AD9266BCPZRL7-65 [ADI]

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter; 16位, 20 MSPS / 40 MSPS / 65 MSPS / 80 MSPS , 1.8 V模拟数字转换器
AD9266BCPZRL7-65
型号: AD9266BCPZRL7-65
厂家: ADI    ADI
描述:

16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
16位, 20 MSPS / 40 MSPS / 65 MSPS / 80 MSPS , 1.8 V模拟数字转换器

转换器 模数转换器 PC
文件: 总32页 (文件大小:870K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS,  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9266  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AGND  
SDIO SCLK CSB DRVDD  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
SNR  
RBIAS  
VCM  
SPI  
AD9266  
OR  
77.6 dBFS at 9.7 MHz input  
PROGRAMMING DATA  
D15_D14  
D1_D0  
DCO  
71.1 dBFS at 200 MHz input  
SFDR  
93 dBc at 9.7 MHz input  
80 dBc at 200 MHz input  
VIN+  
VIN–  
ADC  
CORE  
8
VREF  
Low power  
SENSE  
56 mW at 20 MSPS  
113 mW at 80 MSPS  
REF  
SELECT  
Differential input with 700 MHz bandwidth  
On-chip voltage reference and sample-and-hold circuit  
2 V p-p differential analog input  
DNL = −0.6/+1.1 LSB  
Interleaved data output for reduced pin-count interface  
Serial port control options  
DIVIDE  
1 TO 8  
DUTY CYCLE  
STABILIZER  
MODE  
CONTROLS  
CLK+ CLK–  
PDWN DFS MODE  
Figure 1.  
Offset binary, Gray code, or twos complement data format  
Optional clock duty cycle stabilizer  
Integer 1-to-8 input clock divider  
Built-in selectable digital test pattern generation  
Energy-saving power-down modes  
Data clock output (DCO) with programmable clock and  
data alignment  
PRODUCT HIGHLIGHTS  
1. The AD9266 operates from a single 1.8 V analog power  
supply and features a separate digital output driver supply  
to accommodate 1.8 V to 3.3 V logic families.  
2. The patented sample-and-hold circuit maintains excellent  
performance for input frequencies up to 200 MHz and is  
designed for low cost, low power, and ease of use.  
3. A standard serial port interface supports various product  
features and functions, such as data output formatting,  
internal clock divider, power-down, DCO and data output  
(D15_D14 to D1_D0) timing and offset adjustments, and  
voltage reference modes.  
4. The AD9266 is packaged in a 32-lead RoHS-compliant  
LFCSP that is pin compatible with the AD9609 10-bit  
ADC, the AD9629 12-bit ADC, and the AD9649 14-bit  
ADC, enabling a simple migration path between 10-bit and  
16-bit converters sampling from 20 MSPS to 80 MSPS.  
APPLICATIONS  
Communications  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, TD-SCDMA  
Smart antenna systems  
Battery-powered instruments  
Handheld scope meters  
Portable medical imaging  
Ultrasound  
Radar/LIDAR  
PET/SPECT imaging  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD9266  
Data Sheet  
TABLE OF CONTENTS  
‘Features ............................................................................................. 1  
Voltage Reference ....................................................................... 19  
Clock Input Considerations...................................................... 20  
Power Dissipation and Standby Mode .................................... 22  
Digital Outputs ........................................................................... 22  
Timing ......................................................................................... 23  
Output Test...................................................................................... 24  
Output Test Modes..................................................................... 24  
Serial Port Interface (SPI).............................................................. 25  
Configuration Using the SPI..................................................... 25  
Hardware Interface..................................................................... 26  
Configuration Without the SPI ................................................ 26  
SPI Accessible Features.............................................................. 26  
Memory Map .................................................................................. 27  
Reading the Memory Map Register Table............................... 27  
Open Locations .......................................................................... 27  
Default Values............................................................................. 27  
Memory Map Register Table..................................................... 28  
Memory Map Register Descriptions........................................ 30  
Applications Information.............................................................. 31  
Design Guidelines ...................................................................... 31  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Characteristics .............................................................. 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
AD9266-80 .................................................................................. 11  
AD9266-65 .................................................................................. 13  
AD9266-40 .................................................................................. 14  
AD9266-20 .................................................................................. 15  
Equivalent Circuits......................................................................... 16  
Theory of Operation ...................................................................... 17  
Analog Input Considerations.................................................... 17  
REVISION HISTORY  
6/12—Rev. 0 to Rev. A  
04/10—Revision 0: Initial Version  
Changes to Table 1.............................................................................4  
Changes to Table 4.............................................................................7  
Changed Built-In Self-Test (BIST) and Output Test Section to  
Output Test Section.........................................................................24  
Changes to Output Test Section; Deleted Built-In Self-Test  
(BIST) Section..................................................................................24  
Changes to Table 16.........................................................................28  
Rev. A | Page 2 of 32  
 
Data Sheet  
AD9266  
GENERAL DESCRIPTION  
A differential clock input with a selectable internal 1-to-8 divide  
ratio controls all internal conversion cycles. An optional duty cycle  
stabilizer (DCS) compensates for wide variations in the clock duty  
cycle while maintaining excellent overall ADC performance.  
The AD9266 is a monolithic, single-channel 1.8 V supply,  
16-bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS analog-to-digital  
converter (ADC). It features a high performance sample-and-  
hold circuit and on-chip voltage reference.  
The interleaved digital output data is presented in offset binary,  
gray code, or twos complement format. A data output clock  
(DCO) is provided to ensure proper latch timing with receiving  
logic. Both 1.8 V and 3.3 V CMOS levels are supported.  
The product uses multistage differential pipeline architecture  
with output error correction logic to provide 16-bit accuracy at  
80 MSPS data rates and to guarantee no missing codes over the  
full operating temperature range.  
The AD9266 is available in a 32-lead RoHS-compliant LFCSP  
and is specified over the industrial temperature range (−40°C  
to +85°C).  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom  
user-defined test patterns entered via the serial port interface (SPI).  
Rev. A | Page 3 of 32  
 
AD9266  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 1.  
AD9266-20/AD9266-40  
AD9266-65  
Typ  
AD9266-80  
Typ Max  
Parameter  
Temp  
Min  
Typ  
Max  
Min  
Max  
Min  
Unit  
RESOLUTION  
ACCURACY  
Full  
16  
16  
16  
Bits  
No Missing Codes  
Full  
Full  
Full  
Full  
Guaranteed  
+0.05  
Guaranteed  
+0.05  
Guaranteed  
+0.05  
Offset Error  
Gain Error1  
0.30  
0.30  
0.30  
% FSR  
% FSR  
LSB  
−2.5/−2.0  
−1.0  
+1.0  
Differential Nonlinearity  
(DNL)2  
−0.9/+1.2  
5.5  
−0.9/+1.7  
6.5  
−0.9/+1.7  
6.2  
25°C  
Full  
−0.5/+0.6  
−0.5/+1.0  
−0.6/+1.1  
LSB  
LSB  
Integral Nonlinearity  
(INL)2  
25°C  
Full  
1.8  
2
2.4  
2
3.5  
2
LSB  
TEMPERATURE DRIFT  
Offset Error  
ppm/°C  
INTERNAL VOLTAGE  
REFERENCE  
Output Voltage (1 V Mode)  
Full  
Full  
0.983  
0.995  
2
1.007  
0.983  
0.995  
2
1.007  
0.983  
0.995  
2
1.007  
V
Load Regulation Error  
at 1.0 mA  
mV  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
25°C  
2.8  
2.8  
2.8  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance3  
Full  
Full  
Full  
2
2
2
V p-p  
pF  
6.5  
0.9  
6.5  
0.9  
6.5  
0.9  
Input Common-Mode  
Voltage  
V
Input Common-Mode  
Range  
Full  
Full  
0.5  
1.3  
0.5  
1.3  
0.5  
1.3  
V
REFERENCE INPUT  
RESISTANCE  
7.5  
1.8  
7.5  
1.8  
7.5  
1.8  
kΩ  
POWER SUPPLIES  
Supply Voltage  
AVDD  
Full  
Full  
1.7  
1.7  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
V
V
DRVDD  
Supply Current  
IAVDD2  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
POWER CONSUMPTION  
DC Input  
Full  
Full  
Full  
31.4/40.7  
1.7/3.3  
33.2/42.5  
54.5  
5.2  
57.6  
62.5  
6.3  
65.7  
mA  
mA  
mA  
3.0/5.9  
9.3  
11.6  
Full  
Full  
57/73  
60/79  
98  
113  
124  
mW  
mW  
Sine Wave Input2  
63/82  
107  
113  
130  
(DRVDD = 1.8 V)  
Sine Wave Input2  
(DRVDD = 3.3 V)  
Full  
66/93  
129  
151  
mW  
Standby Power4  
Full  
Full  
40  
44  
44  
mW  
mW  
Power-Down Power  
0.5  
0.5  
0.5  
1 Measured with 1.0 V external reference.  
2 Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between the differential inputs.  
4 Standby power is measured with a dc input and the CLK active.  
Rev. A | Page 4 of 32  
 
 
Data Sheet  
AD9266  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 2.  
AD9266-20/AD9266-40  
AD9266-65  
AD9266-80  
Parameter1  
Temp Min  
Typ  
Max  
Min Typ  
Max Min Typ Max Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
25°C  
78.2  
77.6  
77.9  
77.5  
77.6  
77.3  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
76.7  
76.2  
76.6  
fIN = 70 MHz  
75.8/76.4  
76.6  
76.6  
72.1  
75.5  
75.5  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
78.0  
77.5  
77.7  
77.3  
77.4  
77.1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
76.2  
fIN = 70 MHz  
75.7/76.3  
76.5  
76.6  
69.4  
fIN = 200 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
12.7  
12.6  
12.3/12.4  
12.6  
12.5  
12.4  
12.6  
12.5  
12.4  
11.2  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
−97  
−96/−93  
−96  
−94  
−95  
−93  
dBc  
dBc  
dBc  
dBc  
−80  
−80  
fIN = 70 MHz  
−97/−95  
−98  
−95  
−80  
−80 dBc  
fIN = 200 MHz  
25°C  
dBc  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
95  
93  
95  
92  
80  
95  
94  
92  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
80  
fIN = 70 MHz  
93  
93  
80  
80  
fIN = 200 MHz  
25°C  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
−102  
−102  
−101  
−101  
−99  
−98  
dBc  
dBc  
dBc  
−89  
−89  
fIN = 70 MHz  
25°C  
Full  
25°C  
−101  
−100  
−98  
−86  
dBc  
−89 dBc  
dBc  
fIN = 200 MHz  
TWO-TONE SFDR  
fIN = 30.5 MHz (−7 dBFS), 32.5 MHz (−7 dBFS)  
ANALOG INPUT BANDWIDTH  
25°C  
25°C  
90  
90  
90  
dBc  
700  
700  
700  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. A | Page 5 of 32  
 
AD9266  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 3.  
AD9266-20/AD9266-40/AD9266-65/AD9266-80  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
CMOS/LVDS/LVPECL  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
0.2  
GND − 0.3  
−10  
−10  
8
3.6  
AVDD + 0.2  
+10  
+10  
12  
V p-p  
V
µA  
µA  
kΩ  
pF  
10  
4
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, MODE, SDIO/PDWN)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−50  
−10  
DRVDD + 0.3  
0.8  
−75  
+10  
V
V
µA  
µA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (CSB)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
40  
DRVDD + 0.3  
0.8  
+10  
135  
V
V
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage, IOH = 50 µA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 µA  
DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage, IOH = 50 µA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 µA  
Full  
Full  
Full  
Full  
1.79  
1.75  
V
V
V
V
0.2  
0.05  
1 Internal 30 kΩ pull-down.  
2 Internal 30 kΩ pull-up.  
Rev. A | Page 6 of 32  
 
 
Data Sheet  
AD9266  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 4.  
AD9266-20/AD9266-40  
AD9266-65  
Typ  
AD9266-80  
Parameter  
Temp Min  
Typ  
Max  
Min  
Max Min  
Typ  
Max Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
CLK Period—Divide-by-1 Mode (tCLK  
CLK Pulse Width High (tCH)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)  
Full  
Full  
Full  
80/320  
20/40  
520  
65  
625  
80  
MHz  
MSPS  
ns  
ns  
ns  
3
3
3
12.5  
50/25  
)
15.38  
25.0/12.5  
1.0  
0.1  
7.69  
1.0  
0.1  
6.25  
1.0  
0.1  
Full  
Full  
ps rms  
1.84  
3.90  
4.04  
0.72  
1.84  
3.90  
4.04  
0.72  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3
3
0.1  
9
350  
600/400  
2
3
3
1.84  
1.86  
−0.53  
3
3
3.90  
4.04  
0.72  
ns  
ns  
ns  
Cycles  
µs  
1.86  
1.86  
DCO Propagation Delay (tDCO  
)
−0.53  
−0.53  
DCO to Data Skew (tSKEW  
)
0.1  
9
350  
300  
2
0.1  
9
350  
260  
2
Pipeline Delay (Latency)  
Wake-Up Time2  
Standby  
ns  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Conversion rate is the clock rate after the CLK divider.  
2 Wake-up time is dependent on the value of the decoupling capacitors.  
tA  
N
N + 6  
N + 7  
N – 1  
N + 1  
N + 5  
V
IN  
N + 8  
N + 2  
N + 3  
tCLK  
CLK+  
CLK–  
tDCO  
DCO  
tSKEW  
tSKEW  
D1N–9  
D0N–9  
D1N–8  
D0N–8  
D1N–7  
D0N–7 D1N–6  
D0N–6  
D1N–5  
D0N–5  
D1N–4  
D0N–4  
D1_D0  
tPD  
D15N–9  
D14N–9 D15N–8 D14N–8 D15N–7 D14N–7 D15N–6 D14  
D15  
D14  
D15  
D14  
N–4  
N–6  
N–5  
N–5  
N–4  
D15_D14  
Figure 2. CMOS Output Data Timing  
Rev. A | Page 7 of 32  
 
 
 
AD9266  
Data Sheet  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output  
relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input  
relative to the SCLK rising edge  
10  
ns  
Rev. A | Page 8 of 32  
 
 
Data Sheet  
AD9266  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Parameter  
Rating  
The exposed paddle is the only ground connection for the chip.  
The exposed paddle must be soldered to the AGND plane of the  
users circuit board. Soldering the exposed paddle to the users  
board also increases the reliability of the solder joints and  
maximizes the thermal capability of the package.  
AVDD to AGND  
DRVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
CSB to AGND  
SCLK/DFS to AGND  
SDIO/PDWN to AGND  
MODE/OR to AGND  
D1_D0 Through D15_D14 to AGND  
DCO to AGND  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature Under Bias  
Storage Temperature Range (Ambient)  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−40°C to +85°C  
Table 7. Thermal Resistance  
Airflow  
Package  
Type  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
1, 2  
θJA  
θJC  
3.1  
θJB  
20.7  
ΨJT  
0.3  
0.5  
0.8  
Unit  
°C/W  
°C/W  
°C/W  
32-Lead LFCSP  
5 mm × 5 mm  
0
1.0  
2.5  
37.1  
32.4  
29.1  
1 Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
150°C  
−65°C to +150°C  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes reduces the θJA.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. A | Page 9 of 32  
 
 
 
 
 
 
AD9266  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK+  
CLK–  
AVDD  
1
2
3
4
5
6
7
8
24 AVDD  
23  
22 DCO  
MODE/OR  
AD9266  
CSB  
21 (MSB) D15_D14  
TOP VIEW  
20  
19  
18  
D13_D12  
D11_D10  
D9_D8  
SCLK/DFS  
SDIO/PDWN  
NC  
(Not to Scale)  
17 D7_D6  
NC  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PADDLE (PIN 0) IS THE ONLY GND  
CONNECTION ON THE CHIP AND MUST BE CONNECTED  
TO THE PCB AGND.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No. Mnemonic  
0, Exposed Paddle AGND  
Description  
The exposed paddle is the only ground connection on the chip. It must be soldered to the analog  
ground of the PCB to ensure proper functionality and heat dissipation, noise, and mechanical strength  
benefits.  
1, 2  
3, 24, 29, 32  
CLK+, CLK−  
AVDD  
Differential Encode Clock for PECL, LVDS, or 1.8 V CMOS Inputs.  
1.8 V Supply Pin for ADC Core Domain.  
4
5
CSB  
SCLK/DFS  
SPI Chip Select. Active low enable, 30 kΩ internal pull-up.  
SPI Clock Input in SPI Mode (SCLK). 30 kΩ internal pull-down.  
Data Format Select in Non-SPI Mode (DFS). Static control of data output format. 30 kΩ internal pull-down.  
DFS high = twos complement output; DFS low = offset binary output.  
6
SDIO/PDWN  
NC  
SPI Data Input/Output (SDIO). Bidirectional SPI data I/O with 30 kΩ internal pull-down.  
Non-SPI Mode Power-Down (PDWN). Static control of chip power-down with 30 kΩ internal pull-  
down. See Table 14 for details.  
7 to 12  
No Connect.  
D1_D0 (LSB) to  
(MSB) D15_D14  
14 to 21  
ADC Digital Outputs.  
13  
22  
23  
DRVDD  
DCO  
MODE/OR  
1.8 V to 3.3 V Supply Pin for Output Driver Domain.  
Data Clock Digital Output.  
Chip Mode Select Input (MODE)/Out-of-Range Digital Output in SPI Mode (OR).  
Default = out-of-range (OR) digital output (SPI Register 0x2A, Bit 0 = 1).  
Option = chip mode select input (SPI Register 0x2A, Bit 0 = 0).  
Chip power-down (SPI Register 0x08, Bits[7:5] = 100b).  
Chip standby (SPI Register 0x08, Bits[7:5] = 101b).  
Normal operation, output disabled (SPI Register 0x08, Bits[7:5] = 110b).  
Normal operation, output enabled (SPI Register 0x08, Bits[7:5] = 111b).  
Out-of-range (OR) digital output only in non-SPI mode.  
25  
26  
27  
28  
VREF  
SENSE  
VCM  
RBIAS  
VIN−, VIN+  
1.0 V Voltage Reference Input/Output. See Table 10.  
Reference Mode Selection. See Table 10.  
Analog Output Voltage at Mid AVDD Supply. Sets common mode of the analog inputs.  
Set Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
ADC Analog Inputs.  
30, 31  
Rev. A | Page 10 of 32  
 
Data Sheet  
AD9266  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9266-80  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
0
0
80MSPS  
80MSPS  
9.7MHz @ –1dBFS  
SNR = 76.8dB (77.8dBFS)  
SFDR = 94.3dBc  
30.6MHz @ –1dBFS  
SNR = 76.5dB (77.5dBFS)  
SFDR = 85.7dBc  
–20  
–20  
–40  
–60  
–40  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. AD9266-80 Single-Tone FFT with fIN = 9.7 MHz  
Figure 7. AD9266-80 Single-Tone FFT with fIN = 30.6 MHz  
0
0
80MSPS  
80MSPS  
69MHz @ –1dBFS  
SNR = 75.1dB (76.1dBFS)  
SFDR = 89.5dBc  
210MHz @ –1dBFS  
SNR = 70dB (71dBFS)  
SFDR = 79.7dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. AD9266-80 Single-Tone FFT with fIN = 69 MHz  
Figure 8. AD9266-80 Single-Tone FFT with fIN = 210 MHz  
0
–15  
10  
80MSPS  
28.3MHz @ –7dBFS  
30.6MHz @ –7dBFS  
SFDR = 89.5dBc (96.5dBFS)  
–10  
–30  
SFDR (dBc)  
–30  
–45  
IMD3 (dBc)  
–50  
–60  
–75  
–70  
2F1 + F2  
2F2 + F1  
–90  
SFDR (dBFS)  
F1 + F2  
–90  
2F1 – F2  
F2 – F1  
2F2 – F1  
–105  
–120  
–135  
–110  
IMD3 (dBFS)  
–130  
–95  
–85  
–75  
–65  
–55  
–45  
–35  
–25  
–15  
4
8
12  
16  
20  
24  
28  
32  
36  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 6. AD9266-80 Two-Tone FFT with fIN1 = 28.3 MHz and fIN2 = 30.6 MHz  
Figure 9. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 28.3 MHz  
and fIN2 = 30.6 MHz  
Rev. A | Page 11 of 32  
 
 
AD9266  
Data Sheet  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5  
SFDR (dBc)  
1.0  
SNR (dBFS)  
0.5  
0
–0.5  
–1.0  
–1.5  
0
16,384  
32,768  
49,152  
65,536  
0
50  
100  
150  
200  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 10. AD9266-80 SNR/SFDR vs. Input Frequency (AIN) with 2 V p-p Full Scale  
Figure 13. DNL Error with fIN = 9.7 MHz  
100  
6
4
90  
SFDR (dBc)  
80  
70  
SNR (dBFS)  
2
0
60  
50  
40  
30  
20  
10  
0
–2  
–4  
–6  
10  
20  
30  
40  
50  
60  
70  
80  
0
16,384  
32,768  
49,152  
65,536  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 11. AD9266-80 SNR/SFDR vs. Sample Rate with AIN = 9.7 MHz  
Figure 14. INL with fIN = 9.7 MHz  
120  
4.0M  
3.5M  
SFDRFS  
2.8 LSB RMS  
100  
3.0M  
2.5M  
2.0M  
1.5M  
1.0M  
500k  
0
80  
SNRFS  
SFDR  
60  
SNR  
40  
20  
0
–65 –60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 12. AD9266-80 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
Figure 15. Grounded Input Histogram  
Rev. A | Page 12 of 32  
Data Sheet  
AD9266  
AD9266-65  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
120  
100  
80  
60  
40  
20  
0
0
65MSPS  
SFDRFS  
9.7MHz @ –1dBFS  
SNR = 76.9dB (77.9dBFS)  
SFDR = 95.9dBc  
–20  
–40  
SNRFS  
–60  
SFDR  
–80  
SNR  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
–65 –60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 16. AD9266-65 Single-Tone FFT with fIN = 9.7 MHz  
Figure 19. AD9266-65 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
100  
65MSPS  
69MHz @ –1dBFS  
SFDR (dBc)  
90  
–20  
SNR = 75.5dB (76.5dBFS)  
SFDR = 87.4dBc  
80  
–40  
–60  
70  
SNR (dBFS)  
60  
50  
40  
30  
20  
10  
0
–80  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
0
50  
100  
150  
200  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. AD9266-65 SNR/SFDR vs. Input Frequency (AIN) with  
2 V p-p Full Scale  
Figure 17. AD9266-65 Single-Tone FFT with fIN = 69 MHz  
0
65MSPS  
30.6MHz @ –1dBFS  
SNR = 76.6dB (77.6dBFS)  
SFDR = 89.9dBc  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 18. AD9266-65 Single-Tone FFT with fIN = 30.6 MHz  
Rev. A | Page 13 of 32  
 
AD9266  
Data Sheet  
AD9266-40  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
120  
100  
80  
60  
40  
20  
0
0
40MSPS  
SFDRFS  
9.7MHz @ –1dBFS  
SNR = 76.9dB (77.9dBFS)  
SFDR = 95.1dBc  
–20  
–40  
–60  
SNRFS  
SFDR  
–80  
SNR  
–100  
–120  
–140  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–65 –60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 23. AD9266-40 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
Figure 21. AD9266-40 Single-Tone FFT with fIN = 9.7 MHz  
0
40MSPS  
30.6MHz @ –1dBFS  
SNR = 76.6dB (77.6dBFS)  
SFDR = 88.8dBc  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
Figure 22. AD9266-40 Single-Tone FFT with fIN = 30.6 MHz  
Rev. A | Page 14 of 32  
 
Data Sheet  
AD9266  
AD9266-20  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
0
120  
20MSPS  
SFDRFS  
SNRFS  
9.7MHz @ –1dBFS  
SNR = 76.9dB (77.9dBFS)  
SFDR = 95.6dBc  
–20  
100  
80  
–40  
–60  
60  
SFDR (dBc)  
–80  
40  
–100  
–120  
SNR (dBc)  
20  
0
–140  
0
1
2
3
4
5
6
7
8
9
10  
–90 –80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 24. AD9266-20 Single-Tone FFT with fIN = 9.7 MHz  
Figure 26. AD9266-20 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
20MSPS  
30.6MHz @ –1dBFS  
SNR = 76.7dB (77.7dBFS)  
SFDR = 90.7dBc  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
Figure 25. AD9266-20 Single-Tone FFT with fIN = 30.6 MHz  
Rev. A | Page 15 of 32  
 
AD9266  
Data Sheet  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN±  
D1_D0 TO D15_D14,  
OR  
Figure 27. Equivalent Analog Input Circuit  
Figure 31. Equivalent D1_D0 to D15_D14 and OR Digital Output Circuit  
DRVDD  
AVDD  
SCLK/DFS,  
MODE,  
SDIO/PDWN  
350Ω  
375Ω  
VREF  
30kΩ  
7.5kΩ  
Figure 32. Equivalent SCLK/DFS, MODE, and SDIO/PDWN Input Circuit  
Figure 28. Equivalent VREF Circuit  
AVDD  
DRVDD  
AVDD  
30kΩ  
375Ω  
350Ω  
SENSE  
CSB  
Figure 29. Equivalent SENSE Circuit  
Figure 33. Equivalent CSB Input Circuit  
AVDD  
5Ω  
CLK+  
AVDD  
15kΩ  
0.9V  
AVDD  
15kΩ  
375Ω  
RBIAS  
AND VCM  
5Ω  
CLK–  
Figure 30. Equivalent Clock Input Circuit  
Figure 34. Equivalent RBIAS and VCM Circuit  
Rev. A | Page 16 of 32  
 
 
Data Sheet  
AD9266  
THEORY OF OPERATION  
high IF frequencies. Either a shunt capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter at the  
input to limit unwanted broadband noise. See the AN-742  
Application Note, the AN-827 Application Note, and the Analog  
Dialogue article “Transformer-Coupled Front-End for Wideband  
A/D Converters(Volume 39, April 2005) for more information. In  
general, the precise values depend on the application.  
The AD9266 architecture consists of a multistage, pipelined ADC.  
Each stage provides sufficient overlap to correct for flash errors in  
the preceding stage. The quantized outputs from each stage are  
combined into a final 16-bit result in the digital correction logic.  
The pipelined architecture permits the first stage to operate with  
a new input sample, whereas the remaining stages operate with  
preceding samples. Sampling occurs on the rising edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9266 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
a dc bias externally. Setting the device so that VCM = AVDD/2  
is recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 36.  
100  
The output staging block aligns the data, corrects errors, and  
passes the data to the CMOS output buffers. The output buffers  
are powered from a separate (DRVDD) supply, allowing adjust-  
ment of the output voltage swing. During power-down, the  
output buffers go into a high impedance state.  
95  
SFDR (dBc)  
90  
85  
ANALOG INPUT CONSIDERATIONS  
80  
SNR (dBFS)  
The analog input to the AD9266 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
75  
70  
65  
60  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 36. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 32.5 MHz, fS = 80 MSPS  
H
CPAR  
An on-board, common-mode voltage reference is included in  
the design and is available from the VCM pin. The VCM pin  
must be decoupled to ground by a 0.1 µF capacitor, as described  
in the Applications Information section.  
H
VIN+  
CSAMPLE  
S
S
S
S
CSAMPLE  
VIN–  
Differential Input Configurations  
H
CPAR  
Optimum performance is achieved while driving the AD9266 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC.  
H
Figure 35. Switched-Capacitor Input Circuit  
The clock signal alternately switches the input circuit between  
sample-and-hold mode (see Figure 35). When the input circuit  
is switched to sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current injected from the output  
stage of the driving source. In addition, low Q inductors or ferrite  
beads can be placed on each leg of the input to reduce high differ-  
ential capacitance at the analog inputs and, therefore, achieve  
the maximum bandwidth of the ADC. Such use of low Q inductors  
or ferrite beads is required when driving the converter front end at  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9266 (see Figure 37), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
200Ω  
33Ω  
VIN–  
VIN  
76.8Ω  
AVDD  
90Ω  
10pF  
33Ω  
ADC  
ADA4938-2  
0.1µF  
120Ω  
VCM  
VIN+  
200Ω  
Figure 37. Differential Input Configuration Using the ADA4938-2  
Rev. A | Page 17 of 32  
 
 
 
 
 
AD9266  
Data Sheet  
For baseband applications below ~10 MHz where SNR is a key  
parameter, differential transformer coupling is the recommended  
input configuration. An example is shown in Figure 38. To bias  
the analog input, the VCM voltage can be connected to the  
center tap of the secondary winding of the transformer.  
In any configuration, the value of Shunt Capacitor C is dependent  
on the input frequency and source impedance and may need to  
be reduced or removed. Table 9 displays the suggested values to set  
the RC network. However, these values are dependent on the  
input signal and should be used only as a starting guide.  
VIN+  
Table 9. Example RC Network  
R
2V p-p  
R Series  
(Ω Each)  
49.9Ω  
C
ADC  
Frequency Range (MHz)  
0 to 70  
C Differential (pF)  
R
VCM  
VIN–  
33  
22  
70 to 200  
125  
Open  
0.1µF  
Figure 38. Differential Transformer-Coupled Configuration  
Single-Ended Input Configuration  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
A single-ended input can provide adequate performance in  
cost-sensitive applications. In this configuration, SFDR and  
distortion performance degrade due to the large input common-  
mode swing. If the source impedances on each input are matched,  
there should be little effect on SNR performance. Figure 39  
shows a typical single-ended input configuration.  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9266. For applications above  
~10 MHz where SNR is a key parameter, differential double balun  
coupling is the recommended input configuration (see Figure 40).  
10µF  
AVDD  
1kΩ  
R
VIN+  
1V p-p  
0.1µF  
49.9Ω  
1kΩ  
AVDD  
ADC  
C
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use the AD8352 differential driver.  
An example is shown in Figure 41. See the AD8352 data sheet  
for more information.  
1kΩ  
R
VIN–  
10µF  
0.1µF  
1kΩ  
Figure 39. Single-Ended Input Configuration  
0.1µF  
0.1µF  
R
0.1µF  
VIN+  
2V p-p  
25Ω  
25Ω  
P
A
S
S
P
C
ADC  
0.1µF  
R
VCM  
VIN–  
Figure 40. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0Ω  
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+  
VIN–  
2
200Ω  
C
ADC  
AD8352  
10  
R
R
G
C
D
D
3
4
5
200Ω  
VCM  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 41. Differential Input Configuration Using the AD8352  
Rev. A | Page 18 of 32  
 
 
 
 
 
Data Sheet  
AD9266  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9266. The VREF can be configured using either the internal  
1.0 V reference or an externally applied 1.0 V reference voltage.  
The various reference modes are summarized in the sections that  
follow. The Reference Decoupling section describes the best  
practices for PCB layout of VREF.  
INTERNAL V  
= 0.995V  
REF  
Internal Reference Connection  
A comparator within the AD9266 detects the potential at the  
SENSE pin and configures the reference into two possible modes,  
which are summarized in Table 10. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 42), setting VREF to 1.0 V.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
LOAD CURRENT (mA)  
Figure 43. VREF Accuracy vs. Load Current  
VIN+  
VIN–  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 44 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
ADC  
CORE  
VREF  
4
1.0µF  
0.1µF  
SELECT  
LOGIC  
3
2
SENSE  
V
ERROR (mV)  
REF  
1
0
0.5V  
ADC  
–1  
–2  
–3  
–4  
–5  
–6  
Figure 42. Internal Reference Configuration  
If the internal reference of the AD9266 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 43 shows  
how the internal reference voltage is affected by loading.  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
Figure 44. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 28). The internal buffer generates the posi-  
tive and negative full-scale references for the ADC core. Therefore,  
the external reference must be limited to a maximum of 1.0 V.  
Table 10. Reference Configuration Summary  
Selected Mode  
SENSE Voltage (V) Resulting VREF (V)  
Resulting Differential Span (V p-p)  
Fixed Internal Reference  
Fixed External Reference  
AGND to 0.2  
AVDD  
1.0 internal  
1.0 applied to external VREF pin  
2.0  
2.0  
Rev. A | Page 19 of 32  
 
 
 
 
 
AD9266  
Data Sheet  
The back-to-back Schottky diodes across the transformer/  
balun secondary limit clock excursions into the AD9266 to  
approximately 0.8 V p-p differential.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9266 sample clock inputs,  
CLK+ and CLK−, with a differential signal. The signal is typically  
ac-coupled into the CLK+ and CLK− pins via a transformer or  
capacitors. These pins are biased internally (see Figure 45) and  
require no external bias.  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9266 while  
preserving the fast rise and fall times of the signal that are  
critical to a low jitter performance.  
AVDD  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 48. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer  
excellent jitter performance.  
0.9V  
CLK+  
CLK–  
2pF  
2pF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
Figure 45. Equivalent Clock Input Circuit  
AD951x  
PECL DRIVER  
100Ω  
ADC  
Clock Input Options  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
The AD9266 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of great concern, as described in the Jitter Considerations section.  
240Ω  
240Ω  
50kΩ  
50kΩ  
Figure 48. Differential PECL Sample Clock (Up to 625 MHz)  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 49. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517  
clock drivers offer excellent jitter performance.  
Figure 46 and Figure 47 show two preferred methods for clock-  
ing the AD9266 (at clock rates up to 625 MHz when using the  
internal clock divider). A low jitter clock source is converted from  
a single-ended signal to a differential signal using either an RF  
transformer or an RF balun.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
0.1µF  
XFMR  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLOCK  
INPUT  
CLK–  
100Ω  
50Ω  
50kΩ  
50kΩ  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
Figure 49. Differential LVDS Sample Clock (Up to 625 MHz)  
0.1µF  
HSMS2822  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 μF capacitor (see  
Figure 50).  
Figure 46. Transformer-Coupled Differential Clock (Up to 200 MHz)  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
V
CC  
CLK–  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
SCHOTTKY  
DIODES:  
HSMS2822  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
Figure 47. Balun-Coupled Differential Clock (Up to 625 MHz)  
CLK–  
0.1µF  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz.  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 50. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Rev. A | Page 20 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD9266  
Input Clock Divider  
Jitter Considerations  
The AD9266 contains an input clock divider with the ability  
to divide the input clock by integer values between 1 and 8.  
Optimum performance can be obtained by enabling the internal  
duty cycle stabilizer (DCS) when using divide ratios other than  
1, 2, or 4.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR from the low frequency  
SNR (SNRLF) at a given input frequency (fINPUT) due to jitter  
(tJRMS) can be calculated by  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
Clock Duty Cycle  
In the previous equation, the rms aperture jitter represents the  
clock input jitter specification. IF undersampling applications  
are particularly sensitive to jitter, as illustrated in Figure 52.  
80  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. Commonly, a 5% tolerance is  
required on the clock duty cycle to maintain dynamic  
performance characteristics.  
75  
70  
65  
0.05ps  
The AD9266 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9266. Noise and distortion perform-  
ance are nearly flat for a wide range of duty cycles with the DCS on,  
as shown in Figure 51.  
0.2ps  
60  
55  
50  
0.5ps  
1.0ps  
1.5ps  
80  
DCS OFF  
DCS ON  
2.0ps  
2.5ps  
79  
3.0ps  
45  
1
10  
100  
1k  
78  
77  
76  
75  
74  
73  
72  
71  
70  
FREQUENCY (MHz)  
Figure 52. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal when  
aperture jitter may affect the dynamic range of the AD9266. To  
avoid modulating the clock signal with digital noise, keep power  
supplies for clock drivers separate from the ADC output driver  
supplies. Low jitter, crystal-controlled oscillators make the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), it should be retimed by  
the original clock at the last step.  
30  
35  
40  
45  
50  
55  
60  
65  
70  
POSITIVE DUTY CYCLE (%)  
For more information, see the AN-501 Application Note and  
the AN-756 Application Note available at www.analog.com.  
Figure 51. SNR vs. DCS On/Off  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz nominally. The loop has a time constant associated  
with it that must be considered in applications in which the  
clock rate can change dynamically. A wait time of 1.5 µs to 5 µs  
is required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal.  
Rev. A | Page 21 of 32  
 
 
 
AD9266  
Data Sheet  
down mode and then must be recharged when returning to normal  
operation. As a result, wake-up time is related to the time spent  
in power-down mode, and shorter power-down cycles result in  
proportionally shorter wake-up times.  
POWER DISSIPATION AND STANDBY MODE  
As shown in Figure 53, the analog core power dissipated by the  
AD9266 is proportional to its sample rate. The digital power  
dissipation of the CMOS outputs are determined primarily by  
the strength of the digital drivers and the load on each output bit.  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details.  
The maximum DRVDD current (IDRVDD) can be calculated as  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (nine, in the case of the  
AD9266).  
DIGITAL OUTPUTS  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is estab-  
lished by the average number of output bits switching, which  
is determined by the sample rate and the characteristics of the  
analog input signal.  
The AD9266 output drivers can be configured to interface with  
1.8 V to 3.3 V CMOS logic families. Output data can also be  
multiplexed onto a single output bus to reduce the total number  
of traces required.  
The CMOS output drivers are sized to provide sufficient output  
current to drive a wide variety of logic families. However, large  
drive currents tend to cause current glitches on the supplies and  
may affect converter performance.  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 53 was  
taken using the same operating conditions as those used for the  
Typical Performance Characteristics, with a 5 pF load on each  
output driver.  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
The output data format can be selected to be either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 11).  
115  
AD9266-80  
105  
AD9266-65  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
95  
85  
Table 11. SCLK/DFS and SDIO/PDWN Mode Selection  
(External Pin Mode)  
75  
AD9266-40  
65  
Voltage at Pin SCLK/DFS  
SDIO/PDWN  
AD9266-20  
55  
AGND  
Offset binary (default) Normal operation  
(default)  
DRVDD  
Twos complement  
Outputs disabled  
45  
10  
20  
30  
40  
50  
60  
70  
80  
CLOCK RATE (MSPS)  
Digital Output Enable Function (OEB)  
Figure 53. Analog Core Power vs. Clock Rate  
When using the SPI interface, the data outputs and DCO can be  
independently three-stated by using the programmable external  
MODE pin. The MODE pin (OEB) function is enabled via Bits[6:5]  
of Register 0x08.  
In SPI mode, the AD9266 can be placed in power-down mode  
directly via the SPI port, or by using the programmable external  
MODE pin. In non-SPI mode, power-down is achieved by assert-  
ing the PDWN pin high. In this state, the ADC typically dissipates  
500 µW. D u r i n g p ow e r-down, the output drivers are placed in  
a high impedance state. Asserting PDWN low (or the MODE pin  
in SPI mode) returns the AD9266 to its normal operating mode.  
Note that PDWN is referenced to the digital output driver  
supply (DRVDD) and should not exceed that supply voltage.  
If the MODE pin is configured to operate in traditional OEB  
mode and the MODE pin is low, the output data drivers and  
DCOs are enabled. If the MODE pin is high, the output data  
drivers and DCOs are placed in a high impedance state. This  
OEB function is not intended for rapid access to the data bus.  
Note that the MODE pin is referenced to the digital output  
driver supply (DRVDD) and should not exceed that supply  
voltage.  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
Rev. A | Page 22 of 32  
 
 
 
 
Data Sheet  
AD9266  
The lowest typical conversion rate of the AD9266 is 3 MSPS. At  
clock rates below 3 MSPS, dynamic performance may degrade.  
TIMING  
The AD9266 provides latched data with a pipeline delay of  
eight clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
Data Clock Output (DCO)  
The AD9266 provides a data clock output (DCO) signal that is  
intended for capturing the data in an external register. The CMOS  
data outputs are valid on the rising edge of DCO, unless the DCO  
clock polarity has been changed via the SPI. See Figure 2 for  
a graphical timing description.  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9266. These  
transients can degrade converter dynamic performance.  
Table 12. Output Data Format  
Input (V)  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
Offset Binary Output Mode  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
Twos Complement Mode  
1000 0000 0000 0000  
1000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1111  
0111 1111 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
1
Rev. A | Page 23 of 32  
 
AD9266  
Data Sheet  
OUTPUT TEST  
The AD9266 includes various output test options to place  
predictable values on the outputs of the AD9266.  
not. The PN generators from the PN sequence tests can be reset  
by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be  
performed with or without an analog signal (if present, the analog  
signal is ignored), but they do require an encode clock. For more  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
OUTPUT TEST MODES  
The output test options are described in Table 16 at Address 0x0D.  
When an output test mode is enabled, the analog section of the  
ADC is disconnected from the digital back end blocks and the  
test pattern is run through the output formatting block. Some of  
the test patterns are subject to output formatting, and some are  
Rev. A | Page 24 of 32  
 
 
Data Sheet  
AD9266  
SERIAL PORT INTERFACE (SPI)  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 54 and  
Table 5.  
The AD9266 serial port interface (SPI) allows the user to con-  
figure the converter for specific functions or operations through  
a structured register space provided inside the ADC. The SPI gives  
the user added flexibility and customization, depending on the  
application. Addresses are accessed via the serial port and can  
be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are  
documented in the Memory Map section. For more detailed  
operational information, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Other modes involving the CSB pin are available. CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high,  
SPI functions are placed in high impedance mode. This mode  
turns on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits, as shown in Figure 54.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: SCLK, SDIO, and CSB  
(see Table 13). The SCLK (a serial clock) is used to synchronize  
the read and write data presented from and to the ADC. SDIO  
(serial data input/output) is a dual-purpose pin that allows data to  
be sent and read from the internal ADC memory map registers.  
The CSB (chip select bar) is an active-low control that enables  
or disables the read and write cycles.  
All data is composed of 8-bit words. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. This allows the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
Table 13. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this  
and other features, see the AN-877 Application Note, Interfacing  
to High Speed ADCs via SPI.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 54. Serial Port Interface Timing Diagram  
Rev. A | Page 25 of 32  
 
 
 
 
AD9266  
Data Sheet  
lines for the power-down and output data format feature control.  
In this mode, connect the CSB chip select to DRVDD, which  
disables the serial port interface.  
HARDWARE INTERFACE  
The pins described in Table 13 constitute the physical interface  
between the programming device of the user and the serial port  
of the AD9266. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
Table 14. Mode Selection  
External  
Pin  
SDIO/PDWN DRVDD  
AGND (default)  
DRVDD  
AGND (default)  
Voltage  
Configuration  
Chip power-down mode  
Normal operation (default)  
Twos complement enabled  
Offset binary enabled  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
SCLK/DFS  
SPI ACCESSIBLE FEATURES  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9266 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Table 15 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9266 part-specific features are described in  
detail in Table 16.  
Table 15. Features Accessible Using the SPI  
Feature  
Description  
Modes  
Allows the user to set either power-down mode  
or standby mode  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the converter  
offset  
Allows the user to set test modes to have known  
data on output bits  
SDIO/PDWN and SCLK/DFS serve a dual function when the  
SPI interface is not being used. When the pins are strapped to  
DRVDD or ground during device power-on, they are associated  
with a specific function. The Digital Outputs section describes  
the strappable functions supported on the AD9266.  
Clock  
Offset  
Test I/O  
CONFIGURATION WITHOUT THE SPI  
Output Mode  
Allows the user to set up outputs  
In applications that do not interface to the SPI control registers,  
the SDIO/PDWN pin and the SCLK/DFS pin serve as standalone  
CMOS-compatible control pins. When the device is powered up, it  
is assumed that the user intends to use the pins as static control  
Output Phase Allows the user to set the output clock polarity  
Output Delay Allows the user to vary the DCO delay  
Rev. A | Page 26 of 32  
 
 
 
 
 
Data Sheet  
AD9266  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
DEFAULT VALUES  
Each row in the memory map register table (see Table 16)  
contains eight bit locations. The memory map is roughly  
divided into four sections: the chip configuration registers  
(Address 0x00 to Address 0x02); the device index and transfer  
register (Address 0xFF); the program registers, including setup,  
control, and test (Address 0x08 to Address 0x2A); and the  
AD9266-specific customer SPI control register (Address 0x101).  
After the AD9266 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table (see Table 16).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Table 16 documents the default hexadecimal value for each hexa-  
decimal address shown. The column with the heading Bit 7 (MSB)  
is the start of the default hexadecimal value given. For example,  
Address 0x2A, the OR/MODE select register, has a hexadecimal  
default value of 0x01. This means that in Address 0x2A,  
Bits[7:1] = 0, and Bit 0 = 1. This setting is the default OR/MODE  
setting. The default value results in the programmable external  
MODE/OR pin (Pin 23) functioning as an out-of-range digital  
output. For more information on this function and others, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
This application note details the functions controlled by Register  
0x00 to Register 0xFF. The remaining register, Register 0x101, is  
documented in the Memory Map Register Descriptions section  
that follows Table 16.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and then the bit autoclears.  
OPEN LOCATIONS  
All address and bit locations that are not included in the SPI map  
are not currently supported for this device. Unused bits of a valid  
address location should be written with 0s. Writing to these loca-  
tions is required only when part of an address location is open  
(for example, Address 0x2A). If the entire address location is  
open, it is omitted from the SPI map (for example, Address 0x13)  
and should not be written.  
Rev. A | Page 27 of 32  
 
 
 
 
AD9266  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 16 are not currently supported for this device.  
Table 16.  
Default  
Value  
(Hex)  
Addr  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
(Hex) Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0
LSB  
first  
Soft  
reset  
1
1
Soft  
reset  
LSB first  
0
0x18  
The nibbles are  
mirrored so that  
LSB- or MSB-first  
mode registers  
correctly, regardless  
of shift mode.  
0x01  
0x02  
Chip ID  
8-bit chip ID, Bits[7:0]  
AD9266 = 0x78  
Read  
only  
Unique chip ID  
used to differentiate  
devices; read only.  
Chip grade  
Open  
Speed grade ID, Bits[6:4] (identify  
device variants of chip ID)  
20 MSPS = 000  
Open  
Read  
only  
Unique speed  
grade ID used  
to differentiate  
devices; read only.  
40 MSPS = 001  
65 MSPS = 010  
80 MSPS = 011  
Device Index and Transfer Register  
0xFF Transfer  
Open  
Transfer  
0x00  
0x00  
Synchronously  
transfers data from  
the master shift  
register to the slave.  
Program Registers  
0x08  
Modes  
External  
External Pin 23  
function when high  
00 = full power-  
down  
Open  
00 = chip run  
01 = full power-down  
10 = standby  
11 = chip wide digital  
reset  
Determines various  
generic modes of  
chip operation.  
Pin 23 mode  
input enable  
01 = standby  
10 = normal mode:  
output disabled  
11 = normal mode:  
output enabled  
0x09  
0x0B  
Clock  
Open  
Duty cycle  
stabilize  
0x01  
0x00  
Enable internal  
duty cycle stabilizer  
(DCS).  
Clock divide  
Open  
Clock divider, Bits[2:0]  
The divide ratio is  
the value plus 1.  
Clock divide ratio:  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
0x0D  
Test mode  
User test mode  
00 = single  
01 = alternate  
10 = single once  
11 = alternate once  
Reset PN  
long gen  
Reset PN  
short gen  
Output test mode, Bits[3:0] (local)  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0x00  
When set, the test  
data is placed on  
the output pins in  
place of normal data.  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = 1/0 word toggle  
1000 = user input  
1001 = 1/0 bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x10  
0x14  
Offset adjust  
Output mode  
8-bit device offset adjustment, Bits[7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x00  
Device offset trim.  
00 = 3.3 V CMOS  
10 = 1.8 V CMOS  
Open  
Output  
disable  
Open  
Output  
invert  
00 = offset binary  
01 = twos complement  
10 = gray code  
Configures the  
outputs and the  
format of the data.  
11 = offset binary  
Rev. A | Page 28 of 32  
 
 
Data Sheet  
AD9266  
Default  
Value  
(Hex)  
Addr  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
(Hex) Register Name  
Bit 6  
3.3 V DCO  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
3.3 V data  
Bit 1  
Comments  
0x15  
Output adjust  
1.8 V DCO  
1.8 V data drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes (default)  
11 = 4 stripes  
0x22  
Determines CMOS  
output drive  
strength properties.  
drive strength  
00 = 1 stripe (default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes (default)  
11 = 4 stripes  
drive strength  
00 = 1 stripe (default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
0x16  
Output phase  
DCO output  
polarity  
0 = normal  
1 = inverted  
Open  
Input clock phase adjust, Bits[2:0]  
(Value is number of input clock  
cycles of phase delay)  
0x00  
On devices that use  
global clock divide,  
determines which  
phase of the divider  
output is used to  
supply the output  
clock; internal  
000 = no delay  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
latching is  
unaffected.  
0x17  
Output delay  
Enable DCO  
delay  
Open  
Enable  
data  
delay  
Open  
DCO/data delay[2:0] (typical values)  
000 = 0.56 ns  
0x00  
Sets the fine  
output delay of the  
output clock but  
does not change  
internal timing.  
(Typical values)  
001 = 1.12 ns  
010 = 1.68 ns  
011 = 2.24 ns  
100 = 2.80 ns  
101 = 3.36 ns  
110 = 3.92 ns  
111 = 4.48 ns  
0x19  
0x1A  
0x1B  
0x1C  
0x2A  
USER_PATT1_LSB B7  
USER_PATT1_MSB B15  
USER_PATT2_LSB B7  
USER_PATT2_MSB B15  
OR/MODE select  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
0x01  
User-defined  
pattern, 1 LSB.  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User-defined  
pattern, 1 MSB.  
User-defined  
pattern, 2 LSB.  
B14  
B13  
B12  
B11  
B10  
User-defined  
pattern, 2 MSB.  
Open  
0 = MODE  
1 = OR  
(default)  
Selects I/O  
functionality in  
conjunction with  
Address 0x08 for  
MODE (input) or  
OR (output) on  
External Pin 23.  
AD9266-Specific Customer SPI Control Register  
0x10  
1
USR2  
Open  
Enable  
GCLK  
detect  
Run  
GCLK  
Open  
Disable  
SDIO pull-  
down  
0x08  
Enables internal  
oscillator for clock  
rates of <5 MHz.  
Rev. A | Page 29 of 32  
AD9266  
Data Sheet  
Bit 2—Run GCLK  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions that are controlled  
in Register 0x00 to Register 0xFF, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI at www.analog.com.  
This bit enables the GCLK oscillator. For some applications  
with encode rates below 10 MSPS, it may be preferable to set  
this bit high to supersede the GCLK detector.  
USR2 (Register 0x101)  
Bit 0—Disable SDIO Pull-Down  
Bit 3—Enable GCLK Detect  
This bit can be set high to disable the internal 30 kΩ pull-down  
on the SDIO pin, which can be used to limit the loading when  
many devices are connected to the SPI bus.  
Normally set high, this bit enables a circuit that detects encode  
rates below about 5 MSPS. When a low encode rate is detected,  
an internal oscillator, GCLK, is enabled, ensuring the proper  
operation of several circuits. If set low, the detector is disabled.  
Rev. A | Page 30 of 32  
 
Data Sheet  
AD9266  
APPLICATIONS INFORMATION  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP) at www.analog.com.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9266 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9266, it is strongly recom-  
mended that two separate supplies be used. Use one 1.8 V supply  
for analog (AVDD); use a separate 1.8 V to 3.3 V supply for the  
digital output supply (DRVDD). If a common 1.8 V AVDD and  
DRVDD supply must be used, the AVDD and DRVDD domains  
must be isolated with a ferrite bead or filter choke and separate  
decoupling capacitors. Several different decoupling capacitors  
can be used to cover both high and low frequencies. Locate  
these capacitors close to the point of entry at the PCB level  
and close to the pins of the part, with minimal trace length.  
Encode Clock  
For optimum dynamic performance, a low jitter encode clock  
source with a 50% duty cycle 5% should be used to clock the  
AD9266.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 38.  
A single PCB ground plane should be sufficient when using the  
AD9266. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
RBIAS  
The AD9266 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
Exposed Paddle Thermal Heat Sink Recommendations  
The exposed paddle (Pin 0) is the only ground connection for  
the AD9266; therefore, it must be connected to analog ground  
(AGND) on the customers PCB. To achieve the best electrical  
and thermal performance, mate an exposed (no solder mask)  
continuous copper plane on the PCB to the AD9266 exposed  
paddle, Pin 0.  
Reference Decoupling  
Externally decouple the VREF pin to ground with a low ESR,  
1.0 μF capacitor in parallel with a low ESR, 0.1 μF ceramic  
capacitor.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9266 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
The copper plane should have several vias to achieve the  
lowest possible resistive thermal path for heat dissipation to  
flow through the bottom of the PCB. Fill or plug these vias  
with nonconductive epoxy.  
Rev. A | Page 31 of 32  
 
 
 
AD9266  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 55. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad (CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
–40°C to +85°C  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
AD9266BCPZ-80  
AD9266BCPZRL7-80  
AD9266BCPZ-65  
AD9266BCPZRL7-65  
AD9266BCPZ-40  
AD9266BCPZRL7-40  
AD9266BCPZ-20  
AD9266BCPZRL7-20  
AD9266-80EBZ  
AD9266-65EBZ  
AD9266-40EBZ  
AD9266-20EBZ  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Evaluation Board  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2010–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08678-0-6/12(A)  
Rev. A | Page 32 of 32  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY