AD9235BRURL7-20 [ADI]

12-Bit, 20/40/65 MSPS 3 V A/D Converter; 12位20/40/65 MSPS 3 V A / D转换器
AD9235BRURL7-20
型号: AD9235BRURL7-20
厂家: ADI    ADI
描述:

12-Bit, 20/40/65 MSPS 3 V A/D Converter
12位20/40/65 MSPS 3 V A / D转换器

转换器
文件: 总40页 (文件大小:838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 20/40/65 MSPS  
3 V A/D Converter  
AD9235  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
DRVDD  
Single 3 V supply operation (2.7 V to 3.6 V)  
SNR = 70 dBc to Nyquist at 65 MSPS  
SFDR = 85 dBc to Nyquist at 65 MSPS  
Low power: 300 mW at 65 MSPS  
Differential input with 500 MHz bandwidth  
On-chip reference and SHA  
VIN+  
VIN–  
8-STAGE  
1 1/2-BIT  
PIPELINE  
SHA  
A/D  
MDAC1  
4
16  
3
REFT  
REFB  
A/D  
DNL = 0.4 LSB  
CORRECTION LOGIC  
12  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary or twos complement data format  
Clock duty cycle stabilizer  
OUTPUT BUFFERS  
OTR  
D11  
AD9235  
VREF  
D0  
CLOCK  
DUTY CYCLE  
STABILIZER  
APPLICATIONS  
Ultrasound equipment  
IF sampling in communications receivers  
IS-95, CDMA-One, IMT-2000  
Battery-powered instruments  
Hand-held scopemeters  
MODE  
SELECT  
SENSE  
REF  
SELECT  
0.5V  
AGND  
CLK  
PDWN  
MODE  
DGND  
Figure 1.  
Low cost digital oscilloscopes  
GENERAL DESCRIPTION  
can be used with the most significant bit to determine low or  
high overflow.  
The AD9235 is a family of monolithic, single 3 V supply, 12-bit,  
20/40/65 MSPS analog-to-digital converters (ADCs). This  
family features a high performance sample-and-hold amplifier  
(SHA) and voltage reference. The AD9235 uses a multistage  
differential pipelined architecture with output error correction  
logic to provide 12-bit accuracy at 20/40/65 MSPS data rates  
and guarantee no missing codes over the full operating  
temperature range.  
Fabricated on an advanced CMOS process, the AD9235 is avail-  
able in a 28-lead TSSOP and a 32-lead LFCSP and is specified  
over the industrial temperature range (–40°C to +85°C).  
PRODUCT HIGHLIGHTS  
1. The AD9235 operates from a single 3 V power supply and  
features a separate digital output driver supply to accommo-  
date 2.5 V and 3.3 V logic families.  
2. Operating at 65 MSPS, the AD9235 consumes a low 300 m W.  
3. The patented SHA input maintains excellent performance for  
input frequencies up to 100 MHz and can be configured for  
single-ended or differential operation.  
4. The AD9235 pinout is similar to the AD9214-65, a 10-bit,  
65 MSPS ADC. This allows a simplified upgrade path from  
10 bits to 12 bits for 65 MSPS systems.  
The wide bandwidth, truly differential SHA allows a variety of  
user-selectable input ranges and offsets including single-ended  
applications. It is suitable for multiplexed systems that switch  
full-scale voltage levels in successive channels and for sampling  
single-channel inputs at frequencies well beyond the Nyquist rate.  
Combined with power and cost savings over previously available  
ADCs, the AD9235 is suitable for applications in communica-  
tions, imaging, and medical ultrasound.  
5. The clock DCS maintains overall ADC performance over a  
wide range of clock pulse widths.  
6. The OTR output bit indicates when the signal is beyond the  
selected input range.  
A single-ended clock input is used to control all internal  
conversion cycles. A duty cycle stabilizer (DCS) compensates  
for wide variations in the clock duty cycle while maintaining  
excellent overall ADC performance. The digital output data is  
presented in straight binary or twos complement formats. An  
out-of-range (OTR) signal indicates an overflow condition that  
Rev. D  
Information furnishedby Analog Devices is believedto be accurate andreliable. However, nore-  
sponsibility is assumed by Analog Devices for its use, nor for anyinfringements of patentsor other  
rightsofthird partiesthat may result from its use. Specifications subject to change without notice. No  
license isgrantedbyimplication or otherwise under anypatent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
AD9235  
Data Sheet  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Applying the AD9235 .................................................................... 15  
Theory of Operation .................................................................. 15  
Analog Input ............................................................................... 15  
Clock Input Considerations...................................................... 16  
Power Dissipation and Standby Mode .................................... 17  
Digital Outputs ........................................................................... 18  
Voltage Reference ....................................................................... 18  
Operational Mode Selection..................................................... 19  
TSSOP Evaluation Board .......................................................... 19  
LFCSP Evaluation Board........................................................... 20  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 37  
DC Specifications ......................................................................... 3  
Digital Specifications ................................................................... 4  
Switching Specifications .............................................................. 4  
AC Specifications.......................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
Explanation of Test Levels........................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Definitions of Specifications ........................................................... 9  
Equivalent Circuits ......................................................................... 10  
Typical Performance Characteristics ........................................... 11  
REVISION HISTORY  
Changes to TPCs 1 to 12 ..................................................................9  
Changes to Theory of Operation Section.....................................13  
Changes to Analog Input Section..................................................13  
Changes to Single-ended Input Configuration Section .............14  
Replaced Figure 8 ............................................................................14  
Changes to Clock Input Considerations Section ........................14  
Changes to Table I ...........................................................................15  
Changes to Power Dissipation and Standby Mode Section.......15  
Changes to Digital Outputs Section..............................................15  
Changes to Timing Section............................................................15  
Changes to Figure 13.......................................................................16  
Changes to Figures 16 to 26 ...........................................................17  
Added LFCSP Evaluation Board Section .....................................17  
Inserted Figures 27 to 35 ................................................................25  
Added Table III................................................................................30  
Updated Outline Dimensions........................................................31  
10/12—Rev. C to Rev. D  
Changes to Figure 4 and Table 6 ................................................................8  
Updated Outline Dimensions (Changed CP-32-2 to CP-32-7)..... 36  
Changes to Ordering Guide .......................................................... 37  
10/04—Data Sheet changed from Rev. B to Rev. C  
Changes to Format .............................................................Universal  
Changes to Specifications .................................................................3  
Changes to the Ordering Guide.................................................... 37  
5/03—Data Sheet changed from Rev. A to Rev. B  
Added CP-32 Package (LFCSP)........................................Universal  
Changes to Several Pin Names..........................................Universal  
Changes to Features...........................................................................1  
Changes to Product Description .....................................................1  
Changes to Product Highlights........................................................1  
Changes to Specifications .................................................................2  
Replaced Figure 1 ..............................................................................3  
Changes to Absolute Maximum Ratings........................................5  
Changes to Ordering Guide .............................................................5  
Changes to Pin Function Descriptions...........................................6  
New Definitions of Specifications Section .....................................7  
8/02—Data Sheet changed from Rev. 0 to Rev. A  
Updated RU-28 Package................................................................ 24  
Rev. D | Page 2 of 40  
Data Sheet  
AD9235  
SPECIFICATIONS  
DC SPECIFICATIONS  
AV DD = 3 V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference, TMIN to TMAX  
,
unless otherwise noted.  
Table 1.  
AD9235BRU/BCP-20 AD9235BRU/BCP-40 AD9235BRU/BCP-65  
Test  
Temp Level Min Typ  
Parameter  
Max  
Min Typ  
Max  
Min Typ  
Max  
Unit  
RESOLUTION  
Full  
VI  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes Guaranteed  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
VI  
VI  
VI  
IV  
I
12  
12  
12  
Bits  
0.30  
0.30  
0.35  
0.35  
0.45  
0.40  
1.20  
2.40  
0.65  
0.50  
1.20  
2.50  
0.75  
0.50  
1.20 % FSR  
2.60 % FSR  
0.80 LSB  
LSB  
1.30 LSB  
LSB  
Gain Error1  
0.50  
0.35  
0.35  
0.50  
0.40  
0.50  
0.40  
0.35  
0.70  
0.45  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
IV  
I
0.80  
0.90  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
V
V
2
12  
2
12  
3
12  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
Full  
Full  
VI  
V
V
5
35  
5
35  
5
35  
mV  
mV  
mV  
mV  
0.8  
2.5  
0.1  
0.8  
2.5  
0.1  
0.8  
2.5  
0.1  
Output Voltage Error (0.5 V Mode) Full  
Load Regulation @ 0.5 mA  
INPUT REFERRED NOISE  
VREF = 0.5 V  
Full  
V
25°C  
25°C  
V
V
0.54  
0.27  
0.54  
0.27  
0.54  
0.27  
LSB rms  
LSB rms  
VREF = 1.0 V  
ANALOG INPUT  
Input Span, VREF = 0.5 V  
Input Span, VREF = 1.0 V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltages  
AVDD  
Full  
Full  
Full  
Full  
IV  
IV  
V
1
2
7
7
1
2
7
7
1
2
7
7
V p-p  
V p-p  
pF  
V
kΩ  
Full  
Full  
IV  
IV  
2.7  
3.0  
2.25 3.0  
3.6  
3.6  
2.7  
3.0  
2.25 3.0  
3.6  
3.6  
2.7  
3.0  
2.25 3.0  
3.6  
3.6  
V
V
DRVDD  
Supply Current  
IAVDD2  
Full  
Full  
Full  
V
V
V
30  
2
0.01  
55  
5
0.01  
100  
7
0.01  
mA  
mA  
% FSR  
IDRVDD2  
PSRR  
POWER CONSUMPTION  
DC Input4  
Sine Wave Input2  
Standby Power5  
Full  
Full  
Full  
V
VI  
V
90  
95  
1.0  
165  
180  
1.0  
300  
320  
1.0  
mW  
mW  
mW  
110  
205  
350  
1 Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).  
2 Measured at maximum clock rate, fIN = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 5 for the equivalent analog input structure.  
4 Measured with dc input at maximum clock rate.  
5 Standby power is measured with a dc input, the CLK pin inactive (i.e., set to AVDD or AGND).  
Rev. D | Page 3 of 40  
 
 
AD9235  
Data Sheet  
DIGITAL SPECIFICATIONS  
Table 2.  
AD9235BRU/BCP-20  
AD9235BRU/BCP-40  
AD9235BRU/BCP-65  
Test  
Temp Level Min  
Parameter  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
LOGIC OUTPUTS1  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
0.8  
+10  
+10  
0.8  
+10  
+10  
0.8  
+10  
+10  
–10  
–10  
–10  
–10  
–10  
–10  
2
2
2
DRVDD = 3.3 V  
High-Level Output Voltage  
(IOH = 50 µA)  
High-Level Output Voltage  
(IOH = 0.5 mA)  
Low-Level Output Voltage  
(IOL = 1.6 mA)  
Low-Level Output Voltage  
(IOL = 50 µA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
3.29  
3.25  
3.29  
3.25  
3.29  
3.25  
V
V
V
V
0.2  
0.2  
0.2  
0.05  
0.05  
0.05  
DRVDD = 2.5 V  
High-Level Output Voltage  
(IOH = 50 µA)  
High-Level Output Voltage  
(IOH = 0.5 mA)  
Low-Level Output Voltage  
(IOL = 1.6 mA)  
Low-Level Output Voltage  
(IOL = 50 µA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
2.49  
2.45  
2.49  
2.45  
2.49  
2.45  
V
V
V
V
0.2  
0.2  
0.2  
0.05  
0.05  
0.05  
1 Output voltage levels measured with 5 pF load on each output.  
SWITCHING SPECIFICATIONS  
Table 3.  
AD9235BRU/BCP-20  
AD9235BRU/BCP-40  
AD9235BRU/BCP-65  
Test  
Parameter  
Temp Level Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
CLK Pulse-Width High1  
CLK Pulse-Width Low1  
DATA OUTPUT PARAMETERS  
Output Delay2 (tPD)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty Jitter (tJ)  
Wake-Up Time3  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
20  
40  
65  
MSPS  
MSPS  
ns  
ns  
ns  
1
1
1
50.0  
15.0  
15.0  
25.0  
8.8  
8.8  
15.4  
6.2  
6.2  
Full  
Full  
Full  
Full  
Full  
Full  
V
V
V
V
V
V
3.5  
7
1.0  
0.5  
3.0  
1
3.5  
7
1.0  
0.5  
3.0  
1
3.5  
7
1.0  
0.5  
3.0  
2
ns  
Cycles  
ns  
ps rms  
ms  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 For the AD9235-65 model only, with duty cycle stabilizer enabled. DCS function not applicable for -20 and -40 models.  
2 Output delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load on each output.  
3 Wake-up time is dependent on value of decoupling capacitors; typical values shown with 0.1 µF and 10 µF capacitors on REFT and REFB.  
Rev. D | Page 4 of 40  
 
 
Data Sheet  
AD9235  
N+1  
tA  
N
N+2  
N+8  
N–1  
N+3  
ANALOG  
INPUT  
N+7  
N+4  
N+6  
N+5  
CLK  
DATA  
OUT  
N–9  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
tPD = 6.0ns MAX  
2.0ns MIN  
Figure 2. Timing Diagram  
AC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, AIN = –0.5 dBFS, 1.0 V internal reference, TMIN to TMAX  
,
unless otherwise noted.  
Table 4.  
AD9235BRU/BCP-20 AD9235BRU/BCP-40 AD9235BRU/BCP-65  
Parameter  
Temp Test Level Min Typ  
Max  
Min Typ  
Max  
Min Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO  
fINPUT = 2.4 MHz  
fINPUT = 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
70.8  
70.0 70.4  
70.6  
70.6  
70.5  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
69.9 70.3  
70.4  
68.7 69.7  
70.1  
68.7  
68.5  
70.5  
68.3  
SIGNAL-TO-NOISE RATIO  
AND DISTORTION  
fINPUT = 2.4 MHz  
fINPUT = 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
70.6  
69.9 70.3  
70.5  
70.4  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
69.7 70.2  
70.3  
68.3 69.5  
69.9  
fINPUT = 100 MHz  
68.6  
68.3  
67.8  
TOTAL HARMONIC DISTORTION  
fINPUT = 2.4 MHz  
fINPUT = 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
–88.0  
–86.0 –79.0  
–87.4  
–89.0  
–87.5  
dBc  
dBc  
dBc  
dBc  
dBc  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
–85.5 –79.0  
–86.0  
–81.8 –74.0 dBc  
–82.0  
–78.0  
dBc  
dBc  
–84.0  
–82.5  
WORST HARMONIC  
(SECOND OR THIRD)  
fINPUT = 9.7 MHz  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
Full  
Full  
Full  
IV  
IV  
IV  
–90.0 –80.0  
dBc  
dBc  
–90.0 –80.0  
–83.5 –74.0 dBc  
Rev. D | Page 5 of 40  
 
 
AD9235  
Data Sheet  
AD9235BRU/BCP-20 AD9235BRU/BCP-40 AD9235BRU/BCP-65  
Parameter  
Temp Test Level Min Typ  
Max  
Min Typ  
Max  
Min Typ  
Max  
Unit  
SPURIOUS-FREE DYNAMIC RANGE  
fINPUT = 2.4 MHz  
fINPUT = 9.7 MHz  
25°C  
Full  
25°C  
Full  
25°C  
Full  
25°C  
25°C  
V
IV  
I
IV  
I
IV  
I
V
92.0  
80.0 88.5  
91.0  
92.0  
92.0  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fINPUT = 19.6 MHz  
fINPUT = 32.5 MHz  
fINPUT = 100 MHz  
80.0 89.0  
90.0  
74.0 83.0  
85.0  
84.0  
85.0  
80.5  
Rev. D | Page 6 of 40  
Data Sheet  
AD9235  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Absolute maximum ratings are limiting values to be applied  
With  
individually and beyond which the serviceability of the circuit  
may be impaired. Functional operability is not necessarily  
implied. Exposure to absolute maximum rating conditions for  
an extended period of time may affect device reliability.  
Pin Name  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
AVDD  
Digital  
Outputs  
CLK, MODE  
VIN+, VIN–  
VREF  
SENSE  
REFB, REFT  
PDWN  
Respect to Min  
Max  
Unit  
AGND  
DGND  
DGND  
DRVDD  
DGND  
–0.3  
–0.3  
–0.3  
–3.9  
–0.3  
+3.9  
+3.9  
+0.3  
+3.9  
V
V
V
V
V
EXPLANATION OF TEST LEVELS  
Test  
Levels  
DRVDD + 0.3  
Description  
I
100% production tested.  
AGND  
AGND  
AGND  
AGND  
AGND  
AGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
V
V
V
V
V
V
II  
100% production tested at 25°C and sample tested at  
specified temperatures.  
III  
Sample tested only.  
IV  
Parameter is guaranteed by design and characteriza-  
tion testing.  
V
Parameter is a typical value only.  
ENVIRONMENTAL1  
VI  
100% production tested at 25°C; guaranteed by de-  
sign and characterization testing for industrial tem-  
perature range; 100% production tested at tempera-  
ture extremes for military devices.  
Operating Temperature  
Junction Temperature  
Lead Temperature (10 sec)  
Storage Temperature  
–40  
–65  
+85  
150  
300  
°C  
°C  
°C  
°C  
+150  
1 Typical thermal impedances (28-lead TSSOP), θJA = 67.7°C/W; (32-lead  
LFCSP), θJA = 32.5°C/W, θJC = 32.71°C/W. These measurements were taken on  
a 4-layer board in still air, in accordance with EIA/JESD51-1.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-  
trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation  
or loss of functionality.  
Rev. D | Page 7 of 40  
 
 
 
 
AD9235  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
OTR  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
D11 (MSB)  
D10  
3
D9  
DNC 1  
24 VREF  
23  
4
D8  
2
CLK  
SENSE  
5
AD9235  
TOP VIEW  
(Not to Scale)  
DRVDD  
DGND  
D7  
DNC 3  
PDWN 4  
22 MODE  
21 OTR  
AD9235  
6
TOP VIEW  
5
6
7
8
20  
19  
18  
DNC  
DNC  
D0 (LSB)  
D1  
D11 (MSB)  
D10  
D9  
7
(Not to Scale)  
8
D6  
9
D5  
17 D8  
10  
11  
12  
13  
14  
VIN–  
D4  
AGND  
AVDD  
CLK  
D3  
D2  
D1  
NOTES  
PDWN  
D0 (LSB)  
1. DNC = DO NOT CONNECT.  
2. IT IS RECOMMENDED THAT THE EXPOSED PADDLE  
BE SOLDERED TO THE GROUND PLANE.  
Figure 3. 28-Lead TSSOP Pin Configuration  
Figure 4. 32-Lead LFCSP Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
28-Lead TSSOP  
Pin No.  
32-Lead LFCSP Mnemonic  
Description  
1
21  
OTR  
Out-of-Range Indicator.  
2
3
4
5
6
7, 12  
8, 11  
9
22  
23  
24  
25  
26  
27, 32  
28, 31  
29  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
VIN–  
Data Format and Clock Duty Cycle Stabilizer (DCS) Mode Selection.  
Reference Mode Selection.  
Voltage Reference Input/Output.  
Differential Reference (−).  
Differential Reference (+).  
Analog Power Supply.  
Analog Ground.  
Analog Input Pin (+).  
Analog Input Pin (−).  
10  
30  
13  
2
CLK  
Clock Input Pin.  
14  
4
PDWN  
Power-Down Function Selection (Active High).  
15 to 22, 25 to 28  
7 to 14, 17 to 20  
D0 (LSB) to D11 (MSB) Data Output Bits.  
23  
24  
15  
16  
DGND  
DRVDD  
Digital Output Ground.  
Digital Output Driver Supply. Must be decoupled to DGND with a minimum.  
0.1 µF capacitor. Recommended decoupling is 0.1 µF in parallel with 10 µF.  
Do Not Connect.  
Exposed Pad. It is recommended that the exposed paddle be soldered to the  
ground plane. There is an increased reliability of the solder joints and maxi-  
mum thermal capability of the package is achieved with exposed paddle  
soldered to the customer board.  
1, 3, 5, 6  
EP  
DNC  
EPAD  
Rev. D | Page 8 of 40  
 
Data Sheet  
AD9235  
DEFINITIONS OF SPECIFICATIONS  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Signal-to-Noise and Distortion (SINAD)1  
The ratio of the rms signal amplitude (set 0.5 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents below the Nyquist frequency, including harmonics but  
excluding dc.  
Aperture Delay (tA)  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
Effective Number of Bits (ENOB)  
The ENOB for a device for sine wave inputs at a given input  
frequency can be calculated directly from its measured SINAD  
using the following formula  
Aperture Jitter (tJ)  
The sample-to-sample variation in aperture delay.  
N = (SINAD − 1.76)/6.02  
Integral Nonlinearity (INL)  
The deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used as  
negative full scale occurs ½ LSB before the first code transition.  
Positive full scale is defined as a level 1 ½ LSBs beyond the last  
code transition. The deviation is measured from the middle of  
each particular code to the true straight line.  
Signal-to-Noise Ratio (SNR)1  
The ratio of the rms signal amplitude (set at 0.5 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents below the Nyquist frequency, excluding the first six  
harmonics and dc.  
Spurious-Free Dynamic Range (SFDR)1  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 12-bit resolution indicates that all 4096  
codes must be present over all operating ranges.  
The difference in dB between the rms amplitude of the input  
signal and the peak spurious signal.  
Two-Tone SFDR1  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Offset Error  
The major carry transition should occur for an analog value  
½ LSB below VIN+ = VIN–. Offset error is defined as the  
deviation of the actual transition from that point.  
Clock Pulse Width and Duty Cycle  
Pulse-width high is the minimum amount of time that the  
clock pulse should be left in the Logic 1 state to achieve rated  
performance. Pulse-width low is the minimum time the clock  
pulse should be left in the low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Gain Error  
The first code transition should occur at an analog value ½ LSB  
above negative full scale. The last transition should occur at an  
analog value 1 ½ LSB below the positive full scale. Gain error is  
the deviation of the actual difference between first and last code  
transitions and the ideal difference between first and last code  
transitions.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the  
guaranteed limit.  
Temperature Drift  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
at TMIN or TMAX  
.
Output Propagation Delay (tPD  
)
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
Power Supply Rejection Ratio  
The change in full scale from the value with the supply  
at the minimum limit to the value with the supply at its  
maximum limit.  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transition from 10% above positive full scale to 10%  
above negative full scale, or from 10% below negative full scale  
to 10% below positive full scale.  
Total Harmonic Distortion (THD)1  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal.  
1 AC specifications may be reported in dBc (degrades as signal levels are  
lowered) or in dBFS (always related back to converter full scale).  
Rev. D | Page 9 of 40  
 
AD9235  
Data Sheet  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
VIN+, VIN–  
D11–D0,  
OTR  
Figure 5. Equivalent Analog Input Circuit  
Figure 7. Equivalent Digital Output Circuit  
AVDD  
AVDD  
CLK,  
MODE  
PDWN  
20k  
Figure 6. Equivalent MODE Input Circuit  
Figure 8. Equivalent Digital Input Circuit  
Rev. D | Page 10 of 40  
 
 
Data Sheet  
AD9235  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 3.0 V, DRVDD = 2.5 V, fSAMPLE = 65 MSPS with DCS disabled, TA = 25°C, 2 V differential input, AIN = −0.5 dBFS, VREF = 1.0 V,  
unless otherwise noted.  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR = 70.3dBc  
SFDR (2V DIFF)  
SINAD = 70.2dBc  
ENOB = 11.4 BITS  
THD = –86.3dBc  
SFDR = 89.9dBc  
–20  
–40  
SNR (2V SE)  
–60  
–80  
SNR (2V DIFF)  
–100  
–120  
SFDR (2V SE)  
45  
0
6.5  
13.0  
19.5  
26.0  
32.5  
40  
50  
55  
60  
65  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
Figure 9. Single Tone 8K FFT with fIN = 10 MHz  
Figure 12. AD9235-65: Single Tone SNR/SFDR vs.  
CLK with fIN = Nyquist (32.5 MHz)  
f
0
–20  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SNR = 69.4dBc  
SINAD = 69.1dBc  
ENOB = 11.2 BITS  
THD = –81.0dBc  
SFDR = 83.8dBc  
–40  
SFDR (2V DIFF)  
SNR (2V SE)  
SNR (2V DIFF)  
–60  
–80  
SFDR (2V SE)  
–100  
–120  
65.0  
71.5  
78.0  
84.5  
91.0  
20  
25  
30  
SAMPLE RATE (MSPS)  
35  
40  
FREQUENCY (MHz)  
Figure 10. Single Tone 8K FFT with fIN = 70 MHz  
Figure 13. AD9235-40: Single Tone SNR/SFDR vs. fCLK with fIN = Nyquist (20 MHz)  
0
100  
SNR = 68.5dBc  
SFDR (2V DIFF)  
95  
SINAD = 66.5dBc  
ENOB = 10.8 BITS  
THD = –71.0dBc  
SFDR = 71.2dBc  
–20  
90  
85  
–40  
–60  
SFDR (2V SE)  
80  
75  
SNR (2V SE)  
70  
–80  
65  
SNR (2V DIFF)  
60  
55  
50  
–100  
–120  
97.5  
104.0  
110.5  
117.0  
123.5  
130.0  
0
5
10  
15  
20  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
Figure 11. Single Tone 8K FFT with fIN = 100 MHz  
Figure 14. AD9235-20: Single Tone SNR/SFDR vs. fCLK with fIN = Nyquist (10 MHz)  
Rev. D | Page 11 of 40  
 
AD9235  
Data Sheet  
100  
95  
90  
85  
80  
75  
70  
65  
SFDR  
SFDR  
DIFFERENTIAL (dBFS)  
SINGLE-ENDED (dBFS)  
90  
SFDR  
DIFFERENTIAL (dBc)  
SFDR  
SNR  
DIFFERENTIAL (dBFS)  
80  
70  
60  
50  
40  
SNR  
SINGLE-ENDED (dBFS)  
SFDR  
SINGLE-ENDED (dBc)  
SNR  
SNR  
SINGLE-ENDED (dBc)  
SNR  
DIFFERENTIAL (dBc)  
–30  
–25  
–20  
–15  
–10  
–5  
0
0
25  
50  
75  
100  
125  
A
(dBFS)  
INPUT FREQUENCY (MHz)  
IN  
Figure 18. AD9235-65: SNR/SFDR vs. fIN  
Figure 15. AD9235-65: Single Tone SNR/SFDR vs.  
IN with fIN = Nyquist (32.5 MHz)  
A
95  
90  
85  
80  
75  
70  
65  
100  
90  
80  
70  
60  
50  
40  
SFDR  
DIFFERENTIAL (dBFS)  
SFDR  
SFDR  
SINGLE-ENDED  
(dBFS)  
SFDR  
DIFFERENTIAL  
(dBc)  
SNR  
DIFFERENTIAL  
(dBFS)  
SNR  
SINGLE-ENDED  
(dBFS)  
SFDR  
SINGLE-ENDED (dBc)  
SNR  
DIFFERENTIAL (dBc)  
SNR  
SNR  
SINGLE-ENDED (dBc)  
0
25  
50  
75  
100  
125  
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT FREQUENCY (MHz)  
A
(dBFS)  
IN  
Figure 19. AD9235-40: SNR/SFDR vs. fIN  
Figure 16. AD9235-40: Single Tone SNR/SFDR vs. AIN with fIN = Nyquist (20 MHz)  
95  
90  
85  
80  
75  
70  
65  
100  
SFDR DIFFERENTIAL (dBFS)  
SFDR  
90  
DIFFERENTIAL (dBc)  
SFDR  
SFDR  
SINGLE-ENDED (dBFS)  
SFDR  
80  
70  
60  
50  
40  
SNR  
SINGLE-ENDED(dBc)  
DIFFERENTIAL (dBFS)  
SNR  
SINGLE-ENDED (dBFS)  
SNR  
DIFFERENTIAL(dBc)  
SNR  
SNR  
SINGLE-ENDED (dBc)  
0
25  
50  
75  
100  
125  
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT FREQUENCY (MHz)  
A
(dBFS)  
IN  
Figure 20. AD9235-20: SNR/SFDR vs. fIN  
Figure 17. AD9235-20: Single Tone SNR/SFDR vs. AIN with fIN = Nyquist (10 MHz)  
Rev. D | Page 12 of 40  
Data Sheet  
AD9235  
0
95  
90  
85  
80  
75  
70  
65  
60  
SNR = 64.6dBFS  
SFDR = 81.6dBFS  
2V SFDR  
1V SFDR  
–20  
–40  
–60  
–80  
2V SNR  
1V SNR  
–100  
–120  
32.5  
39.0  
45.5  
52.0  
58.5  
65.0  
–24  
–21  
–18  
–15  
(dBFS)  
–12  
–9  
–6  
FREQUENCY (MHz)  
A
IN  
Figure 21. Dual Tone 8K FFT with fIN1 = 45 MHz and fIN2 = 46 MHz  
Figure 24. Dual Tone SNR/SFDR vs. AIN with fIN1 = 45 MHz and fIN2 = 46 MHz  
95  
0
SNR = 64.3dBFS  
2V SFDR  
SFDR = 81.1dBFS  
90  
–20  
1V SFDR  
85  
80  
75  
–40  
–60  
–80  
2V SNR  
1V SNR  
70  
–100  
65  
60  
–24  
–120  
65.0  
–21  
–18  
–15  
–12  
–9  
–6  
71.5  
78.0  
84.5  
91.0  
97.5  
A
(dBFS)  
FREQUENCY (MHz)  
IN  
Figure 22. Dual Tone 8K FFT with fIN1 = 69 MHz and fIN2 = 70 MHz  
Figure 25. Dual Tone SNR/SFDR vs. AIN with fIN1 = 69 MHz and fIN2 = 70 MHz  
0
95  
SNR = 62.5dBFS  
SFDR = 75.6dBFS  
2V SFDR  
90  
–20  
–40  
1V SFDR  
85  
80  
75  
–60  
–80  
2V SNR  
1V SNR  
70  
–100  
65  
–120  
130.0  
60  
–24  
136.5  
143.0  
149.5  
156.0  
162.0  
–21  
–18  
–15  
–12  
–9  
–6  
FREQUENCY (MHz)  
A
(dBFS)  
IN  
Figure 23. Dual Tone 8K FFT with fIN1 = 144 MHz and fIN2 = 145 MHz  
Figure 26. Dual Tone SNR/SFDR vs. AIN with fIN1 = 144 MHz and fIN2 = 145 MHz  
Rev. D | Page 13 of 40  
AD9235  
Data Sheet  
20  
15  
75  
12.2  
11.7  
11.2  
10.7  
10.2  
9.7  
AD9235-40:  
2V SINAD  
AD9235-65:  
2V SINAD  
AD9235-20:  
2V SINAD  
72  
69  
66  
63  
60  
10  
5
AD9235-20:  
1V SINAD  
AD9235-40:  
1V SINAD  
0
–5  
AD9235-65:  
1V SINAD  
–10  
–15  
–20  
0
10  
20  
30  
40  
50  
60  
–40  
–20  
0
20  
40  
60  
80  
SAMPLE RATE (MSPS)  
TEMPERATURE (°C)  
Figure 27. SINAD vs. fCLK with fIN = Nyquist  
Figure 30. A/D Gain vs. Temperature Using an External Reference  
90  
1.0  
0.8  
SFDR: DCS ON  
80  
70  
60  
50  
40  
30  
0.6  
SFDR: DCS OFF  
SINAD: DCS ON  
0.4  
0.2  
SINAD: DCS OFF  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
35  
40  
45  
50  
55  
60  
65  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
DUTY CYCLE (%)  
Figure 28. SINAD/SFDR vs. Clock Duty Cycle  
Figure 31. Typical INL  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.0  
0.8  
SFDR 2V DIFF  
0.6  
0.4  
SFDR 1V DIFF  
SINAD 2V DIFF  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SINAD 1V DIFF  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
0
500  
1000  
1500 2000 2500  
CODE  
3000  
3500  
4000  
SAMPLE RATE (MSPS)  
Figure 29. SINAD/SFDR vs. Temperature with fIN = 32.5 MHz  
Figure 32. Typical DNL  
Rev. D | Page 14 of 40  
 
Data Sheet  
AD9235  
APPLYING THE AD9235  
For best dynamic performance, the source impedances driving  
VIN+ and VIN– should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
THEORY OF OPERATION  
The AD9235 architecture consists of a front end SHA followed  
by a pipelined switched capacitor ADC. The pipelined ADC is  
divided into three sections, consisting of a 4-bit first stage  
followed by eight 1.5-bit stages and a final 3-bit flash. Each stage  
provides sufficient overlap to correct for flash errors in the  
preceding stages. The quantized outputs from each stage are  
combined into a final 12-bit result in the digital correction log-  
ic. The pipelined architecture permits the first stage to operate  
on a new input sample while the remaining stages operate on  
preceding samples. Sampling occurs on the rising edge  
of the clock.  
H
T
T
5pF  
5pF  
VIN+  
VIN–  
C
C
PAR  
T
PAR  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
T
H
Figure 33. Switched-Capacitor SHA Input  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, respectively, that  
define the span of the ADC core. The output common mode of  
the reference buffer is set to midsupply, and the REFT and  
REFB voltages and span are defined as:  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended modes. The output-  
staging block aligns the data, carries out the error correction,  
and passes the data to the output buffers. The output buffers are  
powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers  
go into a high impedance state.  
REFT = ½(AVDD + VREF)  
REFB = ½(AVDD VREF)  
Span = 2 × (REFT REFB) = 2 × VREF  
ANALOG INPUT  
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage  
and, by definition, the input span is twice the value of the  
VREF voltage.  
The analog input to the AD9235 is a differential switched  
capacitor SHA that has been designed for optimum perfor-  
mance while processing a differential input signal. The SHA  
input can support a wide common-mode range and maintain  
excellent performance, as shown in Figure 34. An input  
common-mode voltage of midsupply minimizes signal-  
dependent errors and provides optimum performance.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
–90  
–85  
–80  
–75  
–70  
–65  
–60  
–55  
–50  
THD 2.5MHz 2V DIFF  
THD 35MHz 2V DIFF  
SNR 2.5MHz 2V DIFF  
Referring to Figure 33, the clock signal alternatively switches  
the SHA between sample mode and hold mode. When the SHA  
is switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can be  
placed across the inputs to provide dynamic charging currents.  
This passive network creates a low-pass filter at the ADCs  
input; therefore, the precise values are dependent upon the  
application. In IF undersampling applications, any shunt  
capacitors should be removed. In combination with the driving  
source impedance, they would limit the input bandwidth.  
SNR 35MHz 2V DIFF  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
COMMON-MODE LEVEL (V)  
Figure 34. AD9235-65: SNR, THD vs. Common-Mode Level  
Rev. D | Page 15 of 40  
 
 
 
 
 
AD9235  
Data Sheet  
The internal voltage reference can be pin-strapped to fixed  
values of 0.5 V or 1.0 V, or adjusted within the same range as  
discussed in the Internal Reference Connection section. Maxi-  
mum SNR performance is achieved with the AD9235 set to the  
largest input span of 2 V p-p. The relative SNR degradation is  
3 dB when changing from 2 V p-p mode to 1 V p-p mode.  
differential transformer coupling is the recommended input  
configuration, as shown in Figure 36.  
AVDD  
22  
VIN+  
15pF  
AD9235  
2Vp-p  
49.9Ω  
22Ω  
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference volt-  
age. The minimum and maximum common-mode input levels  
are defined as:  
VIN–  
AGND  
1kΩ  
15pF  
0.1µF  
1kΩ  
Figure 36. Differential Transformer-Coupled Configuration  
VCMMIN = VREF/2  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
VCMMAX = (AVDD + VREF)/2  
The minimum common-mode input level allows the AD9235 to  
accommodate ground-referenced inputs.  
Single-Ended Input Configuration  
Although optimum performance is achieved with a differential  
input, a single-ended source may be driven into VIN+ or VIN–.  
In this configuration, one input accepts the signal, while the  
opposite input should be set to midscale by connecting it to an  
appropriate reference. For example, a 2 V p-p signal may be  
applied to VIN+ while a 1 V reference is applied to VIN–. The  
AD9235 then accepts an input signal varying between 2 V and  
0 V. In the single-ended configuration, distortion performance  
may degrade significantly as compared to the differential case.  
However, the effect is less noticeable at lower input frequencies and  
in the lower speed grade models (AD9235-40 and AD9235-20).  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there is degra-  
dation in SFDR and in distortion performance due to the large  
input common-mode swing. However, if the source  
impedances on each input are matched, there should be little  
effect on SNR performance. Figure 37 details a typical single-  
ended input configuration.  
1kΩ  
AVDD  
VIN+  
0.33µF  
22Ω  
2Vp-p  
49.9Ω  
1kΩ  
1kΩ  
15pF  
Differential Input Configurations  
AD9235  
As previously detailed, optimum performance is achieved while  
driving the AD9235 in a differential input configuration. For  
baseband applications, the AD8138 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal.  
22Ω  
VIN–  
AGND  
10µF  
0.1µF  
15pF  
1kΩ  
Figure 37. Single-Ended Input Configuration  
CLOCK INPUT CONSIDERATIONS  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result, may be sensi-  
tive to clock duty cycle. Commonly a 5% tolerance is required  
on the clock duty cycle to maintain dynamic performance char-  
acteristics. The AD9235 contains a clock duty cycle stabilizer  
(DCS) that retimes the nonsampling edge, providing an internal  
clock signal with a nominal 50% duty cycle. This allows a wide  
range of clock input duty cycles without affecting the perfor-  
mance of the AD9235. As shown in Figure 30, noise and distor-  
tion performance are nearly flat over a 30% range of duty cycle.  
49.9  
1Vp-p  
499Ω  
AVDD  
VIN+  
22Ω  
499Ω  
523Ω  
1kΩ  
15pF  
AD9235  
AD8138  
499Ω  
22Ω  
VIN–  
AGND  
0.1µF  
1kΩ  
15pF  
Figure 35. Differential Input Configuration Using the AD8138  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately 100 clock cycles to  
allow the DLL to acquire and lock to the new rate.  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9235. This is especially true in IF  
undersampling applications where frequencies in the 70 MHz to  
100 MHz range are being sampled. For these applications,  
Rev. D | Page 16 of 40  
 
 
 
Data Sheet  
AD9235  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
75  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given full-scale  
input frequency (fINPUT) due only to aperture jitter (tJ) can be  
calculated by  
AD9235-65  
SNR Degradation = −20 × log10[2π × fINPUT × tJ]  
In the equation, the rms aperture jitter, tJ, represents the root-  
sum square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification.  
Undersampling applications are particularly sensitive to jitter.  
AD9235-40  
AD9235-20  
10  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9235. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other  
methods), it should be retimed by the original clock at the last  
step.  
50  
0
20  
30  
40  
50  
60  
SAMPLE RATE (MSPS)  
Figure 38. Total Power vs. Sample Rate with fIN = 10 MHz  
For the AD9235-20 speed grade, the digital power consumption  
can represent as much as 10% of the total dissipation. Digital  
power consumption can be minimized by reducing the capaci-  
tive load presented to the output drivers. The data in Figure 38  
was taken with a 5 pF load on each output driver.  
POWER DISSIPATION AND STANDBY MODE  
The analog circuitry is optimally biased so that each speed  
grade provides excellent performance while affording reduced  
power consumption. Each speed grade dissipates a baseline  
power at low sample rates that increases linearly with the clock  
frequency.  
As shown in Figure 38, the power dissipated by the AD9235 is  
proportional to its sample rate. The digital power dissipation  
does not vary substantially between the three speed grades  
because it is determined primarily by the strength of the digital  
drivers and the load on each output bit. The maximum DRVDD  
current can be calculated as  
By asserting the PDWN pin high, the AD9235 is placed in  
standby mode. In this state, the ADC typically dissipates 1 mW  
if the CLK and analog inputs are static. During standby, the  
output drivers are placed in a high impedance state. Reasserting  
the PDWN pin low returns the AD9235 into its normal  
operational mode.  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits, 12 in the case of the  
AD9235. This maximum current occurs when every output bit  
switches on every clock cycle, i.e., a full-scale square wave at the  
Nyquist frequency, fCLK/2. In practice, the DRVDD current is  
established by the average number of output bits switching,  
which is determined by the encode rate and the characteristics  
of the analog input signal.  
Low power dissipation in standby mode is achieved by shutting  
down the reference, reference buffer, and biasing networks. The  
decoupling capacitors on REFT and REFB are discharged when  
entering standby mode and then must be recharged when  
returning to normal operation. As a result, the wake-up time is  
related to the time spent in standby mode, and shorter standby  
cycles result in proportionally shorter wake-up times. With the  
recommended 0.1 µF and 10 µF decoupling capacitors on REFT  
and REFB, it takes approximately 1 sec to fully discharge the  
reference buffer decoupling capacitors and 3 ms to restore full  
operation.  
Rev. D | Page 17 of 40  
 
 
AD9235  
Data Sheet  
Table 7. Reference Configuration Summary  
Selected Mode  
SENSE Voltage Internal Switch Position  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
AVDD  
N/A  
N/A  
2 × External Reference  
Internal Fixed Reference  
Programmable Reference  
Internal Fixed Reference  
VREF  
0.2 V to VREF  
AGND to 0.2 V  
SENSE  
SENSE  
Internal Divider  
0.5  
1.0  
0.5 × (1 + R2/R1)  
1.0  
2 × VREF (See Figure 40)  
2.0  
SENSE pin. This puts the reference amplifier in a noninverting  
mode with the VREF output defined as  
DIGITAL OUTPUTS  
The AD9235 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fan-outs may require external buffers or latches.  
VREF = 0.5 × (1 + R2/R1)  
VIN+  
VIN–  
REFT  
0.1µF  
+
ADC  
CORE  
0.1µF  
REFB  
0.1µF  
10µF  
As detailed in Table 8, the data format can be selected for either  
offset binary or twos complement.  
VREF  
0.1µF  
+
Timing  
10µF  
0.5V  
SELECT  
LOGIC  
The AD9235 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propaga-  
tion delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 2 for a detailed timing diagram.  
SENSE  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9235;  
these transients can detract from the converters dynamic  
performance.  
AD9235  
Figure 39. Internal Reference Configuration  
In all reference configurations, REFT and REFB drive the A/D  
conversion core and establish its input span. The input range of  
the ADC always equals twice the voltage at the reference pin for  
either an internal or an external reference.  
The lowest typical conversion rate of the AD9235 is 1 MSPS. At  
clock rates below 1 MSPS, dynamic performance may degrade.  
VOLTAGE REFERENCE  
VIN+  
A stable and accurate 0.5 V voltage reference is built into the  
AD9235. The input range can be adjusted by varying the refer-  
ence voltage applied to the AD9235, using either the internal  
reference or an externally applied reference voltage. The input  
span of the ADC tracks reference voltage changes linearly.  
VIN–  
REFT  
0.1µF  
+
ADC  
CORE  
0.1µF  
REFB  
0.1µF  
10µF  
If the ADC is being driven differentially through a transformer,  
the reference voltage can be used to bias the center tap  
(common-mode voltage).  
VREF  
0.1µF  
+
10µF  
0.5V  
R2  
SELECT  
LOGIC  
Internal Reference Connection  
A comparator within the AD9235 detects the potential at the  
SENSE pin and configures the reference into one of four possi-  
ble states, which are summarized in Table 7. If SENSE is  
grounded, the reference amplifier switch is connected to the  
internal resistor divider (see Figure 39), setting VREF to 1 V.  
Connecting the SENSE pin to VREF switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected as shown in Figure 40, the switch is again set to the  
SENSE  
R1  
AD9235  
Figure 40. Programmable Reference Configuration  
Rev. D | Page 18 of 40  
 
 
 
 
 
 
Data Sheet  
AD9235  
External Reference Operation  
OPERATIONAL MODE SELECTION  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or to improve thermal drift  
characteristics. When multiple ADCs track one another, a single  
reference (internal or external) may be necessary to reduce gain  
matching errors to an acceptable level. A high precision external  
reference may also be selected to provide lower gain and offset  
temperature drift. Figure 41 shows the typical drift characteris-  
tics of the internal reference in both 1 V and 0.5 V modes.  
As discussed earlier, the AD9235 can output data in either offset  
binary or twos complement format. There is also a provision for  
enabling or disabling the clock DCS. The MODE pin is a multi-  
level input that controls the data format and DCS state. The  
input threshold values and corresponding mode selections are  
outlined in Table 8.  
Table 8. Mode Selection  
MODE Voltage Data Format  
Duty Cycle Stabilizer  
Twos Complement Disabled  
Twos Complement Enabled  
1.2  
AVDD  
2/3 AVDD  
1/3 AVDD  
AGND (Default)  
1.0  
Offset Binary  
Offset Binary  
Enabled  
Disabled  
VREF = 1.0V  
0.8  
The MODE pin is internally pulled down to AGND by a 20 kΩ  
resistor.  
VREF = 0.5V  
0.6  
TSSOP EVALUATION BOARD  
0.4  
0.2  
0
The AD9235 evaluation board provides the support circuitry  
required to operate the ADC in its various modes and configu-  
rations. The converter can be driven differentially, through an  
AD8138 driver or a transformer, or single-ended. Separate pow-  
er pins are provided to isolate the DUT from the support cir-  
cuitry. Each input configuration can be selected by proper con-  
nection of various jumpers (refer to the schematics). Figure 43  
shows the typical bench characterization setup used to evaluate  
the ac performance of the AD9235. It is critical that signal  
sources with very low phase noise (<1 ps rms jitter) be used to  
realize the ultimate performance of the converter. Proper filter-  
ing of the input signal, to remove harmonics and lower the inte-  
grated noise at the input, is also necessary to achieve the speci-  
fied noise performance.  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 41. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1 V.  
The AUXCLK input should be selected in applications requiring  
the lowest jitter and SNR performance, i.e., IF undersampling  
characterization. It allows the user to apply a clock input signal  
that is 4× the target sample rate of the AD9235. A low-jitter,  
differential divide-by-4 counter, the MC100LVEL33D, provides  
a 1× clock output that is subsequently returned back to the CLK  
input via JP9. For example, a 260 MHz signal (sinusoid) is  
divided down to a 65 MHz signal for clocking the ADC. Note  
that R1 must be removed with the AUXCLK interface. Lower  
jitter is often achieved with this interface since many RF signal  
generators display improved phase noise at higher output  
frequencies and the slew rate of the sinusoidal output signal is  
4× that of a 1× signal of equal amplitude.  
If the internal reference of the AD9235 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 42  
depicts how the internal reference voltage is affected by loading.  
0.05  
0
–0.05  
0.5V ERROR (%)  
–0.10  
1V ERROR (%)  
Complete schematics and layout plots follow and demonstrate  
the proper routing and grounding techniques that should be  
applied at the system level.  
–0.15  
–0.20  
–0.25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD (mA)  
Figure 42. VREF Accuracy vs. Load  
Rev. D | Page 19 of 40  
 
 
 
 
 
AD9235  
Data Sheet  
LFCSP EVALUATION BOARD  
An alternative differential analog input path using an AD8351  
op amp is included in the layout but is not populated in produc-  
tion. Designers interested in evaluating the op amp with the  
ADC should remove C15, R12, and R3 and populate the op amp  
circuit. The passive network between the AD8351 outputs and  
the AD9235 allows the user to optimize the frequency response  
of the op amp for the application.  
The typical bench setup used to evaluate the ac performance  
of the AD9235 is similar to the TSSOP Evaluation Board  
connections (refer to the schematics for connection details).  
The AD9235 can be driven single-ended or differentially  
through a transformer. Separate power pins are provided to  
isolate the DUT from the support circuitry. Each input  
configuration can be selected by proper connection of  
various jumpers (refer to the schematics).  
3V  
3V  
3V  
3V  
+
+
+
+
AVDD GND DUT GND DUT  
DVDD  
J1  
S4  
AVDD  
DRVDD  
HP8644, 2V p-p  
SIGNAL SYNTHESIZER  
BAND-PASS  
FILTER  
REFIN  
10MHz  
XFMR  
INPUT  
DATA  
CAPTURE  
AND  
AD9235  
TSSOP EVALUATION BOARD  
PROCESSING  
HP8644, 2V p-p  
CLOCK  
S1  
REFOUT CLOCK SYNTHESIZER  
DIVIDER  
CLOCK  
Figure 43. TSSOP Evaluation Board Connections  
Rev. D | Page 20 of 40  
 
 
Data Sheet  
AD9235  
RP3 22  
RP5 22Ω  
1
8
1
8
D0O  
D1O  
D2O  
D3O  
D0  
D1  
D2  
D3  
D8O  
D9O  
D8  
RP3 22Ω  
RP5 22Ω  
2
7
2
7
D9  
RP3 22Ω  
RP5 22Ω  
3
6
3
6
D10O  
D11O  
D10  
D11  
RP3 22Ω  
RP5 22Ω  
4
5
4
5
RP4 22Ω  
RP6 22Ω  
1
8
1
8
D4O  
D5O  
D6O  
D7O  
D4  
D5  
D6  
RP4 22Ω  
RP6 22Ω  
2
7
2
7
RP4 22Ω  
RP6 22Ω  
3
6
3
6
WHT  
TP5  
JP23  
JP22  
RP4 22Ω  
RP6 22Ω  
DUTAVDD  
C36  
4
5
4
5
D7 OTRO  
OTR  
R3  
10kΩ  
C57  
0.1µF  
C22  
10µF  
10V  
+
JP25  
JP24  
TP2  
RED  
0.1µF  
FBEAD  
L1  
C39  
0.001µF  
DUTAVDDIN  
TB1  
JP12  
DUTAVDD  
2
1
2
3
+
R4  
10kΩ  
C21  
10µF  
10V  
C58  
22µF  
25V  
AD9235  
+
C59  
0.1µF  
C35  
0.1µF  
7
8
1
WHT  
TP17  
AVDD  
OTR  
D11  
D10  
D9  
OTRO  
AGND  
TB1  
28  
27  
26  
25  
22  
21  
20  
19  
18  
17  
16  
15  
13  
AGND  
SENSE  
VREF  
PDWN  
REFB  
REFT  
MODE  
VIN+  
D0O  
3
D1O  
4
D2O  
C34  
0.1µF  
14  
5
TP1  
RED  
D8  
D3O  
D7  
D4O  
FBEAD  
L2  
AVDDIN  
TB1  
6
AVDD  
D6  
D5O  
C20  
10µF  
10V  
C33  
0.1µF  
2
1
1
+
2
D5  
D6O  
C47  
22µF  
25V  
SHEET 3  
C50  
0.1µF  
+
C52  
0.1µF  
9
VIN+  
VIN–  
D4  
D7O  
U1  
C32  
0.1µF  
10  
11  
12  
23  
24  
VIN–  
D3  
D8O  
AGND  
AVDD  
DGND  
DRVDD  
D2  
D9O  
JP13  
AVDD  
D1  
D10O  
D11O  
DUTCLK  
AVDD  
D0  
R27  
5kΩ  
R20  
1kΩ  
JP7  
JP6  
JP1  
JP2  
TP3  
RED  
CLK  
FBEAD  
L3  
WHT  
TP6  
DRVDDIN  
TB1  
JP11  
DUTDRVDD  
2
1
5
4
R17  
1kΩ  
DUTAVDD  
C23  
DUTDRVDD  
C48  
22µF  
25V  
+
C53  
0.1µF  
C1  
10µF  
10V  
AGND  
TB1  
+
+
C38  
C41  
0.001µF  
C37  
0.1µF  
C40  
0.001µF  
R42  
1kΩ  
10µF  
0.1µF  
10V  
TP4  
RED  
TP9  
BLK  
TP10  
BLK  
TP15  
BLK  
TP16  
BLK  
FBEAD  
L4  
DVDDIN  
TB1  
DVDD  
2
1
6
C6  
22µF  
25V  
+
TP11  
BLK  
TP12  
BLK  
TP13  
BLK  
TP14  
BLK  
C14  
0.1µF  
Figure 44. TSSOP Evaluation Board Schematic, DUT  
Rev. D | Page 21 of 40  
AD9235  
Data Sheet  
DVDD  
C12  
0.1µF  
C4  
R25  
10k  
10µF  
10V  
2
AUXCLK  
+
1
3
2
AVDD  
1
S5  
1
1
2
20  
10  
18  
17  
16  
15  
14  
13  
12  
11  
4
6
5
4
1
2
3
T1–1T  
T2  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
VCC  
GND  
Y1  
19  
1N5712  
1N5712  
5
6
D2  
D1  
R11  
49.9Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
RP2 22Ω  
DD0  
DD1  
DD2  
DD3  
DD4  
DD5  
DD6  
DD7  
DD8  
DD9  
DD10  
DD11  
DOTR  
2
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
7
8
D0  
3
4
5
6
7
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Y2  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
Y3  
MC100LVEL33D  
U3  
U6  
74VHC541  
R26  
10kΩ  
8
7
6
5
1
2
Y4  
Y5  
Y6  
Y7  
Y8  
AVDD  
VCC  
OUT  
REF  
VEE  
NC  
INA  
INB  
3
4
INCOM  
AVDD  
9
AVDD  
AVDD  
C28  
10µ  
10V  
16  
15  
14  
13  
12  
11  
10  
9
+
C24  
0.1µF  
F
C11  
0.1µF  
R12  
113Ω  
R13  
113Ω  
C27  
0.1µF  
U8 DECOUPLING  
C26  
0.1µF  
C5  
10µF  
10V  
2
R14  
90Ω  
R15  
90Ω  
+
1
1
20  
10  
18  
17  
16  
15  
14  
13  
12  
11  
DACLK  
G1  
G2  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
VCC  
GND  
Y1  
19  
JP9  
2
D8  
D9  
3
4
5
6
7
Y2  
R19  
500Ω  
R2  
10Ω  
R18  
500Ω  
HDR40RAM  
J1  
D10  
D11  
Y3  
AVDD; 14  
AVDD; 7  
U7  
74VHC541  
AVDD  
CW  
C13  
Y4  
Y5  
Y6  
Y7  
Y8  
CLOCK  
R7  
WHT  
TP7  
1
S1  
U8  
U8  
0.1µF  
22DUTCLK  
1
OTR  
2
5
6
2
R1  
49.9Ω  
74VHC04 74VHC04  
JP4  
JP3  
9
R9  
22Ω  
U8  
3
13  
11  
9
4
74VHC04  
U8  
AVDD  
12  
C8  
C10  
74VHC04  
10µF  
10V  
0.1µF  
U8  
U9 DECOUPLING  
10  
U8  
8
74VHC04  
Figure 45. TSSOP Evaluation Board Schematic, Clock Inputs and Output Buffering  
Rev. D | Page 22 of 40  
Data Sheet  
AD9235  
AVDD  
C7  
R23  
1k  
0.1µF  
JP5  
SINGLE INPUT  
1
S3  
2
C9  
0.33µF  
R5  
49.9Ω  
JP42  
JP40  
JP45  
R41  
1kΩ  
C15  
10µF  
10V  
AVDD  
C44  
15pF  
AVDD  
R21  
22Ω  
1
2
C69  
VIN+  
0.1µF  
R32  
1kΩ  
C44B  
C2  
VAL  
R22  
JP46  
JP41  
JP43  
22Ω  
R33  
1kΩ  
C8  
0.1µF  
VIN–  
R37  
499Ω  
C42  
VAL  
C43  
15pF  
R6  
40Ω  
R34  
523Ω  
VCC  
3
–IN  
1
8
4
VO+  
AD8138  
R35  
499Ω  
2
AMP INPUT  
1
VOC  
R10  
40Ω  
U2  
5
S2  
VO–  
2
+IN  
R31  
49.9Ω  
6
VEE  
C45  
VAL  
C18  
0.1µF  
R36  
499Ω  
AVDD  
R16  
XFMR INPUT  
1
C19  
6
5
4
1
2
3
C17  
VAL  
T1–1T  
T2  
1kΩ  
10µF  
10V  
2
S4  
2
+
1
ALT VEE  
R24  
49.9Ω  
TP8  
RED  
3
2
A
B
R8  
1kΩ  
C25  
0.33µF  
C16  
0.1µF  
1
JP8  
Figure 46. TSSOP Evaluation Board Schematic, Analog Inputs  
DACLK  
AD9762  
U4  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DD0  
DD1  
DD2  
DD3  
DD4  
DD5  
DD6  
DD7  
DD8  
DD9  
DD10  
DD11  
MSB-DB11 CLOCK  
DVDD  
C30  
0.1µF  
C31  
0.01µF  
DB10  
DB19  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
NC1  
NC2  
DVDD  
DCOM  
NC3  
3
C29  
0.1µF  
C46  
0.01µF  
4
5
AVDD  
WHT  
TP18  
6
COMP2  
IOUTA  
IOUTB  
ACOM  
COMP1  
FSADJ  
REFIO  
REFLO  
SLEEP  
S6  
7
R29  
49.9Ω  
8
C56  
0.1µF  
9
C55  
22pF  
10  
11  
12  
13  
14  
R28  
49.9Ω  
C51  
0.1µF  
C49  
0.1µF 2kΩ  
R30  
C54  
22pF  
Figure 47. TSSOP Evaluation Board Schematic, Optional DAC  
Rev. D | Page 23 of 40  
AD9235  
Data Sheet  
Figure 48. TSSOP Evaluation Board Layout, Primary Side  
Rev. D | Page 24 of 40  
Data Sheet  
AD9235  
Figure 49. TSSOP Evaluation Board Layout, Secondary Side  
Rev. D | Page 25 of 40  
AD9235  
Data Sheet  
Figure 50. TSSOP Evaluation Board Layout, Ground Plane  
Rev. D | Page 26 of 40  
Data Sheet  
AD9235  
_
Figure 51. TSSOP Evaluation Board Power Plane  
Rev. D | Page 27 of 40  
AD9235  
Data Sheet  
Figure 52. TSSOP Evaluation Board Layout, Primary Silkscreen  
Rev. D | Page 28 of 40  
Data Sheet  
AD9235  
Figure 53. TSSOP Evaluation Board Layout, Secondary Silkscreen  
Rev. D | Page 29 of 40  
AD9235  
Data Sheet  
EXTREF  
1V MAX E1  
GND AVDD  
C13  
C22  
R1  
0.10µF  
10µF  
10kΩ  
P9 P8 P11  
P7  
A
B
C
D
R9  
10kΩ  
C12  
0.1µF  
GND  
GND  
E
AVDD  
H1  
MTHOLE6  
P10  
1
GND  
P2  
P6  
R5  
1kΩ  
GND GND  
1
2
3
4
5
6
H2  
MTHOLE6  
MODE  
P5  
H3  
MTHOLE6  
C29  
10µF  
2 2  
C9  
0.10µF  
C11  
0.1µF  
P1  
R7  
1kΩ  
C8  
0.1µF  
+
H4  
MTHOLE6  
GND  
3
C7  
0.1µF  
GND  
P3  
R6  
1kΩ  
OVERRANGE BIT  
(MSB)  
GND  
GND  
4
P4  
1
2
3
4
5
6
7
8
16  
DRX  
15  
24 23 22 21 20 19 18 17  
D13X  
14  
D12X  
13  
C6  
0.1µF  
R42  
0Ω  
D11X  
12  
D10X  
11  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
REFB  
REFT  
AVDD  
AGND  
VIN+  
DRVDD  
DGND  
D7  
D9X  
10  
AVDD  
DRVDD  
GND  
D8X  
9
AMPIN  
GND  
R36  
1kΩ  
R26  
1kΩ  
D7X  
AVDD  
RP2 220Ω  
GND  
VIN+  
AD9235  
D6  
X
OUT  
U4  
D5  
R12  
0Ω  
R4  
33kΩ  
C21  
10pF  
VIN–  
T1  
ADT 1–1 WT  
VIN–  
D4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
C15  
0.1µF  
D6X  
D5X  
D4X  
D3X  
D2X  
D1X  
D0X  
R10  
36Ω  
E 45  
GND  
AGND  
AVDD  
D3  
J1  
C26  
10pF  
XFRIN1  
NC  
GND  
1
5
3
6
2
4
AVDD  
D2  
L1  
10nH  
CT  
R2  
XX  
C19  
(LSB)  
C16  
AMP  
C5  
0.1µF  
GND  
GND  
1
2
3
4
5
6
7
8
OR L1  
0.1µF  
PRI SEC  
GND  
15pF  
FOR FILTER  
GND  
GND  
RP1 220Ω  
CLK  
P14  
R11  
36Ω  
OPTIONAL XFR  
T2  
FT C1–1–13  
R3  
0Ω  
R8  
1kΩ  
GND  
C23  
X
B
OUT  
10pF  
1
5
2
4
P13  
AMPINB  
X FRIN  
X
OUT  
AVDD  
GND  
R15  
CT  
X
33Ω  
3
B
C18  
OUT  
SENSE PIN SOLDERABLE JUMPER  
AVDD  
PRI SEC  
GND  
0.1µF  
R13  
1kΩ  
R25  
1kΩ  
GND  
E TO A  
E TO B  
E TO C  
E TO D  
EXTERNAL VOLTAGE DIVIDER  
R18  
25Ω  
INTERNAL 1V REFERENCE (DEFAULT)  
EXTERNAL REFERENCE  
R SINGLE ENDED  
R3, R17, R18  
ONLY ONE SHOULD BE  
ON BOARD AT A TIME  
INTERNAL 0.5V REFERENCE  
GND  
MODE PIN SOLDERABLE JUMPER  
5 TO 1 TWOS COMPLEMENT/DCS OFF  
5 TO 2 TWOS COMPLEMENT/DCS OFF  
5 TO 3 OFFSET BINARY/DCS ON  
5 TO 4 OFFSET BINARY/DCS OFF  
Figure 54. LFCSP Evaluation Board Schematic, Analog Inputs and DUT  
Rev. D | Page 30 of 40  
Data Sheet  
AD9235  
74LVTH162374  
U1  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
2CLK  
2OE  
2QB  
2Q7  
GND  
2Q6  
2Q5  
CLKAT/DAC  
MSB DRX  
D13X  
GND  
GND  
HEADER 40  
2DB  
2D7  
GND  
2D6  
2D5  
DRY  
2
4
6
1
3
5
7
9
2
1
3
GND  
4
DR  
GND  
6
5
D12X  
D11X  
MSB GND  
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
8
7
V
V
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
9
DRVDD  
D10X  
DRVDD  
CC  
CC  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
2D4  
2D3  
GND  
2D2  
2D1  
1D8  
1D7  
GND  
1D6  
1D5  
2Q4  
2Q3  
GND  
2Q2  
2Q1  
1Q8  
1Q7  
GND  
1Q6  
1Q5  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
D9X  
GND  
GND  
GND  
D8X  
D7X  
D6X  
D5X  
GND  
D4X  
D3X  
8
7
V
V
DRVDD  
D2X  
DRVDD  
CC  
CC  
6
1D4  
1Q4  
1Q3  
GND  
1Q2  
1Q1  
1OE  
5
1D3  
D1X  
DRY  
4
GND  
1D2  
GND  
LSB  
GND  
GND  
3
D0X  
2
1D1  
GND  
GND  
1
1CLK  
1
CLKLAT/DAC  
IN  
OUT  
R38  
R39  
1k  
1kΩ  
VAMP  
GND  
C44  
0.1µF  
C24  
10µF  
VAMP  
POWER DOWN  
USE R40 OR R41  
+
C45  
0.1µF  
GND  
GND  
GND  
VAMP  
GND  
R41  
R40  
AD8351  
R41  
10kΩ  
R14  
25Ω  
10k10kΩ  
U3  
PWDN  
RGP1  
INHI  
VOCM  
1
2
3
4
5
10  
9
VPOS  
OPH1  
OPLO  
COMM  
C28  
0.1µF  
C27  
R16  
0Ω  
AMP IN  
AMP  
0.1µF  
8
AMPINB  
AMPIN  
INLO  
RPG2  
7
R17  
0Ω  
C35  
0.10µF  
C17  
R19  
50Ω  
R35  
25Ω  
6
0.1µF  
R33  
25Ω  
GND  
R34  
1.2kΩ  
GND GND  
Figure 55. LFCSP Evaluation Board Schematic, Digital Path  
Rev. D | Page 31 of 40  
AD9235  
Data Sheet  
Figure 56. LFCSP Evaluation Board Schematic, Clock Input  
Rev. D | Page 32 of 40  
Data Sheet  
AD9235  
Figure 59. LFCSP Evaluation Board Layout, Ground Plane  
Figure 57. LFCSP Evaluation Board Layout, Primary Side  
Figure 58. LFCSP Evaluation Board Layout, Secondary Side  
Figure 60. LFCSP Evaluation Board Layout, Power Plane  
Rev. D | Page 33 of 40  
AD9235  
Data Sheet  
Figure 61. LFCSP Evaluation Board Layout, Primary Silkscreen  
Figure 62. LFCSP Evaluation Board Layout, Secondary Silkscreen  
Rev. D | Page 34 of 40  
Data Sheet  
AD9235  
Table 9. LFCSP Evaluation Board Bill of Materials (BOM)  
Recommended Vendor/ Supplied  
Item Qty. Omit1 Reference Designator  
Device  
Package Value Part Number  
by ADI  
1
18  
C1, C5, C7, C8, C9, C11,  
C12, C13, C15, C16, C31, C33,  
C34, C36, C37, C41, C43, C47  
Chip Capacitor  
0603  
0.1 µF  
8
2
C6, C18, C27, C17,  
C28, C35, C45, C44  
2
3
8
8
C2, C3, C4, C10, C20,  
C22, C25, C29  
Tantalum Capacitor  
Chip Capacitor  
TAJD  
0603  
10 µF  
C46, C24  
C14, C30, C32, C38,  
C39, C40, C48, C49  
0.001 µF  
4
5
6
3
1
9
C19, C21, C23  
C26  
Chip Capacitor  
Chip Capacitor  
Header  
0603  
10 pF  
10 pF  
0603  
E31, E35, E43, E44,  
E50, E51, E52, E53  
EHOLE  
Jumper Blocks  
2
1
E1, E45  
J1, J2  
L1  
7
8
2
1
SMA Connector/50 Ω  
Inductor  
SMA  
0603  
10 nH Coilcraft/  
0603CS-10NXGBU  
9
P2  
Terminal Block  
TB6  
Wieland/25.602.2653.0,  
z5-530-0625-0  
10  
11  
1
5
P12  
Header Dual 20-Pin RT Angle HEADER40  
Digi-Key S2131-20-ND  
R3, R12, R23, R28, RX  
R37, R22, R42, R16, R17, R27  
R4, R15  
Chip Resistor  
0603  
0 Ω  
6
1
12  
13  
2
Chip Resistor  
Chip Resistor  
0603  
0603  
33 Ω  
1 k Ω  
14  
R5, R6, R7, R8, R13, R20,  
R21, R24, R25, R26,  
R30, R31, R32, R36  
14  
15  
2
1
R10, R11  
R29  
Chip Resistor  
Chip Resistor  
0603  
0603  
36 Ω  
50 Ω  
R19  
16  
2
RP1, RP2  
Resistor Pack  
ADT1-1WT  
R_742  
220 Ω Digi-Key  
CTS/742C163220JTR  
17  
18  
1
1
T1  
AWT1-1T  
TSSOP-48  
Mini-Circuits  
U1  
74LVTH162374  
CMOS Register  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1
1
1
U4  
AD9235BCP ADC (DUT)  
74VCX86M  
LFCSP-32  
SOIC-14  
PCB  
Analog Devices, Inc.  
Fairchild  
X
U5  
PCB  
AD92XXBCP/PCB  
AD8351 Op Amp  
MACOM Transformer  
Chip Resistor  
Analog Devices, Inc.  
Analog Devices, Inc.  
X
X
1
U3  
MSOP-8  
1
T2  
ETC1-1-13 1-1 TX M/A-COM/ETC1-1-13  
5
R9, R1, R2, R38, R39  
R18, R14, R35  
R40, R41  
0603  
0603  
0603  
SELECT  
25 Ω  
3
Chip Resistor  
2
Chip Resistor  
10 k Ω  
1.2 k Ω  
100 Ω  
1
R34  
Chip Resistor  
1
R33  
Chip Resistor  
Total 82  
34  
1 These items are included in the PCB design but are omitted at assembly.  
Rev. D | Page 35 of 40  
 
AD9235  
Data Sheet  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 63. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
25  
24  
32  
1
INDICATOR  
0.50  
BSC  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
16  
8
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.  
Figure 64. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 × 5 mm Body, Very Very Thin Quad  
(CP-32-7)  
Dimensions shown in millimeters  
Rev. D | Page 36 of 40  
 
Data Sheet  
AD9235  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
AD9235BRU-20  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
28-Lead Thin Shrink Small Outline Package (TSSOP)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
RU-28  
CP-32-7  
CP-32-7  
CP-32-7  
CP-32-7  
CP-32-7  
CP-32-7  
AD9235BRURL7-20  
AD9235BRUZ-20  
AD9235BRUZRL7-20  
AD9235BRU-40  
AD9235BRURL7-40  
AD9235BRUZ-40  
AD9235BRUZRL7-40  
AD9235BRU-65  
AD9235BRURL7-65  
AD9235BRUZ-65  
AD9235BRUZRL7-65  
AD9235BCPZ-20  
AD9235BCPZRL7-20  
AD9235BCPZ-40  
AD9235BCPZRL7-40  
AD9235BCPZ-65  
AD9235BCPZRL7-65  
1 Z = RoHS Compliant Part.  
2 It is recommended that the exposed paddle be soldered to the ground plane. There is an increased reliability of the solder joints and maximum thermal capability of  
the package is achieved with exposed paddle soldered to the customer board.  
Rev. D | Page 37 of 40  
 
AD9235  
NOTES  
Data Sheet  
Rev. D | Page 38 of 40  
Data Sheet  
NOTES  
AD9235  
Rev. D | Page 39 of 40  
AD9235  
NOTES  
Data Sheet  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02461-0-10/12(D)  
Rev. D | Page 40 of 40  

相关型号:

AD9235BRURL7-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRURL7-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZ-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZ-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZ-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZRL7-20

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZRL7-40

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9235BRUZRL7-65

12-Bit, 20/40/65 MSPS 3 V A/D Converter
ADI

AD9236

12-Bit, 80 MSPS, 3V A/D Converter
ADI

AD9236BCP-80

12-Bit, 80 MSPS, 3V A/D Converter
ADI

AD9236BCP-80EB

12-Bit, 80 MSPS, 3V A/D Converter
ADI

AD9236BCPRL7-80

12-Bit, 80 MSPS, 3V A/D Converter
ADI