AD9230-11 [ADI]

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter; 11位, 200 MSPS , 1.8 V模拟数字转换器
AD9230-11
型号: AD9230-11
厂家: ADI    ADI
描述:

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter
11位, 200 MSPS , 1.8 V模拟数字转换器

转换器
文件: 总28页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11-Bit, 200 MSPS,  
1.8 V Analog-to-Digital Converter  
AD9230-11  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
RBIAS  
PWDN  
AGND  
AVDD  
SNR = 62.5 dBFS @ fIN up to 70 MHz @ 200 MSPS  
ENOB of 10.2 @ fIN up to 70 MHz @ 200 MSPS (−1.0 dBFS)  
SFDR = −77 dBc @ fIN up to 70 MHz @ 200 MSPS (−1.0 dBFS)  
Excellent linearity  
REFERENCE  
AD9230-11  
CML  
DRVDD  
DRGND  
VIN+  
VIN–  
DNL = 0.15 LSB typical  
TRACK-AND-HOLD  
INL = 0.5 LSB typical  
12  
11  
ADC  
12-BIT  
CORE  
OUTPUT  
STAGING  
LVDS  
D10 TO D0  
LVDS at 200 MSPS (ANSI-644 levels)  
700 MHz full power analog bandwidth  
On-chip reference, no external decoupling required  
Integrated input buffer and track-and-hold amplifier  
Low power dissipation  
CLK+  
CLK–  
CLOCK  
MANAGEMENT  
OR+  
OR–  
SERIAL PORT  
DCO+  
DCO–  
373 mW @ 200 MSPS (LVDS SDR mode)  
328 mW @ 200 MSPS (LVDS DDR mode)  
Programmable input voltage range  
1.0 V to 1.5 V, 1.25 V nominal  
RESET SCLK SDIO CSB  
Figure 1.  
1.8 V analog and digital supply operation  
Selectable output data format (offset binary, twos  
complement, gray code)  
Clock duty cycle stabilizer  
Integrated data capture clock  
APPLICATIONS  
Wireless and wired broadband communications  
Cable reverse path  
Communications test equipment  
Radar and satellite subsystems  
Power amplifier linearization  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD9230-11 is an 11-bit monolithic sampling analog-to-  
digital converter (ADC) optimized for high performance,  
low power, and ease of use. The product operates at up to a  
200 MSPS conversion rate and is optimized for outstanding  
dynamic performance in wideband carrier and broadband  
systems. All necessary functions, including a track-and-hold  
(T/H) amplifier and voltage reference, are included on the  
chip to provide a complete signal conversion solution.  
1. High Performance. Maintains 62.5 dBFS SNR  
@ 200 MSPS with a 70 MHz input.  
2. Low Power. Consumes only 373 mW @ 200 MSPS.  
3. Ease of Use. LVDS output data and output clock signal  
allow interface to current FPGA technology. The on-chip  
reference and sample-and-hold provide flexibility in  
system design. Use of a single 1.8 V supply simplifies  
system power supply design.  
4. Serial Port Control. Standard serial port interface (SPI)  
supports various product functions, such as data formatting,  
disabling the clock duty cycle stabilizer, power-down, gain  
adjust, and output test pattern generation.  
5. Pin-Compatible Family. 10-bit and 12-bit pin-compatible  
family offered as AD9211 and AD9230.  
The ADC requires a 1.8 V analog voltage supply and a  
differential clock for full performance operation. The digital  
outputs are LVDS (ANSI-644) compatible and support twos  
complement, offset binary format, or Gray code. A data clock  
output is available for proper output data timing.  
Fabricated on an advanced CMOS process, the AD9230-11 is  
available in a 56-lead lead frame chip scale package, specified  
over the industrial temperature range (−40°C to +85°C).  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
AD9230-11  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 16  
Analog Input and Voltage Reference ....................................... 16  
Clock Input Considerations...................................................... 17  
Power Dissipation and Power-Down Mode ........................... 18  
Digital Outputs ........................................................................... 18  
Timing ......................................................................................... 19  
RBIAS........................................................................................... 19  
Configuration Using the SPI..................................................... 19  
Hardware Interface..................................................................... 20  
Configuration Without the SPI ................................................ 20  
Memory Map .................................................................................. 22  
Reading the Memory Map Table.............................................. 22  
Reserved Locations .................................................................... 22  
Default Values............................................................................. 22  
Logic Levels................................................................................. 22  
Transfer Register Map................................................................ 22  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagrams.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 13  
Equivalent Circuits......................................................................... 15  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD9230-11  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 1.  
Parameter1  
RESOLUTION  
ACCURACY  
Temp  
Min  
Typ  
Max  
Unit  
11  
Bits  
No Missing Codes  
Offset Error  
Full  
25°C  
Full  
25°C  
Full  
25°C  
Full  
Guaranteed  
4.2  
mV  
mV  
−12  
−2.2  
−0.4  
−0.5  
+12  
+4.3  
+0.4  
+0.5  
Gain Error  
0.89  
0.15  
0.5  
% FS  
% FS  
LSB  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
25°C  
Full  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
9
μV/°C  
%/°C  
0.019  
ANALOG INPUTS (VIN+, VIN−)  
Differential Input Voltage Range2  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
POWER SUPPLY  
Full  
Full  
Full  
25°C  
0.98  
1.25  
1.4  
4.3  
2
1.5  
V p-p  
V
kΩ  
pF  
AVDD  
DRVDD  
Full  
Full  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
Supply Currents  
3
IAVDD  
Full  
Full  
Full  
Full  
Full  
Full  
152  
55  
36  
164  
58  
mA  
mA  
mA  
IDRVDD3/SDR Mode4  
IDRVDD3/DDR Mode5  
Power Dissipation3  
SDR Mode4  
373  
338  
400  
mW  
mW  
DDR Mode5  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and an explanation of how these tests were  
completed.  
2 The input range is programmable through the SPI, and the range specified reflects the nominal values of each setting. See the Memory Map section.  
3 IAVDD and IDRVDD are measured with a −1 dBFS, 10.3 MHz sine input at rated sample rate.  
4 Single data rate mode; this is the default mode of the AD9230-11.  
5 Double data rate mode; user-programmable feature. See the Memory Map section.  
Rev. 0 | Page 3 of 28  
 
 
 
 
 
AD9230-11  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.1  
Table 2.  
Parameter2  
SNR  
Temp  
Min  
Typ  
62.9  
62.5  
61.8  
62.8  
62.3  
61.5  
Max  
Unit  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
62.4  
62.2  
62.2  
62.0  
dB  
dB  
dB  
dB  
dB  
fIN = 70 MHz  
fIN = 170 MHz  
SINAD  
fIN = 10 MHz  
25°C  
25°C  
Full  
25°C  
Full  
62.3  
62.1  
62.0  
61.8  
dB  
dB  
dB  
dB  
dB  
fIN = 70 MHz  
fIN = 170 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 10 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
10.3  
10.2  
10.1  
Bits  
Bits  
Bits  
fIN = 170 MHz  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
−86  
−79  
−76  
−88  
−84  
−77  
−77  
−77  
−76  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 70 MHz  
fIN = 170 MHz  
25°C  
WORST OTHER (SFDR EXCLUDING SECOND AND THIRD)  
fIN = 10 MHz  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
−84  
−79  
−82  
−81  
dBc  
dBc  
dBc  
dBc  
dBc  
MHz  
fIN = 70 MHz  
fIN = 170 MHz  
−82  
700  
ANALOG INPUT BANDWIDTH  
1 All ac specifications tested by driving CLK+ and CLK− differentially.  
2 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and an explanation of how these tests were  
completed.  
Rev. 0 | Page 4 of 28  
 
 
 
AD9230-11  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 3.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS  
Logic Compliance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance (Differential)  
Input Capacitance  
1.2  
V
V p-p  
V
V
V
0.2  
AGND − 0.3  
6
AVDD + 1.6  
AVDD  
3.6  
1.1  
1.2  
0
−10  
−10  
16  
0.8  
V
+10  
+10  
24  
μA  
μA  
kΩ  
pF  
20  
4
LOGIC INPUTS  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
0.8 × AVDD  
V
V
0.2 × AVDD  
Logic 1 Input Current (SDIO)  
Logic 0 Input Current (SDIO)  
Logic 1 Input Current (SCLK, PWDN, CSB, RESET)  
Logic 0 Input Current (SCLK, PWDN, CSB, RESET)  
Input Capacitance  
0
μA  
μA  
μA  
μA  
pF  
−60  
55  
0
4
LOGIC OUTPUTS2  
VOD Differential Output Voltage  
VOS Output Offset Voltage  
Output Coding  
Full  
Full  
247  
1.125  
454  
1.375  
mV  
V
Twos complement, gray code, or offset binary (default)  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions and an explanation of how these tests were  
completed.  
2 LVDS RTERMINATION = 100 Ω.  
Rev. 0 | Page 5 of 28  
 
 
AD9230-11  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, TMIN = −40°C, TMAX = +85°C, fIN = −1.0 dBFS, full scale = 1.25 V, DCS enabled, unless otherwise noted.  
Table 4.  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
CONVERSION RATE  
Maximum Conversion Rate  
Minimum Conversion Rate  
PULSE WIDTH  
Full  
Full  
200  
MSPS  
MSPS  
40  
CLK+ Pulse Width High (tCH  
CLK+ Pulse Width Low (tCL)  
OUTPUT (LVDS, SDR MODE)1  
)
Full  
Full  
2.25  
2.25  
2.5  
2.5  
ns  
ns  
Data Propagation Delay (tPD  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
)
Full  
3.8  
0.2  
0.2  
3.9  
0.1  
6
ns  
ns  
ns  
ns  
ns  
Cycles  
25°C  
25°C  
Full  
Full  
Full  
DCO Propagation Delay (tCPD  
)
Data to DCO Skew (tSKEW  
Latency  
)
−0.3  
−0.5  
0.5  
0.3  
OUTPUT (LVDS, DDR MODE)2  
Data Propagation Delay (tPD  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
)
Full  
3.8  
0.2  
0.2  
3.9  
0.1  
6
ns  
ns  
ns  
ns  
ns  
Cycles  
ps rms  
25°C  
25°C  
Full  
Full  
Full  
DCO Propagation Delay (tCPD  
)
Data to DCO Skew (tSKEW  
Latency  
)
APERTURE UNCERTAINTY (JITTER, tJ)  
25°C  
0.2  
1 See Figure 2.  
2 See Figure 3.  
Rev. 0 | Page 6 of 28  
 
 
AD9230-11  
TIMING DIAGRAMS  
N – 1  
tA  
N + 4  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCL  
1/fS  
CLK+  
CLK–  
tCPD  
DCO+  
DCO–  
tSKEW  
tPD  
Dx+  
Dx–  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
Figure 2. Single Data Rate Mode  
N – 1  
tA  
N + 4  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCL  
1/fS  
CLK+  
CLK–  
tCPD  
DCO+  
DCO–  
tSKEW  
tPD  
D5+  
D5–  
D5  
N – 7  
NO  
DATA  
D5  
N – 6  
NO  
DATA  
D5  
N – 5  
NO  
DATA  
D5  
N – 4  
NO  
DATA  
D5  
N – 3  
NO  
DATA  
D4/D10+  
D4/D10–  
D10  
D4  
N – 6  
D10  
N – 6  
D4  
N – 5  
D10  
N – 5  
D4  
N – 4  
D10  
N – 4  
D4  
N – 3  
D10  
N – 3  
D4  
N – 2  
N – 7  
6 MSBs  
5 LSBs  
Figure 3. Double Data Rate Mode  
Rev. 0 | Page 7 of 28  
 
 
 
AD9230-11  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 5.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to DRGND  
AGND to DRGND  
AVDD to DRVDD  
D0+/D0− through D10+/D10−  
to DRGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−2.0 V to +2.0 V  
−0.3 V to DRVDD + 0.3 V  
THERMAL RESISTANCE  
The exposed paddle must be soldered to the ground plane  
for the LFCSP package. Soldering the exposed paddle to the  
customer board increases the reliability of the solder joints,  
maximizing the thermal capability of the package.  
DCO+/DCO− to DRGND  
OR+/OR− to DGND  
CLK+ to AGND  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to +3.9 V  
CLK− to AGND  
−0.3 V to +3.9 V  
Table 6.  
Package Type  
VIN+ to AGND  
VIN− to AGND  
SDIO/DCS to DGND  
PWDN to AGND  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to +3.9 V  
θJA  
θJC  
Unit  
56-Lead LFCSP (CP-56-2)  
30.4  
2.9  
°C/W  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal that is in direct contact with the package leads  
reduces the θJA.  
CSB to AGND  
SCLK/DFS to AGND  
Environmental  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering, 10 sec)  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−65°C to +125°C  
−40°C to +85°C  
300°C  
ESD CAUTION  
Junction Temperature  
150°C  
Rev. 0 | Page 8 of 28  
 
AD9230-11  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D2–  
D2+  
D3–  
D3+  
D4–  
1
2
3
4
5
6
7
8
9
PIN 1  
42 AVDD  
41 AVDD  
40 CML  
39 AVDD  
38 AVDD  
37 AVDD  
36 VIN–  
INDICATOR  
D4+  
AD9230-11  
TOP VIEW  
(Not to Scale)  
DRVDD  
DRGND  
D5–  
35 VIN+  
34 AVDD  
33 AVDD  
32 AVDD  
31 RBIAS  
30 AVDD  
29 PWDN  
D5+ 10  
D6– 11  
D6+ 12  
D7– 13  
D7+ 14  
NOTES  
1. DNC = DO NOT CONNECT.  
2. PIN 0 (EXPOSED PADDLE) = AGND.  
Figure 4. Single Data Rate Mode Pin Configuration  
Table 7. Single Data Rate Mode Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
30, 32 to 34, 37 to 39, 41 to AVDD  
43, 46  
1.8 V Analog Supply.  
7, 24, 47  
0
8, 23, 48  
35  
DRVDD  
AGND1  
DRGND1  
VIN+  
1.8 V Digital Output Supply.  
Analog Ground. The exposed paddle should be connected to the analog ground.  
Digital Output Ground.  
Analog Input (True).  
36  
VIN−  
Analog Input (Complement).  
40  
CML  
Common-Mode Output Pin. Enabled through the SPI, this pin provides a reference for the  
optimized internal bias voltage for VIN+/VIN−.  
44  
45  
31  
28  
25  
CLK+  
CLK−  
RBIAS  
RESET  
SDIO/DCS  
Clock Input (True).  
Clock Input (Complement).  
Set Pin for Chip Bias Current. Place 1% 10 kΩ resistor terminated to ground. Nominally 0.5 V.  
CMOS-Compatible Chip Reset (Active Low).  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode). Duty Cycle Stabilizer Select  
(External Pin Mode).  
26  
27  
29  
49  
50  
51, 52  
53  
54  
55  
56  
1
SCLK/DFS  
CSB  
PWDN  
DCO−  
DCO+  
DNC  
D0− (LSB)  
D0+ (LSB)  
D1−  
Serial Port Interface Clock (Serial Port Mode). Data Format Select Pin (External Pin Mode).  
Serial Port Chip Select (Active Low).  
Chip Power-Down.  
Data Clock Output (Complement).  
Data Clock Output Input (True).  
Do No Connect.  
D0 Complement Output Bit (LSB).  
D0 True Output Bit (LSB).  
D1 Complement Output Bit.  
D1+  
D2−  
D1 True Output Bit.  
D2 Complement Output Bit.  
2
D2+  
D2 True Output Bit.  
Rev. 0 | Page 9 of 28  
 
 
AD9230-11  
Pin No.  
3
4
Mnemonic  
D3−  
D3+  
Description  
D3 Complement Output Bit.  
D3 True Output Bit.  
5
6
D4−  
D4+  
D4 Complement Output Bit.  
D4 True Output Bit.  
9
D5−  
D5+  
D6−  
D6+  
D7−  
D7+  
D8−  
D8+  
D9−  
D9+  
D10− (MSB)  
D10+ (MSB)  
OR−  
D5 Complement Output Bit.  
D5 True Output Bit.  
D6 Complement Output Bit.  
D6 True Output Bit.  
D7 Complement Output Bit.  
D77 True Output Bit.  
D8 Complement Output Bit.  
D8 True Output Bit.  
D9 Complement Output Bit.  
D9 True Output Bit.  
D10 Complement Output Bit (MSB).  
D10 True Output Bit (MSB).  
Overrange Complement Output Bit.  
Overrange True Output Bit.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
OR+  
1 AGND and DRGND should be tied to a common quiet ground plane.  
Rev. 0 | Page 10 of 28  
 
AD9230-11  
D2/D8–  
D2/D8+  
D3/D9–  
1
2
3
4
5
6
7
8
9
PIN 1  
42 AVDD  
41 AVDD  
40 CML  
39 AVDD  
38 AVDD  
37 AVDD  
36 VIN–  
INDICATOR  
D3/D9+  
(MSB) D4/D10–  
(MSB) D4/D10+  
DRVDD  
AD9230-11  
TOP VIEW  
(Not to Scale)  
DRGND  
OR–  
35 VIN+  
34 AVDD  
33 AVDD  
32 AVDD  
31 RBIAS  
30 AVDD  
29 PWDN  
OR+ 10  
DNC 11  
DNC 12  
DNC 13  
DNC 14  
NOTES  
1. DNC = DO NOT CONNECT.  
2. PIN 0 (EXPOSED PADDLE) = AGND.  
Figure 5. Double Data Rate Mode Pin Configuration  
Table 8. Double Data Rate Mode Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
30, 32 to 34, 37 to 39, AVDD  
41 to 43, 46  
1.8 V Analog Supply.  
7, 24, 47  
0
8, 23, 48  
35  
DRVDD  
AGND1  
DRGND1  
VIN+  
1.8 V Digital Output Supply.  
Analog Ground. The exposed paddle should be connected to the analog ground.  
Digital Output Ground.  
Analog Input Input (True).  
36  
VIN−  
Analog Input (Complement).  
40  
CML  
Common-Mode Output Pin. Enabled through the SPI, this pin provides a reference for the  
optimized internal bias voltage for VIN+/VIN−.  
44  
45  
31  
28  
25  
CLK+  
CLK−  
RBIAS  
RESET  
SDIO/DCS  
Clock Input Input (True).  
Clock Input (Complement).  
Set Pin for Chip Bias Current. Place 1% 10 kΩ resistor terminated to ground. Nominally 0.5 V.  
CMOS-Compatible Chip Reset (Active Low).  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode).  
Duty Cycle Stabilizer Select (External Pin Mode).  
Serial Port Interface Clock (Serial Port Mode).  
Data Format Select Pin (External Pin Mode).  
Serial Port Chip Select (Active Low).  
Chip Power-Down.  
Data Clock Output (Complement).  
Data Clock Output Input (True).  
ND/D5 Complement Output Bit.  
ND/D5 True Output Bit.  
D0/D6 Complement Output Bit (LSB).  
D0/D6 True Output Bit (LSB).  
26  
SCLK/DFS  
27  
29  
49  
50  
51  
52  
53  
54  
55  
56  
1
CSB  
PWDN  
DCO−  
DCO+  
ND/D5−  
ND/D5+  
D0/D6− (LSB)  
D0/D6+ (LSB)  
D1/D7−  
D1/D7+  
D2/D8−  
D2/D8+  
D1/D7 Complement Output Bit.  
D1/D7 True Output Bit.  
D2/D8 Complement Output Bit.  
D2/D8 True Output Bit.  
2
Rev. 0 | Page 11 of 28  
AD9230-11  
Pin No.  
Mnemonic  
D3/D9−  
D3/D9+  
D4/D10− (MSB)  
D4/D10+ (MSB)  
OR−  
Description  
3
4
5
6
9
D3/D9 Complement Output Bit.  
D3/D9 True Output Bit.  
D4/D10 Complement Output Bit (MSB).  
D4/D10 True Output Bit (MSB).  
OR Complement Output Bit. This pin is disabled if Pin 21 is reconfigured through the SPI to be  
OR−.  
10  
11 to 20  
21  
OR+  
DNC  
DNC/(OR−)  
OR True Output Bit. This pin is disabled if Pin 22 is reconfigured through the SPI to be OR+.  
Do Not Connect.  
Do Not Connect. This pin can be reconfigured as the Overrange Complement Output Bit  
through the serial port register.  
22  
DNC/(OR+)  
Do Not Connect. This pin can be reconfigured as the Overrange True Output Bit through the  
serial port register.  
1 AGND and DRGND should be tied to a common quiet ground plane.  
Rev. 0 | Page 12 of 28  
 
AD9230-11  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, DCS enabled, TA = 25°C, 1.25 V p-p differential input, AIN = −1 dBFS, unless  
otherwise noted.  
0
–20  
85  
80  
75  
70  
65  
60  
55  
50  
200MSPS  
10.3MHz @ –1.0dBFS  
SNR: 62.9dB  
ENOB: 10.3 BITS  
SFDR: 86dBc  
SNR (dB) +85°C  
–40  
–60  
SFDR (dBc) +25°C  
SFDR (dBc) –40°C  
–80  
SNR (dB) +25°C  
–100  
–120  
–140  
SNR (dB) –40°C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 9. Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
Figure 6. 64k Point Single-Tone FFT; 200 MSPS, 10.3 MHz  
with 1.25 V p-p Full-Scale; 200 MSPS  
0
100  
200MSPS  
70.3MHz @ –1.0dBFS  
SNR: 62.5dB  
ENOB: 10.2 BITS  
SFDR: 77dBc  
SFDR (dBFS)  
SNR (dBFS)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
SFDR (dBc)  
SNR (dB)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
FREQUENCY (MHz)  
AMPLITUDE (dBFS)  
Figure 7. 64k Point Single-Tone FFT; 200 MSPS, 70.3 MHz  
Figure 10. SNR/SFDR vs. Input Amplitude; 140.3 MHz  
0
6.0  
200MSPS  
170.3MHz @ –1.0dBFS  
SNR: 61.3dB  
ENOB: 10.1 BITS  
SFDR: 73dBc  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 11. Offset vs. Temperature  
Figure 8. 64k Point Single-Tone FFT; 170 MSPS, 140.3 MHz  
Rev. 0 | Page 13 of 28  
 
AD9230-11  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
512  
1024  
1536  
2048  
0
512  
1024  
1536  
2048  
OUTPUT CODE  
OUTPUT CODE  
Figure 12. DNL  
Figure 14. INL  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
Figure 13. Gain vs. Temperature  
Rev. 0 | Page 14 of 28  
AD9230-11  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
25k  
1kΩ  
CSB  
1.2V  
10k  
10kΩ  
CLK+  
CLK–  
Figure 18. Equivalent CSB Input Circuit  
Figure 15. Clock Inputs  
AVDD  
DRVDD  
AVDD  
V
VIN+  
VIN–  
BUF  
2k  
V+  
V–  
CML  
~1.4V  
BUF  
AVDD  
Dx–  
V–  
Dx+  
V+  
2kΩ  
BUF  
Figure 16. Analog Inputs (VCML = ~1.4 V)  
Figure 19. LVDS Outputs (Dx+, Dx−, OR+, OR−, DCO+, DCO−)  
AVDD  
DRVDD  
25k  
SCLK/DFS  
RESET  
PWDN  
1kΩ  
1kΩ  
SDIO/DCS  
25kΩ  
Figure 17. Equivalent SCLK/DFS, RESET, PWDN Input Circuit  
Figure 20. Equivalent SDIO/DCS Input Circuit  
Rev. 0 | Page 15 of 28  
 
AD9230-11  
THEORY OF OPERATION  
The AD9230-11 architecture consists of a front-end sample-  
and-hold amplifier (SHA) followed by a pipelined switched  
capacitor ADC. The quantized outputs from each stage are  
combined into a final 11-bit result in the digital correction  
logic. The pipelined architecture permits the first stage to  
operate on a new input sample, while the remaining stages operate  
on preceding samples. Sampling occurs on the rising edge of the  
clock.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9230-11  
in a differential input configuration. For baseband applications,  
the AD8138 differential driver provides excellent performance  
and a flexible interface to the ADC. The output common-mode  
voltage of the AD8138 is easily set to AVDD/2 + 0.5 V, and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
1V p-p  
49.9Ω  
499Ω  
AVDD  
VIN+  
33Ω  
499Ω  
523Ω  
20pF  
AD8138  
AD9230-11  
0.1µF  
VIN–  
CML  
33Ω  
499Ω  
The input stage contains a buffered differential SHA that can  
be ac- or dc-coupled. The output staging block aligns the data,  
carries out the error correction, and passes the data to the out-  
put buffers. The output buffers are powered from a separate  
supply, allowing adjustment of the output voltage swing. During  
power-down, the output buffers go into a high impedance state.  
Figure 21. Differential Input Configuration Using the AD8138  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers may not be adequate to achieve the  
true performance of the AD9230-11. This is especially true in IF  
undersampling applications where frequencies in the 70 MHz to  
100 MHz range are being sampled. For these applications, differen-  
tial transformer coupling is the recommended input configuration.  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies below a  
few megahertz and excessive signal power can also cause core  
saturation, leading to distortion. In any configuration, the value of  
the shunt capacitor, C, is dependent on the input frequency and  
may need to be reduced or removed.  
ANALOG INPUT AND VOLTAGE REFERENCE  
The analog input to the AD9230-11 is a differential buffer. For  
best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched such that common-mode  
settling errors are symmetrical. The analog input is optimized  
to provide superior wideband performance and requires that  
the analog inputs be driven differentially. SNR and SINAD  
performance degrades significantly if the analog input is driven  
with a single-ended signal.  
15  
VIN+  
1.25V p-p  
50Ω  
A wideband transformer, such as Mini-Circuits® ADT1-1WT, can  
provide the differential analog inputs for applications that require a  
single-ended-to-differential conversion. Both analog inputs are self-  
biased by an on-chip resistor divider to a nominal 1.4 V. An  
internal differential voltage reference creates positive and negative  
reference voltages that define the 1.25 V p-p fixed span of the ADC  
core. This internal voltage reference can be adjusted by means of  
SPI control. See the Configuration Using the SPI section.  
2pF  
AD9230-11  
VIN–  
15Ω  
0.1µF  
Figure 22. Differential Transformer—Coupled Configuration  
As an alternative to using a transformer-coupled input at frequen-  
cies in the second Nyquist zone, the AD8352 differential driver can  
be used (see Figure 23).  
V
CC  
0.1µF  
11  
0.1µF  
0  
16  
1
8, 13  
0.1µF  
ANALOG INPUT  
R
R
2
VIN+  
200Ω  
200Ω  
C
D
R
D
R
AD8352  
10  
C
AD9230-11  
G
3
4
5
0.1µF  
CML  
VIN–  
ANALOG INPUT  
14  
0.1µF  
0Ω  
0.1µF  
0.1µF  
Figure 23. Differential Input Configuration Using the AD8352  
Rev. 0 | Page 16 of 28  
 
 
AD9230-11  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
CLK+ should be directly driven from a CMOS gate, and the  
CLK− pin should be bypassed to ground with a 0.1 μF capacitor  
in parallel with a 39 kΩ resistor (see Figure 27). Although the  
CLK+ input circuit supply is AVDD (1.8 V), this input is  
designed to withstand input voltages up to 3.3 V (as shown in  
Figure 28), making the selection of the drive logic voltage very  
flexible.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9230-11 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
This signal is typically ac-coupled into the CLK+ pin and the  
CLK− pin via a transformer or capacitors. These pins are biased  
internally and require no additional bias.  
Figure 24 shows a preferred method for clocking the AD9230-11.  
The low jitter clock source is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the secondary transformer limit clock excursions  
into the AD9230-11 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9230-11 and preserves the  
fast rise and fall times of the signal, which are critical to low  
jitter performance.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
CLOCK  
CLK  
INPUT  
OPTIONAL  
100  
0.1µF  
50*  
CLK+  
CMOS DRIVER  
CLK  
ADC  
AD9230-11  
0.1µF  
CLK–  
0.1µF  
39kΩ  
MINI-CIRCUITS  
ADT1–1WT, 1:1Z  
*50RESISTOR IS OPTIONAL.  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
ADC  
AD9230-11  
Figure 27. Single-Ended 1.8 V CMOS Sample Clock  
100  
50Ω  
0.1µF  
CLK–  
AD9510/AD9511/  
AD9512/AD9513/  
0.1µF  
SCHOTTKY  
DIODES:  
HSM2812  
AD9514/AD9515  
0.1µF  
CLOCK  
INPUT  
CLK  
Figure 24. Transformer-Coupled Differential Clock  
OPTIONAL  
0.1µF  
50*  
100Ω  
CLK+  
CMOS DRIVER  
CLK  
If a low jitter clock is available, another option is to ac couple  
a differential PECL signal to the sample clock input pins as  
shown in Figure 25. The AD9510/AD9511/AD9512/AD9513/  
AD9514/AD9515 family of clock drivers offers excellent jitter  
performance.  
ADC  
AD9230-11  
0.1µF  
0.1µF  
CLK–  
*50RESISTOR IS OPTIONAL.  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
Figure 28. Single-Ended 3.3 V CMOS Sample Clock  
0.1µF  
0.1µF  
Clock Duty Cycle Considerations  
CLOCK  
CLK  
PECL DRIVER  
CLK  
CLK+  
ADC  
INPUT  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic performance  
characteristics. The AD9230-11 contains a duty cycle stabilizer  
(DCS) that retimes the nonsampling edge, providing an internal  
clock signal with a nominal 50% duty cycle. This allows a wide  
range of clock input duty cycles without affecting the perform-  
ance of the AD9230-11. When the DCS is on, noise and distortion  
performance are nearly flat for a wide range of duty cycles.  
However, some applications may require the DCS function to  
be off. If so, keep in mind that the dynamic range performance can  
be affected when operated in this mode. See the Configuration  
Using the SPI section for more details on using this feature.  
100Ω  
AD9230-11  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
50*  
50*  
*50RESISTORS ARE OPTIONAL.  
Figure 25. Differential PECL Sample Clock  
AD9510/AD9511/  
AD9512/AD9513/  
AD9514/AD9515  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK  
ADC  
AD9230-11  
100Ω  
LVDS DRIVER  
CLK  
0.1µF  
50*  
0.1µF  
CLOCK  
INPUT  
CLK–  
50*  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately eight clock cycles  
to allow the DLL to acquire and lock to the new rate.  
*50RESISTORS ARE OPTIONAL.  
Figure 26. Differential LVDS Sample Clock  
Rev. 0 | Page 17 of 28  
 
 
 
 
 
AD9230-11  
Clock Jitter Considerations  
DIGITAL OUTPUTS  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
Digital Outputs and Timing  
The AD9230-11 differential outputs conform to the ANSI-644  
LVDS standard on default power-up. This can be changed to a  
low power, reduced signal option similar to the IEEE 1596.3  
standard using the SPI. This LVDS standard can further reduce  
the overall power dissipation of the device, which reduces the  
power by ~39 mW. See the Memory Map section for more  
information. The LVDS driver current is derived on-chip and  
sets the output current at each output equal to a nominal  
3.5 mA. A 100 Ω differential termination resistor placed at the  
LVDS receiver inputs results in a nominal 350 mV swing at the  
receiver.  
SNR Degradation = 20 × log10[1/2 × π × fA × tJ]  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 29).  
Treat the clock as an analog signal in cases where aperture jitter  
may affect the dynamic range of the AD9230-11. Power supplies  
for clock drivers should be separated from the ADC output  
driver supplies to avoid modulating the clock signal with digital  
noise. Low jitter, crystal-controlled oscillators make the best  
clock sources. If the clock is generated from another type of  
source (by gating, dividing, or other methods), it should be  
retimed by the original clock at the last step.  
The AD9230-11 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs that have LVDS capability  
for superior switching performance in noisy environments.  
Single point-to-point net topologies are recommended with a  
100 Ω termination resistor placed as close to the receiver as  
possible. No far-end receiver termination and poor differential  
trace routing may result in timing errors. It is recommended  
that the trace length is no longer than 24 inches and that the  
differential output traces are kept close together and at equal  
lengths.  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs (visit www.analog.com).  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
An example of the LVDS output using the ANSI standard (default)  
data eye and a time interval error (TIE) jitter histogram with  
trace lengths less than 24 inches on regular FR-4 material is  
shown in Figure 30. Figure 31 shows an example of when the  
trace lengths exceed 24 inches on regular FR-4 material. Notice  
that the TIE jitter histogram reflects the decrease of the data eye  
opening as the edge deviates from the ideal position. It is up to  
the user to determine if the waveforms meet the timing budget  
of the design when the trace lengths exceed 24 inches.  
14  
16 BITS  
100  
90  
14 BITS  
80  
12 BITS  
70  
10 BITS  
60  
0.125ps  
8 BITS  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
50  
40  
30  
1
10  
100  
1000  
500  
ANALOG INPUT FREQUENCY (MHz)  
12  
400  
Figure 29. Ideal SNR vs. Input Frequency and Jitter  
300  
10  
POWER DISSIPATION AND POWER-DOWN MODE  
200  
100  
0
8
6
4
2
0
The power dissipated by the AD9230-11 is proportional to its  
sample rate. The digital power dissipation does not vary much  
because it is determined primarily by the DRVDD supply and  
bias current of the LVDS output drivers.  
–100  
–200  
–300  
–400  
–500  
By asserting PWDN (Pin 29) high, the AD9230-11 is placed in  
standby mode or full power-down mode, as determined by the  
contents of Register 0x08. Reasserting the PWDN pin low  
returns the AD9230-11 to its normal operational mode.  
–3 –2 –1  
0
1
2
3
–40  
–20  
0
20  
40  
TIME (ns)  
TIME (ps)  
An additional standby mode is supported by means of varying  
the clock input. When the clock rate falls below 20 MHz, the  
AD9230-11 assumes a standby state. In this case, the biasing  
network and internal reference remain on, but digital circuitry  
is powered down. Upon reactivating the clock, the AD9230-11  
resumes normal operation after allowing for the pipeline  
latency.  
Figure 30. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths Less  
than 24 Inches on Standard FR-4  
Rev. 0 | Page 18 of 28  
 
 
 
AD9230-11  
+FS – 1 LSB  
600  
400  
200  
0
12  
10  
8
OR DATA OUTPUTS  
1
0
0
1111 1111  
1111 1111  
1111 1111  
OR  
–FS + 1/2 LSB  
0
0
1
0000 0000  
0000 0000  
0000 0000  
6
–FS  
–FS – 1/2 LSB  
+FS  
+FS – 1/2 LSB  
–200  
–400  
–600  
4
Figure 32. OR Relation to Input Voltage and Output Data  
2
TIMING  
The AD9230-11 provides latched data outputs with a pipeline  
delay of seven clock cycles. Data outputs are available one  
propagation delay (tPD) after the rising edge of the clock signal.  
0
–100  
–3 –2 –1  
0
1
2
3
0
100  
TIME (ns)  
TIME (ps)  
Figure 31. Data Eye for LVDS Outputs in ANSI Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9230-11.  
These transients can degrade the dynamic performance of the  
converter. The AD9230-11 also provides data clock output (DCO)  
intended for capturing the data in an external register. The data  
outputs are valid on the rising edge of DCO.  
The format of the output data is offset binary by default. An  
example of the output coding format can be found in Table 12.  
If it is desired to change the output data format to twos comple-  
ment, see the Configuration Using the SPI section.  
An output clock signal is provided to assist in capturing data  
from the AD9230-11. The DCO is used to clock the output  
data and is equal to the sampling clock (CLK) rate. In single  
data rate mode (SDR), data is clocked out of the AD9230-11  
and must be captured on the rising edge of the DCO. In double  
data rate mode (DDR), data is clocked out of the AD9230-11  
and must be captured on the rising and falling edges of the  
DCO See the timing diagrams shown in Figure 2 and Figure 3  
for more information.  
The lowest typical conversion rate of the AD9230-11 is 40 MSPS.  
At clock rates below 1 MSPS, the AD9230-11 assumes the  
standby mode.  
RBIAS  
The AD9230-11 requires the user to place a 10 kꢀ resistor  
between the RBIAS pin and ground. This resister should have  
a 1% tolerance and is used to set the master current reference  
of the ADC core.  
CONFIGURATION USING THE SPI  
Output Data Rate and Pinout Configuration  
The AD9230-11 SPI allows the user to configure the converter for  
specific functions or operations through a structured register space  
inside the ADC. This gives the user added flexibility to customize  
device operation depending on the application. Addresses are  
accessed (programmed or readback) serially in 1-byte words. Each  
byte may be further divided down into fields, which are  
documented in the Memory Map section.  
The output data of the AD9230-11 can be configured to drive  
12 pairs of LVDS outputs at the same rate as the input clock  
signal (single data rate, or SDR, mode), or six pairs of LVDS  
outputs at 2× the rate of the input clock signal (double data rate,  
or DDR, mode). SDR is the default mode; the device can be  
reconfigured for DDR by setting Bit 3 in Register 14 (see Table 13).  
Out-of-Range (OR)  
There are three pins that define the serial port interface (SPI) to this  
particular ADC. They are the SCLK/DFS, SDIO/DCS, and CSB  
pins. The SCLK/DFS (serial clock) is used to synchronize the read  
and write data presented to the ADC. The SDIO/DCS (serial data  
input/output) is a dual-purpose pin that allows data to be sent and  
read from the internal ADC memory map registers. The CSB pin is  
an active low control that enables or disables the read and write  
cycles (see Table 9).  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. OR is a digital output  
that is updated along with the data output corresponding to the  
particular sampled input voltage. Thus, OR has the same  
pipeline latency as the digital data. OR is low when the analog  
input voltage is within the analog input range and high when  
the analog input voltage exceeds the input range, as shown in  
Figure 32. OR remains high until the analog input returns to  
within the input range and another conversion is completed. By  
logically AND-ing OR with the MSB and its complement, over-  
range high or underrange low conditions can be detected.  
Rev. 0 | Page 19 of 28  
 
 
 
 
AD9230-11  
HARDWARE INTERFACE  
Table 9. Serial Port Interface Pins  
The pins described in Table 9 comprise the physical interface  
between the users programming device and the serial port  
of the AD9230-11. All serial pins are inputs, which is an open-  
drain output and should be tied to an external pull-up or  
pull-down resistor (suggested value of 10 kΩ).  
Mnemonic  
Function  
SCLK  
SCLK (serial clock) is the serial shift clock in.  
SCLK is used to synchronize serial interface  
reads and writes.  
SDIO (serial data input/output) is a dual-purpose  
pin. The typical role for this pin is an input and  
output depending on the instruction being sent  
and the relative position in the timing frame.  
CSB (chip select bar) is an active low control that  
gates the read and write cycles.  
Master Device Reset. When asserted, device  
assumes default settings. Active low.  
SDIO  
This interface is flexible enough to be controlled by either PROMS  
or PIC microcontrollers as well. This provides the user with an  
alternate method to program the ADC other than using an SPI  
controller.  
CSB  
RESET  
If the user chooses not to use the SPI interface, some pins serve  
a dual function and are associated with a specific function when  
strapped externally to AVDD or ground during device power  
on. The Configuration Without the SPI section describes the  
strappable functions supported on the AD9230-11.  
The falling edge of CSB, in conjunction with the rising edge of  
the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 33  
and Table 11.  
CONFIGURATION WITHOUT THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data then follows the instruction phase and is determined by  
the W0 and W1 bits, which is 1 or more bytes of data. All data is  
composed of 8-bit words. The first bit of each individual byte of  
serial data indicates whether this is a read or write command.  
This allows the serial data input/output (SDIO) pin to change  
direction from an input to an output.  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS and SCLK/DFS pins can alternately serve as  
standalone CMOS-compatible control pins. When the device is  
powered up, it is assumed that the user intends to use the pins  
as static control lines for the duty cycle stabilizer. In this mode,  
the CSB pin should be connected to AVDD, which disables the  
serial port interface.  
Data can be sent in MSB or in LSB first mode. MSB first is  
default on power-up and can be changed by changing the  
configuration register. For more information about this feature  
and others, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI, at www.analog.com.  
Table 10. Mode Selection  
Mnemonic External Voltage Configuration  
SDIO/DCS  
SCLK/DFS  
AVDD  
AGND  
AVDD  
AGND  
Duty cycle stabilizer enabled  
Duty cycle stabilizer disabled  
Twos complement enabled  
Offset binary enabled  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
SDIO  
Figure 33. Serial Port Interface Timing Diagram  
Rev. 0 | Page 20 of 28  
 
 
 
 
AD9230-11  
Table 11. Serial Timing Definitions  
Parameter  
Timing (minimum, ns)  
Description  
tDS  
5
2
40  
5
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the clock  
tDH  
tCLK  
tS  
Setup time between CSB and SCLK  
tH  
2
Hold time between CSB and SCLK  
tHI  
tLO  
tEN_SDIO  
16  
16  
1
Minimum period that SCLK should be in a logic high state  
Minimum period that SCLK should be in a logic low state  
Minimum time for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge (not shown in Figure 33)  
tDIS_SDIO  
5
Minimum time for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge (not shown in Figure 33)  
Table 12. Output Data Format  
Offset Binary Output Mode  
D10 to D0  
Twos Complement Mode  
D10 to D0  
Input (V)  
Condition (V)  
< 0.62  
= 0.62  
= 0  
= 0.62  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
0000 0000 000  
0000 0000 000  
0000 0000 000  
1111 1111 111  
1111 1111 111  
1000 0000 000  
1000 0000 000  
0000 0000 000  
0111 1111 111  
0111 1111 111  
> 0.62 + 0.5 LSB  
1
Rev. 0 | Page 21 of 28  
 
 
AD9230-11  
MEMORY MAP  
READING THE MEMORY MAP TABLE  
RESERVED LOCATIONS  
Each row in the memory map table has eight address locations.  
The memory map is roughly divided into three sections: chip  
configuration register map (Address 0x00 to Address 0x02),  
transfer register map (Address 0xFF), and ADC functions map  
(Address 0x08 to Address 0x2A).  
Undefined memory locations should not be written to other  
than their default values suggested in this data sheet. Addresses  
that have values marked as 0 should be considered reserved and  
have a 0 written into their registers during power-up.  
DEFAULT VALUES  
The Addr. (Hex) column of the memory map indicates the  
register address in hexadecimal, and the Default Value (Hex)  
column shows the default hexadecimal value that is already  
written into the register. The Bit 7 (MSB) column is the start of  
the default hexadecimal value given. For example, Hexadecimal  
Address 0x09, the clock register, has a hexadecimal default value  
of 0x01. This means Bit 7 = 0, Bit 6 = 0, Bit 5 = 0, Bit 4 = 0, Bit 3 = 0,  
Bit 2 = 0, Bit 1 = 0, and Bit 0 = 1, or 0000 0001 in binary. The  
default value enables the duty cycle stabilizer. Overwriting this  
default so that Bit 0 = 0 disables the duty cycle stabilizer. For more  
information on this and other functions, consult the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI, at  
www.analog.com.  
Coming out of reset, critical registers are preloaded with default  
values. These values are indicated in Table 13. Other registers  
do not have default values and retain the previous value when  
exiting reset.  
LOGIC LEVELS  
An explanation of logic level terminology follows: “bit is set” is  
synonymous with “bit is set to Logic 1” or “writing Logic 1 for  
the bit.” Similarly, “clear a bit” is synonymous with “bit is set to  
Logic 0” or “writing Logic 0 for the bit.”  
TRANSFER REGISTER MAP  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer  
bit. This allows these registers to be updated internally and  
simultaneously when the transfer bit is set. The internal update  
takes place when the transfer bit is set, and the bit autoclears.  
Table 13. Memory Map Register  
Default  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
0x00  
chip_port_config  
0
LSB  
first  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
0
0x18  
The nibbles should  
be mirrored by the  
user so that LSB-or  
MSB-first mode  
registers correctly,  
regardless of shift  
mode.  
0x01  
0x02  
chip_id  
8-bit chip ID, Bits[7:0]  
AD9230-11 = 0x0C  
Read-  
only  
Default is unique  
chip ID, different  
for each device.  
This is a read-only  
register.  
chip_grade  
0
0
0
0
0
0
Speed grade:  
11 = 200 MSPS  
X
0
X
0
X
Read-  
only  
Child ID used to  
differentiate  
graded devices.  
Transfer Register  
0xFF device_update  
0
0
SW  
transfer  
0x00  
Synchronously  
transfers data from  
the master shift  
register to the  
slave.  
Rev. 0 | Page 22 of 28  
 
 
 
AD9230-11  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Notes/  
Comments  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
ADC Functions  
0x08  
modes  
0
0
PWDN:  
0 = full  
(default)  
1 =  
0
0
Internal power-down mode:  
000 = normal (power-up, default)  
001 = full power-down  
010 = standby  
0x00  
Determines various  
generic modes of  
chip operation.  
standby  
011 = normal (power-up)  
Note: external PWDN pin  
overrides this setting  
0x09  
clock  
0
0
0
0
0
0
0
0
Duty  
cycle  
stabilizer:  
0 =  
disabled  
1 =  
0x01  
enabled  
(default)  
0x0D  
test_io  
0
Reset  
PN23  
gen:  
1 = on  
0 = off  
(default)  
Reset  
PN9 gen:  
1 = on  
0 = off  
(default)  
Output test mode:  
0000 = off (default)  
0001 = midscale short  
0010 = +FS short  
0x00  
When this register  
is set, the test data  
is placed on the  
output pins in  
place of normal  
data.  
0011 = −FS short  
0100 = checker board output  
0101 = PN 23 sequence  
0110 = PN 9  
0111 = one/zero word toggle  
1000 = unused  
1001 = unused  
1010 = unused  
1011 = unused  
1100 = unused  
(Format determined by output_mode)  
0x0F  
0x14  
ain_config  
0
0
0
0
0
0
0
0
Analog  
input  
disable:  
1 = on  
0 = off  
(default)  
CML  
0
0x00  
0x00  
enable:  
1 = on  
0 = off  
(default)  
output_mode  
Output  
enable:  
0 =  
enable  
(default)  
1 =  
DDR:  
1 =  
enabled  
0 =  
disabled (default)  
(default)  
Output  
invert:  
1 = on  
0 = off  
Data format select:  
00 = offset binary  
(default)  
01 = twos  
complement  
10 = gray code  
disable  
0x15  
output_adjust  
output_phase  
0
0
0
0
0
0
LVDS  
LVDS fine adjust:  
0x00  
0x03  
course  
adjust:  
0 =  
3.5 mA  
(default)  
1 =  
001 = 3.50 mA  
010 = 3.25 mA  
011 = 3.00 mA  
100 = 2.75 mA  
101 = 2.50 mA  
110 = 2.25 mA  
111 = 2.00 mA  
2.0 mA  
16  
Output  
clock  
0
0
0
0
polarity  
1 =  
inverted  
0 =  
normal  
(default)  
Rev. 0 | Page 23 of 28  
AD9230-11  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Notes/  
Comments  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0x17  
flex_output_delay Output  
0
0
Output clock delay:  
00000 = 0.1 ns  
00001 = 0.2 ns  
00010 = 0.3 ns  
11101 = 3.0 ns  
11110 = 3.1 ns  
11111 = 3.2 ns  
0
delay  
enable:  
0 =  
enable  
1 =  
disable  
0x18  
flex_vref  
0
0
0
Input voltage range setting:  
10000 = 0.98 V  
10001 =1.00 V  
10010 = 1.02 V  
10011 =1.04 V  
0
11111 = 1.23 V  
00000 = 1.25 V  
00001 = 1.27 V  
01110 = 1.48 V  
01111 = 1.50 V  
0x2A  
ovr_config  
0
0
0
0
0
0
OR  
OR  
0x01  
position  
(DDR  
mode  
only):  
0 = Pin 9,  
Pin 10  
1 =  
enable:  
1 = on  
(default)  
0 = off  
Pin 21,  
Pin 22  
Rev. 0 | Page 24 of 28  
AD9230-11  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
8.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
43  
42  
56  
1
PIN 1  
INDICATOR  
4.45  
4.30 SQ  
4.15  
TOP  
VIEW  
EXPOSED  
7.75  
BSC SQ  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
14  
15  
29  
28  
0.30 MIN  
6.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.50 BSC  
0.20 REF  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2  
Figure 34. 56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
8 mm × 8 mm Body, Very Thin Quad  
(CP-56-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9230BCPZ11-2001  
AD923011-200EBZ1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
56-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
LVDS Evaluation Board  
CP-56-2  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 25 of 28  
 
 
AD9230-11  
NOTES  
Rev. 0 | Page 26 of 28  
AD9230-11  
NOTES  
Rev. 0 | Page 27 of 28  
AD9230-11  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07101-0-10/08(0)  
Rev. 0 | Page 28 of 28  

相关型号:

AD9230-170EB

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-170EBZ

1.8 V Analog-to-Digital Converter
ADI

AD9230-210EB

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-210EBZ

1.8 V Analog-to-Digital Converter
ADI

AD9230-250EB

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230-250EBZ

1.8 V Analog-to-Digital Converter
ADI

AD923011-200EBZ

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9230BCPZ-170

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230BCPZ-210

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230BCPZ-250

12-Bit, 170/210/250 MSPS 1.8 V A/D Converter
ADI

AD9230BCPZ11-200

11-Bit, 200 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9230BCPZRL7-170

12-Bit, 170 MSPS/210 MSPS/250 MSPS, 1.8 V Analog-to-Digital Converter
ADI