AD9245 [ADI]

14-Bit, 80 MSPS, 3 V A/D Converter; 14位, 80 MSPS , 3 V A / D转换器
AD9245
型号: AD9245
厂家: ADI    ADI
描述:

14-Bit, 80 MSPS, 3 V A/D Converter
14位, 80 MSPS , 3 V A / D转换器

转换器
文件: 总28页 (文件大小:1338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80 MSPS, 3 V A/D Converter  
AD9245  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
DRVDD  
Single 3 V supply operation (2.7 V to 3.6 V)  
SNR = 72.7 dBc to Nyquist  
AD9245  
SFDR = 87.6 dBc to Nyquist  
Low power: 366 mW  
VIN+  
VIN–  
8-STAGE  
MDAC1  
A/D  
3
SHA  
1 1/2-BIT PIPELINE  
Differential input with 500 MHz bandwidth  
On-chip reference and sample-and-hold  
DNL = 0.5 LSB  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary or twos complement data format  
Clock duty cycle stabilizer  
4
16  
A/D  
REFT  
REFB  
CORRECTION LOGIC  
OTR  
14  
OUTPUT BUFFERS  
D13 (MSB)  
D0 (LSB)  
VREF  
APPLICATIONS  
SENSE  
CLOCK  
0.5V  
MODE  
SELECT  
DUTY CYCLE  
STABILIZER  
High end medical imaging equipment  
IF sampling in communications receivers:  
WCDMA, CDMA-One, CDMA-2000, TDS-CDMA  
Battery-powered instruments  
REF  
SELECT  
AGND  
CLK  
PDWN MODE DGND  
03583-B-001  
Hand-held scopemeters  
Low cost digital oscilloscopes  
Figure 1. Functional Block Diagram  
Power sensitive military applications  
excellent overall ADC performance. The digital output data is  
presented in straight binary or twos complement formats. An  
out-of-range (OTR) signal indicates an overflow condition that  
can be used with the most significant bit to determine low or  
high overflow. Fabricated on an advanced CMOS process, the  
AD9245 is available in a 32-lead LFCSP and is specified over  
the industrial temperature range (–40°C to +85°C).  
GENERAL DESCRIPTION  
The AD9245 is a monolithic, single 3 V supply, 14-bit, 80 MSPS  
analog-to-digital converter featuring a high performance  
sample-and-hold amplifier (SHA) and voltage reference. The  
AD9245 uses a multistage differential pipelined architecture  
with output error correction logic to provide 14-bit accuracy at  
80 MSPS and guarantee no missing codes over the full operat-  
ing temperature range.  
PRODUCT HIGHLIGHTS  
1. The AD9245 operates from a single 3 V power supply and  
features a separate digital output driver supply to accommo-  
date 2.5 V and 3.3 V logic families.  
The wide bandwidth, truly differential SHA allows a variety of  
user-selectable input ranges and common modes, including  
single-ended applications. It is suitable for multiplexed systems  
that switch full-scale voltage levels in successive channels, and  
for sampling single-channel inputs at frequencies well beyond  
the Nyquist rate. Combined with power and cost savings over  
previously available analog-to-digital converters, the AD9245 is  
suitable for applications in communications, imaging, and  
medical ultrasound.  
2. Operating at 80 MSPS, the AD9245 consumes a low 366 mW.  
3. The patented SHA input maintains excellent performance for  
input frequencies up to 100 MHz, and can be configured for  
single-ended or differential operation.  
4. The AD9245 is pin compatible with the AD9215, AD9235,  
and AD9236. This allows a simplified migration from 10 bits  
to 14 bits and 20 MSPS to 80 MSPS.  
5. The clock DCS maintains overall ADC performance over a  
wide range of clock pulsewidths.  
A single-ended clock input is used to control all internal con-  
version cycles. A duty cycle stabilizer (DCS) compensates for  
wide variations in the clock duty cycle while maintaining  
6. The OTR output bit indicates when the signal is beyond the  
selected input range.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9245  
TABLE OF CONTENTS  
AD9245–DC Specifications ............................................................ 3  
Analog Input and Reference Overview ................................... 14  
Clock Input Considerations...................................................... 15  
Jitter Considerations .................................................................. 16  
Power Dissipation and Standby Mode .................................... 16  
Digital Outputs ........................................................................... 16  
Timing ......................................................................................... 17  
Voltage Reference ....................................................................... 17  
Internal Reference Connection ................................................ 17  
External Reference Operation .................................................. 18  
Operational Mode Selection..................................................... 18  
Evaluation Board........................................................................ 18  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
AD9245–AC Specifications............................................................. 4  
AD9245–Digital Specifications....................................................... 5  
AD9245–Switching Specifications ................................................. 6  
Explanation of Test Levels........................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Definitions of Specifications ........................................................... 8  
Pin Configuration and Functional Descriptions.......................... 9  
Equivalent Circuits......................................................................... 10  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
Revision B  
10/03—Data Sheet Changed from REV. A to REV. B  
Changes to Figure 33 ..................................................................... 17  
5/03—Data Sheet Changed from REV. 0 to REV. A  
Changes to Figure 30 .................................................................... 15  
Changes to Figure 37 ..................................................................... 19  
Changes to Figure 38..................................................................... 20  
Changes to Figure 39...................................................................... 21  
Changes to Table 10 ....................................................................... 24  
Changes to the ORDERING GUIDE........................................... 25  
Rev. B | Page 2 of 28  
AD9245  
AD9245–DC SPECIFICATIONS  
Table 1. AVDD = 3 V, DRVDD = 2.5 V, Sample Rate = 80 MSPS, 2 V p-p Differential Input, 1.0 V External Reference, unless  
otherwise noted  
AD9245BCP  
Parameter  
Temp  
Test Level  
Unit  
Min  
Typ  
Max  
RESOLUTION  
Full  
VI  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error1  
Gain Error  
Gain Error1  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
TEMPERATURE DRIFT  
Offset Error1  
Gain Error  
Gain Error1  
Full  
Full  
25°C  
Full  
Full  
Full  
VI  
VI  
V
VI  
VI  
VI  
Guaranteed  
0.30  
0.2ꢀ  
0.70  
0.5  
1.2  
% FSR  
% FSR  
% FSR  
LSB  
4.16  
1.0  
5.15  
1.4  
LSB  
Full  
Full  
Full  
V
V
V
10  
12  
17  
ppm/°C  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
Output Voltage Error (0.5 V Mode)  
Load Regulation @ 0.5 mA  
INPUT REFERRED NOISE  
VREF = 0.5 V  
Full  
VI  
V
V
3
2
6
1
34  
mV  
mV  
mV  
mV  
25°C  
25°C  
25°C  
V
25°C  
25°C  
V
V
1.ꢀ6  
1.17  
LSB rms  
LSB rms  
VREF = 1.0 V  
ANALOG INPUT  
Input Span, VREF = 0.5 V  
Input Span, VREF = 1.0 V  
Input Capacitance3  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
Full  
Full  
Full  
Full  
IV  
IV  
V
1
2
7
7
V p-p  
V p-p  
pF  
V
kΩ  
AVDD  
DRVDD  
Full  
Full  
IV  
IV  
2.7  
2.25  
3.0  
2.5  
3.6  
3.6  
V
V
Supply Current  
IAVDD2  
Full  
25°C  
25°C  
VI  
V
V
122  
9
0.01  
13ꢀ  
mA  
mA  
% FSR  
IDRVDD2  
PSRR  
POWER CONSUMPTION  
Low Frequency Input4  
Standby Power5  
25°C  
25°C  
V
V
366  
1.0  
mW  
mW  
1 With a 1.0 V internal reference.  
2 Measured at the maximum clock rate, fIN = 2.4 MHz, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.  
4 Measured at AC Specification conditions without output drivers.  
5 Standby power is measured with a dc input, CLK pin inactive (i.e., set to AVDD or AGND).  
Rev. B | Page 3 of 2ꢀ  
 
 
 
 
 
 
 
 
AD9245  
AD9245–AC SPECIFICATIONS  
Table 2. AVDD = 3 V, DRVDD = 2.5 V, Sample Rate = 80 MSPS, 2 V p-p Differential Input, 1.0 V External Reference,  
AIN = –0.5 dBFS, DCS Off, unless otherwise noted  
AD9245BCP  
Parameter  
Temp  
Test Level  
Unit  
Min  
Typ  
Max  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
Full  
VI  
V
V
IV  
V
V
71.1  
dB  
dB  
dB  
dB  
dB  
dB  
25°C  
25°C  
Full  
25°C  
25°C  
73.3  
72.7  
fIN = 40 MHz  
fIN = 70 MHz  
70.5  
71.7  
70.2  
fIN = 100 MHz  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
Full  
VI  
V
V
IV  
V
V
70.7  
69.9  
dB  
dB  
dB  
dB  
dB  
dB  
25°C  
25°C  
Full  
25°C  
25°C  
73.2  
72.5  
fIN = 40 MHz  
fIN = 70 MHz  
71.2  
69.6  
fIN = 100 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
Full  
VI  
V
V
IV  
V
V
11.5  
11.3  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
25°C  
25°C  
Full  
25°C  
25°C  
11.9  
11.ꢀ  
fIN = 40 MHz  
fIN = 70 MHz  
11.5  
11.3  
fIN = 100 MHz  
WORST SECOND OR THIRD  
fIN = 2.4 MHz  
Full  
VI  
V
V
IV  
V
V
–76.5  
–75.7  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
Full  
25°C  
25°C  
–92.ꢀ  
–ꢀ7.6  
fIN = 40 MHz  
fIN = 70 MHz  
–ꢀ1.6  
–79.0  
fIN = 100 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
Full  
VI  
V
V
IV  
V
V
76.5  
75.7  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
25°C  
25°C  
Full  
25°C  
25°C  
92.ꢀ  
ꢀ7.6  
fIN = 40 MHz  
fIN = 70 MHz  
ꢀ1.6  
79.0  
fIN = 100 MHz  
Rev. B | Page 4 of 2ꢀ  
 
AD9245  
AD9245–DIGITAL SPECIFICATIONS  
Table 3. AVDD = 3 V, DRVDD = 2.5 V, 1.0 V External Reference, unless otherwise noted  
AD9245BCP  
Typ  
Temp  
Test Level  
Unit  
Parameter  
Min  
Max  
LOGIC INPUTS (CLK, PDWN)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
V
2.0  
V
V
µA  
µA  
pF  
0.ꢀ  
+10  
+10  
–10  
–10  
Input Capacitance  
2
DIGITAL OUTPUT BITS (D0–D13, OTR)1  
DRVDD = 3.3 V  
High Level Output Voltage (IOH = 50 µA)  
High Level Output Voltage (IOH = 0.5 mA)  
Low Level Output Voltage (IOH = 1.6 mA)  
Low Level Output Voltage (IOH = 50 µA)  
DRVDD = 2.5 V  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage (IOH = 50 µA)  
High Level Output Voltage (IOH = 0.5 mA)  
Low Level Output Voltage (IOH = 1.6 mA)  
Low Level Output Voltage (IOH = 50 µA)  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
2.49  
2.45  
V
V
V
V
0.2  
0.05  
1 Output voltage levels measured with 5 pF load on each output.  
Rev. B | Page 5 of 2ꢀ  
 
 
AD9245  
AD9245–SWITCHING SPECIFICATIONS  
Table 4. AVDD = 3 V, DRVDD = 2.5 V, unless otherwise noted  
AD9245BCP  
Typ  
Parameter  
Temp  
Test Level  
Unit  
Min  
Max  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
ꢀ0  
MSPS  
MSPS  
ns  
ns  
ns  
1
12.5  
4.6  
4.6  
CLK Pulsewidth High1  
CLK Pulsewidth Low1  
DATA OUTPUT PARAMETERS  
Output Propagation Delay (tPD)2  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time3  
Full  
Full  
Full  
Full  
Full  
Full  
V
V
V
V
V
V
4.2  
7
1
0.3  
7
ns  
Cycles  
ns  
ps rms  
ms  
OUT-OF-RANGE RECOVERY TIME  
2
Cycles  
1 With duty cycle stabilizer (DCS) enabled.  
2 Output propagation delay is measured from CLK 50% transition to DATA 50% transition, with 5 pF load.  
3 Wake-up time is dependant on the value of the decoupling capacitors; typical values shown with 0.1 µF and 10 µF capacitors on REFT and REFB.  
N+1  
N
N+2  
N+8  
N–1  
N+3  
tA  
ANALOG  
INPUT  
N+7  
N+4  
N+6  
N+5  
CLK  
DATA  
OUT  
N–9  
N–8  
N–7  
N–6  
N–5  
N–4  
N–3  
N–2  
N–1  
N
tPD = 6.0ns MAX  
2.0ns MIN  
03583-B-002  
Figure 2. Timing Diagram  
EXPLANATION OF TEST LEVELS  
Test Level Definitions  
I
100% production tested.  
II  
100% production tested at 25°C and guaranteed by design and characterization at specified temperatures.  
Sample tested only.  
Parameter is guaranteed by design and characterization testing.  
Parameter is a typical value only.  
III  
IV  
V
VI  
100% production tested at 25°C and guaranteed by design and characterization for industrial temperature range.  
Rev. B | Page 6 of 2ꢀ  
 
 
 
 
 
 
AD9245  
ABSOLUTE MAXIMUM RATINGS  
Table 5. AD9245 Absolute Maximum Ratings  
THERMAL RESISTANCE  
Parameter  
ELECTRICAL  
AVDD  
DRVDD  
AGND  
AVDD  
D0–D13  
CLK, MODE AGND  
VIN+, VIN–  
VREF  
With Respect to Min Max  
Unit  
θJA is specified for the worst-case conditions on a 4-layer board  
in still air, in accordance with EIA/JESD51-1.  
AGND  
DGND  
DGND  
DRVDD  
DGND  
–0.3 +3.9  
–0.3 +3.9  
–0.3 +0.3  
–3.9 +3.9  
–0.3 DRVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
V
V
V
V
V
V
V
V
V
V
V
Table 6. Thermal Resistance  
Package Type  
Unit  
θJA  
θJC  
CP-32  
32.5  
32.71  
°C/W  
Airflow increases heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads  
from metal traces, through holes, ground, and power planes  
reduces the θJA. It is recommended that the exposed paddle be  
soldered to the ground plane for the LFCSP package. There is an  
increased reliability of the solder joints, and maximum thermal  
capability of the package is achieved with the exposed paddle  
soldered to the customer board.  
AGND  
AGND  
AGND  
AGND  
AGND  
SENSE  
REFT, REFB  
PDWN  
ENVIRONMENTAL  
Storage Temperature  
Operating Temperature Range  
–65 +125  
–40 +ꢀ5  
°C  
°C  
Lead Temperature Range  
(Soldering 10 sec)  
Junction Temperature  
300  
150  
°C  
°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 7 of 2ꢀ  
 
AD9245  
DEFINITIONS OF SPECIFICATIONS  
Analog Bandwidth (Full Power Bandwidth)—The analog  
input frequency at which the spectral power of the fundamental  
frequency (as determined by the FFT analysis) is reduced by 3 dB.  
Effective Number of Bits (ENOB)—The effective number of  
bits for a sine wave input at a given input frequency can be cal-  
culated directly from its measured SINAD using the following  
formula:  
Aperture Delay (tA)—The delay between the 50% point of the  
rising edge of the clock and the instant at which the analog  
input is sampled.  
(
SINAD 1.76  
)
ENOB =  
6.02  
Signal-to-Noise Ratio (SNR)1 The ratio of the rms input  
signal amplitude to the rms value of the sum of all other spec-  
tral components below the Nyquist frequency, excluding the  
first six harmonics and dc.  
Aperture Uncertainty (Jitter, tJ)—The sample-to-sample varia-  
tion in aperture delay.  
Integral Nonlinearity (INL)—The deviation of each individual  
code from a line drawn from negative full scale through positive  
full scale. The point used as negative full scale occurs ½ LSB  
before the first code transition. Positive full scale is defined as a  
level 1½ LSB beyond the last code transition. The deviation is  
measured from the middle of each particular code to the true  
straight line.  
Spurious-Free Dynamic Range (SFDR)1The difference in dB  
between the rms input signal amplitude and the peak spurious  
signal. The peak spurious component may or may not be a  
harmonic.  
Two-Tone SFDR1The ratio of the rms value of either input  
tone to the rms value of the peak spurious component. The  
peak spurious component may or may not be an IMD product.  
Differential Nonlinearity (DNL, No Missing Codes)—An  
ideal ADC exhibits code transitions that are exactly 1 LSB apart.  
DNL is the deviation from this ideal value. Guaranteed no miss-  
ing codes to 14-bit resolution indicates that all 16384 codes  
must be present over all operating ranges.  
Clock Pulsewidth and Duty Cycle—Pulsewidth high is the  
minimum amount of time that the clock pulse should be left in  
the Logic 1 state to achieve rated performance. Pulsewidth low  
is the minimum time the clock pulse should be left in the  
Logic 0 state. At a given clock rate, these specifications define an  
acceptable clock duty cycle.  
Offset Error—The major carry transition should occur for an  
analog value ½ LSB below VIN+ = VIN–. Offset error is  
defined as the deviation of the actual transition from that point.  
Minimum Conversion Rate—The clock rate at which the SNR  
of the lowest analog signal frequency drops by no more than  
3 dB below the guaranteed limit.  
Gain Error—The first code transition should occur at an  
analog value ½ LSB above negative full scale. The last transition  
should occur at an analog value 1½ LSB below the positive  
full scale. Gain error is the deviation of the actual difference  
between first and last code transitions and the ideal difference  
between first and last code transitions.  
Maximum Conversion Rate—The clock rate at which para-  
metric testing is performed.  
Output Propagation Delay (tPD)—The delay between the clock  
rising edge and the time when all bits are within valid logic  
levels.  
Temperature Drift—The temperature drift for offset error and  
gain error specifies the maximum change from the initial  
(25°C) value to the value at TMIN or TMAX  
.
Out-of-Range Recovery Time—The time it takes for the ADC  
to reacquire the analog input after a transition from 10% above  
positive full scale to 10% above negative full scale, or from 10%  
below negative full scale to 10% below positive full scale.  
Power Supply Rejection Ratio—The change in full scale from  
the value with the supply at the minimum limit to the value  
with the supply at its maximum limit.  
Total Harmonic Distortion (THD)1The ratio of the rms  
input signal amplitude to the rms value of the sum of the first  
six harmonic components.  
1 AC specifications may be reported in dBc (degrades as signal levels are  
lowered) or in dBFS (always related back to converter full scale).  
Signal-to-Noise and Distortion (SINAD)1The ratio of the  
rms input signal amplitude to the rms value of the sum of all  
other spectral components below the Nyquist frequency, includ-  
ing harmonics but excluding dc.  
Rev. B | Page ꢀ of 2ꢀ  
 
AD9245  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
DNC 1  
CLK 2  
DNC 3  
PDWN 4  
(LSB) D0 5  
D1 6  
24 VREF  
23 SENSE  
22 MODE  
21 OTR  
20 D13 (MSB)  
19 D12  
AD9245  
CSP  
TOP VIEW  
(Not to Scale)  
D2 7  
18 D11  
D3 8  
17 D10  
03583-B-022  
Figure 3. 32-Lead LFCSP  
Table 7. Pin Function Descriptions—32-Lead LFCSP (CP Package)  
Pin No.  
Mnemonic  
DNC  
CLK  
Description  
1, 3  
2
Do Not Connect  
Clock Input Pin  
4
PDWN  
D0 (LSB) to D13 (MSB)  
DGND  
DRVDD  
OTR  
Power-Down Function Select  
Data Output Bits  
Digital Output Ground  
Digital Output Driver Supply  
Out-of-Range Indicator  
5 to 14, 17 to 20  
15  
16  
21  
22  
23  
24  
25  
MODE  
SENSE  
VREF  
REFB  
REFT  
AVDD  
AGND  
VIN+  
Data Format Select and DCS Mode Selection (see Table 9)  
Reference Mode Selection (see Table ꢀ)  
Voltage Reference Input/Output  
Differential Reference (–)  
Differential Reference (+)  
Analog Power Supply  
26  
27, 32  
2ꢀ, 31  
29  
Analog Ground  
Analog Input Pin (+)  
30  
VIN–  
Analog Input Pin (–)  
Rev. B | Page 9 of 2ꢀ  
 
AD9245  
EQUIVALENT CIRCUITS  
AVDD  
DRVDD  
D13-D0,  
OTR  
VIN+, VIN–  
03583-B-005  
03583-B-003  
Figure 6. Equivalent Digital Output Circuit  
Figure 4. Equivalent Analog Input Circuit  
AVDD  
AVDD  
CLK,  
MODE  
PDWN  
20k  
03583-B-004  
03583-B-006  
Figure 5. Equivalent MODE Input Circuit  
Figure 7. Equivalent Digital Input Circuit  
Rev. B | Page 10 of 2ꢀ  
 
AD9245  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 3.0 V, DRVDD = 2.5 V, Sample Rate = 80 MSPS, DCS Disabled, TA = 25°C, 2 V p-p Differential Input, AIN = –0.5 dBFS,  
VREF = 1.0 V External, unless otherwise noted  
0
–10  
100  
90  
80  
70  
60  
50  
40  
SFDR (dBFS)  
AIN = –0.5dBFS  
SNR = 73.2dBc  
ENOB = 11.8 BITS  
SFDR = 92.8 dBc  
–20  
SFDR (dBc)  
–30  
SNR (dBFS)  
–40  
–50  
–60  
SFDR = 90dBc  
–70  
REFERENCE LINE  
–80  
–90  
SNR (dBc)  
–100  
–110  
–120  
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
03583-B-032  
03583-B-033  
Figure 8. Single Tone 8K FFT @ 2.5 MHz  
Figure 11. Single Tone SNR/SFDR vs. Input Amplitude (AIN) @ 2.5 MHz  
0
–10  
100  
SFDR (dBFS)  
AIN = –0.5dBFS  
SNR = 72.7dBc  
ENOB = 11.8 BITS  
SFDR = 87.6 dBc  
–20  
90  
SFDR (dBc)  
–30  
SNR (dBFS)  
–40  
80  
70  
60  
50  
40  
–50  
–60  
SFDR = 90dBc  
–70  
REFERENCE LINE  
–80  
–90  
SNR (dBc)  
–100  
–110  
–120  
5
10  
15  
20  
25  
30  
35  
40  
–30  
–25  
–20  
–15  
–10  
–5  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
03583-B-023  
03583-B-034  
Figure 9. Single Tone 8K FFT @ 39 MHz  
Figure 12. Single Tone SNR/SFDR vs. Input Amplitude (AIN) @ 39 MHz  
0
–10  
100  
AIN = –0.5dBFS  
SNR = 71.7dBc  
ENOB = 11.5 BITS  
SFDR = 81.6 dBc  
SFDR (DIFF)  
–20  
90  
–30  
SNR (DIFF)  
SFDR (SE)  
–40  
80  
70  
–50  
–60  
–70  
–80  
SNR (SE)  
–90  
60  
–100  
–110  
–120  
50  
5
10  
15  
20  
25  
30  
35  
40  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
03583-B-024  
03583-B-025  
Figure 10. Single Tone 8K FFT @ 70 MHz  
Figure 13. SNR/SFDR vs. Sample Rate @ 40 MHz  
Rev. B | Page 11 of 2ꢀ  
 
 
AD9245  
100  
90  
80  
70  
60  
50  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
SFDR (dBFS)  
AIN = –6.5dBFS  
SNR = 73.4dBFS  
SFDR = 86.0dBFS  
SFDR (dBc)  
SNR (dBFS)  
SFDR = 90dBc  
REFERENCE LINE  
SNR (dBc)  
–120  
0
–30  
–27  
–24  
–21  
–18  
–15  
–12  
–9  
–6  
5
10  
15  
20  
25  
30  
35  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
03583-B-031  
03583-B-029  
Figure 17. Two-Tone SNR/SFDR vs. Input Amplitude @ 30 MHz and 31 MHz  
Figure 14. Two-Tone 8K FFT @ 30 MHz and 31 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
100  
SFDR (dBFS)  
AIN = –6.5dBFS  
SNR = 72.7dBFS  
SFDR = 78.8dBFS  
90  
SFDR (dBc)  
80  
70  
SNR (dBFS)  
SFDR = 90dBc  
60  
50  
40  
REFERENCE LINE  
SNR (dBc)  
–12  
–120  
0
–30  
–27  
–24  
–21  
–18  
–15  
–9  
–6  
5
10  
15  
20  
25  
30  
35  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
03583-B-027  
03583-B-030  
Figure 15. Two-Tone 8K FFT @ 69 MHz and 70 MHz  
Figure 18. Two-Tone SNR/SFDR vs. Input Amplitude @ 69 MHz and 70 MHz  
1.0  
0.8  
1.5  
1.0  
0.5  
0
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
0
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
CODE  
03583-B-028  
03583-B-026  
Figure 19. Typical DNL  
Figure 16. Typical INL  
Rev. B | Page 12 of 2ꢀ  
AD9245  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
100  
95  
90  
85  
80  
75  
70  
–40°C  
+25°C  
+85°C  
–40  
°
C
+25°C  
+85°C  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
03583-B-036  
03583-B-038  
Figure 20. SNR vs. Input Frequency  
Figure 23. SFDR vs. Input Frequency  
90  
0
–10  
SFDR (DCS ON)  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
–20  
–30  
–40  
SFDR (DCS OFF)  
–50  
–60  
–70  
–80  
–90  
SNR (DCS OFF)  
–100  
–110  
–120  
SNR (DCS ON)  
50 55  
DUTY CYCLE (%)  
30  
35  
40  
45  
60  
65  
70  
0
9.6  
19.2  
28.8  
38.4  
FREQUENCY (MHz)  
03583-B-037  
03583-B-060  
Figure 21. SNR/SFDR vs. Clock Duty Cycle  
Figure 24. Two 32K FFT CDMA-2000 Carriers @  
FIN = 46.08 MHz; Sample Rate = 61.44 MSPS  
0
–10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–110  
–120  
0
9.6  
19.2  
28.8  
38.4  
0
9.6  
19.2  
28.8  
38.4  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
03583-B-059  
03583-B-061  
Figure 22. 32K FFT WCDMA Carrier @ FIN = 96 MHz; Sample Rate = 76.8 MSPS  
Figure 25. Two 32K FFT WCDMA Carriers @  
FIN = 76.8 MHz; Sample Rate = 61.44 MSPS  
Rev. B | Page 13 of 2ꢀ  
 
AD9245  
THEORY OF OPERATION  
The AD9245 architecture consists of a front-end sample and  
hold amplifier (SHA) followed by a pipelined switched capaci-  
tor ADC. The pipelined ADC is divided into three sections,  
consisting of a 4-bit first stage followed by eight 1.5-bit stages  
and a final 3-bit flash. Each stage provides sufficient overlap to  
correct for flash errors in the preceding stages. The quantized  
outputs from each stage are combined into a final 14-bit result  
in the digital correction logic. The pipelined architecture per-  
mits the first stage to operate on a new input sample, while the  
remaining stages operate on preceding samples. Sampling  
occurs on the rising edge of the clock.  
Referring to Figure 27, the clock signal alternately switches the  
SHA between sample mode and hold mode. When the SHA is  
switched into sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current required from the output  
stage of the driving source. Also, a small shunt capacitor can be  
placed across the inputs to provide dynamic charging currents.  
This passive network creates a low-pass filter at the ADCs  
input; therefore, the precise values are dependent upon the  
application. In IF undersampling applications, any shunt  
capacitors should be reduced or removed. In combination with  
the driving source impedance, they would limit the input  
bandwidth.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
H
T
T
5pF  
5pF  
VIN+  
VIN–  
C
C
PAR  
PAR  
The input stage contains a differential SHA that can be ac-  
coupled or dc-coupled in differential or single-ended modes.  
The output-staging block aligns the data, carries out the error  
correction, and passes the data to the output buffers. The output  
buffers are powered from a separate supply, allowing adjustment  
of the output voltage swing. During power-down, the output  
buffers go into a high impedance state.  
T
T
H
03583-B-012  
Figure 27. Switched-Capacitor SHA Input  
ANALOG INPUT AND REFERENCE OVERVIEW  
The analog input to the AD9245 is a differential switched-  
capacitor SHA that has been designed for optimum perform-  
ance while processing a differential input signal. The SHA input  
can support a wide common-mode range (VCM) and maintain  
excellent performance, as shown in Figure 26. An input  
common-mode voltage of midsupply minimizes signal-  
dependent errors and provides optimum performance.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN– should be matched such that common-mode  
settling errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
An internal differential reference buffer creates positive and  
negative reference voltages, REFT and REFB, that define the  
span of the ADC core. The output common mode of the  
reference buffer is set to midsupply, and the REFT and REFB  
voltages and span are defined as follows:  
100  
95  
SFDR (2.5MHz)  
90  
1
2
1
85  
REFT =  
REFB =  
AVDD +VREF  
( )  
SFDR (39MHz)  
80  
(
AVDD VREF  
)
SNR (2.5MHz)  
SNR (39MHz)  
75  
70  
65  
60  
55  
50  
2
Span = 2×  
(
REFT REFB  
)
= 2×VREF  
It can be seen from the equations above that the REFT and  
REFB voltages are symmetrical about the midsupply voltage, and,  
by definition, the input span is twice the value of the VREF voltage.  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
The internal voltage reference can be pin strapped to fixed  
values of 0.5 V or 1.0 V, or adjusted within the same range as  
discussed in the Internal Reference Connection section.  
Maximum SNR performance is achieved with the AD9245 set  
COMMON-MODE LEVEL (V)  
03583-B-039  
Figure 26. SNR, SFDR vs. Common-Mode Level  
Rev. B | Page 14 of 2ꢀ  
 
 
 
AD9245  
to the largest input span of 2 V p-p. The relative SNR degradation  
is 3 dB when changing from 2 V p-p mode to 1 V p-p mode.  
AVDD  
VIN+  
33Ω  
The SHA may be driven from a source that keeps the signal  
peaks within the allowable range for the selected reference volt-  
age. The minimum and maximum common-mode input levels  
are defined as  
2V p-p  
49.9Ω  
10pF  
33Ω  
AD9245  
VIN–  
AGND  
1kΩ  
1kΩ  
VREF  
0.1µF  
VCMMIN  
=
03583-B-014  
2
Figure 29. Differential Transformer-Coupled Configuration  
(
AVDD +VREF  
)
VCMMAX  
=
2
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few MHz, and excessive signal power can also cause  
core saturation, which leads to distortion.  
The minimum common-mode input level allows the AD9245 to  
accommodate ground referenced inputs.  
Although optimum performance is achieved with a differential  
input, a single-ended source may be applied to VIN+ or VIN–.  
In this configuration, one input accepts the signal, while the  
opposite input should be set to midscale by connecting it to an  
appropriate reference. For example, a 2 V p-p signal may be  
applied to VIN+ while a 1 V reference is applied to VIN–. The  
AD9245 then accepts an input signal varying between 2 V and  
0 V. In the single-ended configuration, distortion performance  
may degrade significantly as compared to the differential case.  
However, the effect is less noticeable at lower input frequencies.  
Single-Ended Input Configuration  
A single-ended input may provide adequate performance in  
cost-sensitive applications. In this configuration, there is a  
degradation in SFDR and distortion performance due to the  
large input common-mode swing (see Figure 13). However, if  
the source impedances on each input are matched, there should  
be little effect on SNR performance. Figure 30 details a typical  
single-ended input configuration.  
1k  
Differential Input Configurations  
AVDD  
VIN+  
33  
As previously detailed, optimum performance is achieved while  
driving the AD9245 in a differential input configuration. For  
baseband applications, the AD8138 differential driver provides  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the AD8138 is easily set to  
AVDD/2, and the driver can be configured in a Sallen Key filter  
topology to provide band limiting of the input signal.  
0.33µF  
1k  
2V p-p  
49.9  
20pF  
33  
AD9245  
1k  
+
VIN–  
AGND  
10  
µF  
0.1  
µ
F
1k  
03583-B-015  
Figure 30. Single-Ended Input Configuration  
CLOCK INPUT CONSIDERATIONS  
1V p-p  
49.9  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals, and as a result may be sensitive  
to clock duty cycle. Commonly a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteris-  
tics. The AD9245 contains a clock duty cycle stabilizer (DCS) that  
retimes the nonsampling edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows a wide range of clock  
input duty cycles without affecting the performance of the  
AD9245. As shown in Figure 21, noise and distortion perform-  
ance is nearly flat for a 30% to 70% duty cycle with the DCS on.  
499Ω  
AVDD  
VIN+  
33Ω  
499Ω  
523Ω  
20pF  
AD8138  
499Ω  
AD9245  
1kΩ  
1kΩ  
33Ω  
VIN–  
AGND  
0.1µF  
03583-B-013  
Figure 28. Differential Input Configuration Using the AD8138  
At input frequencies in the second Nyquist zone and above, the  
performance of most amplifiers is not adequate to achieve the  
true performance of the AD9245. This is especially true in IF  
undersampling applications where frequencies in the 70 MHz to  
100 MHz range are being sampled. For these applications,  
differential transformer coupling is the recommended input  
configuration. The value of the shunt capacitor is dependent on  
the input frequency and source impedance and should be  
reduced or removed. An example is shown in Figure 29.  
The duty cycle stabilizer uses a delay-locked loop (DLL) to  
create the nonsampling edge. As a result, any changes to the  
sampling frequency require approximately 100 clock cycles to  
allow the DLL to acquire and lock to the new rate.  
Rev. B | Page 15 of 2ꢀ  
 
 
 
AD9245  
425  
400  
375  
350  
325  
300  
140  
120  
100  
80  
JITTER CONSIDERATIONS  
ANALOG CURRENT  
TOTAL POWER  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input fre-  
quency (fINPUT) due only to aperture jitter (tJ) can be calculated  
with the following equation:  
SNR= 20log  
[
2πfINPUT ×tJ  
]
60  
In the equation, the rms aperture jitter represents the root-mean  
square of all jitter sources, which include the clock input, analog  
input signal, and ADC aperture jitter specification. IF undersam-  
pling applications are particularly sensitive to jitter (see Figure 31).  
40  
20  
DIGITAL CURRENT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
SAMPLE RATE (MSPS)  
03583-B-035  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9245. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other meth-  
ods), it should be retimed by the original clock at the last step.  
Figure 32. Power and Current vs. Sample Rate @ 2.5 MHz  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 32 was  
taken with the same operating conditions as the Typical Per-  
formance Characteristics, and with a 5 pF load on each output  
driver.  
By asserting the PDWN pin high, the AD9245 is placed in  
standby mode. In this state, the ADC typically dissipates  
1 mW if the CLK and analog inputs are static. During standby,  
the output drivers are placed in a high impedance state.  
Reasserting the PDWN pin low returns the AD9245 to its  
normal operational mode.  
75  
0.2ps  
70  
65  
MEASURED SNR  
0.5ps  
60  
1.0ps  
Low power dissipation in standby mode is achieved by shutting  
down the reference, reference buffer, and biasing networks. The  
decoupling capacitors on REFT and REFB are discharged when  
entering standby mode and then must be recharged when  
returning to normal operation. As a result, the wake-up time is  
related to the time spent in standby mode, and shorter standby  
cycles result in proportionally shorter wake-up times. With the  
recommended 0.1 µF and 10 µF decoupling capacitors on REFT  
and REFB, it takes approximately 1 second to fully discharge the  
reference buffer decoupling capacitors and 7 ms to restore full  
operation.  
1.5ps  
55  
50  
45  
2.0ps  
2.5ps  
3.0ps  
40  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
03583-B-041  
Figure 31. SNR vs. Input Frequency and Jitter  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 32, the power dissipated by the AD9245 is  
proportional to its sample rate. The digital power dissipation is  
determined primarily by the strength of the digital drivers and  
the load on each output bit. The maximum DRVDD current  
(IDRVDD) can be calculated as  
DIGITAL OUTPUTS  
The AD9245 output drivers can be configured to interface with  
2.5 V or 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to pro-  
vide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
Applications requiring the ADC to drive large capacitive loads or  
large fanouts may require external buffers or latches.  
IDRVDD = VDRVDD ×CLOAD × fCLK ×N  
where N is the number of output bits, 14 in the case of the  
AD9245. This maximum current occurs when every output bit  
switches on every clock cycle, i.e., a full-scale square wave at the  
Nyquist frequency, fCLK/2. In practice, the DRVDD current will  
be established by the average number of output bits switching,  
which will be determined by the sample rate and the character-  
istics of the analog input signal.  
As detailed in Table 9, the data format can be selected for either  
offset binary or twos complement.  
Rev. B | Page 16 of 28  
 
 
AD9245  
TIMING  
In all reference configurations, REFT and REFB drive the A/D  
conversion core and establish its input span. The input range of  
the ADC always equals twice the voltage at the reference pin for  
either an internal or an external reference.  
The AD9245 provides latched data outputs with a pipeline delay  
of seven clock cycles. Data outputs are available one propaga-  
tion delay (tPD) after the rising edge of the clock signal. Refer to  
Figure 2 for a detailed timing diagram.  
VIN+  
The length of the output data lines and the loads placed on  
them should be minimized to reduce transients within the  
AD9245. These transients can degrade the converters dynamic  
performance.  
VIN–  
REFT  
0.1µF  
+
ADC  
0.1µF  
REFB  
0.1µF  
10µF  
CORE  
The lowest typical conversion rate of the AD9245 is 1 MSPS. At  
clock rates below 1 MSPS, dynamic performance may degrade.  
VREF  
0.1µF  
+
10µF  
VOLTAGE REFERENCE  
SELECT  
LOGIC  
A stable and accurate 0.5 V voltage reference is built into the  
AD9245. The input range can be adjusted by varying the refer-  
ence voltage applied to the AD9245 using either the internal  
reference or an externally applied reference voltage. The input  
span of the ADC tracks reference voltage changes linearly. The  
various reference modes are summarized Table 8 and described  
in the following sections.  
SENSE  
0.5V  
AD9245  
03583-B-017  
Figure 33. Internal Reference Configuration  
If the ADC is being driven differentially through a transformer,  
the reference voltage can be used to bias the center tap (com-  
mon-mode voltage).  
If the internal reference of the AD9245 is used to drive multiple  
converters to improve gain matching, the loading of the refer-  
ence by the other converters must be considered. Figure 34  
depicts how the internal reference voltage is affected by loading.  
INTERNAL REFERENCE CONNECTION  
A comparator within the AD9245 detects the potential at the  
SENSE pin and configures the reference into one of four  
possible states, which are summarized in Table 8. If SENSE is  
grounded, the reference amplifier switch is connected to the  
internal resistor divider (see Figure 33), setting VREF to 1 V.  
Connecting the SENSE pin to VREF switches the reference  
amplifier output to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected as shown in Figure 35, the switch is again set to the  
SENSE pin. This puts the reference amplifier in a noninverting  
mode with the VREF output defined as follows:  
0.05  
0
–0.05  
0.5V ERROR (%)  
–0.10  
1.0V ERROR (%)  
–0.15  
–0.20  
–0.25  
R2  
R1  
VREF = 0.5× 1+  
0
0.5  
1.0  
1.5  
LOAD (mA)  
2.0  
2.5  
3.0  
03583-B-019  
Figure 34. VREF Accuracy vs. Load  
Table 8. Reference Configuration Summary  
Internal Switch  
Position  
Resulting Differential  
Span (V p-p)  
Selected Mode  
SENSE Voltage  
AVDD  
VREF  
Resulting VREF (V)  
External Reference  
Internal Fixed Reference  
Programmable Reference  
N/A  
SENSE  
SENSE  
N/A  
0.5  
2 × External Reference  
1.0  
2 × VREF  
0.2 V to VREF  
R2  
R1  
(See Figure 35)  
0.5 × 1 +  
Internal Fixed Reference  
AGND to 0.2 V  
Internal Divider  
1.0  
2.0  
Rev. B | Page 17 of 2ꢀ  
 
 
 
 
AD9245  
OPERATIONAL MODE SELECTION  
VIN+  
VIN–  
As discussed earlier, the AD9245 can output data in either offset  
binary or twos complement format. There is also a provision for  
enabling or disabling the clock duty cycle stabilizer (DCS). The  
MODE pin is a multilevel input that controls the data format  
and DCS state. The input threshold values and corresponding  
mode selections are outlined in Table 9.  
REFT  
0.1µF  
0.1µF  
REFB  
0.1µF  
+
ADC  
10µF  
CORE  
VREF  
+
10µF  
0.1µF  
SELECT  
LOGIC  
Table 9. Mode Selection  
R2  
Duty Cycle  
SENSE  
MODE Voltage  
AVDD  
2/3 AVDD  
1/3 AVDD  
AGND (Default)  
Data Format  
Stabilizer  
Disabled  
Enabled  
Enabled  
Disabled  
Twos Complement  
Twos Complement  
Offset Binary  
R1  
0.5V  
AD9245  
Offset Binary  
03583-B-018  
Figure 35. Programmable Reference Configuration  
EVALUATION BOARD  
The AD9245 evaluation board provides all of the support  
circuitry required to operate the ADC in its various modes and  
configurations. Complete schematics and layout plots follow  
and demonstrate the proper routing and grounding techniques  
that should be applied at the system level.  
EXTERNAL REFERENCE OPERATION  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. When multiple ADCs track one another, a single  
reference (internal or external) may be necessary to reduce gain  
matching errors to an acceptable level. Figure 36 shows the typi-  
cal drift characteristics of the internal reference in both 1.0 V  
and 0.5 V modes.  
It is critical that signal sources with very low phase noise (<1 ps  
rms jitter) be used to realize the ultimate performance of the  
converter. Proper filtering of the input signal, to remove  
harmonics and lower the integrated noise at the input, is also  
necessary to achieve the specified noise performance.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1.0 V.  
The AD9245 can be driven single-ended or differentially  
through a transformer. Separate power pins are provided to  
isolate the DUT from the support circuitry. Each input configu-  
ration can be selected by proper connection of various jumpers  
(refer to the schematics).  
An alternative differential analog input path using an AD8351  
op amp is included in the layout, but is not populated in pro-  
duction. Designers interested in evaluating the op amp with the  
ADC should remove C15, R12, and R3, and populate the op  
amp circuit. The passive network between the AD8351 outputs  
and the AD9245 allows the user to optimize the frequency  
response of the op amp for the application.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
VREF = 1.0V  
0.2  
0.1  
VREF = 0.5V  
0
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
03583-B-040  
Figure 36. Typical VREF Drift  
Rev. B | Page 1ꢀ of 2ꢀ  
 
 
 
AD9245  
P 2  
0 V 5 .  
5 V 2 .  
M P V A  
V D  
L
G N D  
5 V 2 .  
0 V 3 .  
D D V D R  
G N D  
D D A V  
D 1 0  
D 1 1  
D 1 2  
D 1 3  
O T  
M O D  
S E S E N  
E F V R  
D 3  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
8
D 2 7  
D 1  
6
D 0  
5
R
E
N W P D  
4
D N C  
3
C L K  
2
D N C  
1
Figure 37. LFCSP Evaluation Board Schematic—Analog Inputs and DUT  
Rev. B | Page 19 of 2ꢀ  
AD9245  
Figure 38. LFCSP Evaluation Board Schematic—Digital Path  
Rev. B | Page 20 of 2ꢀ  
AD9245  
Figure 39. LFCSP Evaluation Board Schematic—Clock Input  
Rev. B | Page 21 of 2ꢀ  
AD9245  
03583-B-055  
03583-B-053  
Figure 42. LFCSP Evaluation Board Layout, Ground Plane  
Figure 40. LFCSP Evaluation Board Layout, Primary Side  
03583-B-056  
03583-B-054  
Figure 43. LFCSP Evaluation Board Layout, Power Plane  
Figure 41. LFCSP Evaluation Board Layout, Secondary Side  
Rev. B | Page 22 of 2ꢀ  
AD9245  
03583-B-057  
03583-B-058  
Figure 44. LFCSP Evaluation Board Layout, Primary Silkscreen  
Figure 45. LFCSP Evaluation Board Layout, Secondary Silkscreen  
Rev. B | Page 23 of 2ꢀ  
AD9245  
Table 10. LFCSP Evaluation Board Bill of Materials  
Recommended  
Package Value Vendor/Part Number by ADI  
Supplied  
Item Qty. Omit1 Reference Designator  
Device  
C1, C5, C7, Cꢀ, C9, C11, C12,  
1ꢀ  
C13, C15, C16, C31, C33, C34,  
C36, C37, C41, C43, C47  
C6, C1ꢀ, C27, C17,  
C2ꢀ, C35, C45, C44  
C2, C3, C4, C10, C20, C22,  
C25, C29  
1
Chip Capacitor  
0603  
0.1 µF  
2
2
3
Tantalum Capacitor  
Chip Capacitor  
TAJD  
0603  
10 µF  
C46, C24  
C14, C30, C32, C3ꢀ,  
C39, C40, C4ꢀ, C49  
0.001 µF  
4
5
3
1
C19, C21, C23  
C26  
Chip Capacitor  
Chip Capacitor  
0603  
0603  
10 pF  
10 pF  
E31, E35, E43, E44, E50, E51,  
E52, E53  
9
6
Header  
EHOLE  
Jumper Blocks  
2
1
E1, E45  
J1, J2  
7
2
SMA Connector/50 Ω  
Inductor  
SMA  
0603  
Coilcraft/0603CS-  
10NXGBU  
L1  
P2  
10 nH  
Wieland/25.602.2653.0,  
z5-530-0625-0  
9
1
Terminal Block  
TB6  
10  
11  
12  
1
5
P12  
Header Dual 20-Pin RT Angle HEADER40  
Digi-Key S2131-20-ND  
R3, R12, R23, R2ꢀ, Rx  
R16, R17, R22, R27, R42, R37  
R4, R15  
Chip Resistor  
Chip Resistor  
0603  
0603  
0603  
0 Ω  
6
1
2
33 Ω  
1 kΩ  
R5, R6, R7, Rꢀ, R13, R20, R21,  
R24, R25, R26, R30, R31, R32, Chip Resistor  
R36  
13  
14  
14  
15  
2
1
R10, R11  
R29  
Chip Resistor  
0603  
0603  
36 Ω  
50 Ω  
Chip Resistor  
R19  
Digi-Key  
CTS/742C163220JTR  
16  
2
RP1, RP2  
Resistor Pack  
ADT1-1WT  
R_742  
220 Ω  
17  
1ꢀ  
19  
20  
21  
22  
23  
24  
25  
26  
27  
2ꢀ  
1
1
1
1
1
T1  
AWT1-1T  
Mini-Circuits  
U1  
74LVTH162374 CMOS Register TSSOP-4ꢀ  
U4  
AD9245BCP ADC (DUT)  
74VCXꢀ6M  
CSP-32  
SOIC-14  
PCB  
Analog Devices, Inc.  
Fairchild  
X
U5  
PCB  
AD92XXBCP/PCB  
ADꢀ351 Op Amp  
MACOM Transformer  
Chip Resistor  
Analog Devices, Inc.  
Analog Devices, Inc.  
X
X
1
1
5
3
2
1
1
U3  
MSOP-ꢀ  
T2  
ETC1-1-13 1-1 TX MACOM/ETC1-1-13  
R1, R2, R9, R3ꢀ, R39  
R14, R1ꢀ, R35  
R40, R41  
0603  
0603  
0603  
SELECT  
25 Ω  
Chip Resistor  
Chip Resistor  
10 kΩ  
1.2 kΩ  
100 Ω  
R34  
Chip Resistor  
R33  
Chip Resistor  
Total ꢀ2 34  
1 These items are included in the PCB design, but are omitted at assembly.  
Rev. B | Page 24 of 2ꢀ  
 
AD9245  
OUTLINE DIMENSIONS  
5.00  
0.60 MAX  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
3.25  
4.75  
TOP  
BOTTOM  
VIEW  
BSC SQ  
3.10 SQ  
2.95  
VIEW  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
12° MAX  
0.65 TYP  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 46. 32-Lead Frame Chip Scale Package [LFCSP]  
(CP-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
AD9245 Products  
AD9245BCP-ꢀ01  
AD9245BCPRL7–ꢀ01  
AD9245BCPZ-ꢀ01, 2  
AD9245BCPZRL7-ꢀ01, 2  
AD9245BCP-ꢀ0EB1  
Temperature Range  
–40°C to +ꢀ5°C  
–40°C to +ꢀ5°C  
–40°C to +ꢀ5°C  
–40°C to +ꢀ5°C  
Package Description  
Package Outline  
Lead Frame Chip Scale Package (LFCSP)  
Lead Frame Chip Scale Package (LFCSP)  
Lead Frame Chip Scale Package (LFCSP)  
Lead Frame Chip Scale Package (LFCSP)  
Evaluation Board  
CP-32-1  
CP-32-1  
CP-32-1  
CP-32-1  
1 It is recommended that the exposed paddle be soldered to the ground plane for the LFCSP package. There is an increased reliability of the solder joints, and the maxi-  
mum thermal capability of the package is achieved with the exposed paddle soldered to the customer board.  
2 Z = Lead Free.  
Rev. B | Page 25 of 2ꢀ  
 
 
 
 
 
AD9245  
NOTES  
Rev. B | Page 26 of 2ꢀ  
AD9245  
NOTES  
Rev. B | Page 27 of 2ꢀ  
AD9245  
NOTES  
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and regis-  
tered trademarks are the property of their respective owners.  
C03583-0-10/03(B)  
Rev. B | Page 2ꢀ of 2ꢀ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY