AD9237BCP-20EB [ADI]

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter; 12位, 20 MSPS / 40 MSPS / 65 MSPS, 3 V低功耗A / D转换器
AD9237BCP-20EB
型号: AD9237BCP-20EB
厂家: ADI    ADI
描述:

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
12位, 20 MSPS / 40 MSPS / 65 MSPS, 3 V低功耗A / D转换器

转换器
文件: 总28页 (文件大小:1013K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 20 MSPS/40 MSPS/65 MSPS  
3 V Low Power A/D Converter  
AD9237  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Ultralow power  
AVDD  
DRVDD  
85 mW at 20 MSPS  
135 mW at 40 MSPS  
190 mW at 65 MSPS  
SNR = 66 dBc to Nyquist at 65 MSPS  
SFDR = 80 dBc to Nyquist at 65 MSPS  
DNL = 0.7 LSB  
Differential input with 500 MHz bandwidth  
Flexible analog input: 1 V p-p to 4 V p-p range  
Offset binary, twos complement, or gray code data formats  
Output enable pin  
VIN+  
VIN–  
10-STAGE  
SHA  
1 1/2-BIT  
PIPELINE  
A/D  
MDAC1  
4
15  
3
REFT  
REFB  
A/D  
CORRECTION LOGIC  
12  
OE  
MODE2  
OUTPUT BUFFERS  
OTR  
D11  
D0  
AD9237  
VREF  
2-step power-down  
Full power-down and sleep mode  
Clock duty cycle stabilizer  
CLOCK  
DUTY CYCLE  
STABILIZER  
MODE  
SELECT  
SENSE  
REF  
SELECT  
0.5V  
AGND  
CLK  
PDWN  
MODE  
DGND  
APPLICATIONS  
Figure 1.  
Ultrasound and medical imaging  
Battery-powered instruments  
Hand-held scope meters  
Low cost digital oscilloscopes  
Low power digital still cameras and copiers  
Low power communications  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
1. Evaluation boards available for all speed grades.  
The AD9237 is a family of monolithic, single 3 V supply, 12-bit,  
20 MSPS/40 MSPS/65 MSPS analog-to-digital converters  
(ADC). This family features a high performance sample-and-  
hold amplifier (SHA) and voltage reference. The AD9237 uses a  
multistage differential pipelined architecture with output error  
correction logic to provide 12-bit accuracy at 20 MSPS/  
40 MSPS/65 MSPS data rates and guarantees no missing codes  
over the full operating temperature range.  
2. Operating at 65 MSPS, the AD9237 consumes a low 190 mW  
at 65 MSPS, 135 mW at 40 MSPS, and 85 mW at 20 MSPS.  
3. Power scaling reduces the operating power further when  
running at lower speeds.  
4. The AD9237 operates from a single 3 V power supply and  
features a separate digital output driver supply to  
accommodate 2.5 V and 3.3 V logic families.  
5. The patented SHA input maintains excellent performance  
for input frequencies beyond Nyquist and can be configured  
for single-ended or differential operation.  
6. The AD9237 is optimized for selectable and flexible input  
ranges from 1 V p-p to 4 V p-p.  
With significant power savings over previously available ADCs,  
the AD9237 is suitable for applications in imaging and medical  
ultrasound.  
Fabricated on an advanced CMOS process, the AD9237 is  
available in a 32-lead LFCSP and is specified over the industrial  
temperature range (−40°C to +85°C).  
7. An output enable pin allows for multiplexing of the outputs.  
8. Two-step power-down supports a standby mode in addition  
to a power-down mode.  
9. The OTR output bit indicates when the signal is beyond the  
selected input range.  
10. The clock duty cycle stabilizer (DCS) maintains converter  
performance over a wide range of clock pulse widths.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD9237  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology .......................................................................................9  
Equivalent Circuits......................................................................... 10  
Typical Performance Characteristics ........................................... 11  
Applying the AD9237 .................................................................... 16  
Theory of Operation.................................................................. 16  
Analog Input and Reference Overview................................... 16  
Voltage Reference ....................................................................... 18  
Clock Input Considerations...................................................... 19  
Power Dissipation, Power Scaling, and Standby Mode......... 19  
Digital Outputs ........................................................................... 21  
LFCSP Evaluation Board........................................................... 22  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
Digital Specifications ................................................................... 4  
AC Specifications.......................................................................... 4  
Switching Specifications .............................................................. 5  
Timing Diagram ............................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
REVISION HISTORY  
10/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD9237  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, −0.5 dBFS input, 1.0 V internal reference, TMIN to TMAX  
,
unless otherwise noted.  
Table 1.  
AD9237BCP-20  
Typ Max  
AD9237BCP-40  
Typ Max  
AD9237BCP-65  
Typ Max  
Parameter  
Min  
Min  
Min  
Unit  
RESOLUTION  
12  
12  
12  
Bits  
ACCURACY  
No Missing Codes Guaranteed  
Offset Error  
12  
12  
12  
Bits  
1.30  
1.ꢀ9  
2.10  
0.ꢀ9  
1.39  
1.30  
1.ꢀ9  
2.10  
0.ꢀ9  
1.39  
1.30  
1.ꢀ9  
2.29  
+1.29  
2.00  
% FSR  
% FSR  
LSB  
Gain Error1  
0.ꢁ0  
0.ꢁ0  
0.ꢀ0  
0.ꢁ9  
0.ꢁ0  
0.ꢀ0  
1.09  
0.ꢁ0  
0.ꢀ0  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
TEMPERATURE DRIFT  
Offset Error  
−1.00  
LSB  
2
12  
2
12  
2
12  
ppm/°C  
ppm/°C  
Gain Error1  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
Output Voltage Error (0.9 V Mode)  
Load Regulation @ 0.9 mA  
Reference Input Resistance  
INPUT REFERRED NOISE  
VREF = 0.9 V  
9
29  
9
29  
9
29  
mV  
mV  
mV  
mV  
kΩ  
0.8  
2.9  
0.1  
0.8  
2.9  
0.1  
0.8  
2.9  
0.1  
1.39  
0.ꢁ0  
1.39  
0.ꢁ0  
1.39  
0.ꢁ0  
LSB rms  
LSB rms  
VREF = 1.0 V  
ANALOG INPUT  
Input Span  
VREF = 0.9 V; MODE2 = 0 V  
VREF = 1.0 V; MODE2 = 0 V  
VREF = 0.9 V; MODE2 = AVDD  
VREF = 1.0 V; MODE2 = AVDD  
Input Capacitance3  
POWER SUPPLIES  
Supply Voltages  
1
2
2
4
1
2
2
4
1
2
2
4
V p-p  
V p-p  
V p-p  
V p-p  
pF  
AVDD  
DRVDD  
2.ꢁ  
2.29  
3.0  
2.9  
3.6  
3.6  
2.ꢁ  
2.29  
3.0  
2.9  
3.6  
3.6  
2.ꢁ  
2.29  
3.0  
2.9  
3.6  
3.6  
V
V
Supply Current  
IAVDD2  
IDRVDD2  
30.9  
3.0  
49.9  
4.9  
64.9  
9.9  
mA  
mA  
PSRR  
0.01  
0.01  
0.01  
% FSR  
POWER CONSUMPTION  
DC Input4  
Sine Wave Input2  
Power-Down Mode  
Standby Power  
89  
100  
1
139  
190  
1
1ꢀ0  
210  
1
mW  
mW  
mW  
mW  
120  
180  
2ꢁ0  
20  
20  
20  
1 Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).  
2 Measured at maximum clock rate, fIN = 2.4 MHz, full-scale sine wave, with approximately 9 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.  
4 Measured with dc input at maximum clock rate.  
Rev. 0 | Page 3 of 28  
 
 
 
AD9237  
DIGITAL SPECIFICATIONS  
Table 2.  
AD9237BCP-20  
AD9237BCP-40  
AD9237BCP-65  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
2.0  
2.0  
2.0  
V
Low Level Input Voltage  
0.8  
0.8  
0.8  
V
High Level Input Current  
Low Level Input Current  
Input Capacitance  
–10  
–10  
+10  
+10  
–10  
–10  
+10  
+10  
–10  
–10  
+10  
+10  
μA  
μA  
pF  
2
2
2
LOGIC OUTPUTS1  
DRVDD = 3.3 V  
High-Level Output Voltage (IOH = 90 μA)  
High-Level Output Voltage (IOH = 0.9 mA)  
Low-Level Output Voltage (IOL = 1.6 mA)  
Low-Level Output Voltage (IOL = 90 μA)  
DRVDD = 2.9 V  
3.2ꢀ  
3.29  
3.2ꢀ  
3.29  
3.2ꢀ  
3.29  
V
V
V
V
0.2  
0.09  
0.2  
0.09  
0.2  
0.09  
High-Level Output Voltage (IOH = 90 μA)  
High-Level Output Voltage (IOH = 0.9 mA)  
Low-Level Output Voltage (IOL = 1.6 mA)  
Low-Level Output Voltage (IOL = 90 μA)  
2.4ꢀ  
2.49  
2.4ꢀ  
2.49  
2.4ꢀ  
2.49  
V
V
V
V
0.2  
0.09  
0.2  
0.09  
0.2  
0.09  
1 Output voltage levels measured with 9 pF load on each output.  
AC SPECIFICATIONS  
AVDD = 3 V, DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, AIN = –0.5 dBFS, 1.0 V internal reference, TMIN to TMAX  
,
unless otherwise noted.  
Table 3.  
AD9237BCP-20  
AD9237BCP-40  
AD9237BCP-65  
Parameter  
Min  
Typ  
Max Min  
Typ  
66.9  
66.6  
66.3  
66.4  
66.4  
69.8  
Max Min  
Typ  
Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fINPUT = 2.4 MHz  
fINPUT = ꢀ.ꢁ MHz  
fINPUT = 1ꢀ.6 MHz  
fINPUT = 34.2 MHz  
66.8  
66.6  
66.9  
dBc  
dBc  
dBc  
dBc  
dBc  
69.6  
69.1  
69.3  
64.4  
64.0  
63.9  
66.1  
69.ꢀ  
fINPUT = ꢁ0 MHz  
66.0  
SIGNAL-TO-NOISE RATIO AND DISTORTION (SINAD)  
fINPUT = 2.4 MHz  
fINPUT = ꢀ.ꢁ MHz  
fINPUT = 1ꢀ.6 MHz  
fINPUT = 34.2 MHz  
66.ꢁ  
66.9  
66.3  
dBc  
dBc  
dBc  
dBc  
dBc  
69.8  
69.2  
fINPUT = ꢁ0 MHz  
69.6  
10.8  
EFFECTIVE NUMBER OF BITS (ENOB)  
fINPUT = ꢀ.ꢁ MHz  
fINPUT = 1ꢀ.6 MHz  
Bits  
Bits  
Bits  
10.ꢁ  
fINPUT = 34.2 MHz  
10.6  
Rev. 0 | Page 4 of 28  
 
AD9237  
AD9237BCP-20  
AD9237BCP-40  
AD9237BCP-65  
Parameter  
Min  
Typ  
Max Min  
Typ  
Max Min  
Typ  
Max Unit  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fINPUT = 2.4 MHz  
fINPUT = ꢀ.ꢁ MHz  
fINPUT = 1ꢀ.6 MHz  
fINPUT = 34.2 MHz  
88.0  
8ꢁ.9  
83.9  
82.4  
ꢁꢁ.ꢀ  
−83.9  
89.9  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢁ2.4  
ꢁ2.2  
6ꢀ.4  
80.1  
ꢁ4.ꢀ  
fINPUT = ꢁ0 MHz  
80.9  
WORST HARMONIC (SECOND OR THIRD)  
fINPUT = 2.4 MHz  
fINPUT = ꢀ.ꢁ MHz  
fINPUT = 1ꢀ.6 MHz  
fINPUT = 34.2 MHz  
−88.0  
−ꢁ2.4 −8ꢁ.9  
−89.9  
dBc  
dBc  
dBc  
dBc  
dBc  
−ꢁ2.2 −82.4  
−ꢁꢁ.ꢀ  
−6ꢀ.4 −80.1  
−ꢁ4.ꢀ  
fINPUT = ꢁ0 MHz  
−80.9  
WORST OTHER SPUR  
fINPUT = 2.4 MHz  
fINPUT = ꢀ.ꢁ MHz  
fINPUT = 1ꢀ.6 MHz  
fINPUT = 34.2 MHz  
−ꢀ0  
−ꢁ3.4 −ꢀ0  
−ꢀ0  
−ꢀ0  
dBc  
dBc  
dBc  
dBc  
dBc  
−ꢁ3.1 −ꢀ0  
−ꢀ0  
−ꢁ2.0 −ꢀ0  
−ꢀ0  
fINPUT = ꢁ0 MHz  
−ꢀ0  
SWITCHING SPECIFICATIONS  
Table 4.  
AD9237BCP-20  
AD9237BCP-40  
AD9237BCP-65  
Parameter  
Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
CLK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
CLK Pulse Width High1  
CLK Pulse Width Low1  
20  
40  
69  
MSPS  
MSPS  
ns  
ns  
ns  
1
1
1
90.0  
19.0  
19.0  
29.0  
8.8  
8.8  
19.4  
6.2  
6.2  
DATA OUTPUT PARAMETERS  
2
Output Delay (tPD  
)
3.9  
8
6
3.9  
8
6
3.9  
8
6
ns  
Cycles  
ns  
Pipeline Delay (Latency)  
Output Enable Time  
Output Disable Time  
3
3
3
ns  
Aperture Delay (tA)  
1.0  
0.9  
3.0  
3.0  
1
1.0  
0.9  
3.0  
3.0  
1
1.0  
0.9  
3.0  
3.0  
2
ns  
ps rms  
ms  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time (Sleep Mode)3  
Wake-Up Time (Standby Mode)3  
OUT-OF-RANGE RECOVERY TIME  
μs  
Cycles  
1 With duty cycle stabilizer enabled.  
2 Output delay is measured from CLK 90% transition to DATA 90% transition, with 9 pF load on each output.  
3 Wake-up time is dependent on value of decoupling capacitors; typical values shown with 0.1 μF and 10 μF capacitors on REFT and REFB.  
Rev. 0 | Page 9 of 28  
 
 
 
AD9237  
TIMING DIAGRAM  
N+1  
tA  
N
N+2  
N+8  
N–1  
N+3  
ANALOG  
INPUT  
N+7  
N+4  
N+5  
N+6  
CLK  
DATA  
OUT  
N–10  
N–9  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
tPD  
Figure 2. Timing Diagram  
Rev. 0 | Page 6 of 28  
 
 
AD9237  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
With  
Respect to  
Pin Name  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
Min  
Max  
Unit  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
AGND  
DGND  
DGND  
DRVDD  
DGND  
–0.3  
–0.3  
–0.3  
–3.ꢀ  
–0.3  
+3.ꢀ  
+3.ꢀ  
+0.3  
+3.ꢀ  
V
V
V
V
V
AVDD  
Digital  
DRVDD + 0.3  
Outputs, OE  
Absolute maximum ratings are limiting values to be applied  
individually and beyond which the serviceability of the circuit  
may be impaired. Functional operability is not necessarily  
implied. Exposure to absolute maximum rating conditions for  
an extended period may affect device reliability.  
CLK, MODE,  
MODE2  
VIN+, VIN–  
VREF  
SENSE  
REFB, REFT  
AGND  
−0.3 AVDD + 0.3  
V
AGND  
AGND  
AGND  
AGND  
AGND  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
V
V
V
V
V
PDWN  
ENVIRONMENTAL1  
Operating Temperature  
Junction Temperature  
Lead Temperature (10 sec)  
Storage Temperature  
–40  
+89  
190  
300  
°C  
°C  
°C  
°C  
–69  
+190  
1 Typical thermal impedances (32-lead LFCSP), θJA = 32.9°C/W, θJC = 32.ꢁ1°C/W.  
These measurements were taken on a 4-layer board in still air, in accordance  
with EIA/JESD91-1.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page ꢁ of 28  
 
AD9237  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
MODE2  
CLK  
OE  
PDWN  
GC  
DNC  
D0 (LSB)  
D1  
1
2
3
4
5
6
7
8
24 VREF  
23 SENSE  
22 MODE  
21 OTR  
20 D11 (MSB)  
19 D10  
PIN 1  
INDICATOR  
AD9237  
TOP VIEW  
(Not to Scale)  
18 D9  
17 D8  
DNC = DO NOT CONNECT  
Figure 3. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin Number  
Mnemonic  
MODE2  
CLK  
OE  
PDWN  
GC  
Description  
1
2
3
4
9
6
SHA Gain Select and Power Scaling Control (see Table 8).  
Clock Input Pin.  
Output Enable Pin (Active Low).  
Power-Down Function Selection (see Table ꢀ).  
Gray Code Control (Active High).  
Do Not Connect.  
DNC  
ꢁ to 14, 1ꢁ to 20 D0 (LSB) to D11 (MSB)  
Data Output Bits.  
19  
16  
DGND  
DRVDD  
Digital Output Ground.  
Digital Output Driver Supply. Must be decoupled to DGND with a minimum 0.1 μF capacitor.  
Recommended decoupling is 0.1 μF in parallel with 10 μF.  
21  
OTR  
Out-of-Range Indicator.  
22  
23  
24  
29  
MODE  
SENSE  
VREF  
REFB  
REFT  
Data Format and Clock Duty Cycle Stabilizer (DCS) Mode Selection (see Table 10).  
Reference Mode Selection (see Table ꢁ).  
Voltage Reference Input/Output (see Table ꢁ).  
Differential Reference (−). Must be decoupled to REFT with a minimum 10 μF capacitor.  
Differential Reference (+).  
26  
2ꢁ, 32  
AVDD  
Analog Power Supply. Must be decoupled to AGND with a minimum 0.1 μF capacitor.  
Recommended decoupling is 0.1 μF in parallel with 10 μF.  
28, 31  
2ꢀ  
30  
AGND  
VIN+  
VIN−  
Analog Ground.  
Analog Input Pin (+).  
Analog Input Pin (−).  
Rev. 0 | Page 8 of 28  
 
AD9237  
TERMINOLOGY  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Signal-To-Noise and Distortion (SINAD)1  
The ratio of the rms signal amplitude to the rms value of the  
sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc.  
Aperture Delay (tA)  
Effective Number of Bits (ENOB)  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
The effective number of bits for a device for sine wave inputs  
at a given input frequency can be calculated directly from its  
measured SINAD using the following formula:  
Aperture Jitter (tJ)  
The sample-to-sample variation in aperture delay.  
ENOB = (SINADdBFS − 1.76)/6.02  
Signal-to-Noise Ratio (SNR)1  
The ratio of the rms signal to the rms value of the sum of all  
other spectral components below the Nyquist frequency,  
excluding the first six harmonics and dc.  
Integral Nonlinearity (INL)  
The deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used  
as negative full scale occurs ½ LSB before the first code  
transition. Positive full scale is defined as a level 1½ LSBs  
beyond the last code transition. The deviation is measured  
from the middle of each particular code to the true straight line.  
Spurious-Free Dynamic Range (SFDR)1  
SFDR is the difference in dB between the rms amplitude of the  
input signal and the rms value of the peak spurious signal. The  
peak spurious signal may not be an harmonic.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed  
no missing codes to 12-bit resolution indicates that all 4096  
codes must be present over all operating ranges.  
Two-Tone SFDR1  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Offset Error  
Clock Pulse Width and Duty Cycle  
The major carry transition should occur for an analog value  
½ LSB below VIN+ = VIN–. Offset error is defined as the  
deviation of the actual transition from that point.  
Pulse width high is the minimum amount of time that the clock  
pulse should be left in the Logic 1 state to achieve rated  
performance. Pulse width low is the minimum time the clock  
pulse should be left in the low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Gain Error  
The first code transition should occur at an analog value  
½ LSB above negative full scale. The last transition should occur  
at an analog value 1½ LSB below the positive full scale. Gain  
error is the deviation of the actual difference between first and  
last code transitions and the ideal difference between first and  
last code transitions.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Temperature Drift  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
Output Propagation Delay (tPD)  
at TMIN or TMAX  
.
The delay between the clock logic threshold and the time when  
all bits are within valid logic levels.  
Power Supply Rejection Ratio  
The change in full scale from the value with the supply at the  
minimum limit to the value with the supply at its maximum  
limit.  
Out-of-Range Recovery Time  
The time it takes the ADC to reacquire the analog input after a  
transition from 10% above positive full scale to 10% above  
negative full scale, or from 10% below negative full scale to 10%  
below positive full scale.  
Total Harmonic Distortion (THD)1  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal.  
1 AC specifications may be reported in dBc (degrades as signal levels are  
lowered) or in dBFS (always related back to converter full scale).  
Rev. 0 | Page ꢀ of 28  
 
 
AD9237  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
VIN+, VIN–  
D11–D0,  
OTR  
Figure 4. Equivalent Analog Input Circuit  
Figure 6. Equivalent Digital Output Circuit  
MODE,  
MODE2,  
GC, OE  
375Ω  
375Ω  
CLK,  
PDWN  
70kΩ  
Figure 5. Equivalent MODE, MODE2, GC, OE Input Circuit  
Figure 7. Equivalent CLK, PDWN Input Circuit  
Rev. 0 | Page 10 of 28  
 
AD9237  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 3.0 V, DRVDD = 2.5 V, maximum sample rate with DCS disabled, TA = 25°C, 2 V p-p differential input, AIN = –0.5 dBFS,  
VREF = 1.0 V internal, FFT length 16 K, unless otherwise noted.  
0
90  
85  
80  
75  
70  
65  
60  
SNR = 66.9dBc  
SFDR = 87.0dBc  
SFDR  
–20  
–40  
–60  
–80  
SNR  
–100  
–120  
0
0
0
2
4
6
8
10  
10.0  
12.5  
15.0  
17.5  
20.0  
FREQUENCY (MHz)  
CLOCK FREQUENCY (MSPS)  
Figure 8. AD9237-20 10 MHz FFT  
Figure 11. AD9237-20 SNR/SFDR vs. Clock Frequency with fIN = 10 MHz  
0
–20  
90  
SNR = 66.8dBc  
SFDR = 83.1dBc  
85  
SFDR  
–40  
80  
–60  
75  
–80  
70  
–100  
–120  
SNR  
65  
20  
2
4
6
8
10  
12  
14  
16  
18  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
CLOCK FREQUENCY (MSPS)  
Figure 9. AD9237-40 20 MHz FFT  
Figure 12. AD9237-40 SNR/SFDR vs. Clock Frequency with fIN = 20 MHz  
0
–20  
90  
SNR = 66.0dBc  
SFDR = 78.6dBc  
85  
SFDR  
–40  
80  
–60  
75  
–80  
70  
SNR  
–100  
–120  
65  
60  
5
10  
15  
20  
25  
30 32.5  
40  
45  
50  
55  
60  
65  
FREQUENCY (MHz)  
CLOCK FREQUENCY (MSPS)  
Figure 10. AD9237-65 70 MHz FFT  
Figure 13. AD9237-65 SNR/SFDR vs. Clock Frequency with fIN = 35 MHz  
Rev. 0 | Page 11 of 28  
 
AD9237  
0
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR DCS  
ENABLED  
SNR = 65.6dBc  
SFDR = 67.1dBc  
–20  
SFDR DCS  
DISABLED  
–40  
–60  
SNR DCS ENABLED  
SNR DCS DISABLED  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
30 32.5  
30  
35  
40  
45  
50  
55  
60  
65  
70  
FREQUENCY (MHz)  
DUTY CYCLE (%)  
Figure 14. AD9237-65 100 MHz FFT  
Figure 17. SNR/SFDR vs. Clock Duty Cycle  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
SFDR dBFS 4V p-p  
SFDR dBFS 2V p-p  
SFDR dBFS 1V p-p  
SFDR dBc 2V p-p  
SFDR dBFS 2V p-p  
SNR dBFS 2V p-p  
SNR dBFS 4V p-p  
SNR dBFS 2V p-p  
SFDR dBc 1V p-p  
SNR dBFS 1V p-p  
SFDR dBc 4V p-p  
SFDR dBc 2V p-p  
SNR dBc 1V p-p  
SNR dBc 2V p-p  
SNR dBc 4V p-p  
SNR dBc 2V p-p  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 15. AD9237-65 SNR/SFDR vs. Input Amplitude with fIN = 35 MHz  
Figure 18. AD9237-65 SNR/SFDR vs. Input Amplitude with fIN = 35 MHz  
100  
100  
SFDR dBFS 2V p-p  
SFDR dBFS 2V p-p  
90  
90  
SFDR dBc 2V p-p  
80  
SFDR dBc 2V p-p  
80  
SFDR dBFS 1V p-p  
SFDR dBFS 1V p-p  
SFDR dBc 1V p-p  
SFDR dBc 1V p-p  
70  
70  
60  
60  
SNR dBFS 2V p-p  
SNR dBFS 2V p-p  
SNR dBFS 1V p-p  
SNR dBFS 1V p-p  
50  
50  
40  
40  
SNR dBc 2V p-p  
SNR dBc 2V p-p  
SNR dBc 1V p-p  
30  
SNR dBc 1V p-p  
30  
–30  
–25  
–20  
–15  
–10  
–5  
0
–30  
–25  
–20  
–15  
–10  
–5  
0
INPUT AMPLITUDE (dBFS)  
INPUT AMPLITUDE (dBFS)  
Figure 16. AD9237-40 SNR/SFDR vs. Input Amplitude with fIN = 20 MHz  
Figure 19. AD9237-20 SNR/SFDR vs. Input Amplitude with fIN = 10 MHz  
Rev. 0 | Page 12 of 28  
 
AD9237  
0
–20  
100  
90  
80  
70  
60  
50  
40  
30  
SNR = 67.0dBFS  
SFDR = 87.8dBFS  
SFDR dBFS  
SNR dBFS  
–40  
–60  
SFDR dBc  
–80  
–100  
–120  
SNR dBc  
0
5
10  
15  
20  
25  
30 32.5  
–30  
–25  
–20  
–15  
–10  
–6.5  
FREQUENCY (MHz)  
INPUT AMPLITUDE (AIN)  
Figure 20. AD9237-65 Two-Tone FFT, fIN1 = 45 MHz, fIN2 = 46 MHz  
Figure 23. AD9237-65 Two-Tone SNR/SFDR , vs. Analog Input with  
fIN1 = 45 MHz, fIN2 = 46 MHz  
0
100  
SNR = 67.2dBFS  
SFDR = 88.3dBFS  
90  
–20  
–40  
SFDR dBFS  
80  
SNR dBFS  
SFDR dBc  
70  
60  
50  
40  
30  
–60  
–80  
–100  
–120  
SNR dBc  
0
5
10  
15  
20  
–30  
–25  
–20  
–15  
–10  
–6.5  
FREQUENCY (MHz)  
INPUT AMPLITUDE (AIN)  
Figure 21. AD9237-40 Two-Tone FFT  
fIN1 = 45 MHz, fIN2 = 46 MHz  
Figure 24. AD9237-40 Two-Tone SNR/SFDR , vs. Analog Input with  
fIN1 = 45 MHz, fIN2 = 46 MHz  
0
–20  
100  
SNR = 66.9dBFS  
SFDR = 84.1dBFS  
90  
SFDR dBFS  
80  
–40  
SNR dBFS  
SFDR dBc  
70  
60  
50  
40  
30  
–60  
–80  
–100  
–120  
SNR dBc  
0
5
10  
15  
20  
25  
30  
–30  
–25  
–20  
–15  
–10  
–6.5  
FREQUENCY (MHz)  
INPUT AMPLITUDE (AIN)  
Figure 22. AD9237-65 Two-Tone FFT, fIN1 = 69 MHz, fIN2 = 70 MHz  
Figure 25. AD9237-65 Two-Tone SNR/SFDR vs. Analog Input with  
fIN1 = 69 MHz, fIN2 = 70 MHz  
Rev. 0 | Page 13 of 28  
AD9237  
0
100  
90  
80  
70  
60  
50  
40  
30  
SNR = 67.1dBFS  
SFDR = 87.3dBFS  
–20  
SFDR dBFS  
–40  
SNR dBFS  
SFDR dBc  
–60  
–80  
–100  
–120  
SNR dBc  
0
5
10  
15  
20  
–30  
–25  
–20  
–15  
–10  
–6.5  
FREQUENCY (MHz)  
INPUT AMPLITUDE (AIN)  
Figure 26. AD9237-40 Two-Tone FFT  
fIN1 = 69 MHz, fIN2 = 70 MHz  
Figure 29. AD9237-40 Two-Tone SNR/SFDR vs. Analog Input with  
fIN1 = 69 MHz, fIN2 = 70 MHz  
90  
85  
80  
75  
70  
65  
60  
55  
90  
85  
SFDR  
SFDR  
80  
75  
70  
SNR  
SNR  
65  
60  
55  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 27. AD9237-65 SNR/SFDR vs. Input Frequency  
Figure 30. AD9237-40 SNR/SFDR vs. Input Frequency  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE  
CODE  
Figure 28. Typical INL  
Figure 31. Typical DNL  
Rev. 0 | Page 14 of 28  
AD9237  
67.5  
67.0  
66.5  
66.0  
65.5  
65.0  
90  
85  
80  
75  
70  
65  
60  
10.83  
10.75  
10.67  
10.59  
10.50  
AD9237-20  
SNR  
AD9237-40  
AD9237-65  
SFDR  
–40  
–20  
0
20  
40  
60  
8085  
10  
20  
30  
40  
50  
60  
70  
TEMPERATURE (°C)  
CLOCK FREQUENCY (MSPS)  
Figure 32. AD9237 SINAD/ENOB vs. Clock Frequency with fIN = Nyquist  
Figure 33. AD9237-65 SNR/SFDR vs. Temperature with fIN = 32.5MHz  
Rev. 0 | Page 19 of 28  
AD9237  
APPLYING THE AD9237  
90  
80  
70  
60  
50  
40  
30  
THEORY OF OPERATION  
2.5MHz SFDR  
The AD9237 uses a calibrated, 11-stage pipeline architecture  
with a patented input SHA implemented. Each stage of the  
pipeline, excluding the last, consists of a low resolution flash  
ADC connected to a switched capacitor digital-to-analog  
converter (DAC) and an interstage residue amplifier (MDAC).  
The MDAC magnifies the difference between the reconstructed  
DAC output and the flash input for the next stage in the  
pipeline. One bit of redundancy is used in each stage to facilitate  
digital correction of flash errors. The last stage consists of a  
flash ADC.  
34.2MHz SFDR  
2.5MHz SNR  
34.2MHz SNR  
The pipelined architecture permits the first stage to operate on a  
new input sample, while the remaining stages operate on preceding  
samples. While the converter captures a new input sample every  
clock cycle, it takes eight clock cycles for the conversion to be  
fully processed and to appear at the output, as shown in Figure 2.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
INPUT COMMON-MODE LEVEL (V)  
Figure 34. AD9237-65 SNR/SFDR vs. Input Common-Mode Level  
In addition, a small shunt capacitor placed across the inputs  
provides dynamic charging currents. This passive network  
creates a low-pass filter at the ADCs input; therefore, the  
precise values are dependant on the application. In IF under-  
sampling applications, the shunt capacitor(s) should be reduced  
or removed depending on the input frequency. In combination  
with the driving source impedance, the capacitors limit the  
input bandwidth.  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended modes. The output-  
staging block aligns the data, carries out the error correction,  
and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing adjustment of  
the output voltage swing. During power-down and stand-by  
operation, the output buffers go into a high impedance state.  
H
The ADC samples the analog input on the rising edge of  
the clock. System disturbances just prior to, or immediately  
following, the rising edge of the clock and/or excessive clock  
jitter can cause the SHA to acquire the wrong input value and  
should be minimized.  
T
T
T
5pF  
5pF  
VIN+  
VIN–  
C
C
PAR  
ANALOG INPUT AND REFERENCE OVERVIEW  
The analog input to the AD9237 is a differential switched  
capacitor SHA that has been designed for optimum  
PAR  
performance while processing a differential input signal.  
The SHA input can support a wide common-mode range  
and maintain excellent performance, as shown in Figure 34.  
An input common-mode voltage of midsupply minimizes  
signal-dependant errors and provides optimum performance.  
T
H
Figure 35. Switched-Capacitor SHA Input  
For best dynamic performance, the source impedances driving  
VIN+ and VIN– should be matched so that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
Figure 35 shows the clock signal alternately switching the  
SHA between sample mode and hold mode. When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source.  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, that define the  
span of the ADC core.  
Rev. 0 | Page 16 of 28  
 
 
 
AD9237  
The output common mode of the reference buffer is set to mid-  
supply, and the REFT and REFB voltages and input span are  
defined as:  
1kΩ  
25Ω  
AVDD  
VIN+  
1.2kΩ  
1kΩ  
0.1μF  
0.1μF  
49.9Ω  
0.1μF  
33Ω  
+
15pF  
33Ω  
AD8351  
2V p-p  
AD9237  
VIN–  
0.1μF  
REFT = ½(AVDD + VREF)  
REFB = ½(AVDD VREF)  
25Ω  
AGND  
4 ×  
(
REFT REFB  
)
4 × VREF  
Span _ Factor  
Span =  
=
Figure 36. Differential Input Configuration Using the AD8351  
Span _ Factor  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9237. This is especially true in IF  
undersampling applications where frequencies in the 70 MHz  
to 100 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration, as shown in Figure 37.  
The previous equations show that the REFT and REFB voltages  
are symmetrical about the midsupply voltage, and the input  
span is proportional to the value of the VREF voltage, see Table 7  
for more details.  
The internal voltage reference can be pin strapped to fixed  
values of 0.5 V or 1.0 V, or adjusted within this range as  
discussed in the Internal Reference Connection section.  
Maximum SNR performance is achieved with the AD9237  
set to an input span of 2 V p-p or greater. The relative SNR  
degradation is 3 dB when changing from 2 V p-p mode to  
1 V p-p mode.  
AVDD  
33Ω  
VIN+  
15pF  
AD9237  
2V p-p  
49.9Ω  
33Ω  
VIN–  
The SHA must be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference  
voltage. The minimum and maximum common-mode input  
levels are defined as:  
1kΩ  
1kΩ  
AGND  
0.1μF  
Figure 37. Differential Transformer-Coupled Configuration  
VCMMIN = VREF/2  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can cause core  
saturation, which leads to distortion.  
VCMMAX = (AVDD + VREF)/2  
The minimum common-mode input level allows the AD9237 to  
accommodate ground-referenced inputs.  
Single-Ended Input Configuration  
Although optimum performance is achieved with a differential  
input, a single-ended source can be driven into VIN+ or VIN–.  
In this configuration, one input accepts the signal while the  
opposite input should be set to midscale by connecting it to an  
appropriate reference. For example, a 2 V p-p signal can be  
applied to VIN+ while a 1 V reference is applied to VIN–. The  
AD9237 then accepts an input signal varying between 2 V and  
0 V. In the single-ended configuration, distortion performance  
may degrade significantly as compared to the differential case.  
However, the effect is less noticeable at lower input frequencies and  
in the lower speed grade models (AD9237-40 and AD9237-20).  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, there is  
degradation in SFDR and distortion performance due to the  
large input common-mode swing. However, if the source  
impedances on each input are matched, there should be little  
effect on SNR performance. Figure 38 details a typical single-  
ended input configuration.  
AVDD  
1k  
Ω
Ω
0.1μF  
33  
Ω
VIN+  
1k  
49.9  
Ω
15pF  
33  
Differential Input Configurations  
2V p-p  
AD9237  
VIN–  
1k  
Ω
Ω
Ω
As previously detailed, optimum performance is achieved while  
driving the AD9237 in a differential input configuration. For  
baseband applications, the AD8351 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8351 is easily set to  
AVDD/2, and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal. Figure 36  
details a typical configuration using the AD8351.  
0.1  
μ
F
1k  
AGND  
25Ω  
Figure 38. Single-Ended Input Configuration  
Rev. 0 | Page 1ꢁ of 28  
 
 
 
AD9237  
Table 7. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Span Factor  
Resulting Differential Span (V p-p)  
4× External Reference  
Span_ Factor  
External Reference  
AVDD  
N/A  
2
1
2
1
2
Internal Fixed Reference  
Programmable Reference  
VREF  
0.9  
1.0 V  
4.0 V  
0.2 V to VREF  
0.9 × (1 + R2/R1)  
(See Figure 40)  
4×VREF  
Span_ Factor  
1
2
1
Internal Fixed Reference  
AGND to 0.2 V  
1.0  
2.0 V  
1.0 V  
VOLTAGE REFERENCE  
VIN+  
VIN–  
A stable and accurate 0.5 V voltage reference is built into  
the AD9237. The input range can be adjusted by varying  
the reference voltage applied to the AD9237, using either the  
internal reference or an externally applied reference voltage.  
The input span of the ADC tracks reference voltage changes  
linearly.  
REFT  
0.1μF  
+
ADC  
CORE  
10μF  
0.1μF  
REFB  
0.1μF  
VREF  
+
10μF  
0.1μF  
0.5V  
In all reference configurations, REFT and REFB drive the  
A/D conversion core and, in conjunction with the span factor,  
establish its input span. The input range of the ADC always  
equals four times the voltage at the reference pin divided by  
the span factor for either an internal or an external reference.  
It is required to decouple REFT to REFB with 0.1 μF and 10 μF  
decoupling capacitors, as shown in Figure 39.  
SELECT  
LOGIC  
SENSE  
AD9237  
Figure 39. Internal Reference Configuration  
Internal Reference Connection  
VIN+  
VIN–  
A comparator within the AD9237 detects the potential at  
the SENSE pin and configures the reference into one of four  
possible states, which are summarized in Table 7. If SENSE is  
grounded, the reference amplifier switch is connected to the  
internal resistor divider, setting VREF to 1 V (see Figure 39).  
Connecting the SENSE pin to VREF switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected, as shown in Figure 40, then the switch is again set to  
the SENSE pin. This puts the reference amplifier in a non-  
inverting mode with the VREF output defined as  
REFT  
0.1μF  
0.1μF  
+
ADC  
10μF  
CORE  
REFB  
0.1μF  
VREF  
+
10μF  
0.1μF  
R2  
SENSE  
0.5V  
SELECT  
LOGIC  
R1  
R2  
R1  
VREF = 0.5× 1+  
AD9237  
Figure 40. Programmable Reference Configuration  
Rev. 0 | Page 18 of 28  
 
 
 
 
 
AD9237  
CLOCK INPUT CONSIDERATIONS  
External Reference Operation  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, can be  
sensitive to clock duty cycle. Commonly a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics. The AD9237 contains a clock  
duty cycle stabilizer (DCS) that retimes the nonsampling, or  
falling edge, providing an internal clock signal with a nominal  
50% duty cycle. This allows a wide range of clock input duty  
cycles without affecting the performance of the AD9237. As  
shown in Figure 17, noise and distortion performance are  
nearly flat over a 30% range of duty cycle with the DCS enabled.  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or to improve thermal drift  
characteristics. Figure 41 shows the typical drift characteristics  
of the internal reference in both 1 V and 0.5 V modes. When  
multiple ADCs track one another, a single reference (internal or  
external) reduces gain matching errors.  
When the SENSE pin is connected to AVDD, the internal  
reference is disabled, allowing the use of an external reference.  
An internal reference buffer loads the external reference with  
an equivalent 7 kΩ load. The internal buffer still generates the  
positive and negative full-scale references, REFT and REFB, for  
the ADC core. The input span is always four times the value of  
the reference voltage divided by the span factor; therefore, the  
external reference must be limited to a maximum of 1 V.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately 100 clock cycles to  
allow the DLL to acquire and lock to the new rate.  
0.7  
0.6  
0.5  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given full-scale  
input frequency (fINPUT) due only to rms aperture jitter (tJ) can  
be calculated by  
1V REFERENCE  
0.4  
1
SNRDegradation = 20log10  
0.3  
0.2  
2πf  
tJ  
INPUT  
In this equation, the rms aperture jitter represents the root-  
sum-square of all jitter sources, which include the clock input,  
analog input signal, and ADC aperture jitter specification.  
Undersampling applications are particularly sensitive to jitter.  
0.5V REFERENCE  
0.1  
0
–40  
–20  
0
20  
40  
60  
8085  
TEMPERATURE (°C)  
The clock input should be treated as an analog signal in  
cases where aperture jitter can affect the dynamic range of the  
AD9237. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (such as gating, dividing, or other  
methods), then it should be retimed by the original clock at the  
last step.  
Figure 41. Typical VREF Drift  
If the internal reference of the AD9237 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 42  
shows how the internal reference voltage is affected by loading.  
A 2 mA load is the maximum recommended load.  
0.05  
0
The lowest typical conversion rate of the AD9237 is 1 MSPS. At  
clock rates below 1 MSPS, dynamic performance may degrade.  
–0.05  
0.5V ERROR (%)  
POWER DISSIPATION, POWER SCALING, AND  
STANDBY MODE  
–0.10  
As shown in Figure 43, the power dissipated by the AD9237 is  
proportional to its sample rate. The digital power dissipation  
does not vary substantially between the three speed grades  
because it is determined primarily by the strength of the digital  
drivers and the load on each output bit. The maximum DRVDD  
current can be calculated as  
1V ERROR (%)  
–0.15  
–0.20  
–0.25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD (mA)  
I
DRVDD =VDRVDD ×CLOAD × fCLK × N  
Figure 42. VREF Accuracy vs. Load  
where N is 12, the number of output bits.  
Rev. 0 | Page 1ꢀ of 28  
 
 
 
AD9237  
190  
170  
150  
130  
110  
90  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the  
Nyquist frequency, fCLK/2. In practice, the DRVDD current is  
established by the average number of output bits switching,  
which is determined by the encode rate and the characteristics  
of the analog input signal.  
AD9237-65  
190  
170  
150  
AD9237-40  
AD9237-20  
70  
10  
20  
30  
40  
50  
60  
65  
130  
SAMPLE RATE (MSPS)  
AD9237-65  
Figure 44. Total Power vs. Sample Rate with Power Scaling Enabled  
110  
AD9237-40  
90  
The MODE2 pin is a multilevel input that controls the span  
factor and power scaling modes. The MODE2 pin is internally  
pulled down to AGND by a 70 kΩ resistor. The input threshold  
and corresponding mode selections are outlined in Table 8.  
AD9237-20  
70  
10  
20  
30  
40  
50  
60  
65  
SAMPLE RATE (MSPS)  
Table 8. MODE2 Selection  
Figure 43. Total Power vs. Sample Rate with fIN = 10 MHz  
MODE2 Voltage  
Span Factor  
Power Scaling  
Disabled  
Enabled  
Enabled  
Disabled  
AVDD  
2/3 AVDD  
1/3 AVDD  
AGND (Default)  
1
1
2
2
For the AD9237-20 speed grade, the digital power consumption  
can represent as much as 10% of the total dissipation. Digital  
power consumption can be minimized by reducing the  
capacitive load presented to the output drivers. The data in  
Figure 43 was taken with a 5 pF load on each output driver.  
The PDWN pin is a multilevel input that controls the power  
states. The input threshold values and corresponding power  
states are outlined in Table 9.  
The AD9237 is designed to provide excellent performance with  
minimum power. The analog circuitry is optimally biased so  
that each speed grade provides excellent performance while  
affording reduced power consumption. Each speed grade  
dissipates a baseline power at low sample rates that increases  
linearly with the clock frequency, as shown in Figure 43.  
Table 9. PDWN Selection  
PDWN Voltage Power State  
Power (mW)  
AVDD  
1/3 AVDD  
Power-Down Mode  
Standby Mode  
1
20  
AGND (Default) Normal Operation  
Based on speed grade  
The power scaling feature provides an additional power savings  
when enabled, as shown in Figure 44. The power scaling mode  
cannot be enabled if the clock is varied during operation. This is  
because the internal circuitry cannot quickly track a changing  
clock, and the part does not have enough power to operate  
properly.  
By asserting the PDWN pin high, the AD9237 is placed in  
power-down mode. In this state, the ADC typically dissipates  
1 mW. During power-down, the output drivers are placed in a  
high impedance state. Low power dissipation in power-down  
mode is achieved by shutting down the reference, reference  
buffer, biasing networks, clock, and duty cycle stabilizer  
circuitry. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and then must  
be recharged when returning to normal operation.  
As a result, the wake-up time is related to the time spent  
in power-down mode and shorter standby cycles result in  
proportionally shorter wake-up times. With the recommended  
0.1 μF and 10 μF decoupling capacitors on REFT and REFB, it  
takes approximately 1 sec to fully discharge the reference buffer  
decoupling capacitors and 3 ms to restore full operation.  
Rev. 0 | Page 20 of 28  
 
 
 
 
AD9237  
By asserting the PDWN pin to AVDD/3, the AD9237 is placed  
in standby mode. In this state, the ADC typically dissipates  
20 mW. The output drivers are placed in a high impedance  
state. The reference circuitry is enabled, allowing for a quick  
start upon bringing the ADC into normal operating mode.  
completed. By logically AND-ing OTR with the MSB and its  
complement, overrange high or underrange low conditions can  
be detected. Table 11 is a truth table for the overrange/ under-  
range circuit in Figure 46, which uses NAND gates. Systems  
requiring programmable gain condition of the AD9237 can,  
after eight clock cycles, detect an out-of-range condition;  
therefore, eliminating gain selection iterations. In addition,  
OTR can be used for digital offset and gain calculation.  
DIGITAL OUTPUTS  
The AD9237 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that can affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
OTR DATA OUTPUTS  
OTR  
1
0
0
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
+FS – 1 LSB  
+FS  
–FS + 1/2 LSB  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9237;  
these transients can detract from the converter’s dynamic  
performance.  
0
0
0
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
As detailed in Table 10, the data format can be selected for  
either offset binary, twos complement, or gray code.  
–FS  
–FS – 1/2 LSB  
–FS – 1/2 LSB  
Operational Mode Selection  
Figure 45. OTR Relation to Input Voltage and Output Data  
The AD9237 can output data in either offset binary, twos  
complement, or gray code format. There is also a provision  
for enabling or disabling the duty cycle stabilizer (DCS).  
The MODE pin is a multilevel input that controls the data  
format (except for gray code) and DCS state. The MODE pin  
is internally pulled down to AGND by a 70 kΩ resistor. The  
input threshold values and corresponding mode selections are  
outlined in Table 10.  
Table 11. Output Data Format  
OTR  
MSB  
Analog Input Is  
Within range  
Within range  
Underrange  
Overrange  
0
0
1
1
0
1
0
1
The gray code output format is obtained by connecting GC to  
AVDD. When the part is in gray code mode, the MODE pin  
controls the DCS function only. The GC pin is internally pulled  
down to AGND by a 70 kΩ resistor.  
MSB  
OVER = 1  
OTR  
MSB  
UNDER = 1  
Table 10. MODE Selection  
MODE Voltage  
Data Format  
Duty Cycle Stabilizer  
Disabled  
Enabled  
Enabled  
Disabled  
Figure 46. Overrange/Underrange Logic  
AVDD  
2/3 AVDD  
1/3 AVDD  
AGND (Default)  
Twos Complement  
Twos Complement  
Offset Binary  
Digital Output Enable Function (OE)  
The AD9237 has three-state ability. The OE pin is internally  
pulled down to AGND by a 70 kΩ resistor. If the OE pin is low,  
the output data drivers are enabled. If the OE pin is high, the  
output data drivers are placed in a high impedance state. It is  
not intended for rapid access to the data bus. Note that the  
OE pin is referenced to the digital supplies (DRVDD) and  
should not exceed that voltage.  
Offset Binary  
Out of Range (OTR)  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. The OTR pin is a digital  
output that is updated along with the data output corresponding  
to the particular sampled input voltage. Therefore, the OTR pin  
has the same pipeline latency as the digital data. OTR is low  
when the analog input voltage is within the analog input range,  
and high when the analog input voltage exceeds the input range,  
as shown in Figure 45. OTR remains high until the analog input  
returns to within the input range and another conversion is  
Timing  
The AD9237 provides latched data outputs with a pipeline delay  
of eight clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 2 for a detailed timing diagram.  
Rev. 0 | Page 21 of 28  
 
 
 
 
 
AD9237  
An alternative differential analog input path using an  
AD8351 op amp is included in the layout but is not populated  
in production. Designers interested in evaluating the op amp  
with the ADC should remove C15, R12, and R3 and populate  
the op amp circuit. The passive network between the AD8351  
outputs and the AD9237 allows the user to optimize the  
frequency response of the op amp for the application.  
LFCSP EVALUATION BOARD  
The typical bench setup used to evaluate the ac performance of  
the AD9237 is shown in Figure 47. The AD9237 can be driven  
single-ended or differentially through a transformer. Separate  
power pins are provided to isolate the DUT from the support  
circuitry. Each input configuration can be selected by proper  
connection of various jumpers (refer to the schematics).  
3V  
2.5V  
2.5V  
5V  
+
+
+
+
AVDD GND DRVDD GND VDL  
VAMP  
P12  
J1  
HP8644, 2V p-p  
SIGNAL SYNTHESIZER  
BAND-PASS  
FILTER  
REFIN  
10MHz  
ANALOG  
IN  
DATA  
CAPTURE  
AND  
AD9237  
EVALUATION BOARD  
PROCESSING  
HP8644, 2V p-p  
REFOUT CLOCK SYNTHESIZER  
CLOCK  
DIVIDER  
J2  
ENCODE  
Figure 47. LFCSP Evaluation Board Connections  
Rev. 0 | Page 22 of 28  
 
 
AD9237  
P 2  
V A M P 0 V 5 .  
6
5 V 2 .  
V D L  
G N  
5
4
3
2
1
D
D
D R V D D  
0 V 3 .  
G N  
A V D D 0 V 3 .  
D
G N  
D
E 4  
E 9  
G N  
Ω 1 k  
5
R 4  
E 3  
E 2  
E 8  
D 8  
D 9  
D 1  
Ω 1 k  
4
D 0  
R 4  
0
1
D 1  
D N C  
G C  
E 7  
D 1  
A D 9 2 3 7  
U 4  
O T R  
N
P D W  
O E  
Ω 1 k  
R 4  
E
M O D  
S E N S E  
V R E F  
3
K
C L  
E 5  
2 E  
E 6  
2 E  
M O D  
A V D D  
M O D  
D
G N  
6
E 2  
E 2  
E 2  
4
3
E 3  
E 3  
7
8
2
0
E 3  
E 3  
Figure 48. LFCSP Evaluation Board Schematic, Analog Inputs, and DUT  
Rev. 0 | Page 23 of 28  
AD9237  
U1  
74LVTH162374  
HEADER 40  
2
4
1
2CLK  
2D8  
2OE  
GND  
DR  
2
1
3
5
7
9
CLKLAT/DAC  
ORX  
GND  
ORY  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
3
MSB  
2Q8  
2Q7  
4
MSB  
6
5
2D7  
GND  
6
D13X  
GND  
8
7
GND7  
2D6  
GND3  
2Q6  
8
GND  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
9
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
D12X  
D11X  
DRVDD  
D10X  
D9X  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
2D5  
2Q5  
11  
13  
15  
17  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
VCC2  
2D4  
VCC1  
2Q4  
DRVDD  
GND  
2D3  
2Q3  
P12  
GND4  
2D2  
GND2  
2Q2  
GND  
D8X  
2D1  
2Q1  
D7X  
1D8  
1Q8  
D6X  
1D7  
1Q7  
D5X  
GND5  
1D6  
GND1  
1Q6  
GND  
GND  
D4X  
1D5  
1Q5  
D3X  
8
VCC3  
1D4  
VCC  
1Q4  
DRVDD  
GND  
ORY  
DRVDD  
D2X  
7
6
1D3  
1Q3  
D1X  
5
GND6  
1D2  
GND  
1Q2  
LSB  
GND  
4
GND  
GND  
D0X  
3
1D1  
1Q1  
2
1CLK  
1OE  
GND  
CLKLAT/DAC  
1
R38  
1kΩ  
R39  
1kΩ  
VAMP  
GND  
GND  
TO USE AMPLIFIER  
POWER DOWN  
VAMP  
PLACE ALL COMPONENTS SHOWN HERE (RIGHT)  
EXCEPT R40 OR R41  
C44  
C24  
USE R40 OR R41  
0.1μF  
10μF  
VAMP  
GND  
REMOVE R12, R3, R18, R42, C6, C18  
GND  
GND  
R41  
10kΩ  
R40  
10kΩ  
C45  
0.1μF  
PWDN  
RGP1  
INHI  
1
2
3
4
5
10 VOCM  
U3  
AD8351  
R14  
25Ω  
9
8
7
6
VPOS  
OPHI  
C28  
0.1μF  
C27  
R16  
0Ω  
AMP IN  
0.1μF  
AMPINB  
AMPIN  
AMP  
INLO  
RPG2  
OPLO  
COMM  
C35  
R17  
0Ω  
C17  
0.1μF  
R19  
50Ω  
R35  
25Ω  
0.1μF  
R33  
100Ω  
GND  
R34  
1.2kΩ  
GND  
GND  
Figure 49. LFCSP Evaluation Board Schematic, Digital Path  
Rev. 0 | Page 24 of 28  
AD9237  
0 8 2 0 5 4 5 5 -  
Figure 50. LFCSP Evaluation Board Schematic, Clock Input  
Rev. 0 | Page 29 of 28  
AD9237  
Figure 51. LFCSP Evaluation Board Layout, Primary Side  
Figure 54. LFCSP Evaluation Board Layout, Power Plane  
Figure 55. LFCSP Evaluation Board Layout, Primary Silkscreen  
Figure 56. LFCSP Evaluation Board Layout, Secondary Silkscreen  
Figure 52. LFCSP Evaluation Board Layout, Secondary Side  
Figure 53. LFCSP Evaluation Board Layout, Ground Plane  
Rev. 0 | Page 26 of 28  
AD9237  
Table 12. LFCSP Evaluation Board Bill of Materials  
Item Qty. Omit1 Reference Designator  
Recommended Vendor/  
Part Number  
Supplied  
by ADI  
Device  
Package  
Value  
1
18  
C1, C9, Cꢁ, C8, Cꢀ, C11, C12,  
C13, C19, C16, C31, C33, C34,  
C36, C3ꢁ, C41, C43, C4ꢁ  
Chip Capacitors  
0603  
0.1 μF  
2
C6, C1ꢁ, C18, C2ꢁ, C28,  
C39, C42, C44, C49  
2
3
8
8
C2, C3, C4, C10, C20,  
C22, C29, C2ꢀ  
Tantalum Capacitors  
Chip Capacitors  
TAJD  
0603  
10 μF  
C24, C46  
C14, C30, C32,  
0.001 μF  
C38, C3ꢀ, C40, C48, C4ꢀ  
4
9
1
1
C1ꢀ  
Chip Capacitor  
Chip Capacitors  
0603  
0603  
19 pF  
10 pF  
C26  
2
C21, C23  
6
41  
E2 to E36, E43, E44, E90 to E93 Headers  
EHOLE  
Jumper Blocks  
S1031-02-ND  
2
4
E1, E49  
H1, H2, H3, H4  
MTHOLE  
SMA  
8
2
1
1
J1, J2  
L1  
SMA Connectors/90 Ω  
Inductor  
0603  
10 nH  
0 Ω  
Coilcraft/0603CS-10NXGBU  
P2  
Terminal Block  
TB6  
Wieland/29.602.2693.0,  
z9-930-0629-0  
10  
11  
1
9
P12  
Header, Dual  
HEADER40  
0603  
Digi-Key S2131-20-ND  
20-Pin RT Angle  
R3, R12, R23, R28, Rx  
R16, R1ꢁ, R22, R2ꢁ, R3ꢁ, R42  
R4, R19  
Chip Resistors  
6
12  
13  
2
Chip Resistors  
Chip Resistors  
0603  
0603  
33 Ω  
1 kΩ  
1ꢀ  
R9 to R8, R13, R20, R21,  
R24 to R26, R30 to R32, R36,  
R43 to R4ꢁ  
2
1
R38, R3ꢀ  
R10, R11  
R2ꢀ  
14  
19  
2
1
Chip Resistors  
Chip Resistors  
0603  
0603  
36 Ω  
90 Ω  
R1ꢀ  
16  
2
RP1, RP2  
Resistor Pack  
ADT1-1WT  
R_ꢁ42  
220 Ω  
Digi-Key  
CTS/ꢁ42C163220JTR  
1ꢁ  
18  
1
1
T1  
AWT1-1T  
TSSOP-48  
Mini-Circuits  
U1  
ꢁ4LVTH1623ꢁ4  
CMOS Register  
1ꢀ  
20  
21  
22  
23  
1
1
1
U4  
U9  
PCB  
U3  
T2  
ADꢀ23ꢁBCP ADC (DUT) LFCSP-32  
Analog Devices, Inc.  
Fairchild  
X
ꢁ4VCX86M  
SOIC-14  
PCB  
ADꢀ2XXBCP/PCB  
AD8391 Op Amp  
Analog Devices, Inc.  
Analog Devices, Inc.  
X
X
1
1
MSOP-8  
M/A-COM  
ETC1-1-13 1-1 TX M/A-COM/ETC1-1-13  
Transformer  
24  
29  
26  
2ꢁ  
28  
1
3
4
1
1
R2  
Chip Resistor  
Chip Resistors  
Chip Resistors  
Chip Resistor  
Chip Resistor  
0603  
0603  
0603  
SELECT  
29 Ω  
R14, R18, R39  
R1, Rꢀ, R40, R41  
R34  
10 kΩ  
1.2 kΩ  
100 Ω  
R33  
Total 118 40  
1 These items are included in the PCB design but are omitted at assembly.  
Rev. 0 | Page 2ꢁ of 28  
 
AD9237  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 57. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +89°C  
–40°C to +89°C  
–40°C to +89°C  
–40°C to +89°C  
–40°C to +89°C  
–40°C to +89°C  
Package Description  
Package Option  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
ADꢀ23ꢁBCPZ-201, 2  
ADꢀ23ꢁBCPZRLꢁ-201, 2  
ADꢀ23ꢁBCPZ-401, 2  
ADꢀ23ꢁBCPZRLꢁ-401, 2  
ADꢀ23ꢁBCPZ-691, 2  
ADꢀ23ꢁBCPZRLꢁ-691, 2  
ADꢀ23ꢁBCP-20EB  
ADꢀ23ꢁBCP-40EB  
ADꢀ23ꢁBCP-69EB  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
CP-32-2  
CP-32-2  
Evaluation Board  
Evaluation Board  
1 Z = Pb-free part.  
2 It is recommended that the exposed paddle be soldered to the ground plane. There is an increased reliability of the solder joints and maximum thermal capability of  
the package is achieved with exposed paddle soldered to the customer board.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05455–0–10/05(0)  
Rev. 0 | Page 28 of 28  
 
 
 
 

相关型号:

AD9237BCP-40EB

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCP-65EB

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCPZ-20

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCPZ-40

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCPZ-65

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCPZRL7-20

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCPZRL7-40

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9237BCPZRL7-65

12-Bit, 20 MSPS/40 MSPS/65 MSPS 3 V Low Power A/D Converter
ADI

AD9238

12-Bit, 20/40/65 MSPS Dual A/D Converter
ADI

AD9238BCP-20EB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9238BCP-40EB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9238BCP-65EB

High Speed ADC USB FIFO Evaluation Kit
ADI