input to drive the VGA instead of the  
default transformer option, the following components need to  
be removed and/or changed.  
CLOCK: The clock input circuitry is derived from a simple  
logic circuit using a high speed inverter that adds a very  
low amount of jitter to the clock path. The clock input is  
50 Ω terminated and ac-coupled to handle sine wave  
type inputs. If using an oscillator, two oscillator footprint  
options are also available (OSC200-201) to check the  
ADCs performance. J203 and J204 give the user flexibility  
in using the enable pin, which is common on most  
oscillators.  
1. Remove R102, R115, R128, R141, T101, T102, T103, and  
T1044 in the default analog input path.  
2. Populate R101, R114, R127, and R140 with 0 Ω resistors in  
the analog input path.  
3. Populate R106, R107, R119, R120, R132, R133, R144, and  
R145 with 10 kΩ resistors to provide an input common-  
mode level to the analog input.  
PWDN: To enable the power-down feature, simply short  
JP201 to AVDD on the PWDN pin.  
4. Populate R105, R113, R118, R124, R131, R137, R151, and  
R43 with 0 Ω resistors in the analog input path.  
5. Currently L305 to L312 and L405 to L412 are populated  
with 0 Ω resistors to allow signal connection. This area  
allows the user to design a filter if additional requirements  
are necessary.  
Rev. B | Page 2± of 40  
 
 
AD9229  
R105  
0Ω  
DNP  
AVDD_DUT  
CH_A  
VGA INPUT  
CONNECTION  
R106  
1kΩ  
R152  
DNP  
FB102  
10  
P102  
DNP  
DNP  
C101  
INH1  
R108  
R104  
T101  
0.1μF  
33Ω  
0Ω  
6
1
2
3
VIN_A  
A
IN  
CHANNEL A  
P101  
R101  
0Ω  
DNP  
R160  
499Ω  
C103  
DNP  
C104  
2.2pF  
R109  
1kΩ  
5
4
C102  
0.1μF  
FB101  
10  
CM1  
CM1  
AIN  
FB103  
10  
R110  
33Ω  
R103  
0Ω  
R102  
65Ω  
VIN_A  
CH_A  
CM1  
R111  
1kΩ  
R113  
0Ω  
DNP  
C105  
DNP  
R107  
1kΩ  
DNP  
R156  
DNP  
C106  
DNP  
AVDD_DUT  
AVDD_DUT  
R112  
1kΩ  
C107  
0.1μF  
VGA INPUT  
R118  
CONNECTION  
0Ω  
AVDD_DUT  
DNP  
INH2  
CH_B  
R119  
1kΩ  
R153  
DNP  
CHANNEL B  
P103  
R114  
0Ω  
FB105  
10  
DNP  
FB104 C108  
R121  
T102  
10  
0.1μF  
33Ω  
6
DNP  
1
2
3
AIN  
VIN_B  
R161  
499Ω  
C110  
DNP  
C111  
2.2pF  
R123  
1kΩ  
5
4
P104  
DNP  
C109  
0.1μF  
R115  
65Ω  
CM2  
CM2  
R116  
0Ω  
FB106  
10  
R122  
33Ω  
A
IN  
R117  
VIN_B  
CH_B  
CM2  
R125  
1kΩ  
0Ω  
R124  
0Ω  
DNP  
C112  
DNP  
R120  
1kΩ  
DNP  
R157  
DNP  
C113  
DNP  
AVDD_DUT  
AVDD_DUT  
R126  
1kΩ  
C114  
0.1μF  
ANALOG INPUTS  
R131  
0Ω  
DNP  
AVDD_DUT  
CH_C  
VGA INPUT  
CONNECTION  
R132  
1kΩ  
R154  
DNP  
FB108  
10  
P106  
DNP  
DNP  
C115  
INH3  
R134  
R130  
T103  
0.1μF  
33Ω  
0Ω  
6
1
2
3
VIN_C  
A
IN  
CHANNEL C  
P105  
R127  
0Ω  
DNP  
R162  
499Ω  
C117  
DNP  
C118  
2.2pF  
R135  
1kΩ  
5
4
C116  
0.1μF  
FB107  
10  
CM3  
CM3  
AIN  
FB109  
10  
R136  
33Ω  
R129  
0Ω  
R128  
65Ω  
VIN_C  
CH_C  
CM3  
R138  
1kΩ  
R137  
0Ω  
DNP  
C119  
DNP  
R133  
1kΩ  
DNP  
R158  
DNP  
C120  
DNP  
AVDD_DUT  
AVDD_DUT  
R139  
1kΩ  
C121  
0.1μF  
VGA INPUT  
R151  
CONNECTION  
0Ω  
AVDD_DUT  
DNP  
INH4  
CH_D  
R144  
1kΩ  
R155  
DNP  
CHANNEL D  
P107  
R140  
0Ω  
FB111  
10  
DNP  
FB110 C122  
R146  
T104  
10  
0.1μF  
33Ω  
6
DNP  
1
2
3
AIN  
VIN_D  
R163  
499Ω  
C124  
DNP  
C125  
2.2pF  
R148  
1kΩ  
5
4
P108  
DNP  
C123  
0.1μF  
R141  
65Ω  
CM4  
CM4  
R143  
0Ω  
FB112  
10  
R147  
33Ω  
A
IN  
R142  
VIN_D  
CH_D  
CM4  
R149  
1kΩ  
0Ω  
R43  
0Ω  
DNP  
C126  
DNP  
R145  
1kΩ  
DNP  
R159  
DNP  
C127  
DNP  
AVDD_DUT  
AVDD_DUT  
R150  
1kΩ  
C128  
0.1μF  
DNP : DO NOT POPULATE  
Figure 48. Evaluation Board Schematic, DUT Analog Inputs  
Rev. B | Page 2ꢀ of 40  
 
AD9229  
U201  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
DRGND  
DRVDD  
DRGND  
DRVDD  
LVDSBIAS  
AGND  
GND  
DRVDD_DUT  
GND  
DRVDD_DUT  
DIGITAL TEST  
PATTERN  
ENABLE  
AVDD_DUT  
3
DNC  
DTP  
4
GND  
AVDD_DUT  
R204  
4.0kΩ  
R201  
10kΩ  
5
PIN 1 TO PIN 2 = 1010 1010 1010  
PIN 2 TO PIN 3 = 1000 0000 0000  
AVDD  
AGND  
PDWN  
AVDD  
AGND  
VIN +A  
VIN –A  
AGND  
AVDD  
AVDD_DUT  
GND  
2
6
1
3
AGND  
GND  
DUTCLK  
JP202  
GND  
R202  
10kΩ  
AD9229  
7
PWDN ENABLE  
JP201  
CLK  
8
AVDD  
AVDD_DUT  
GND  
AVDD_DUT  
GND  
AVDD_DUT  
R228  
10kΩ  
R203  
10kΩ  
9
AGND  
10  
11  
12  
VIN +D  
VIN –D  
AGND  
VIN_A  
VIN_D  
OPTIONAL CLOCK OSCILLATOR  
VIN_A  
GND  
VIN_D  
GND  
DIGITAL OUTPUTS  
P202  
GNDCD10  
R205  
AVDD_DUT  
JP203  
60  
40  
59  
39  
JP204  
C10  
C9  
C8  
C7  
C6  
C5  
D10  
D9  
D8  
D7  
D6  
D5  
DCO  
DCO  
FCO  
CHA  
CHB  
CHC  
CHD  
DNP  
GNDCD9  
50  
49  
48  
47  
46  
45  
AVDD_VGA  
OSC200  
EOH  
R206  
C203  
FCO  
CHA  
CHB  
CHC  
CHD  
1
4
2
3
0.1μF  
DNP  
GNDCD8  
GND  
58  
38  
VCC  
OUTPUT  
R207  
C202  
10μF  
REFERENCE  
DECOUPLING  
C209  
0.1μF  
DNP  
GNDCD7  
CBELV3I66MT  
C204  
C201  
57  
37  
R208  
0.1μF  
0.1μF  
OSC201  
NC/ENB  
DNP  
GNDCD6  
1
7
8
GND  
OUTPUT  
56  
36  
55  
35  
R209  
14  
VCC  
DNP  
GNDCD5  
C210  
0.1μF  
R225  
CX3600C-65  
DNP  
0Ω  
R210  
DNP  
DNP  
GNDCD4  
CLOCK CIRCUIT  
U202  
AVDD_DUT  
54  
34  
C4  
C3  
C2  
C1  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
D4  
D3  
D2  
D1  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
44  
43  
42  
41  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
R212  
GNDCD3  
GNDCD2  
GNDCD1  
GNDAB10  
GNDAB9  
GNDAB8  
GNDAB7  
GNDAB6  
GNDAB5  
GNDAB4  
GNDAB3  
GNDAB2  
GNDAB1  
R229  
R214  
22Ω  
U202  
P201  
ENCODE  
1kΩ  
0Ω  
53  
33  
1
2
3
4
DUTCLK  
INPUT  
R230  
R211 R231  
C205  
0.1μF  
R213  
49.9Ω  
AVDD_DUT:14AVDD_DUT:14  
GND:7  
GND:7  
0Ω  
1kΩ  
0Ω  
DNP  
52  
32  
DNP  
51  
31  
30  
10  
29  
9
EXTERNAL REFERENCE CIRCUIT  
28  
8
AVDD_DUT  
REFERENCE CIRCUIT  
VREF SELECT  
VREF = 1V = DEFAULT  
U203  
ADR510/ADR520  
27  
7
R218  
0Ω  
VREF_DUT  
R215  
2kΩ  
R221  
0Ω  
DNP  
VREF = 0.5V  
TRIM/NC  
1NV VOUT  
26  
6
R222  
C206  
0.1μF  
0Ω  
AVDD_DUT  
VREF = EXTERNAL  
VREF = 0.5V (1 + R219/R220)  
VREF = 1V  
R219  
DNP  
25  
5
R216  
10kΩ  
C207  
0.1μF  
C208  
10μF  
R223  
0Ω  
24  
4
R217  
470kΩ  
CW  
R220  
DNP  
R224  
0Ω  
23  
3
VSENSE_DUT  
22  
2
REMOVE C208 WHEN  
USING EXTERNAL VREF  
21  
1
1469169-1  
R205-R210  
DNP : DO NOT POPULATE  
OPTIONAL OUTPUT  
TERMINATIONS  
Figure 49. Evaluation Board Schematic, DUT, VREF, Clock Inputs, and Digital Output Interface  
Rev. B | Page 2ꢁ of 40  
AD9229  
CH_D  
CH_D  
CH_C  
CH_C  
EXT VG  
JP301  
1
2
R320  
DNP  
R321  
DNP  
POPULATE L305 TO L312  
WITH 0Ω RESISTORS OR  
DESIGN YOUR OWN FILTER  
VG  
GND  
C303  
DNP  
C304  
DNP  
L306  
DNP L307  
DNP  
L308  
DNP  
L305  
DNP  
C305  
DNP  
C306  
DNP  
L310  
DNP L311  
DNP  
L312  
DNP  
L309  
DNP  
R318  
DNP  
R319  
DNP  
R302  
10kΩ  
VG  
C310  
0.1μF  
CW  
C307  
0.1μF  
C309  
R303  
39kΩ  
0.1μF  
R305  
374Ω  
R308  
374Ω  
C308  
0.1μF  
R304  
187Ω  
R306  
187Ω  
R307  
R309  
187Ω  
AVDD_VGA  
187Ω  
C311  
1nF  
C312  
0.1μF  
R310  
100kΩ  
AVDD_VGA  
DNP  
AVDD_VGA  
R312  
10Ω  
U301  
AVDD_VGA  
25  
26  
27  
28  
29  
30  
31  
32  
16  
ENBV  
ENBL  
HILO  
VCM1  
VIN1  
RCLMP  
R311  
10kΩ  
DNP  
R311  
10kΩ  
DNP  
15  
14  
13  
12  
11  
10  
9
VG  
GAIN  
MODE  
VCM2  
VIN2  
AD8332  
VIP1  
VIP2  
C313  
0.1μF  
C314  
0.1μF  
COM1  
LOP1  
COM2  
LOP2  
C315  
0.1μF  
C316  
0.1μF  
R314  
10kΩ  
C317  
10μF  
C318  
0.1μF  
R315  
274Ω  
R316  
274Ω  
C319  
0.1μF  
C320  
10μF  
R317  
10kΩ  
DNP  
C321  
18nF  
C322  
18nF  
C325  
0.1μF  
C326  
0.1μF  
C323  
22pF  
C324  
22pF  
L313  
120nH  
L314  
120nH  
C327  
0.1μF  
C328  
0.1μF  
DNP : DO NOT POPULATE  
INH4  
INH3  
Figure 50. Evaluation Board Schematic, Optional DUT Analog Input Drive  
Rev. B | Page 2ꢂ of 40  
AD9229  
CH_B  
CH_B  
CH_A  
CH_A  
R417  
R418  
POPULATE L405 TO L412  
WITH 0Ω RESISTORS OR  
DESIGN YOUR OWN FILTER  
DNP  
DNP  
C403  
DNP  
C404  
DNP  
L406  
DNP L407  
DNP  
L408  
DNP  
L405  
DNP  
C405  
DNP  
C406  
DNP  
L410  
DNP L411  
DNP  
L412  
DNP  
L409  
DNP  
R415  
DNP  
R416  
DNP  
C410  
0.1μF  
C407  
0.1μF  
C409  
0.1μF  
R404  
374Ω  
R407  
374Ω  
C408  
0.1μF  
R403  
187Ω  
R405  
187Ω  
R406  
187Ω  
R408  
187Ω  
C411  
1nF  
C412  
0.1μF  
R409  
100kΩ  
DNP  
AVDD_VGA  
AVDD_VGA  
R402  
10kΩ  
U401  
AVDD_VGA  
25  
26  
27  
28  
29  
30  
31  
32  
16  
ENBV  
ENBL  
HILO  
VCM1  
VIN1  
RCLMP  
R401  
10kΩ  
DNP  
R409  
10kΩ  
DNP  
15  
14  
13  
12  
11  
10  
9
VG  
GAIN  
MODE  
VCM2  
VIN2  
AD8332  
VIP1  
VIP2  
C413  
0.1μF  
C414  
0.1μF  
COM1  
LOP1  
COM2  
LOP2  
C415  
0.1μF  
C416  
0.1μF  
R411  
10kΩ  
C417  
10μF  
C418  
0.1μF  
R412  
274Ω  
R413  
274Ω  
C419  
0.1μF  
C420  
10μF  
R414  
10kΩ  
DNP  
C423  
18nF  
C424  
18nF  
C421  
0.1μF  
C422  
0.1μF  
C425  
22pF  
C426  
22pF  
L413  
120pH  
L414  
120nH  
C427  
0.1μF  
C428  
0.1μF  
DNP : DO NOT POPULATE  
INH2  
INH1  
Figure 51. Evaluation Board Schematic, Optional DUT Analog Input Drive Continued  
Rev. B | Page 29 of 40  
AD9229  
D502  
SHOT_RECT  
3A  
POWER SUPPLY INPUT  
6V  
2A MAX  
FER501  
F501  
CHOKE_COIL DO-214AB  
PWR_IN  
4
1
3
2
P503  
SMDC110F  
1
R500  
374Ω  
D501  
S2A_RECT  
2A  
C501  
10μF  
CR500  
2
3
DO-214AA  
U501  
ADP33339AKC-3  
L504  
10μH  
3
2
4
PWR_IN  
INPUT  
OUTPUT1  
DUT_AVDD  
C502  
1μF  
C503  
1μF  
OUTPUT4  
GND  
1
U502  
ADP33339AKC-5  
L506  
10μH  
3
2
4
PWR_IN  
VGA_AVDD  
INPUT  
OUTPUT1  
C514  
1μF  
C515  
1μF  
OUTPUT4  
GND  
1
U503  
ADP33339AKC-3  
INPUT OUTPUT1  
L505  
10μH  
3
2
4
PWR_IN  
DUT_DRVDD  
C506  
C507  
1μF  
OUTPUT4  
1μF  
GND  
1
OPTIONAL POWER INPUT  
P501  
DNP  
L503  
10μH  
1
2
3
4
5
6
VGA_AVDD  
DUT_AVDD  
DUT_DRVDD  
P1  
P2  
P3  
P4  
P5  
P6  
AVDD_VGA 5.0V  
AVDD_DUT 3.0V  
DRVDD_DUT 3.0V  
C516  
10μF  
C517  
0.1μF  
L502  
10μH  
C508  
10μF  
C509  
0.1μF  
L501  
10μH  
C504  
10μF  
C505  
0.1μF  
DNP : DO NOT POPULATE  
Figure 52. Evaluation Board Schematic, Power Supply Inputs  
Rev. B | Page 30 of 40  
 
AD9229  
DECOUPLING CAPACITORS  
DRVDD_DUT  
C613  
C614  
0.1μF  
0.1μF  
AVDD_VGA  
C617  
C618  
0.1μF  
C619  
0.1μF  
C620  
0.1μF  
C625  
0.1μF  
C628  
0.1μF  
0.1μF  
AVDD_DUT  
C627  
0.1μF  
C630  
0.1μF  
C631  
0.1μF  
C621  
0.1μF  
C632  
0.1μF  
H1 H2  
H3 H4  
UNUSED GATES  
U202  
5
6
GND  
MOUNTING HOLES  
CONNECTED TO GROUND  
AVDD_DUT : 14  
GND : 7  
U202  
8
9
AVDD_DUT : 14  
GND : 7  
U202  
10  
11  
13  
AVDD_DUT : 14  
GND : 7  
U202  
12  
AVDD_DUT : 14  
GND : 7  
DNP : DO NOT POPULATE  
Figure 53. Evaluation Board Schematic, Decoupling and Miscellaneous  
Rev. B | Page 31 of 40  
AD9229  
Figure 54. Evaluation Board Layout, Primary Side  
Rev. B | Page 32 of 40  
AD9229  
Figure 55. Evaluation Board Layout, Ground Plane  
Rev. B | Page 33 of 40  
AD9229  
Figure 56. Evaluation Board Layout, Power Plane  
Rev. B | Page 34 of 40  
AD9229  
Figure 57. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. B | Page 3± of 40  
 
AD9229  
Table 11. Evaluation Board Bill of Materials (BOM)  
Qnty.  
per  
Board  
Item  
REFDES  
Device  
Pkg.  
PCB  
402  
Value  
Mfg.  
Mfg. Part Number  
1
2
1
±9  
AD9229LFCSP_REVC  
PCB  
PCB  
0.1 ꢃF, ceramic,  
X±R, 10 V, 10% tol  
C32ꢁ, C32ꢂ, Cꢀ30, Cꢀ2ꢂ, Capacitor  
Cꢀ29, Cꢀ31, Cꢀ32, C101,  
C102, C10ꢁ, C10ꢂ, C109,  
C114, C11±, C11ꢀ, C121,  
C122, C123, C12ꢂ, C201,  
C203, C204, C20±, C20ꢀ,  
C20ꢁ, C313, C314, C31±,  
C312, C31ꢂ, C319, C412,  
C31ꢀ, C32±,C32ꢀ, C413,  
C414, C41±, C41ꢂ, C419,  
C41ꢀ, C421, C422, C42ꢁ,  
C42ꢂ, C±0±, C±09, C±1ꢁ,  
Cꢀ13, Cꢀ14, Cꢀ1ꢁ, Cꢀ1ꢂ,  
Cꢀ19, Cꢀ20, Cꢀ21, Cꢀ2±,  
C209, C210, Cꢀ2ꢁ  
Panasonic  
ECJ-0EB1A104K  
3
4
4
9
C104, C111, C11ꢂ, C12±  
Capacitor  
402  
ꢂ0±  
2.2 pF, ceramic,  
COG, 0.2± pF tol,  
±0 V  
10 ꢃF, .3 V ±10%  
ceramic X±R  
Murata  
AVX  
GRM1±±±C1H2R2GZ01B  
0ꢂ0±ꢀD10ꢀKAT2A  
C202, C20ꢂ, C31ꢁ, C320, Capacitor  
C41ꢁ, C420, C±04, C±0ꢂ,  
C±1ꢀ  
±
2
4
4
1
1
1
C30ꢁ, C30ꢂ, C309, C310, Capacitor  
C40ꢁ, C40ꢂ, C409, C410  
ꢀ03  
402  
402  
402  
120ꢀ  
ꢀ03  
ꢀ03  
0.1 ꢃF, ceramic,  
XꢁR, 1ꢀ V, 10% tol  
1000 pF, ceramic,  
XꢁR, 2± V, 10% tol  
0.01ꢂ ꢃF, ceramic,  
XꢁR, 1ꢀ V, 10% tol  
22 pF, ceramic,  
NPO, ±% tol, ±0 V  
10 ꢃF, tantalum,  
1ꢀ V, 10% tol  
1 ꢃF, ceramic, X±R,  
ꢀ.3 V, 10% tol  
Kemet  
C0ꢀ03C104K4RACTU  
C0402C102K3RACTU  
0402YC1ꢂ3KAT2A  
C0402C220J±GACTU  
T491B10ꢀK01ꢀAS  
ECJ-1VB0J10±K  
C311, C411  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Kemet  
C321, C322, C423, C424  
C323, C324, C42±, C42ꢀ  
C±01  
AVX  
Kemet  
9
Kemet  
10  
11  
12  
C±02, C±03, C±0ꢀ, C±0ꢁ, Capacitor  
C±14, C±1±  
Panasonic  
Panasonic  
CR±00  
LED  
Green, 4 V, ± m  
candela  
LNJ314GꢂTRA  
D±02  
Diode  
DO-214AB 3 A, 30 V, SMC  
Micro  
SK33MSCT  
Commercial  
Co.  
13  
14  
1
1
D±01  
Diode  
Fuse  
DO-214AA 2 A, ±0 V, SMC  
Micro  
Commercial  
Co.  
S2A  
F±01  
1210  
ꢀ.0 V, 2.2 A trip  
current resettable  
fuse  
Tyco/Raychem NANOSMDC110F-2  
1±  
1ꢀ  
1
FER±01  
Ferrite  
bead  
Ferrite  
bead  
2020  
ꢀ03  
10 ꢃH, ± A, ±0 V,  
190 Ω @ 100 MHz  
10 Ω, test freq  
100 MHz, 2±% tol,  
±00 mA  
Murata  
Murata  
DLW±BSN191SQ2L  
BLM1ꢂBA100SN1  
12  
FB101, FB102, FB103,  
FB104, FB10±, FB10ꢀ,  
FB10ꢁ, FB10ꢂ, FB109,  
FB110, FB111, FB112  
1ꢁ  
1ꢂ  
2
3
JP201, JP301  
Connector  
Connector  
2-pin  
3-pin  
100 mil header  
jumper, 2-pin  
100 mil header  
jumper, 3-pin  
Samtec  
Samtec  
TSW-102-0ꢁ-G-S  
TSW-103-0ꢁ-G-S  
JP204, JP203, JP202  
Rev. B | Page 3ꢀ of 40  
 
AD9229  
Qnty.  
per  
Board  
Item  
REFDES  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
19  
L±01, L±02, L±03, L±04,  
L±0±, L±0ꢀ  
Ferrite  
bead  
1210  
10 ꢃH, bead core  
3.2 × 2.± × 1.ꢀ SMD, ECG  
2 A  
120 nH, test freq  
100 MHz, ±% tol,  
1±0 mA  
Panasonic -  
EXC-CL322±U1  
LQG1±HNR12J02B  
ERJ-ꢀGEY0R00V  
20  
21  
4
L313, L314, L413, L414  
Inductor  
Resistor  
402  
ꢂ0±  
Murata  
12  
L30±, L30ꢀ, L30ꢁ, L30ꢂ,  
L309, L310, L40±, L40ꢀ,  
L40ꢁ, L40ꢂ, L409, L410,  
L311, L312, L411, L412  
0 Ω, 1/ꢂ W, ±% tol  
Panasonic  
22  
23  
1
±
OSC200  
Oscillator  
SMT  
SMA  
Clock oscillator,  
ꢀꢀ.ꢀꢀ MHz, 3.3 V  
Sidemount SMA  
for 0.0ꢀ3" board  
thickness  
CTS REEVES  
CB3LV-3C-ꢀꢀMꢀꢀꢀꢀ-T  
142-0ꢁ11-ꢂ21  
P201, P101, P103, P10±,  
P10ꢁ  
Connector  
Johnson  
Components  
24  
1
P202  
Connector  
HEADER  
14ꢀ91ꢀ9-1, right  
angle 2-pair,  
2± mm, header  
assembly  
Tyco  
14ꢀ91ꢀ9-1  
2±  
2ꢀ  
1
P±03  
Connector  
Resistor  
0.1", PCMT  
402  
RAPCꢁ22, power  
supply connector  
10 kΩ, 1/1ꢀ W, ±%  
tol  
Switchcraft  
SC11±3  
10  
R201, R202, R22ꢂ, R203,  
R312, R314, R31ꢁ, R402,  
R411, R414  
Yageo  
America  
9C04021A1002JLHF3  
2ꢁ  
2ꢂ  
4
R22±, R129, R142, R224  
R102, R11±, R12ꢂ, R141  
R104, R11ꢀ, R130, R143  
R111, R112, R12±, R12ꢀ,  
R13ꢂ, R139, R149, R1±0,  
R211, R212, R109, R123,  
R13±, R14ꢂ  
Resistor  
Resistor  
402  
402  
0 Ω, 1/1ꢀ W, ±% tol  
Yageo  
America  
Panasonic  
9C04021A0R00JLHF3  
ERJ-2RKFꢀ4R9X  
ꢀ4.9 Ω, 1/1ꢀ W,  
1% tol  
0 Ω, 1/10 W, ±% tol  
29  
30  
4
14  
Resistor  
Resistor  
ꢀ03  
402  
Panasonic  
ERJ-3GEY0R00V  
ERJ-2RKF1001X  
1 kΩ, 1/1ꢀ W, 1% tol Panasonic  
31  
32  
33  
34  
3±  
3ꢀ  
3ꢁ  
4
1
1
1
1
2
R10ꢂ, R110, R121, R122,  
R134, R13ꢀ, R14ꢀ, R14ꢁ  
R1ꢀ0, R1ꢀ1, R1ꢀ2, R1ꢀ3  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
402  
402  
402  
402  
402  
402  
3-lead  
33 Ω, 1/1ꢀ W, ±%  
tol  
499 Ω, 1/1ꢀ W,  
1% tol  
2 kΩ, 1/1ꢀ W, ±% tol Yageo  
America  
4.02 kΩ, 1/1ꢀ W,  
1% tol  
49.9 Ω, 1/1ꢀ W,  
0.±% tol  
22 Ω, 1/1ꢀ W,  
±% tol  
10 kΩ, Cermet  
trimmer  
Yageo  
America  
Panasonic  
9C04021A33R0JLHF3  
ERJ-2RKF4990X  
R21±  
9C04021A2001JLHF3  
ERJ-2RKF4021X  
R204  
Panasonic  
R213  
Susumu  
RR0±10R-49R9-D  
9C04021A22R0JLHF3  
CT-94W-103  
R214  
Yageo  
America  
BC  
R21ꢀ,R302  
Potentiom  
eter  
Components  
potentiometer,  
1ꢂ turn top adjust,  
10%, ½ W  
3ꢂ  
39  
40  
1
1
R21ꢁ  
R303  
Resistor  
Resistor  
Resistor  
402  
402  
402  
4ꢁ0 kΩ, 1/1ꢀ W,  
±% tol  
39 kΩ, 1/1ꢀ W,  
±% tol  
1ꢂꢁ Ω, 1/1ꢀ W,  
1% tol  
Yageo  
America  
Susumu  
9C04021A4ꢁ03JLHF3  
RR0±10P-393-D  
R304, R30ꢀ, R30ꢁ, R309,  
R403, R40±, R40ꢀ, R40ꢂ,  
Panasonic  
ERJ-2RKF1ꢂꢁ0X  
Rev. B | Page 3ꢁ of 40  
AD9229  
Qnty.  
per  
Board  
Item  
REFDES  
Device  
Pkg.  
Value  
Mfg.  
Mfg. Part Number  
41  
4
4
4
R30±, R30ꢂ, R404, R40ꢁ,  
R±00  
R31±, R31ꢀ, R412, R413  
Resistor  
402  
3ꢁ4 Ω, 1/1ꢀ W,  
1% tol  
2ꢁ4 Ω, 1/1ꢀ W,  
1% tol  
ADT1-1WT, 1:1  
impedance ratio  
transformer  
Panasonic  
ERJ-2RKF3ꢁ40X  
42  
43  
Resistor  
402  
Panasonic  
ERJ-2RKF2ꢁ40X  
ADT1-1WT  
T101, T102, T103, T104  
Transforme CD±42  
r
Mini-Circuits  
44  
4±  
2
2
U±01, U±03  
U301, U401  
IC  
IC  
SOT-223  
ADP33339AKC-3,  
1.± A, 3.0 V LDO  
regulator  
ADꢂ332ACP,  
ultralow noise  
precision dual VGA  
ADI  
ADI  
ADP33339AKC-3  
ADꢂ332ACP  
LFCSP, CP-  
32  
4ꢀ  
4ꢁ  
1
1
U±02  
U201  
IC  
IC  
SOT-223  
LFCSP, CP-  
4ꢂ-1  
ADP33339AKC-±  
AD9229-ꢀ±, quad  
12-bit, ꢀ± MSPS  
ADI  
ADI  
ADP33339AKC-±  
AD9229ABCPZ-ꢀ±  
serial LVDS 3 V ADC  
4ꢂ  
1
U203  
IC  
IC  
SOT-23  
ADR±10AR, 1.0 V,  
precision low noise  
shunt voltage  
reference  
ꢁ4VHC04MTC, hex  
inverter  
ADI  
ADR±10AR  
49  
±0  
1
4
U202  
TSSOP  
Fairchild  
Richco  
ꢁ4VHC04MTC  
MP101-104  
Part of  
assembly  
CBSB-14-01A-RT,  
ꢁ/ꢂ" height,  
CBSB-14-01A-RT  
standoffs for circuit  
board support  
±1  
±2  
4
4
MP10±-10ꢂ  
MP109-112  
Part of  
assembly  
Part of  
assembly  
SNT-100-BK-G-H,  
100 mil jumpers  
±-330ꢂ0ꢂ-3, pin  
sockets, closed end  
for OSC200  
Samtec  
AMP  
SNT-100-BK-G-H  
±-330ꢂ0ꢂ-3  
Rev. B | Page 3ꢂ of 40  
AD9229  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.23  
0.18  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
0.50  
REF  
6.85  
*
5.55  
5.50 SQ  
5.45  
6.75 SQ  
6.65  
EXPOSED  
PAD  
(BOTTOM VIEW)  
25  
24  
12  
13  
0.50  
0.40  
0.30  
0.22 MIN  
TOP VIEW  
5.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.08  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 58. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad  
(CP-48-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +ꢂ±°C  
–40°C to +ꢂ±°C  
–40°C to +ꢂ±°C  
–40°C to +ꢂ±°C  
Package Description  
Package Option  
CP-4ꢂ-ꢂ  
CP-4ꢂ-ꢂ  
CP-4ꢂ-ꢂ  
CP-4ꢂ-ꢂ  
AD9229ABCPZ-ꢀ±  
AD9229ABCPZRLꢁ-ꢀ±  
AD9229ABCPZ-±0  
AD9229ABCPZRLꢁ-±0  
4ꢂ-Lead LFCSP_VQ  
4ꢂ-Lead LFCSP_VQ  
4ꢂ-Lead LFCSP_VQ  
4ꢂ-Lead LFCSP_VQ  
1 Z = RoHS Compliant Part.  
Rev. B | Page 39 of 40  
 
 
AD9229  
NOTES  
© 2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04418–0–5/10(B)  
Rev. B | Page 40 of 40  

相关型号:

AD9229ABCPZRL7-50

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229ABCPZRL7-65

Quad, 12-Bit, 50/65 MSPS, Serial, LVDS, 3 V A/D Converter
ADI

AD9229BCP-50

Quad 12-Bit, 50/65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9229BCP-65

Quad 12-Bit, 50/65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9229BCPZ-50

4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD9229BCPZ-50

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter
ADI

AD9229BCPZ-65

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter
ADI

AD9229BCPZRL7-50

4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48
ROCHESTER

AD9229BCPZRL7-50

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter
ADI

AD9229BCPZRL7-65

IC 4-CH 12-BIT PROPRIETARY METHOD ADC, SERIAL ACCESS, QCC48, LEAD FREE, MO-220-VKKD-2, LFCSP-48, Analog to Digital Converter
ADI

AD9230

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-11

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter
ADI