AD9254BCPZRL7-1501 [ADI]

14-Bit, 150 MSPS, 1.8 V Analog-to-Digital Converter; 14位, 150 MSPS , 1.8 V模拟数字转换器
AD9254BCPZRL7-1501
型号: AD9254BCPZRL7-1501
厂家: ADI    ADI
描述:

14-Bit, 150 MSPS, 1.8 V Analog-to-Digital Converter
14位, 150 MSPS , 1.8 V模拟数字转换器

转换器
文件: 总40页 (文件大小:1684K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 150 MSPS, 1.8 V  
Analog-to-Digital Converter  
AD9254  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD  
DRVDD  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
AD9254  
SNR = 71.8 dBc (72.8 dBFS) to 70 MHz input  
SFDR = 84 dBc to 70 MHz input  
Low power: 430 mW @ 150 MSPS  
Differential input with 650 MHz bandwidth  
On-chip voltage reference and sample-and-hold amplifier  
DNL = 0.4 LSB  
VIN+  
VIN–  
8-STAGE  
MDAC1  
A/D  
3
SHA  
1 1/2-BIT PIPELINE  
4
8
A/D  
REFT  
REFB  
CORRECTION LOGIC  
OR  
15  
Flexible analog input: 1 V p-p to 2 V p-p range  
Offset binary, Gray code, or twos complement data format  
Clock duty cycle stabilizer  
OUTPUT BUFFERS  
DCO  
D13 (MSB)  
D0 (LSB)  
VREF  
Data output clock  
Serial port control  
Built-in selectable digital test pattern generation  
Programmable clock and data alignment  
SENSE  
SCLK/DFS  
SDIO/DCS  
CSB  
CLOCK  
DUTY CYCLE  
STABILIZER  
0.5V  
MODE  
SELECT  
REF  
SELECT  
AGND  
CLK+ CLK–  
PDWN DRGND  
APPLICATIONS  
Figure 1.  
Ultrasound equipment  
IF sampling in communications receivers  
CDMA2000, WCDMA, TD-SCDMA, and WiMax  
Battery-powered instruments  
Hand-held scopemeters  
The digital output data is presented in offset binary, Gray code, or  
twos complement formats. A data output clock (DCO) is provided  
to ensure proper latch timing with receiving logic.  
Low cost digital oscilloscopes  
Macro, micro, and pico cell infrastructure  
GENERAL DESCRIPTION  
The AD9254 is available in a 48-lead LFCSP_VQ and is specified  
over the industrial temperature range (−40°C to +85°C).  
The AD9254 is a monolithic, single 1.8 V supply, 14-bit, 150 MSPS  
analog-to-digital converter (ADC), featuring a high performance  
sample-and-hold amplifier (SHA) and on-chip voltage reference.  
The product uses a multistage differential pipeline architecture  
with output error correction logic to provide 14-bit accuracy at  
150 MSPS data rates and guarantees no missing codes over the  
full operating temperature range.  
PRODUCT HIGHLIGHTS  
1. The AD9254 operates from a single 1.8 V power supply  
and features a separate digital output driver supply to  
accommodate 1.8 V to 3.3 V logic families.  
The wide bandwidth, truly differential SHA allows a variety of  
user-selectable input ranges and offsets, including single-ended  
applications. It is suitable for multiplexed systems that switch  
full-scale voltage levels in successive channels and for sampling  
single-channel inputs at frequencies well beyond the Nyquist rate.  
Combined with power and cost savings over previously available  
ADCs, the AD9254 is suitable for applications in communications,  
imaging, and medical ultrasound.  
2. The patented SHA input maintains excellent performance  
for input frequencies up to 225 MHz.  
3. The clock DCS maintains overall ADC performance over a  
wide range of clock pulse widths.  
4. A standard serial port interface supports various product  
features and functions, such as data formatting (offset  
binary, twos complement, or Gray coding), enabling the  
clock DCS, power-down, and voltage reference mode.  
A differential clock input controls all internal conversion cycles.  
A duty cycle stabilizer (DCS) compensates for wide variations in  
the clock duty cycle while maintaining excellent overall ADC  
performance.  
5. The AD9254 is pin-compatible with the AD9233, allowing  
a simple migration from 12 bits to 14 bits.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD9254  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing ......................................................................................... 20  
Serial Port Interface (SPI).............................................................. 21  
Configuration Using the SPI..................................................... 21  
Hardware Interface..................................................................... 21  
Configuration Without the SPI ................................................ 21  
Memory Map .................................................................................. 22  
Reading the Memory Map Register Table............................... 22  
Memory Map Register Table..................................................... 23  
Layout Considerations................................................................... 25  
Power and Ground Recommendations................................... 25  
CML ............................................................................................. 25  
RBIAS........................................................................................... 25  
Reference Decoupling................................................................ 25  
Evaluation Board ............................................................................ 26  
Power Supplies............................................................................ 26  
Input Signals................................................................................ 26  
Output Signals ............................................................................ 26  
Default Operation and Jumper Selection Settings................. 27  
Alternative Clock Configurations............................................ 27  
Alternative Analog Input Drive Configuration...................... 27  
Schematics................................................................................... 29  
Evaluation Board Layout........................................................... 34  
Bill of Materials........................................................................... 37  
Outline Dimensions....................................................................... 40  
Ordering Guide .......................................................................... 40  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Diagram ........................................................................... 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Equivalent Circuits........................................................................... 9  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 14  
Analog Input Considerations.................................................... 14  
Differential Input Configurations............................................ 15  
Voltage Reference ....................................................................... 16  
Clock Input Considerations...................................................... 17  
Jitter Considerations .................................................................. 19  
Power Dissipation and Standby Mode..................................... 19  
Digital Outputs ........................................................................... 20  
REVISION HISTORY  
10/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
AD9254  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS enabled,  
unless otherwise noted.  
Table 1.  
AD9254BCPZ-150  
Parameter  
Temperature  
Unit  
Min  
Typ  
Max  
RESOLUTION  
Full  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
2ꢂ°C  
Full  
2ꢂ°C  
Full  
Guaranteed  
±0.3  
±0.ꢁ  
±0.ꢀ  
±4.ꢂ  
% FSR  
% FSR  
LSB  
LSB  
LSB  
Differential Nonlinearity (DNL)1  
±0.4  
±1.0  
±ꢂ.0  
Integral Nonlinearity (INL)1  
±1.ꢂ  
LSB  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±1ꢂ  
±±ꢂ  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage Error (1 V Mode)  
Load Regulation @ 1.0 mA  
INPUT REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
±ꢂ  
7
±3ꢂ  
mV  
mV  
2ꢂ°C  
1.3  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance2  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Full  
Full  
Full  
2
V p-p  
pF  
kΩ  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
1.7  
1.7  
1.ꢀ  
2.ꢂ  
1.±  
3.ꢁ  
V
V
Supply Current  
IAVDD1  
Full  
Full  
Full  
240  
11  
23  
2ꢁ0  
mA  
mA  
mA  
IDRVDD1(DRVDD = 1.ꢀ V)  
IDRVDD1 (DRVDD = 3.3 V)  
POWER CONSUMPTION  
DC Input  
Full  
Full  
Full  
Full  
Full  
430  
4ꢂ0  
ꢂ0ꢁ  
40  
470  
mW  
mW  
mW  
mW  
mW  
Sine Wave Input1 (DRVDD = 1.ꢀ V)  
Sine Wave Input1 (DRVDD = 3.3 V)  
Standby Power3  
Power-Down Power  
1.ꢀ  
1 Measured with a low input frequency, full-scale sine wave, with approximately ꢂ pF loading on each output bit.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND. Refer to Figure 4 for the equivalent analog input structure.  
3 Standby power is measured with a dc input, the CLK pin inactive (set to AVDD or AGND).  
Rev. 0 | Page 3 of 40  
 
AD9254  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS enabled,  
unless otherwise noted.  
Table 2.  
AD9254BCPZ-150  
Parameter1  
Temperature  
Unit  
Min  
Typ  
Max  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
2ꢂ°C  
2ꢂ°C  
Full  
2ꢂ°C  
2ꢂ°C  
72.0  
71.ꢀ  
dBc  
dBc  
dBc  
dBc  
dBc  
70.0  
fIN = 100 MHz  
fIN = 170 MHz  
71.ꢁ  
70.ꢀ  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
fIN = 70 MHz  
2ꢂ°C  
2ꢂ°C  
Full  
2ꢂ°C  
2ꢂ°C  
71.7  
71.0  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢁ±.0  
fIN = 100 MHz  
fIN = 170 MHz  
70.ꢁ  
ꢁ±.ꢀ  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
2ꢂ°C  
2ꢂ°C  
2ꢂ°C  
2ꢂ°C  
11.7  
11.7  
11.ꢁ  
11.ꢂ  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.4 MHz  
fIN = 70 MHz  
2ꢂ°C  
2ꢂ°C  
Full  
2ꢂ°C  
2ꢂ°C  
dBc  
dBc  
dBc  
dBc  
dBc  
−±0  
−ꢀ4  
−74  
fIN = 100 MHz  
fIN = 170 MHz  
−ꢀ3  
−ꢀ0  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
2ꢂ°C  
2ꢂ°C  
Full  
2ꢂ°C  
2ꢂ°C  
dBc  
dBc  
dBc  
dBc  
dBc  
±0  
ꢀ4  
74  
fIN = 100 MHz  
fIN = 170 MHz  
ꢀ3  
ꢀ0  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 2.4 MHz  
fIN = 70 MHz  
2ꢂ°C  
2ꢂ°C  
Full  
2ꢂ°C  
2ꢂ°C  
dBc  
dBc  
dBc  
dBc  
dBc  
−±3  
−±3  
−ꢀꢂ  
fIN = 100 MHz  
fIN = 170 MHz  
−±0  
−±0  
TWO-TONE SFDR  
2ꢂ°C  
2ꢂ°C  
2ꢂ°C  
dBFS  
dBFS  
MHz  
fIN = 2± MHz (−7 dBFS ), 32 MHz (−7 dBFS )  
fIN = 1ꢁ± MHz (−7 dBFS ), 172 MHz (−7 dBFS )  
ANALOG INPUT BANDWIDTH  
±0  
±0  
ꢁꢂ0  
1 See Application Note AN-ꢀ3ꢂ, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. 0 | Page 4 of 40  
 
AD9254  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 2.5 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, DCS enabled,  
unless otherwise noted.  
Table 3.  
AD9254BCPZ-150  
Parameter  
Temperature  
Unit  
Min  
Typ  
Max  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
CMOS/LVDS/LVPECL  
1.2  
Full  
Full  
Full  
Full  
V
0.2  
AVDD − 0.3  
1.1  
V p-p  
V
V
AVDD + 1.ꢁ  
AVDD  
Input Common-Mode Range  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
3.ꢁ  
0.ꢀ  
V
V
μA  
μA  
kΩ  
pF  
−10  
−10  
+10  
+10  
12  
10  
4
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, OEB, PWDN)  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−ꢂ0  
−10  
3.ꢁ  
0.ꢀ  
−7ꢂ  
+10  
V
V
μA  
μA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (CSB)  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
3.ꢁ  
0.ꢀ  
+10  
+13ꢂ  
V
V
μA  
μA  
kΩ  
pF  
2ꢁ  
2
Input Capacitance  
LOGIC INPUTS (SDIO/DCS)  
High Level Input Voltage (VIH)  
Low Level Input Voltage (VIL)  
High Level Input Current (IIH)  
Low Level Input Current (IIL)  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
DRVDD + 0.3  
0.ꢀ  
+10  
V
V
μA  
μA  
kΩ  
pF  
+130  
2ꢁ  
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage (VOH, IOH = ꢂ0 μA)  
High Level Output Voltage (VOH, IOH = 0.ꢂ mA)  
Low Level Output Voltage (VOL, IOL = 1.ꢁ mA)  
Low Level Output Voltage (VOL, IOL = ꢂ0 μA)  
DRVDD = 1.ꢀ V  
Full  
Full  
Full  
Full  
3.2±  
3.2ꢂ  
V
V
V
V
0.2  
0.0ꢂ  
High Level Output Voltage (VOH, IOH = ꢂ0 μA)  
High Level Output Voltage (VOH, IOH = 0.ꢂ mA)  
Low Level Output Voltage (VOL, IOL = 1.ꢁ mA)  
Low Level Output Voltage (VOL, IOL = ꢂ0 μA)  
Full  
Full  
Full  
Full  
1.7±  
1.7ꢂ  
V
V
V
V
0.2  
0.0ꢂ  
Rev. 0 | Page ꢂ of 40  
 
AD9254  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 2.5 V, unless otherwise noted.  
Table 4.  
AD9254BCPZ-150  
Parameter1  
Temperature  
Unit  
Min  
Typ  
Max  
CLOCK INPUT PARAMETERS  
Conversion Rate, DCS Enabled  
Conversion Rate, DCS Disabled  
CLK Period  
CLK Pulse Width High, DCS Enabled  
CLK Pulse Width High, DCS Disabled  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)2  
Full  
Full  
Full  
Full  
Full  
20  
10  
ꢁ.7  
2.0  
3.0  
1ꢂ0  
1ꢂ0  
MSPS  
MSPS  
ns  
ns  
ns  
3.3  
3.3  
4.7  
3.7  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3.1  
3.±  
4.4  
2.±  
3.ꢀ  
12  
0.ꢀ  
0.1  
3ꢂ0  
3
4.ꢀ  
ns  
ns  
ns  
ns  
Cycles  
ns  
ps rms  
μs  
DCO Propagation Delay (tDCO  
)
Setup Time (tS)  
Hold Time (tH)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Wake-Up Time3  
1.±  
3.0  
OUT-OF-RANGE RECOVERY TIME  
SERIAL PORT INTERFACE4  
Cycles  
SCLK Period (tCLK  
)
Full  
Full  
Full  
Full  
Full  
Full  
Full  
40  
1ꢁ  
1ꢁ  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Pulse Width High Time (tHI)  
SCLK Pulse Width Low Time (tLO)  
SDIO to SCLK Setup Time (tDS)  
SDIO to SCLK Hold Time (tDH)  
CSB to SCLK Setup Time (tS)  
CSB to SCLK Hold Time (tH)  
2
1 See Application Note AN-ꢀ3ꢂ, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Output propagation delay is measured from CLK ꢂ0% transition to DATA ꢂ0% transition, with ꢂ pF load.  
3 Wake-up time is dependent on the value of the decoupling capacitors, values shown with 0.1 μF capacitor across REFT and REFB.  
4 See Figure ꢂ0 and the Serial Port Interface (SPI) section.  
TIMING DIAGRAM  
N + 2  
N + 1  
N + 3  
N
N + 4  
N + 8  
tA  
N + 5  
N + 7  
N + 6  
tCLK  
CLK+  
CLK–  
tPD  
N – 12  
DATA  
DCO  
N – 13  
tS  
N – 11  
tH  
N – 10  
N – 9  
tDCO  
N – 8  
N – 7  
tCLK  
N – 6  
N – 5  
N – 4  
Figure 2. Timing Diagram  
Rev. 0 | Page ꢁ of 40  
 
 
 
AD9254  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
ELECTRICAL  
AVDD to AGND  
DRVDD to DGND  
AGND to DGND  
AVDD to DRVDD  
D0 through D13 to DGND  
DCO to DGND  
OR to DGND  
CLK+ to AGND  
CLK− to AGND  
VIN+ to AGND  
VIN− to AGND  
VREF to AGND  
SENSE to AGND  
REFT to AGND  
REFB to AGND  
SDIO/DCS to DGND  
PDWN to AGND  
CSB to AGND  
SCLK/DFS to AGND  
OEB to AGND  
−0.3 V to +2.0 V  
−0.3 V to +3.± V  
−0.3 V to +0.3 V  
−3.± V to +2.0 V  
−0.3V to DRVDD + 0.3V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to +3.± V  
THERMAL RESISTANCE  
The exposed paddle must be soldered to the ground plane for  
the LFCSP_VQ package. Soldering the exposed paddle to the  
customer board increases the reliability of the solder joints,  
maximizing the thermal capability of the package.  
−0.3 V to +3.± V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to +3.± V  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
4ꢀ-lead LFCSP_VQ (CP-4ꢀ-3) 2ꢁ.4  
2.4  
°C/W  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces and through holes, ground, and power planes,  
reduces the θJA.  
−0.3 V to +3.± V  
−0.3 V to +3.± V  
−0.3 V to +3.± V  
ENVIRONMENTAL  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature  
(Soldering 10 Sec)  
–ꢁꢂ°C to +12ꢂ°C  
–40°C to +ꢀꢂ°C  
300°C  
ESD CAUTION  
Junction Temperature  
1ꢂ0°C  
Rev. 0 | Page 7 of 40  
 
 
AD9254  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
36 PDWN  
35 RBIAS  
34 CML  
D2  
D3  
1
2
3
4
5
6
7
8
9
PIN 1  
INDICATOR  
D4  
33 AVDD  
32 AGND  
31 VIN–  
D5  
D6  
AD9254  
D7  
DRGND  
DRVDD  
D8  
30 VIN+  
TOP VIEW  
(Not to Scale)  
29 AGND  
28 REFT  
27  
REFB  
D9 10  
D10 11  
D11 12  
26 VREF  
25 SENSE  
Figure 3. Pin Configuration  
Table 7. Pin Function Description  
Pin No.  
Mnemonic  
Description  
0, 21, 23, 2±, 32,  
37, 41  
AGND  
Analog Ground. (Pin 0 is the exposed thermal pad on the bottom of the package.)  
4ꢂ, 4ꢁ, 1 to ꢁ,  
± to 14  
D0 (LSB) to D13 (MSB) Data Output Bits.  
7, 1ꢁ, 47  
ꢀ, 17, 4ꢀ  
1ꢂ  
DRGND  
DRVDD  
OR  
Digital Output Ground.  
Digital Output Driver Supply (1.ꢀ V to 3.3 V).  
Out-of-Range Indicator.  
1ꢀ  
SDIO/DCS  
Serial Port Interface (SPI) Data Input/Output (Serial Port Mode); Duty Cycle Stabilizer Select  
(External Pin Mode). See Table 10.  
1±  
20  
SCLK/DFS  
CSB  
AVDD  
SENSE  
VREF  
REFB  
REFT  
VIN+  
VIN–  
Serial Port Interface Clock (Serial Port Mode); Data Format Select Pin (External Pin Mode).  
Serial Port Interface Chip Select (Active Low). See Table 10.  
Analog Power Supply.  
22, 24, 33, 40, 42  
2ꢂ  
2ꢁ  
27  
2ꢀ  
30  
31  
34  
3ꢂ  
Reference Mode Selection. See Table ±.  
Voltage Reference Input/Output.  
Differential Reference (−).  
Differential Reference (+).  
Analog Input Pin (+).  
Analog Input Pin (−).  
Common-Mode Level Bias Output.  
External Bias Resistor Connection. A 10 kΩ resistor must be connected between this pin and  
analog ground (AGND).  
CML  
RBIAS  
3ꢁ  
3ꢀ  
3±  
43  
44  
PDWN  
CLK+  
CLK–  
OEB  
Power-Down Function Select.  
Clock Input (+).  
Clock Input (−).  
Output Enable (Active Low).  
Data Clock Output.  
DCO  
Rev. 0 | Page ꢀ of 40  
 
AD9254  
EQUIVALENT CIRCUITS  
1k  
30kΩ  
SCLK/DFS  
OEB  
VIN  
PDWN  
Figure 4. Equivalent Analog Input Circuit  
Figure 8. Equivalent SCLK/DFS, OEB, PDWN Input Circuit  
AVDD  
AVDD  
26k  
1kΩ  
1.2V  
CSB  
10k  
10kΩ  
CLK+  
CLK–  
Figure 9. Equivalent CSB Input Circuit  
Figure 5. Equivalent Clock Input Circuit  
1k  
DRVDD  
SENSE  
1k  
SDIO/DCS  
Figure 10. Equivalent Sense Circuit  
Figure 6. Equivalent SDIO/DCS Input Circuit  
DRVDD  
AVDD  
VREF  
6k  
DRGND  
Figure 11. Equivalent VREF Circuit  
Figure 7. Equivalent Digital Output Circuit  
Rev. 0 | Page ± of 40  
 
 
 
AD9254  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V; DRVDD = 2.5 V; maximum sample rate, DCS enabled, 1 V internal reference; 2 V p-p differential input; AIN = −1.0 dBFS;  
64k sample; TA = 25°C, unless otherwise noted.  
0
0
150MSPS  
150MSPS  
2.3MHz @ –1dBFS  
SNR = 72.0dBc (73.0dBFS)  
ENOB = 11.7 BITS  
SFDR = 90.0dBc  
100.3MHz @ –1dBFS  
SNR = 71.6dBc (72.6dBFS)  
ENOB = 11.6 BITS  
SFDR = 83dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
18.75  
37.50  
56.25  
75.00  
0
18.75  
37.50  
FREQUENCY (MHz)  
56.25  
75.00  
FREQUENCY (MHz)  
Figure 12. AD9254 Single-Tone FFT with fIN = 2.3 MHz  
Figure 15. AD9254 Single-Tone FFT with fIN = 100.3 MHz  
0
–20  
0
–20  
150MSPS  
150MSPS  
140.3MHz @ –1dBFS  
SNR = 71.5dBc (72.5dBFS)  
ENOB = 11.5 BITS  
SFDR = 81dBc  
30.3MHz @ –1dBFS  
SNR = 71.9dBc (72.9dBFS)  
ENOB = 11.7 BITS  
SFDR = 88dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
18.75  
37.50  
56.25  
75.00  
0
18.75  
37.50  
56.25  
75.00  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. AD9254 Single-Tone FFT with fIN = 30.3 MHz  
Figure 16. AD9254 Single-Tone FFT with fIN = 140.3 MHz  
0
–20  
0
–20  
150MSPS  
150MSPS  
70.3MHz @ –1dBFS  
SNR = 71.8dBc (72.8dBFS)  
ENOB = 11.7 BITS  
SFDR = 84dBc  
170.3MHz @ –1dBFS  
SNR = 70.8dBc (71.8dBFS)  
ENOB = 11.5 BITS  
SFDR = 80dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
18.75  
37.50  
56.25  
75.00  
0
18.75  
37.50  
56.25  
75.00  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 14. AD9254 Single-Tone FFT with fIN = 70.3 MHz  
Figure 17. AD9254 Single-Tone FFT with fIN = 170.3 MHz  
Rev. 0 | Page 10 of 40  
 
 
AD9254  
0
–20  
120  
100  
80  
60  
40  
20  
0
150MSPS  
250.3MHz @ –1dBFS  
SNR = 69.3dBc (70.3dBFS)  
ENOB = 11.3 BITS  
SFDR = 79dBc  
SFDR (dBFS)  
SNR (dBFS)  
–40  
–60  
–80  
SFDR (dBc)  
85dBc  
REFERENCE LINE  
–100  
–120  
SNR (dBc)  
–50  
0
18.75  
37.50  
FREQUENCY (MHz)  
56.25  
75.00  
–90  
–80  
–70  
–60  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
Figure 18. AD9254 Single-Tone FFT with fIN = 250.3 MHz  
Figure 21. AD9254 Single-Tone SNR/SFDR vs. Input Amplitude (AIN)  
with fIN = 2.4 MHz  
0
–20  
0
150MSPS  
fIN1 = 29.1MHz @ –7dBFS  
fIN2 = 32.1MHz @ –7dBFS  
SFDR = 83.2dBc (90.2dBFS)  
–20  
SFDR (–dBc)  
WoIMD3 = –83.9dBc (–90.9dBFS)  
–40  
–40  
WORST IMD3 (dBc)  
–60  
–60  
–80  
–80  
SFDR (–dBFS)  
–100  
–100  
–120  
WORST IMD3 (dBFS)  
–120  
0
18.75  
37.50  
56.25  
75.00  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 19. AD9254 Two-Tone FFT with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz  
Figure 22. AD9254 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz  
90  
90  
SFDR +25°C  
SFDR –40°C  
SFDR –40°C  
85  
85  
SFDR +25°C  
80  
80  
SFDR +85°C  
75  
75  
SNR –40°C  
SFDR +85°C  
70  
70  
SNR +25°C  
SNR –40°C  
65  
65  
SNR +25°C  
SNR +85°C  
SNR +85°C  
350 400  
60  
60  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 20. AD9254 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 2 V p-p Full Scale  
Figure 23. AD9254 Single-Tone SNR/SFDR vs. Input Frequency (fIN) and  
Temperature with 1 V p-p Full Scale  
Rev. 0 | Page 11 of 40  
AD9254  
2.0  
1.5  
0
150MSPS  
fIN1 = 169.1MHz @ –7dBFS  
fIN2 = 172.1MHz @ –7dBFS  
SFDR = 83dBc (90dBFS)  
WoIMD3 = –83dBc (90dBFS)  
–20  
1.0  
–40  
0.5  
0
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–100  
–120  
0
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
18.75  
37.50  
FREQUENCY (MHz)  
56.25  
75.00  
OUTPUT CODE  
Figure 24. AD9254 Two-Tone FFT with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz  
Figure 27. AD9254 INL with fIN = 10.3 MHz  
95  
12000  
10000  
8000  
6000  
4000  
2000  
0
32768 SAMPLES  
1.25 LSB rms  
90  
SFDR  
85  
80  
75  
SNR  
70  
65  
N – 5 N – 4 N – 3 N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4 N + 5  
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
CLOCK FREQUENCY (MSPS)  
CODE  
Figure 28. AD9254 Grounded Input Histogram  
Figure 25. AD9254 Single-Tone SNR/SFDR vs. Clock Frequency (fCLK  
with fIN = 2.4 MHz  
)
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
OFFSET ERROR  
–20  
SFDR (–dBc)  
–40  
WORST IMD3 (dBc)  
–60  
–80  
GAIN ERROR  
SFDR (–dBFS)  
–100  
WORST IMD3 (dBFS)  
–120  
–90  
–40  
–20  
0
20  
40  
60  
80  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 26. AD9254 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN)  
with fIN1 = 169.1 MHz, fIN2 = 172.11 MHz  
Figure 29. AD9254 Gain and Offset vs. Temperature  
Rev. 0 | Page 12 of 40  
 
AD9254  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
OTUPUT CODE  
Figure 30. AD9254 DNL with fIN = 10.3 MHz  
Rev. 0 | Page 13 of 40  
 
AD9254  
THEORY OF OPERATION  
S
The AD9254 architecture consists of a front-end sample-and-  
hold amplifier (SHA) followed by a pipelined switched capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 14-bit result in the digital correction logic. The pipeline  
architecture permits the first stage to operate on a new input  
sample, while the remaining stages operate on preceding samples.  
Sampling occurs on the rising edge of the clock.  
C
H
S
S
C
C
S
VIN+  
C
PIN, PAR  
H
S
VIN–  
C
C
H
PIN, PAR  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched capacitor DAC  
and interstage residue amplifier (MDAC). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage consists only of a flash ADC.  
S
Figure 31. Switched-Capacitor SHA Input  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should match such that common-mode settling  
errors are symmetrical. These errors are reduced by the  
common-mode rejection of the ADC.  
The input stage contains a differential SHA that can be ac- or  
dc-coupled in differential or single-ended modes. The output  
staging block aligns the data, carries out the error correction,  
and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing adjustment of the  
output voltage swing. During power-down, the output buffers  
go into a high impedance state.  
An internal differential reference buffer creates two reference  
voltages used to define the input span of the ADC core. The  
span of the ADC core is set by the buffer to be 2 × VREF. The  
reference voltages are not available to the user. Two bypass points,  
REFT and REFB, are brought out for decoupling to reduce the  
noise contributed by the internal reference buffer. It is recom-  
mended that REFT be decoupled to REFB by a 0.1 μF capacitor,  
as described in the Layout Considerations section.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9254 is a differential switched  
capacitor SHA that has been designed for optimum  
performance while processing a differential input signal.  
Input Common Mode  
The analog inputs of the AD9254 are not internally dc-biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device such that VCM = 0.55 × AVDD is  
recommended for optimum performance; however, the device  
functions over a wider range with reasonable performance (see  
Figure 30). An on-board common-mode voltage reference is  
included in the design and is available from the CML pin.  
Optimum performance is achieved when the common-mode  
voltage of the analog input is set by the CML pin voltage  
(typically 0.55 × AVDD). The CML pin must be decoupled to  
ground by a 0.1 μF capacitor, as described in the Layout  
Considerations section.  
The clock signal alternately switches the SHA between sample  
mode and hold mode (see Figure 31). When the SHA is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within one-half of a clock  
cycle. A small resistor in series with each input can help reduce  
the peak transient current required from the output stage of the  
driving source.  
A shunt capacitor can be placed across the inputs to provide  
dynamic charging currents. This passive network creates a low-  
pass filter at the ADC input; therefore, the precise values are  
dependent upon the application.  
In IF undersampling applications, any shunt capacitors should  
be reduced. In combination with the driving source impedance,  
these capacitors would limit the input bandwidth. For more  
information, see Application Note AN-742, Frequency Domain  
Response of Switched-Capacitor ADCs; Application Note AN-827,  
A Resonant Approach to Interfacing Amplifiers to Switched-  
Capacitor ADCs; and the Analog Dialogue article, Transformer-  
Coupled Front-End for Wideband A/D Converters.”  
Rev. 0 | Page 14 of 40  
 
 
 
AD9254  
As an alternative to using a transformer-coupled input at  
DIFFERENTIAL INPUT CONFIGURATIONS  
frequencies in the second Nyquist zone, the AD8352 differential  
driver can be used (see Figure 36).  
Optimum performance is achieved by driving the AD9254 in a  
differential input configuration. For baseband applications, the  
AD8138 differential driver provides excellent performance and a  
flexible interface to the ADC. The output common-mode voltage  
of the AD8138 is easily set with the CML pin of the AD9254 (see  
Figure 32), and the driver can be configured in a Sallen-Key filter  
topology to provide band limiting of the input signal.  
In any configuration, the value of the shunt capacitor, C,  
is dependent on the input frequency and source impedance and  
may need to be reduced or removed. Table 8 displays recom-  
mended values to set the RC network. However, these values are  
dependent on the input signal and should only be used as a  
starting guide.  
1V p-p  
49.9  
499Ω  
Table 8. RC Network Recommended Values  
R
R
VIN+  
VIN–  
Frequency Range (MHz)  
R Series (Ω) C Differential (pF)  
AVDD  
499Ω  
523Ω  
0 to 70  
70 to 200  
200 to 300  
>300  
33  
33  
1ꢂ  
1ꢂ  
1ꢂ  
C
AD9254  
AD8138  
0.1µF  
CML  
Open  
499Ω  
Single-Ended Input Configuration  
Figure 32. Differential Input Configuration Using the AD8138  
Although not recommended, it is possible to operate the  
AD9254 in a single-ended input configuration, as long as the  
input voltage swing is within the AVDD supply. Single-ended  
operation can provide adequate performance in cost-sensitive  
applications.  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration (see Figure 33). The CML voltage can be  
connected to the center tap of the secondary winding of the  
transformer to bias the analog input.  
In this configuration, SFDR and distortion performance  
degrade due to the large input common-mode swing. If the  
source impedances on each input are matched, there should be  
little effect on SNR performance. Figure 34 details a typical  
single-ended input configuration.  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz, and excessive signal power can cause  
core saturation, which leads to distortion.  
R
VIN+  
AVDD  
10µF  
1kΩ  
49.9Ω  
C
AD9254  
R
2V p-p  
VIN+  
R
0.1µF  
49.9Ω  
CML  
1kΩ  
AVDD  
VIN–  
1V p-p  
AD9254  
C
1kΩ  
R
VIN–  
0.1µF  
10µF  
1kΩ  
0.1µF  
Figure 33. Differential Transformer-Coupled Configuration  
Figure 34. Single-Ended Input Configuration  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9254. For applications  
where SNR is a key parameter, transformer coupling is the  
recommended input. For applications where SFDR is a key  
parameter, differential double balun coupling is the recom-  
mended input configuration (see Figure 35).  
Rev. 0 | Page 1ꢂ of 40  
 
 
 
 
 
AD9254  
0.1µF  
0.1µF  
0.1µF  
R
R
VIN+  
2V p-p  
25  
25Ω  
P
A
S
S
P
C
AD9254  
0.1µF  
CML  
VIN–  
Figure 35. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
11  
0.1µF  
0  
16  
1
8, 13  
0.1µF  
0.1µF  
R
R
2
VIN+  
200Ω  
200Ω  
AD8352  
10  
R
R
C
AD9254  
D
G
C
D
3
4
5
CML  
VIN–  
14  
0.1µF  
0Ω  
0.1µF  
0.1µF  
Figure 36. Differential Input Configuration Using the AD8352  
Table 9. Reference Configuration Summary  
Resulting Differential  
Span (V p-p)  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
External Reference  
Internal Fixed Reference  
Programmable Reference  
AVDD  
VREF  
0.2 V to VREF  
N/A  
0.ꢂ  
2 × external reference  
1.0  
2 × VREF  
R2  
R1  
0.5× 1+  
(see Figure 3ꢀ)  
Internal Fixed Reference  
AGND to 0.2 V  
1.0  
2.0  
VOLTAGE REFERENCE  
Connecting the SENSE pin to VREF switches the reference  
amplifier input to the SENSE pin, completing the loop and  
providing a 0.5 V reference output. If a resistor divider is  
connected external to the chip, as shown in Figure 38, the  
switch sets to the SENSE pin. This puts the reference amplifier  
in a noninverting mode with the VREF output defined as  
A stable and accurate voltage reference is built into the AD9254.  
The input range is adjustable by varying the reference voltage  
applied to the AD9254, using either the internal reference or an  
externally applied reference voltage. The input span of the ADC  
tracks reference voltage changes linearly. The various reference  
modes are summarized in the following sections. The Reference  
Decoupling section describes the best practices and require-  
ments for PCB layout of the reference.  
R2  
R1  
VREF = 0.5 1 +  
If the SENSE pin is connected to AVDD, the reference amplifier  
is disabled, and an external reference voltage can be applied to  
the VREF pin (see the External Reference Operation section).  
Internal Reference Connection  
A comparator within the AD9254 detects the potential at the  
SENSE pin and configures the reference into four possible  
states, as summarized in Table 9. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 37), setting VREF to 1 V.  
The input range of the ADC always equals twice the voltage at  
the reference pin for either an internal or an external reference.  
Rev. 0 | Page 1ꢁ of 40  
 
 
 
 
 
AD9254  
External Reference Operation  
VIN+  
VIN–  
ADC  
CORE  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift  
characteristics. Figure 40 shows the typical drift characteristics  
of the internal reference in both 1 V and 0.5 V modes.  
10  
REFT  
0.1µF  
REFB  
VREF  
0.1µF  
0.1µF  
SELECT  
LOGIC  
VREF = 1V  
8
SENSE  
6
4
2
0
VREF = 0.5V  
0.5V  
AD9254  
Figure 37. Internal Reference Configuration  
VIN+  
ADC  
CORE  
VIN–  
–20  
0
20  
40  
60  
–40  
80  
REFT  
TEMPERATURE (°C)  
Figure 40. Typical VREF Drift  
0.1µF  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
resistor divider loads the external reference with an equivalent  
6 kΩ load (see Figure 11). In addition, an internal buffer  
generates the positive and negative full-scale references for the  
ADC core. Therefore, the external reference must be limited to  
a maximum of 1 V.  
REFB  
VREF  
0.1µF  
0.1µF  
R2  
SELECT  
LOGIC  
SENSE  
0.5V  
R1  
AD9254  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, the AD9254 sample clock inputs  
(CLK+ and CLK−) should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ pin and the  
CLK− pin via a transformer or capacitors. These pins are biased  
internally (see Figure 5) and require no external bias.  
Figure 38. Programmable Reference Configuration  
If the internal reference of the AD9254 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 39 depicts  
how the internal reference voltage is affected by loading.  
0
Clock Input Options  
The AD9254 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal used, the jitter of the clock  
source is of the most concern, as described in the Jitter  
Considerations section.  
VREF = 0.5V  
–0.25  
VREF = 1V  
–0.50  
Figure 41 shows one preferred method for clocking the  
AD9254. A low jitter clock source is converted from single-  
ended to a differential signal using an RF transformer. The  
back-to-back Schottky diodes across the transformer secondary  
limit clock excursions into the AD9254 to approximately 0.8 V p-p  
differential. This helps prevent the large voltage swings of the  
clock from feeding through to other portions of the AD9254,  
while preserving the fast rise and fall times of the signal, which  
are critical to a low jitter performance.  
–0.75  
–1.00  
–1.25  
0
0.5  
1.0  
1.5  
2.0  
LOAD CURRENT (mA)  
Figure 39. VREF Accuracy vs. Load  
Rev. 0 | Page 17 of 40  
 
 
 
 
 
 
AD9254  
VCC  
MINI-CIRCUITS  
ADT1–1WT, 1:1Z  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
0.1µF  
0.1µF  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
XFMR  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
AD9254  
100Ω  
ADC  
AD9254  
50Ω  
0.1µF  
CLK–  
CLK–  
SCHOTTKY  
DIODES:  
HMS2812  
0.1µF  
0.1µF  
39kΩ  
1
50RESISTOR IS OPTIONAL.  
Figure 41. Transformer Coupled Differential Clock  
Figure 44. Single-Ended 1.8 V CMOS Sample Clock  
If a low jitter clock source is not available, another option is to  
ac-couple a differential PECL signal to the sample clock input  
pins as shown in Figure 42. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515 family of clock drivers offers  
excellent jitter performance.  
VCC  
OPTIONAL  
0.1µF  
0.1µF  
1
1kΩ  
1kΩ  
100Ω  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
AD9254  
0.1µF  
CLK–  
1
50RESISTOR IS OPTIONAL.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK  
CLK+  
Figure 45. Single-Ended 3.3 V CMOS Sample Clock  
ADC  
AD9254  
100Ω  
AD951x  
PECL DRIVER  
Clock Duty Cycle  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals. As a result, these ADCs may  
be sensitive to clock duty cycle. Commonly, a 5ꢀ tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
1
1
240Ω  
240Ω  
50Ω  
50Ω  
1
50RESISTORS ARE OPTIONAL.  
Figure 42. Differential PECL Sample Clock  
A third option is to ac-couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 43. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515 family of clock  
drivers offers excellent jitter performance.  
The AD9254 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling, or falling edge, providing an internal clock  
signal with a nominal 50ꢀ duty cycle. This allows a wide range  
of clock input duty cycles without affecting the performance of  
the AD9254. Noise and distortion performance are nearly flat  
for a wide range of duty cycles when the DCS is on, as shown in  
Figure 28.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK  
AD951x  
ADC  
AD9254  
100Ω  
LVDS DRIVER  
0.1µF  
Jitter in the rising edge of the input is still of paramount concern  
and is not reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz nominally. The loop has a time constant associated  
with it that needs to be considered in applications where the  
clock rate can change dynamically. This requires a wait time  
of 1.5 μs to 5 μs after a dynamic clock frequency increase (or  
decrease) before the DCS loop is relocked to the input signal.  
During the time period the loop is not locked, the DCS loop is  
bypassed, and the internal device timing is dependent on the  
duty cycle of the input clock signal. In such an application, it  
may be appropriate to disable the duty cycle stabilizer. In all  
other applications, enabling the DCS circuit is recommended  
to maximize ac performance.  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK  
1
1
50Ω  
50Ω  
1
50RESISTORS ARE OPTIONAL.  
Figure 43. Differential LVDS Sample Clock  
In some applications, it is acceptable to drive the sample clock  
inputs with a single-ended CMOS signal. In such applications,  
directly drive CLK+ from a CMOS gate, while bypassing the  
CLK− pin to ground using a 0.1 μF capacitor in parallel with a  
39 kΩ resistor (see Figure 44). CLK+ can be directly driven  
from a CMOS gate. This input is designed to withstand input  
voltages up to 3.6 V, making the selection of the drive logic  
voltage very flexible. When driving CLK+ with a 1.8 V CMOS  
signal, biasing the CLK− pin with a 0.1 μF capacitor in parallel  
with a 39 kΩ resistor (see Figure 44) is required. The 39 kΩ  
resistor is not required when driving CLK+ with a 3.3 V CMOS  
signal (see Figure 45).  
Rev. 0 | Page 1ꢀ of 40  
 
 
 
 
 
 
AD9254  
POWER DISSIPATION AND STANDBY MODE  
The DCS can be enabled or disabled by setting the SDIO/DCS  
pin when operating in the external pin mode (see Table 10), or  
via the SPI, as described in Table 13.  
The power dissipated by the AD9254 is proportional to its sample  
rate (see Figure 47). The digital power dissipation is determined  
primarily by the strength of the digital drivers and the load on each  
output bit. Maximum DRVDD current (IDRVDD) can be calculated as  
Table 10. Mode Selection (External Pin Mode)  
Voltage at Pin  
SCLK/DFS  
SDIO/DCS  
AGND  
AVDD  
Binary (default)  
Twos complement  
DCS disabled  
DCS enabled  
(default)  
fCLK  
2
IDRVDD = VDRVDD ×CLOAD  
×
× N  
where N is the number of output bits, 14 in the AD9254.  
JITTER CONSIDERATIONS  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the  
Nyquist frequency, fCLK/2. In practice, the DRVDD current is  
established by the average number of output bits switching,  
which is determined by the sample rate and the characteristics  
of the analog input signal. Reducing the capacitive load  
presented to the output drivers can minimize digital power  
consumption. The data in Figure 47 was taken under the same  
operating conditions as the data for the Typical Performance  
Characteristics section, with a 5 pF load on each output driver.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR at a given input  
frequency (fIN) due to jitter (tJ) is calculated as follows:  
SNR = −20 log (2π × fIN × tJ)  
In the equation, the rms aperture jitter represents the root mean  
square of all jitter sources, which include the clock input, analog  
input signal, and ADC aperture jitter specification. IF under-  
sampling applications are particularly sensitive to jitter, as  
shown in Figure 46.  
500  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
300  
250  
200  
150  
100  
50  
75  
0.05ps  
70  
I (AVDD)  
POWER  
MEASURED  
PERFORMANCE  
65  
60  
55  
50  
45  
40  
0.20ps  
0.5ps  
1.0ps  
1.50ps  
2.00ps  
2.50ps  
3.00ps  
I (DRVDD)  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
1
10  
100  
1000  
CLOCK FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 47. AD9254 Power and Current vs. Clock Frequency fIN = 30 MHz  
Figure 46. SNR vs. Input Frequency and Jitter  
Power-Down Mode  
Treat the clock input as an analog signal in cases where aperture  
jitter can affect the dynamic range of the AD9254. Power supplies  
for clock drivers should be separated from the ADC output  
driver supplies to avoid modulating the clock signal with digital  
noise. The power supplies should also not be shared with analog  
input circuits, such as buffers, to avoid the clock modulating onto  
the input signal or vice versa. Low jitter, crystal-controlled oscil-  
lators make the best clock sources. If the clock is generated from  
another type of source (by gating, dividing, or other methods),  
it should be retimed by the original clock at the last step.  
By asserting the PDWN pin high, the AD9254 is placed in power-  
down mode. In this state, the ADC typically dissipates 1.8 mW.  
During power-down, the output drivers are placed in a high  
impedance state. Reasserting the PDWN pin low returns the  
AD9254 to its normal operational mode. This pin is both 1.8 V  
and 3.3 V tolerant.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. The decoupling capacitors on REFT and REFB are  
discharged when entering power-down mode and then must be  
recharged when returning to normal operation. As a result, the  
wake-up time is related to the time spent in power-down mode;  
and shorter power-down cycles result in proportionally shorter  
wake-up times. With the recommended 0.1 μF decoupling capaci-  
tors on REFT and REFB, it takes approximately 0.25 ms to fully  
discharge the reference buffer decoupling capacitors and 0.35 ms to  
restore full operation.  
Refer to Application Notes AN-501, Aperture Uncertainty and  
ADC System Performance; and AN-756, Sampled Systems and  
the Effects of Clock Phase Noise and Jitter, for more in-depth  
information about jitter performance as it relates to ADCs.  
Rev. 0 | Page 19 of 40  
 
 
 
 
 
 
AD9254  
Standby Mode  
By logically AND’ing the OR bit with the MSB and its complement,  
overrange high or underrange low conditions can be detected.  
Table 11 is a truth table for the overrange/underrange circuit in  
Figure 49, which uses NAND gates.  
When using the SPI port interface, the user can place the ADC  
in power-down or standby modes. Standby mode allows the  
user to keep the internal reference circuitry powered when  
faster wake-up times are required (see the Memory Map section).  
MSB  
OVER = 1  
OR  
DIGITAL OUTPUTS  
UNDER = 1  
MSB  
The AD9254 output drivers can be configured to interface with  
1.8 V to 3.3 V logic families by matching DRVDD to the digital  
supply of the interfaced logic. The output drivers are sized to  
provide sufficient output current to drive a wide variety of logic  
families. However, large drive currents tend to cause current  
glitches on the supplies that may affect converter performance.  
Applications requiring the ADC to drive large capacitive loads  
or large fan-outs may require external buffers or latches.  
Figure 49. Overrange/Underrange Logic  
Table 11. Overrange/Underrange Truth Table  
OR  
0
0
1
MSB  
Analog Input Is:  
Within range  
Within range  
Underrange  
Overrange  
0
1
0
1
1
The output data format can be selected for either offset binary  
or twos complement by setting the SCLK/DFS pin when operat-  
ing in the external pin mode (see Table 10). As detailed in the  
Interfacing to High Speed ADCs via SPI user manual, the data  
format can be selected for either offset binary, twos complement,  
or Gray code when using the SPI control.  
Digital Output Enable Function (OEB)  
The AD9254 has three-state ability. If the OEB pin is low, the  
output data drivers are enabled. If the OEB pin is high, the  
output data drivers are placed in a high impedance state. This is  
not intended for rapid access to the data bus. Note that OEB is  
referenced to the digital supplies (DRVDD) and should not  
exceed that supply voltage.  
Out-of-Range (OR) Condition  
An out-of-range condition exists when the analog input voltage  
is beyond the input range of the ADC. OR is a digital output  
that is updated along with the data output corresponding to the  
particular sampled input voltage. Thus, OR has the same  
pipeline latency as the digital data.  
TIMING  
The lowest typical conversion rate of the AD9254 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can degrade.  
The AD9254 provides latched data outputs with a pipeline delay  
of twelve clock cycles. Data outputs are available one propaga-  
tion delay (tPD) after the rising edge of the clock signal.  
+FS – 1 LSB  
OR DATA OUTPUTS  
1
0
0
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
OR  
The length of the output data lines and the loads placed on  
them should be minimized to reduce transients within the  
AD9254. These transients can degrade the dynamic performance  
of the converter.  
–FS + 1/2 LSB  
0
0
1
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
–FS  
–FS – 1/2 LSB  
+FS  
Data Clock Output (DCO)  
+FS – 1/2 LSB  
Figure 48. OR Relation to Input Voltage and Output Data  
The AD9254 also provides data clock output (DCO) intended for  
capturing the data in an external register. The data outputs are valid  
on the rising edge of DCO, unless the DCO clock polarity has been  
changed via the SPI. See Figure 2 for a graphical timing  
description.  
OR is low when the analog input voltage is within the analog  
input range and high when the analog input voltage exceeds the  
input range, as shown in Figure 48. OR remains high until the  
analog input returns to within the input range and another  
conversion is completed.  
Table 12. Output Data Format  
Gray Code Mode  
(SPI Accessible)  
Input (V)  
Condition (V)  
< –VREF – 0.5 LSB  
= –VREF  
Binary Output Mode  
00 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode  
10 0000 0000 0000  
10 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
OR  
1
0
0
0
VIN+ – VIN–  
VIN+ – VIN–  
VIN+ – VIN–  
VIN+ – VIN–  
VIN+ – VIN–  
11 0000 0000 0000  
11 0000 0000 0000  
00 0000 0000 0000  
10 0000 0000 0000  
10 0000 0000 0000  
= 0  
= +VREF – 1.0 LSB  
> +VREF – 0.5 LSB  
1
Rev. 0 | Page 20 of 40  
 
 
 
AD9254  
SERIAL PORT INTERFACE (SPI)  
The AD9254 serial port interface (SPI) allows the user to  
configure the converter for specific functions or operations  
through a structured register space provided inside the ADC.  
This provides the user added flexibility and customization  
depending on the application. Addresses are accessed via the  
serial port and may be written to or read from via the port.  
Memory is organized into bytes that are further divided into  
fields, as documented in the Memory Map section. For detailed  
operational information, see the Interfacing to High Speed ADCs  
via SPI user manual.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip as well as read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data  
input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
Data can be sent in MSB- or in LSB-first mode. MSB first is the  
default on power-up and can be changed via the configuration  
register. For more information, see the Interfacing to High Speed  
ADCs via SPI user manual.  
CONFIGURATION USING THE SPI  
As summarized in Table 13, three pins define the SPI of this  
ADC. The SCLK/DFS pin synchronizes the read and write data  
presented to the ADC. The SDIO/DCS dual-purpose pin allows  
data to be sent to and read from the internal ADC memory map  
registers. The CSB pin is an active low control that enables or  
disables the read and write cycles.  
Table 14. SPI Timing Diagram Specifications  
Name  
Description  
tDS  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
tDH  
tCLK  
tS  
tH  
Table 13. Serial Port Interface Pins  
Pin Name Function  
SCLK/DFS SCLK (serial clock) is the serial shift clock in. SCLK  
synchronizes serial interface reads and writes.  
SDIO/DCS SDIO (serial data input/output) is a dual-purpose  
pin. The typical role for this pin is an input and  
tHI  
Minimum period that SCLK should be in a logic  
high state  
tLO  
Minimum period that SCLK should be in a logic  
low state  
HARDWARE INTERFACE  
output, depending on the instruction being sent  
and the relative position in the timing frame.  
The pins described in Table 13 comprise the physical interface  
between the users programming device and the serial port of  
the AD9254. The SCLK and CSB pins function as inputs when  
using the SPI interface. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during readback.  
CSB  
CSB (chip select bar) is an active-low control that  
gates the read and write cycles.  
The falling edge of the CSB in conjunction with the rising edge  
of the SCLK determines the start of the framing. Figure 50 and  
Table 14 provide examples of the serial timing and its definitions.  
The SPI interface is flexible enough to be controlled by either  
PROM or PIC microcontrollers. This provides the user with the  
ability to use an alternate method to program the ADC. One  
method is described in detail in Application Note AN-812,  
Microcontroller-Based Serial Port Interface Boot Circuit.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely to permanently enable the device (this is  
called streaming). The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in a high impedance mode. This mode  
turns on any SPI pin secondary functions.  
When the SPI interface is not used, some pins serve a dual  
function. When strapped to AVDD or ground during device  
power on, the pins are associated with a specific function.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase and the length is determined  
by the W0 bit and the W1 bit. All data is composed of 8-bit  
words. The first bit of each individual byte of serial data  
indicates whether a read or write command is issued. This  
allows the serial data input/output (SDIO) pin to change  
direction from an input to an output.  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS and SCLK/DFS pins serve as stand-alone  
CMOS-compatible control pins. When the device is powered  
up, it is assumed that the user intends to use the pins as static  
control lines for the output data format and duty cycle stabilizer  
(see Table 10). In this mode, the CSB chip select should be  
connected to AVDD, which disables the serial port interface.  
For more information, see the Interfacing to High Speed ADCs  
via SPI user manual.  
Rev. 0 | Page 21 of 40  
 
 
 
 
 
 
AD9254  
Default Values  
MEMORY MAP  
Coming out of reset, critical registers are loaded with default  
values. The default values for the registers are shown in  
Table 15.  
READING THE MEMORY MAP REGISTER TABLE  
Each row in the memory map register table has eight address  
locations. The memory map is roughly divided into three  
sections: the chip configuration registers map (Address 0x00 to  
Address 0x02), the device index and transfer registers map  
(Address 0xFF), and the ADC functions map (Address 0x08 to  
Address 0x18).  
Logic Levels  
An explanation of two registers follows:  
“Bit is set” is synonymous with “Bit is set to Logic 1” or  
“Writing Logic 1 for the bit.”  
Table 15 displays the register address number in hexadecimal in  
the first column. The last column displays the default value for  
each hexadecimal address. The Bit 7 (MSB) column is the start  
of the default hexadecimal value given. For example,  
“Clear a bit” is synonymous with “Bit is set to Logic 0” or  
“Writing Logic 0 for the bit.”  
SPI-Accessible Features  
Hexadecimal Address 0x14, output_phase, has a hexadecimal  
default value of 0x00. This means Bit 3 = 0, Bit 2 = 0, Bit 1 = 1,  
and Bit 0 = 1 or 0011 in binary. This setting is the default output  
clock or DCO phase adjust option. The default value adjusts the  
DCO phase 90° relative to the nominal DCO edge and 180°  
relative to the data edge. For more information on this function,  
consult the Interfacing to High Speed ADCs via SPI user manual.  
A list of features accessible via the SPI and a brief description of  
what the user can do with these features follows. These features  
are described in detail in the Interfacing to High Speed ADCs via  
SPI user manual.  
Modes: Set either power-down or standby mode.  
Clock: Access the DCS via the SPI.  
Open Locations  
Offset: Digitally adjust the converter offset.  
Test I/O: Set test modes to have known data on output bits.  
Locations marked as open are currently not supported for this  
device. When required, these locations should be written with  
0s. Writing to these locations is required only when part of an  
address location is open (for example, Address 0x14). If the  
entire address location is open (Address 0x13), then the address  
location does not need to be written.  
Output Mode: Setup outputs, vary the strength of the  
output drivers.  
Output Phase: Set the output clock polarity.  
VREF: Set the reference voltage.  
tDS  
tHI  
tCLK  
tH  
tS  
tDH  
tLO  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 50. Serial Port Interface Timing Diagram  
Rev. 0 | Page 22 of 40  
 
 
 
 
AD9254  
MEMORY MAP REGISTER TABLE  
Table 15. Memory Map Register  
Default  
Value  
(Hex)  
Addr.  
Bit 7  
Bit 0  
(LSB)  
Default Notes/  
Comments  
(Hex) Parameter Name (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Chip Configuration Registers  
00  
chip_port_config  
0
LSB first  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
0
0x1ꢀ  
The nibbles  
should be  
0 = Off  
0 = Off  
mirrored. See  
the Interfacing to  
High Speed ADCs  
via SPI user  
(Default)  
0 = Off  
(Default)  
0 = Off  
(Default)  
(Default)  
1 = On  
1 = On  
1 = On  
1 = On  
manual.  
01  
02  
chip_id  
ꢀ-bit Chip ID Bits 7:0  
(AD±2ꢂ4 = 0x00), (default)  
Read  
only  
Default is unique  
chip ID, different  
for each device.  
chip_grade  
Open  
Open  
Open  
Open  
Open  
Child ID  
0 = 1ꢂ0  
MSPS  
Open  
Open  
Open  
Open  
Open  
Read  
only  
Child ID used to  
differentiate  
speed grades.  
Device Index and Transfer Registers  
FF  
device_update  
Open  
Open  
Open  
Open  
SW  
transfer  
0x00  
Synchronously  
transfers data  
from the master  
shift register to  
the slave.  
Global ADC Functions  
0ꢀ modes  
Open  
Open  
PDWN  
Open  
Open  
Internal power-down mode  
000—normal (power-up)  
001—full power-down  
010—standby  
0x00  
Determines  
various generic  
modes of chip  
operation. See  
the Power  
0—Full  
1—  
Standby  
011—normal (power-up)  
Note: External PDWN pin  
overrides this setting.  
Dissipation and  
Standby Mode  
and the SPI-  
Accessible  
Features  
sections.  
0±  
clock  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty  
cycle  
stabilizer  
0—  
disabled  
1—  
0x01  
See the Clock  
Duty Cycle  
section and the  
SPI-Accessible  
Features section.  
enabled  
Rev. 0 | Page 23 of 40  
 
 
AD9254  
Default Default  
Addr.  
(Hex)  
Bit 7  
Parameter Name (MSB)  
Flexible ADC Functions  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
10  
offset  
Digital Offset Adjust<5:0>  
Offset in LSBs  
0x00  
Adjustable for  
offset inherent  
in the  
converter. See  
SPI-  
Accessible  
Features  
section.  
011111  
011110  
011101  
000010  
000001  
000000  
111111  
111110  
111101  
...  
+31  
+30  
+2±  
+2  
+1  
0 (Default)  
1
−2  
−3  
100001  
100000  
−31  
−32  
0D  
test_io  
PN23  
PN±  
Global Output Test Options  
000—off  
0x00  
See the  
0 = normal 0 = normal  
(Default)  
1 = reset  
Interfacing to  
High Speed  
ADCs via SPI  
user manual.  
(Default)  
1 = reset  
001—midscale short  
010—+FS short  
011—−FS short  
100—checker board output  
101—PN 23 sequence  
110—PN ±  
111—one/zero word toggle  
14  
output_mode  
Output Driver  
Configuration  
Open  
Output  
Disable  
1—  
Open Output  
Data  
Data Format Select  
00—offset binary  
(default)  
01—twos  
complement  
10—Gray Code  
0x00  
Configures the  
outputs and  
the format of  
the data.  
Invert  
1 =  
invert  
00 for DRVDD = 2.ꢂ V to  
3.3 V  
disabled  
0—  
10 for DRVDD = 1.ꢀ V  
enabled1  
1ꢁ  
1ꢀ  
output_phase  
VREF  
Output Clock  
Polarity  
1 = inverted  
0 = normal  
(Default)  
Open  
Open  
Open  
Open  
Open Open  
Open Open  
Open  
Open  
0x00  
0xC0  
See the SPI-  
Accessible  
Features  
section.  
Internal Reference  
Resistor Divider  
Open  
Open  
Open  
See the SPI-  
Accessible  
Features  
section.  
00—VREF = 1.2ꢂ V  
01—VREF = 1.ꢂ V  
10—VREF = 1.7ꢂ V  
11—VREF = 2.00 V  
(Default)  
1 External output enable (OEB) pin must be high.  
Rev. 0 | Page 24 of 40  
AD9254  
LAYOUT CONSIDERATIONS  
POWER AND GROUND RECOMMENDATIONS  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
When connecting power to the AD9254, it is recommended  
that two separate supplies be used: one for analog (AVDD, 1.8 V  
nominal) and one for digital (DRVDD, 1.8 V to 3.3 V nominal).  
If only a single 1.8 V supply is available, it is routed to AVDD  
first, then tapped off and isolated with a ferrite bead or filter  
choke with decoupling capacitors proceeding connection to  
DRVDD. The user can employ several different decoupling  
capacitors to cover both high and low frequencies. These should  
be located close to the point of entry at the PC board level and  
close to the parts with minimal trace length.  
Figure 51. Typical PCB Layout  
CML  
The CML pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 33.  
A single PC board ground plane is sufficient when using the  
AD9254. With proper decoupling and smart partitioning of  
analog, digital, and clock sections of the PC board, optimum  
performance is easily achieved.  
RBIAS  
The AD9254 requires the user to place a 10 kΩ resistor between  
the RBIAS pin and ground. This resister sets the master current  
reference of the ADC core and should have at least a 1ꢀ tolerance.  
Exposed Paddle Thermal Heat Slug Recommendations  
REFERENCE DECOUPLING  
It is required that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9254. An  
exposed, continuous copper plane on the PCB should mate to  
the AD9254 exposed paddle, Pin 0. The copper plane should  
have several vias to achieve the lowest possible resistive thermal  
path for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
The VREF pin should be externally decoupled to ground with a  
low ESR 1.0 μF capacitor in parallel with a 0.1 μF ceramic low  
ESR capacitor. In all reference configurations, REFT and REFB  
are bypass points provided for reducing the noise contributed  
by the internal reference buffer. It is recommended that an  
external 0.1 μF ceramic capacitor be placed across REFT/REFB.  
While placement of this 0.1 μF capacitor is not required, the SNR  
performance degrades by approximately 0.1 dB without it. All  
reference decoupling capacitors should be placed as close to the  
ADC as possible with minimal trace lengths.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous plane by overlaying a silkscreen  
on the PCB into several uniform sections. This provides several  
tie points between the two during the reflow process. Using one  
continuous plane with no partitions guarantees only one tie point  
between the ADC and PCB. See Figure 51 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see Application Note AN-772,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package.  
Rev. 0 | Page 2ꢂ of 40  
 
 
 
AD9254  
EVALUATION BOARD  
The AD9254 evaluation board provides all of the support circuitry  
required to operate the ADC in its various modes and configu-  
rations. The converter can be driven differentially through a double  
balun configuration (default) or through the AD8352 differential  
driver. The ADC can also be driven in a single-ended fashion.  
Separate power pins are provided to isolate the DUT from the  
AD8352 drive circuitry. Each input configuration can be selected  
by proper connection of various components (see Figure 53 to  
Figure 63). Figure 52 shows the typical bench characterization  
setup used to evaluate the ac performance of the AD9254.  
When operating the evaluation board in a nondefault condition,  
L501, L503, L504, L508, and L509 can be removed to disconnect  
the switching power supply. This enables the user to individually  
bias each section of the board. Use P501 to connect a different  
supply for each section. At least one 1.8 V supply is needed with  
a 1 A current capability for AVDD_DUT and DRVDD_DUT;  
however, it is recommended that separate supplies be used for  
analog and digital. To operate the evaluation board using the  
AD8352 option, a separate 5.0 V supply (AMP_VDD) with a  
1 A current capability is needed. To operate the evaluation  
board using the alternate SPI options, a separate 3.3 V analog  
supply is needed, in addition to the other supplies. The 3.3 V  
supply (AVDD_3.3V) should have a 1 A current capability as  
well. Solder Jumpers J501, J502, and J505 allow the user to  
combine these supplies (see Figure 57 for more details).  
It is critical that the signal sources used for the analog input and  
clock have very low phase noise (<1 ps rms jitter) to realize the  
optimum performance of the converter. Proper filtering of the  
analog input signal to remove harmonics and lower the integrated  
or broadband noise at the input is also necessary to achieve the  
specified noise performance.  
INPUT SIGNALS  
When connecting the clock and analog source, use clean signal  
generators with low phase noise, such as Rohde & Schwarz SMHU  
or Agilent HP8644 signal generators or the equivalent. Use one  
meter long, shielded, RG-58, 50 Ω coaxial cable for making  
connections to the evaluation board. Enter the desired frequency  
and amplitude for the ADC. Typically, most evaluation boards  
from Analog Devices, Inc. can accept a ~2.8 V p-p or 13 dBm  
sine wave input for the clock. When connecting the analog  
input source, it is recommended to use a multipole, narrow-  
band, band-pass filter with 50 Ω terminations. Analog Devices  
uses TTE®, Allen Avionics, and K&L® types of band-pass filters.  
Connect the filter directly to the evaluation board, if possible.  
See Figure 53 to Figure 57 for the complete schematics and  
layout diagrams that demonstrate the routing and grounding  
techniques that should be applied at the system level.  
POWER SUPPLIES  
This evaluation board comes with a wall-mountable switching  
power supply that provides a 6 V, 2 A maximum output.  
Connect the supply to the rated 100 V ac to 240 V ac wall outlet  
at 47 Hz to 63 Hz. The other end is a 2.1 mm inner diameter  
jack that connects to the PCB at P500. Once on the PC board,  
the 6 V supply is fused and conditioned before connecting to  
five low dropout linear regulators that supply the proper bias to  
each of the various sections on the board.  
OUTPUT SIGNALS  
The parallel CMOS outputs interface directly with the Analog  
Devices standard single-channel FIFO data capture board  
(HSC-ADC-EVALB-SC). For more information on the FIFO  
boards and their optional settings, visit www.analog.com/FIFO.  
WALL OUTLET  
100V TO 240V AC  
47Hz TO 63Hz  
6V DC  
2A MAX  
5.0V  
1.8V  
2.5V  
3.3V  
3.3V  
3.3V  
+
+
+
+
+
+
SWITCHING  
POWER  
SUPPLY  
PC  
RUNNING  
ADC  
ANALYZER  
AND SPI  
USER  
ROHDE & SCHWARZ,  
HSC-ADC-EVALB-SC  
FIFO DATA  
SMHU,  
2V p-p SIGNAL  
SYNTHESIZER  
BAND-PASS  
FILTER  
AIN  
CAPTURE  
BOARD  
AD9254  
EVALUATION BOARD  
14-BIT  
SOFTWARE  
PARALLEL  
CMOS  
USB  
CONNECTION  
ROHDE & SCHWARZ,  
SMHU,  
CLK  
2V p-p SIGNAL  
SYNTHESIZER  
SPI  
SPI  
SPI  
Figure 52. Evaluation Board Connection  
Rev. 0 | Page 2ꢁ of 40  
 
 
 
AD9254  
SCLK/DFS  
DEFAULT OPERATION AND JUMPER SELECTION  
SETTINGS  
If the SPI port is in external pin mode, the SCLK/DFS pin sets the  
data format of the outputs. If the pin is left floating, the pin is  
internally pulled down, setting the default condition to binary.  
Connecting JP2 Pin 2 and Pin 3 sets the format to twos comple-  
ment. If the SPI port is in serial pin mode, connecting JP2 Pin 1  
and Pin 2 connects the SCLK pin to the on-board SPI circuitry  
(see the Serial Port Interface (SPI) section).  
The following is a list of the default and optional settings or  
modes allowed on the AD9254 Rev. A evaluation board.  
POWER  
Connect the switching power supply that is supplied in the  
evaluation kit between a rated 100 V ac to 240 V ac wall outlet  
at 47 Hz to 63 Hz and P500.  
SDIO/DCS  
VIN  
If the SPI port is in external pin mode, the SDIO/DCS pin acts  
to set the duty cycle stabilizer. If the pin is left floating, the pin is  
internally pulled up, setting the default condition to DCS enabled.  
To disable the DCS, connect JP3 Pin 2 and Pin 3. If the SPI port  
is in serial pin mode, connecting JP3 Pin 1 and Pin 2 connects the  
SDIO pin to the on-board SPI circuitry (see the Serial Port  
Interface (SPI) section).  
The evaluation board is set up for a double balun configuration  
analog input with optimum 50 Ω impedance matching out to  
70 MHz. For more bandwidth response, the differential capacitor  
across the analog inputs can be changed or removed (see Table 8).  
The common mode of the analog inputs is developed from the  
center tap of the transformer via the CML pin of the ADC (see  
the Analog Input Considerations section).  
ALTERNATIVE CLOCK CONFIGURATIONS  
VREF  
A differential LVPECL clock can also be used to clock the ADC  
input using the AD9515 (U500). When using this drive option,  
the components listed in Table 16 need to be populated. Consult  
the AD9515 data sheet for further information.  
VREF is set to 1.0 V by tying the SENSE pin to ground via  
JP507 (Pin 1 and Pin 2). This causes the ADC to operate in  
2.0 V p-p full-scale range. A separate external reference option  
is also included on the evaluation board. Connect JP507  
between Pin 2 and Pin 3, connect JP501, and provide an external  
reference at E500. Proper use of the VREF options is detailed  
in the Voltage Reference section.  
To configure the analog input to drive the AD9515 instead of  
the default transformer option, the following components need  
to be added, removed, and/or changed.  
1. Remove R507, R508, C532, and C533 in the default clock  
path.  
RBIAS  
RBIAS requires a 10 kΩ resistor (R503) to ground and is used to  
set the ADC core bias current.  
2. Populate R505 with a 0 Ω resistor and C531 in the default  
clock path.  
CLOCK  
3. Populate R511, R512, R513, R515 to R524, U500, R580,  
R582, R583, R584, C536, C537, and R586.  
The default clock input circuitry is derived from a simple  
transformer-coupled circuit using a high bandwidth 1:1  
impedance ratio transformer (T503) that adds a very low amount  
of jitter to the clock path. The clock input is 50 Ω terminated  
and ac-coupled to handle single-ended sine wave inputs. The  
transformer converts the single-ended input to a differential  
signal that is clipped before entering the ADC clock inputs.  
If using an oscillator, two oscillator footprint options are also  
available (OSC500) to check the performance of the ADC.  
JP508 provides the user flexibility in using the enable pin, which  
is common on most oscillators. Populate OSC500, R575, R587,  
and R588 to use this option.  
PDWN  
ALTERNATIVE ANALOG INPUT DRIVE  
CONFIGURATION  
To enable the power-down feature, connect JP506, shorting the  
PDWN pin to AVDD.  
This section provides a brief description of the alternative  
analog input drive configuration using the AD8352. When  
using this particular drive option, some components need to be  
populated, as listed in Table 16. For more details on the AD8352  
differential driver, including how it works and its optional pin  
settings, consult the AD8352 data sheet.  
CSB  
The CSB pin is internally pulled-up, setting the chip into  
external pin mode, to ignore the SDIO and SCLK information.  
To connect the control of the CSB pin to the SPI circuitry on the  
evaluation board, connect JP1 Pin 1 and Pin 2. To set the chip  
into serial pin mode, and enable the SPI information on the  
SDIO and SCLK pins, tie JP1 low (connect Pin 2 and Pin 3) in  
the always enabled mode.  
Rev. 0 | Page 27 of 40  
 
AD9254  
Note that to terminate the input path, only one of the  
following components should be populated: R9, R592, or  
the combination of R590 and R591).  
To configure the analog input to drive the AD8352 instead of  
the default transformer option, the following components need  
to be added, removed, and/or changed:  
4. Populate C529 with a 5 pF capacitor in the analog input  
path.  
1. Remove C1 and C2 in the default analog input path.  
2. Populate R3 and R4 with 200 Ω resistors in the analog  
input path.  
Currently, R561 and R562 are populated with 0 Ω resistors to  
allow signal connection. This area allows the user to design a  
filter if additional requirements are necessary.  
3. Populate the optional amplifier input path with all  
components except R594, R595, and C502.  
Rev. 0 | Page 2ꢀ of 40  
AD9254  
SCHEMATICS  
2 1 8 2 S M H S  
2
0 4 C 0 R  
2 1 8 2 S M H S  
2
0 4 C 0 R  
RC040  
2
RC040 2  
2
0 4 C 0 R  
0 4 0 R 2 C  
0 4 0 C 2 C  
4 0 2 C C 0  
4 0 2 C C 0  
0 4 0 C 2 C  
RC0603  
RC060 3  
RC060  
3
RC060  
3
Figure 53. Evaluation Board Schematic, DUT Analog Inputs  
Rev. 0 | Page 2± of 40  
 
 
AD9254  
RC0603  
Figure 54. Evaluation Board Schematic, DUT, VREF, and Digital Output Interface  
Rev. 0 | Page 30 of 40  
AD9254  
0 4 C 0 C 2  
2 0 4 0 C C  
0 4 C 0 C 2  
0 2 0 4 C C  
0 4 C 0 R 2  
0 4 C 0 R 2  
0 4 C 0 R 2  
0 4 C 0 C 2  
0 4 C 0 C 2  
0 4 C 0 R 2  
0
S 1  
S 9  
S 8  
S 7  
S 6  
S 5  
S 4  
S 3  
S 2  
S 1  
S 0  
2 5  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
1 0  
9
S0  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
33  
31  
GND_PAD  
GN D  
8
7
E F V R  
6
32  
RSET  
0 4 C 0 R 2  
0 4 C 0 R 2  
0 4 C 0 R 2  
2 0 4  
R C 0  
0 2 0 4 C R  
0 2 0 4 C R  
RC060 3  
0 4 C 0 R 2  
0 4 C 0 C 2  
0 4 C 0 C 2  
RC060 3  
RC060 3  
Figure 55. Evaluation Board Schematic, DUT Clock Input  
Rev. 0 | Page 31 of 40  
AD9254  
3 0 6  
3 0 6  
R C 0  
R C 0  
RC0603  
3 0 6  
R C 0  
3 0 6  
R C 0  
3 0 6  
R C 0  
3 0 6  
R C 0  
SDO_CHA  
3 0 6  
3 0 6  
3 0 6  
R C 0  
R C 0  
R C 0  
CSB1_CHA  
SDI_CHA  
SCLK_CHA  
PICVCC 1  
2
PICVCC  
GP1  
3
4
GP1  
5
6
GP0  
GP0  
MCLR-GP3 7  
9
8
MCLR-GP3  
10  
3 0 6 R C 0  
Figure 56. Evaluation Board Schematic, SPI Circuitry  
Rev. 0 | Page 32 of 40  
AD9254  
9
2
1
0
5 0 T P  
5 1 T P  
5 1 T P  
5 1 T P  
D
G N  
D G N  
1
1
D
G N  
D
G N  
D G N  
1
1
1
CR500  
1
2
Figure 57. Evaluation Board Schematic, Power Supply Inputs  
Rev. 0 | Page 33 of 40  
 
AD9254  
EVALUATION BOARD LAYOUT  
Figure 58. Evaluation Board Layout, Primary Side  
Figure 59. Evaluation Board Layout, Secondary Side (Mirrored Image)  
Rev. 0 | Page 34 of 40  
 
AD9254  
Figure 60. Evaluation Board Layout, Ground Plane  
Figure 61. Evaluation Board Layout, Power Plane  
Rev. 0 | Page 3ꢂ of 40  
AD9254  
Figure 62. Evaluation Board Layout, Silkscreen Primary Side  
Figure 63. Evaluation Board Layout, Silkscreen Secondary Side (Mirrored Image)  
Rev. 0 | Page 3ꢁ of 40  
 
AD9254  
BILL OF MATERIALS  
Table 16. Evaluation Board Bill of Materials (BOM)  
Omit  
(DNP)  
Item  
Qty.  
1
Reference Designator  
Device  
PCB  
Package  
Description  
PCB  
Supplier/Part Number  
1
2
AD±24ꢁCE_REVA  
ADI  
24  
C1, C2, Cꢂ0±, Cꢂ10, Cꢂ11, Cꢂ12,  
Cꢂ14, Cꢂ1ꢂ, Cꢂ1ꢁ, Cꢂ17, Cꢂ2ꢀ,  
Cꢂ30, Cꢂ32, Cꢂ33, Cꢂ3ꢀ, Cꢂ3±,  
Cꢂ40, Cꢂ42, Cꢂ43, Cꢂ44, Cꢂ4ꢂ,  
Cꢂ4ꢁ, Cꢂꢂ4, Cꢂꢂꢂ  
Capacitor  
0402  
0.1 ꢃF  
12  
C3, Cꢂ00, Cꢂ02, Cꢂ03, Cꢂ04,  
Cꢂ0ꢂ, Cꢂ31, Cꢂ34, Cꢂ3ꢂ, Cꢂ3ꢁ,  
Cꢂ37, Cꢂꢂ7  
3
4
1
2
Cꢂ01  
Capacitor  
Resistor  
0402  
0402  
0402  
0.3 pF  
0 Ω  
C4, Cꢂ  
10  
Cꢂ13, Cꢂ1ꢀ, Cꢂ1±, Cꢂ20, Cꢂ21,  
Cꢂ22, Cꢂ23, Cꢂ24, Cꢂ2ꢂ, Cꢂ2ꢁ  
Capacitor  
1.0 ꢃF  
1
Cꢂ27  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
120ꢁ  
0402  
ACASE  
0ꢀ0ꢂ  
0ꢁ03  
10 ꢃF  
20 pF  
10 ꢃF  
1.0 ꢃF  
0.1 ꢃF  
7
1
Cꢂ2±  
Cꢂ4ꢀ, Cꢂ4±, Cꢂꢂ0, Cꢂꢂ1, Cꢂꢂ2  
Cꢂꢂ3  
±
1
10  
1ꢂ  
Cꢂꢂꢁ, Cꢂꢂꢀ, Cꢂꢂ±, Cꢂꢁ4, Cꢂꢁꢂ,  
Cꢂꢁꢁ, Cꢂꢁ7, Cꢂꢁꢀ, Cꢂꢁ±, Cꢂ70,  
Cꢂ72, Cꢂ73, Cꢂ74, Cꢂ7ꢂ, Cꢂ±±  
11  
12  
1
1
CRꢂ00  
LED  
0ꢁ03  
green  
Panasonic  
LNJ314GꢀTRA  
Dꢂ02  
Diode  
SOT-23  
30 V, 20 mA,  
HSMS2ꢀ12  
dual Schottky  
2
1
Dꢂ00, Dꢂ01  
Dꢂ03  
13  
14  
1
1
Diode  
Diode  
DO-214AB  
DO-214AA  
3 A, 30 V, SMC  
2 A, ꢂ0 V, SMC  
AMB  
Micro Commercial  
Components SK33-  
TPMSCT-ND  
Dꢂ04  
Micro Commercial  
Components S2A-  
TPMSTR-ND  
1ꢂ  
1ꢁ  
Dꢂ0ꢂ  
Fꢂ00  
LED  
LN14ꢁ1C  
1210  
Amber LED  
1
1
Fuse  
ꢁ.0 V, 2.2 A  
Tyco, Raychem  
NANOSMDC110F-2  
trip current  
resettable fuse  
17  
FERꢂ00  
Choke  
2020  
Murata  
DLWꢂBSN1±1SQ2  
1ꢀ  
1±  
20  
21  
22  
23  
24  
1
3
Jꢂ00  
Jumper  
Solder jumper  
Solder jumper  
Male header  
Male, 2 × ꢂ  
Jꢂ01, Jꢂ02, Jꢂ0ꢂ  
Jꢂ03  
Jumper  
Samtec TSW-140-0ꢀ-G-T-RA  
Samtec  
1
Connector  
Connector  
Jumper  
120 pin  
10 pin  
3 pin  
1
Jꢂ04  
3
4
1
JP1, JP2, JP3  
JPꢂ00, JPꢂ01, JPꢂ02, JPꢂ0ꢁ  
JPꢂ07  
Male, straight  
Male, straight  
Male, straight  
Samtec TSW-103-07-G-S  
Samtec TSW-102-07-G-S  
Samtec TSW-103-07-G-S  
Jumper  
2 pin  
Jumper  
3-pin  
jumper  
2
1
JPꢂ0ꢀ, JPꢂ0±  
2ꢂ  
10  
Lꢂ00, Lꢂ01, Lꢂ02, Lꢂ03, Lꢂ04,  
Lꢂ0ꢂ, Lꢂ0ꢁ, Lꢂ07, Lꢂ0ꢀ, Lꢂ0±  
Ferrite Bead  
3.2 mm ×  
2.ꢂ mm ×  
1.ꢁ mm  
Digikey P±ꢀ11CT-ND  
2ꢁ  
27  
OSCꢂ00  
Pꢂ00  
Oscillator  
Connector  
SMT  
12ꢂ MHz or  
10ꢂ MHz  
CTS Reeves CB3LV-3C  
Digikey CP-102A-ND  
1
PJ-102A  
DC power jack  
Rev. 0 | Page 37 of 40  
 
 
AD9254  
Omit  
(DNP)  
Item  
2ꢀ  
Qty.  
Reference Designator  
Pꢂ01  
Device  
Package  
10 pin  
0402  
Description  
Male, straight  
DNI  
Supplier/Part Number  
1
Connector  
Resistor  
Resistor  
PTMICRO10  
2±  
R1, Rꢁ, Rꢂꢁ3, Rꢂꢁꢂ, Rꢂ74, Rꢂ77  
R2, Rꢂ, Rꢂꢁ1, Rꢂꢁ2, Rꢂ71  
R10, R11, R12, Rꢂ3ꢂ, Rꢂ3ꢁ, Rꢂ7ꢂ  
R3, R4  
30  
2
0402  
0 Ω  
31  
32  
33  
Resistor  
Resistor  
Resistor  
0402  
0ꢁ03  
0402  
2ꢂ Ω  
DNI  
DNI  
R7, Rꢀ, R±, Rꢂ02, Rꢂ10, Rꢂ11  
Rꢂ00, Rꢂ01, Rꢂ7ꢁ, Rꢂ7ꢀ, Rꢂ7±,  
Rꢂꢀ1  
34  
3ꢂ  
4
1
Rꢂ03, Rꢂ4ꢀ, Rꢂ4±, Rꢂꢂ0  
Resistor  
Resistor  
0ꢁ03  
0ꢁ03  
10 kΩ  
Rꢂ04  
Rꢂ0ꢂ  
4±.± Ω  
1
3ꢁ  
±
Rꢂ0ꢁ, Rꢂ0ꢀ, Rꢂ0±, Rꢂ12, Rꢂꢂ4,  
Rꢂꢂꢂ, Rꢂꢂꢁ, Rꢂꢂ7, Rꢂꢁ0  
Resistor  
0ꢁ03  
0 Ω  
23  
Rꢂ07, Rꢂ13, Rꢂ14, Rꢂ1ꢂ, Rꢂ1ꢁ,  
Rꢂ17, Rꢂ1ꢀ, Rꢂ1±, Rꢂ20, Rꢂ21,  
Rꢂ22, Rꢂ23, Rꢂ24, Rꢂ2ꢂ, Rꢂ2ꢁ,  
Rꢂ27, Rꢂ2ꢀ, Rꢂ2±, Rꢂ30, Rꢂ31,  
Rꢂ32, Rꢂ33, Rꢂ34,  
37  
3ꢀ  
3±  
40  
41  
42  
43  
44  
4ꢂ  
4ꢁ  
47  
4ꢀ  
4±  
ꢂ0  
ꢂ1  
ꢂ2  
ꢂ3  
4
1
Rꢂ4ꢂ, Rꢂ4ꢁ, Rꢂ47, Rꢂꢂꢀ  
Rꢂꢂ1, Rꢂꢂ2, Rꢂꢂ3  
Rꢂꢂ±  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Switch  
0ꢁ03  
4.7 kΩ  
1 kΩ  
3
2
0ꢁ03  
0ꢁ03  
2ꢁ1 Ω  
33 Ω  
Rꢂꢁꢁ, Rꢂꢁ7  
Rꢂꢀ2, Rꢂꢀꢂ, Rꢂ±ꢀ  
Rꢂꢀ3, Rꢂꢀ4  
Rꢂꢀꢁ  
0402  
3
2
1
3
0402  
100 Ω  
240 Ω  
4.12 kΩ  
10 kΩ  
2ꢁ1 Ω  
2ꢂ Ω  
0402  
0402  
Rꢂꢀ0, Rꢂꢀ7, Rꢂꢀꢀ  
Rꢂꢀ±  
0402  
1
0ꢁ03  
2
1
2
2
1
Rꢂ±0, Rꢂ±1  
Rꢂ±2  
0402  
0402  
DNI  
Rꢂ±3, Rꢂ±ꢁ  
Rꢂ±4, Rꢂ±ꢂ  
Rꢂ±7  
0402  
0 Ω  
0402  
10 kΩ  
4.3 kΩ  
22 Ω  
0402  
1
2
RPꢂ00  
RCA74204  
RCA7420ꢀ  
RPꢂ01, RPꢂ02  
S1  
22 Ω  
1
Momentary  
(normally  
open)  
Panasonic EVQ-PLDA1ꢂ  
ꢂ4  
2
Sꢂ00, Sꢂ01  
Sꢂ02, Sꢂ03  
Sꢂ04, Sꢂ0ꢂ  
Connector  
SMAEDGE  
SMA edge  
right angle  
2
2
ꢂꢂ  
ꢂꢁ  
Connector  
SMA200UP  
SM-22  
SMA RF ꢂ-pin  
upright  
2
1
Tꢂ00, Tꢂ01  
T1  
Transformer  
M/A-Com ETC1-1-13  
1
ꢂ7  
Tꢂ03  
Transformer  
CDꢂ42  
Mini-Circuits ADT1-1WT  
1
1
Tꢂ02  
ꢂꢀ  
ꢂ±  
Uꢂ00  
IC  
IC  
32-pin  
LFCSP _VQ  
Clock  
distribution  
ADI AD±ꢂ1ꢂBCPZ  
1
Uꢂ01  
SOT-223  
Voltage  
ADI ADP333±AKCZ-ꢂ  
regulator  
Rev. 0 | Page 3ꢀ of 40  
AD9254  
Omit  
(DNP)  
Item  
Qty.  
Reference Designator  
Device  
Package  
Description  
Supplier/Part Number  
ꢁ0  
1
Uꢂ02  
IC  
SOT-223  
Voltage  
ADI ADP333±AKCZ-1.ꢀ  
regulator  
ꢁ1  
ꢁ2  
ꢁ3  
1
2
Uꢂ03  
IC  
IC  
IC  
SOT-223  
SOT-223  
ꢀ-pin SOIC  
Voltage  
regulator  
ADI ADP333±AKCZ-2.ꢂ  
ADI ADP333±AKCZ-3.3  
Microchip PIC12Fꢁ2±  
Uꢂ04, Uꢂ0ꢂ  
Uꢂ0ꢁ  
Voltage  
regulator  
1
ꢀ-bit  
microcontroller  
ꢁ4  
ꢁꢂ  
ꢁꢁ  
1
1
1
Uꢂ07  
Uꢂ0ꢀ  
Uꢂ0±  
IC  
IC  
IC  
SC70  
SC70  
Dual buffer  
Dual buffer  
Fairchild NC7WZ1ꢁ  
Fairchild NC7WZ07  
Fairchild 74VCX1ꢁ2244  
4ꢀ-pin  
TSSOP  
Buffer/line  
driver  
ꢁ7  
1
Uꢂ10  
DUT  
(AD±2ꢂ4)  
4ꢀ-pin  
LFCSP_VQ  
ADC  
ADI AD±2ꢂ4BCPZ  
ADI ADꢀ3ꢂ2ACPZ  
ꢁꢀ  
1
Uꢂ11 (or Zꢂ00)  
IC  
1ꢁ-pin  
LFCSP_VQ  
Differential  
amplifier  
Total  
12ꢀ  
107  
Rev. 0 | Page 3± of 40  
AD9254  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
7.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.25  
4.10 SQ  
3.95  
TOP  
VIEW  
6.75  
BSC SQ  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
Figure 64. 48-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
7 mm × 7 mm Body, Very Thin Quad (CP-48-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD±2ꢂ4BCPZ-1ꢂ01, 2  
AD±2ꢂ4BCPZRL7–1ꢂ01, 2  
AD±2ꢂ4-1ꢂ0EBZ1  
Temperature Range  
–40°C to +ꢀꢂ°C  
–40°C to +ꢀꢂ°C  
Package Description  
Package Option  
4ꢀ-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
4ꢀ-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
CP-4ꢀ-3  
CP-4ꢀ-3  
1 Z = Pb-free part.  
2 It is required that the exposed paddle be soldered to the AGND plane to achieve the best electrical and thermal performance.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06216-0-10/06(0)  
Rev. 0 | Page 40 of 40  
 

相关型号:

AD9254R703F

14-Bit, 105 MSPS, 1.8V Analog-Tp-Digital Converter
ADI

AD9254S

14-BIT, 150 MSPS, 1.8V ANALOG-TO-DIGITAL CONVERTER
ADI

AD9254_17

Analog-to-Digital Converter
ADI

AD9255-105EBZ

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255-125EBZ

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255-80EBZ

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZ-105

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZ-125

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZ-80

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZRL7-105

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZRL7-125

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI

AD9255BCPZRL7-80

14-Bit, 125 MSPS/105 MSPS/80 MSPS
ADI