AD9267BCPZ [ADI]

10 MHz Bandwidth, 640 MSPS Dual Continuous Time Sigma-Delta Modulator; 10 MHz带宽, 640 MSPS双通道连续时间Σ -Δ调制器
AD9267BCPZ
型号: AD9267BCPZ
厂家: ADI    ADI
描述:

10 MHz Bandwidth, 640 MSPS Dual Continuous Time Sigma-Delta Modulator
10 MHz带宽, 640 MSPS双通道连续时间Σ -Δ调制器

文件: 总24页 (文件大小:524K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10 MHz Bandwidth, 640 MSPS  
Dual Continuous Time Sigma-Delta Modulator  
AD9267  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
AVDD PDWNB  
PDWNA  
DRVDD  
SNR: 83 dB (85 dBFS) to 10 MHz input  
SFDR: −88 dBc to 10 MHz input  
Noise figure: 15 dB  
Input impedance: 1 kΩ  
Power: 416 mW  
10 MHz real or 20 MHz complex bandwidth  
1.8 V analog supply operation  
On-chip PLL clock multiplier  
On-chip voltage reference  
Twos complement data format  
640 MSPS, 4-bit LVDS data output  
Serial control interface (SPI)  
OR±A  
D3±A  
VIN+A  
VIN–A  
Σ-Δ  
MODULATOR  
D0±A  
PLL_LOCKED  
PLLMULT4  
PLLMULT3  
PLLMULT2  
AD9267  
CLK+  
CLK–  
PHASE-  
LOCKED  
LOOP  
VREF  
CFILT  
DCO±  
D3±B  
VIN–B  
VIN+B  
Σ-Δ  
MODULATOR  
D0±B  
OR±B  
APPLICATIONS  
SERIAL  
INTERFACE  
Baseband quadrature receivers: CDMA2000, W-CDMA,  
multicarrier GSM/EDGE, 802.16x, and LTE  
Quadrature sampling instrumentation  
AGND  
SDIO/  
SCLK/  
CSB DGND  
PLLMULT1 PLLMULT0  
GENERAL DESCRIPTION  
Figure 1.  
The AD9267 is a dual continuous time (CT) sigma-delta (Σ-Δ)  
modulator with −88 dBc of dynamic range over 10 MHz real  
or 20 MHz complex bandwidth. The combination of high  
dynamic range, wide bandwidth, and characteristics unique  
to the continuous time Σ-Δ modulator architecture makes the  
AD9267 an ideal solution for wireless communication systems.  
The AD9267 operates on a 1.8 V power supply, consuming  
416 mW. The AD9267 is available in a 64-lead LFCSP and  
is specified over the industrial temperature range (−40°C  
to +85°C).  
PRODUCT HIGHLIGHTS  
1. Continuous time Σ-Δ architecture efficiently achieves high  
dynamic range and wide bandwidth.  
2. Passive input structure reduces or eliminates the require-  
ments for a driver amplifier.  
3. An oversampling ratio of 32× and high order loop filter  
provide excellent alias rejection, reducing or eliminating  
the need for antialiasing filters.  
4. Operates from a single 1.8 V power supply.  
5. A standard serial port interface (SPI) supports various  
product features and functions.  
The AD9267 has a resistive input impedance that significantly  
relaxes the requirements of the driver amplifier. In addition, a  
32× oversampled fifth-order continuous time loop filter attenuates  
out-of-band signals and aliases, reducing the need for external  
filters at the input. The low noise figure of 15 dB relaxes the  
linearity requirements of the front-end signal chain components,  
and the high dynamic range reduces the need for an automatic  
gain control (AGC) loop.  
A differential input clock controls all internal conversion cycles.  
An external clock input or the integrated integer-N PLL provides  
the 640 MHz internal clock needed for the oversampled conti-  
nuous time Σ-Δ modulator. The digital output data is presented  
as 4-bit, LVDS at 640 MSPS in twos complement format. A data  
clock output (DCO) is provided to ensure proper latch timing  
with receiving logic. Additional digital signal processing may be  
required on the 4-bit modulator output to remove the out-of-band  
noise and to reduce the sample rate.  
6. Features a low pin count, high speed LVDS interface with  
data output clock.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9267  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Equivalent Circuits......................................................................... 12  
Theory of Operation ...................................................................... 13  
Analog Input Considerations ................................................... 13  
Clock Input Considerations...................................................... 14  
Power Dissipation and Standby Mode .................................... 17  
Digital Outputs ........................................................................... 17  
Timing ......................................................................................... 18  
Serial Port Interface (SPI).............................................................. 19  
Configuration Using the SPI..................................................... 19  
Hardware Interface..................................................................... 20  
Applications Information.............................................................. 21  
Filtering Requirement................................................................ 21  
Memory Map .................................................................................. 23  
Memory Map Definitions ......................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
REVISION HISTORY  
7/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD9267  
SPECIFICATIONS  
DC SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, AIN1 = −2.0 dBFS, unless otherwise noted.  
Table 1.  
Parameter  
Temp  
Min  
Typ  
16  
Max  
Unit  
Bits  
RESOLUTION  
Full  
ANALOG INPUT BANDWIDTH  
ACCURACY  
10  
MHz  
No Missing Codes  
Offset Error  
Gain Error  
Integral Nonlinearity (INL)2  
MATCHING CHARACTERISTIC  
Offset Error  
Full  
Full  
Full  
2ꢀ°C  
Guaranteed  
0.02ꢀ  
0.ꢁ  
0.2  
2.ꢀ  
% FSR  
% FSR  
LSB  
1.ꢀ  
Full  
Full  
0.03ꢀ  
0.2  
0.2  
1.2  
% FSR  
% FSR  
Gain Error  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
Full  
1.ꢀ  
4ꢁ  
ppm/°C  
ppm/°C  
mV  
INTERNAL VOLTAGE REFERENCE  
ANALOG INPUT  
Input Span, VREF = 0.ꢀ V  
Input Resistance  
Input Common Mode  
POWER SUPPLIES  
Supply Voltage  
AVDD  
496  
1.ꢁ  
ꢀ00  
ꢀ0ꢀ  
1.9  
Full  
Full  
Full  
2
1
V p-p diff  
kΩ  
V
1.8  
Full  
Full  
Full  
Full  
1.ꢁ  
1.ꢁ  
1.ꢁ  
1.ꢁ  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
1.9  
V
V
V
V
CVDD  
DVDD  
DRVDD  
Supply Current  
IAVDD2, PLL Enabled  
IAVDD2, PLL Disabled  
ICVDD2, PLL Enabled  
ICVDD2, PLL Disabled  
Full  
Full  
Full  
Full  
Full  
Full  
1ꢀ0.ꢁ  
1ꢀ1.2  
ꢀꢁ  
8
ꢁ1.ꢀ  
0.26  
162  
161  
63  
9.2  
ꢁ8  
mA  
mA  
mA  
mA  
mA  
mA  
2
IDVDD  
2
IDRVDD  
0.3  
POWER CONSUMPTION  
Sine Wave Input2, PLL Disabled  
Sine Wave Input, PLL Enabled  
Power-Down Power  
Standby Power  
Sleep Power  
Full  
Full  
2ꢀ°C  
2ꢀ°C  
Full  
416  
ꢀ03  
110  
9
mW  
mW  
mW  
mW  
mW  
3
4
1 Input power is referenced to full scale. Therefore, all measurements were taken with a 2 dB signal below full scale, unless otherwise noted.  
2 Measured with a low input frequency, full-scale sine wave with approximately ꢀ pF loading on each output bit.  
Rev. 0 | Page 3 of 24  
 
 
 
AD9267  
AC SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, AIN1 = −2.0 dBFS, unless otherwise noted.  
Table 2.  
Parameter2  
Temp  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 2.4 MHz  
fIN = 4.2 MHz  
fIN = 8.4 MHz  
Full  
2ꢀ°C  
2ꢀ°C  
81  
83  
83  
83  
dB  
dB  
dB  
SPURIOUS-FREE DYNAMIC RANGE (WORST SECOND OR THIRD HARMONIC)3  
fIN = 2.4 MHz  
fIN = 4.2 MHz  
fIN = 8.4 MHz  
Full  
2ꢀ°C  
2ꢀ°C  
−88  
−88  
<−120  
−80  
dBc  
dBc  
dBc  
NOISE SPECTRAL DENSITY  
AIN = −2 dBFS  
AIN = −40 dBFS  
Full  
Full  
−1ꢀꢀ  
−1ꢀ6  
−1ꢀ3  
−1ꢀꢀ  
dBFS/Hz  
dBFS/Hz  
NOISE FIGURE2, 4  
AIN = −2 dBFS  
AIN = −40 dBFS  
2ꢀ°C  
2ꢀ°C  
16  
1ꢀ  
dB  
dB  
TWO-TONE SFDR  
fIN1 = 1.8 MHz @ −8 dBFS, fIN2 = 2.1 MHz @ −8 dBFS  
fIN1 = 3.ꢁ MHz @ −8 dBFS, fIN2 = 4.2 MHz @ −8 dBFS  
fIN1 = ꢁ.2 MHz @ −8 dBFS, fIN2 = 8.4 MHz @ −8 dBFS  
ANALOG INPUT BANDWIDTH  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
−89.ꢀ  
−93  
−8ꢁ  
dBc  
dBc  
dBc  
MHz  
10  
1 Input power is referenced to full scale. Therefore, all measurements were taken with a 2 dB signal below full scale, unless otherwise noted.  
2 See the AN-83ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
3 Spurious-free dynamic range excluding the second or third harmonic is limited by the FFT size, <−120 dBFS.  
4 Noise figure with respect to ꢀ0 Ω. AD926ꢁ internal impedance is 1000 Ω differential. See the AN-83ꢀ for a definition.  
Rev. 0 | Page 4 of 24  
 
 
 
 
AD9267  
DIGITAL SPECIFICATIONS  
All power supplies set to 1.8 V, 640 MHz sample rate, 2 V p-p differential input, 0.5 V internal reference, PLL disabled, AIN = −2.0 dBFS,  
unless otherwise noted.  
Table 3.  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS1/LVDS/LVPECL  
Differential Input Voltage  
Input Common-Mode Range  
Full  
Full  
Full  
Full  
Full  
Full  
0.4  
0.8  
4ꢀ0  
2
V p-p  
mV  
μA  
μA  
kΩ diff  
pF  
High Level Input Current  
Low Level Input Current  
Input Resistance  
−60  
−60  
+60  
+60  
20  
1
Input Capacitance  
LOGIC INPUTS (SCLK)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−ꢀ0  
−10  
DRVDD + 0.3  
0.8  
−ꢁꢀ  
+10  
V
V
μA  
μA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (SDIO, CSB, RESET)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
+40  
DRVDD + 0.3  
0.8  
+10  
V
V
μA  
μA  
kΩ  
pF  
+13ꢀ  
26  
Input Capacitance  
DIGITAL OUTPUTS (D0 x to D3 x)  
ANSI-644  
Logic Compliance  
LVDS  
Differential Output Voltage (VOD  
)
Full  
Full  
24ꢁ  
1.12ꢀ  
4ꢀ4  
1.3ꢁꢀ  
mV  
V
Output Offset Voltage (VOS  
)
Output Coding (Default)  
Low Power, Reduced Signal Option  
Logic Compliance  
Twos complement  
LVDS  
Differential Output Voltage (VOD  
)
Full  
Full  
1ꢀ0  
1.10  
2ꢀ0  
1.30  
mV  
V
Output Offset Voltage (VOS  
)
Output Coding (Default)  
Twos complement  
1 For voltage swings beyond the specified range, clamping diodes are recommended.  
Rev. 0 | Page ꢀ of 24  
 
 
AD9267  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, unless otherwise noted.  
Table 4.  
Parameter1  
Conditions/Comments  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUT PARAMETERS  
Input CLK Rate  
Using clock multiplier  
Full  
Full  
Full  
30  
6.2ꢀ  
40  
160  
33.3  
60  
MSPS  
ns  
CLK Period  
CLK Duty Cycle  
ꢀ0  
%
CLOCK INPUT PARAMETERS  
Conversion Rate  
CLK Period  
Direct clocking  
Full  
Full  
Full  
608  
1.48  
40  
640  
1.ꢀ62ꢀ  
ꢀ0  
6ꢁ2  
1.ꢁ2  
60  
MSPS  
ns  
%
CLK Duty Cycle  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD  
DCO Propagation Delay (tDCO  
2
)
Full  
Full  
Full  
Full  
160  
-60  
180  
ꢀ10  
268  
200  
1
840  
ꢀꢁ0  
280  
ps  
)
ps  
Ps  
DCO to Data Skew (tSKEW  
)
Aperture Uncertainty (Jitter, tJ)  
WAKE-UP TIME  
ps rms  
Power-Down Power  
Standby Power  
Sleep Power  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
3
9
1ꢀ  
100  
Μs  
ꢂs  
ꢂs  
ns  
OUT-OF-RANGE RECOVERY TIME  
SERIAL PORT INTERFACE3  
SCLK Period (tSCLK  
SCLK Pulse Width High Time (tSHIGH  
SCLK Pulse Width Low Time (tSLOW  
SDIO to SCLK Set-Up Time (tSDS  
SDIO to SCLK Hold Time (tSDH  
CSB to SCLK Set-Up Time (tSS)  
CSB to SCLK Hold Time (tSH  
)
Full  
Full  
Full  
Full  
Full  
Full  
Full  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
16  
16  
)
)
)
2
2
)
1 See the AN-83ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Output propagation delay is measured from CLK ꢀ0% transition to data D0 x to D3 x ꢀ0% transition, with ꢀ pF load.  
3 See Figure 42 and the Serial Port Interface (SPI) section.  
Timing Diagram  
CLK±  
tDCO  
DCO±  
tSKEW  
tPD  
D0±x TO D3±x  
Figure 2. Timing Diagram  
Rev. 0 | Page 6 of 24  
 
 
 
AD9267  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DVDD to DGND  
DRVDD to DGND  
AGND to DGND  
AVDD to DRVDD  
CVDD to CGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−3.9 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +0.3 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +3.9 V  
−0.3 V to +2.ꢀ V  
−0.3 V to +2.0 V  
THERMAL RESISTANCE  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints, maximizing the  
thermal capability of the package.  
CGND to DGND  
D0 A to D3 A to DGND  
D0 B to D3 B to DGND  
DCO to DGND  
OR A, OR B to DGND  
PDWNA to DGND  
PDWNB to DGND  
PLLMULTx to DGND  
SDIO to DGND  
CSB to AGND  
SCLK to AGND  
VIN A, VIN B to AGND  
CLK+, CLK− to CGND  
Environmental  
Typical θJA and θJC are specified for a 4-layer board in still air.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, metal in direct contact with the package leads from  
metal traces, through holes, ground, and power planes reduces  
the θJA.  
Table 6. Thermal Resistance  
Package Type  
θJA  
Unit  
64-Lead LFCSP (CP-64-4)  
22  
°C/W  
Storage Temperature Range  
Operating Temperature Range  
−6ꢀ°C to +12ꢀ°C  
−40°C to +8ꢀ°C  
ESD CAUTION  
Lead Temperature (Soldering, 10 sec) 300°C  
Junction Temperature 1ꢀ0°C  
Rev. 0 | Page ꢁ of 24  
 
 
 
AD9267  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CLK–  
CVDD  
PDWNA  
PDWNB  
PLL_LOCKED  
DVDD  
1
2
3
4
5
6
7
8
9
48 SCLK/PLLMULT0  
47 SDIO/PLLMULT1  
46 PLLMULT2  
45 PLLMULT3  
44 PLLMULT4  
43 DVDD  
42 DGND  
41 DRVDD  
40 D3+A  
39 D3–A  
38 D2+A  
37 D2–A  
36 D1+A  
AD9267  
DGND  
DRVDD  
D0–B  
D0+B 10  
D1–B 11  
D1+B 12  
D2–B 13  
D2+B 14  
D3–B 15  
D3+B 16  
TOP VIEW  
(Not to Scale)  
35 D1–A  
34 D0+A  
33 D0–A  
NOTES  
1. DNC = DO NOT CONNECT.  
2. THE EXPOSED PAD MUST BE SOLDERED TO THE GROUND PLANE FOR THE  
LFCSP PACKAGE. SOLDERING THE EXPOSED PADDLE TO THE PCB  
INCREASES THE RELIABILITY OF THE SOLDER JOINTS, MAXIMIZING  
THE THERMAL CAPACITY OF THE PACKAGE.  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
CLK−  
Differential Clock Input (−).  
2
CVDD  
Clock Supply (1.8 V).  
3, 4  
PDWNA, PDWNB  
PLL_LOCKED  
DVDD  
DGND  
DRVDD  
D0−B, D0+B to D3−B, D3+B  
OR−B, OR+B  
DCO−, DCO+  
Power-Down Pins. Active high.  
PLL Lock Indicator.  
Digital Supply (1.8 V).  
6, 2ꢀ, 43  
ꢁ, 24, 42  
8, 23, 41  
9 to 16  
1ꢁ, 18  
19, 20  
Digital Ground.  
Digital Output Driver Supply  
Channel B Differential LVDS Data Output Bits. D0+B is the LSB and D3+B is the MSB.  
Channel B Overrange Indicator Pins.  
Differential Data Clock Output.  
Do Not Connect.  
21, 22, 26 to 30 DNC  
31, 32  
33 to 40  
44, 4ꢀ, 46  
4ꢁ  
48  
49  
OR−A, OR+A  
D0−A, D0+A to D3−A, D3+A  
PLLMULT4, PLLMULT3, PLLMULT2  
SDIO/PLLMULT1  
SCLK/PLLMULT0  
CSB  
Channel A Overrange Indicator Pins.  
Channel A Differential LVDS Data Output Bits. D0+A is the LSB and D3+A is the MSB.  
PLL Mode Selection Pins.  
Serial Port Interface Data Input/Output/PLL Mode Selection Pins.  
Serial Port Interface Clock/PLL Mode Selection Pins.  
Serial Port Interface Chip Select Pin Active Low.  
Chip Reset.  
ꢀ0  
RESET  
ꢀ1, 62  
ꢀ2, ꢀꢀ, ꢀ8, 61  
ꢀ3, ꢀ4  
ꢀ6  
AGND  
AVDD  
VIN+A, VIN−A  
VREF  
Analog Ground.  
Analog Supply (1.8 V).  
Channel A Analog Input.  
Voltage Reference Input.  
ꢀꢁ  
ꢀ9, 60  
63  
CFILT  
VIN+B, VIN−B  
CGND  
Noise Limiting Filter Capacitor.  
Channel B Analog Input.  
Clock Ground.  
64  
CLK+  
Differential Clock Input (+).  
6ꢀ  
Exposed paddle (EPAD)  
Analog Ground. (Pin 6ꢀ is the exposed thermal pad on the bottom of the package.) The  
exposed paddle must be soldered to analog ground of the PCB to achieve optimal electrical  
and thermal performance.  
Rev. 0 | Page 8 of 24  
 
AD9267  
TYPICAL PERFORMANCE CHARACTERISTICS  
All power supplies set to 1.8 V, 640 MHz sample rate, 0.5 V internal reference, PLL disabled, AIN = −2.0 dBFS, TA = 25°C, unless  
otherwise noted. The output spectrums shown in Figure 4 through Figure 9 were obtained after 16× decimation at the output of the AD9267  
and are shown for a 10 MHz bandwidth.  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Single-Tone FFT with fIN = 2.4 MHz  
Figure 7. Two-Tone FFT with fIN1 = 2.1 MHz, fIN2= 2.4 MHz  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Single-Tone FFT with fIN = 4.2 MHz  
Figure 8. Two-Tone FFT with fIN1 = 3.6 MHz, fIN2 = 4.2 MHz  
0
–10  
0
–10  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–100  
–110  
–120  
–130  
–140  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. Two-Tone FFT with fIN1 = 7.2 MHz, fIN2 = 8.4 MHz  
Figure 6. Single-Tone FFT with fIN = 8.4 MHz  
Rev. 0 | Page 9 of 24  
 
 
 
AD9267  
–50  
84.0  
83.8  
83.6  
83.4  
83.2  
83.0  
82.8  
82.6  
82.4  
82.2  
82.0  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
50  
100  
150  
200  
250  
300  
0
1
2
3
4
5
6
7
8
9
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Noise Transfer Function (NTF)  
Figure 13. Single-Tone SNR vs. Input Frequency  
84.0  
83.8  
83.6  
83.4  
83.2  
83.0  
82.8  
82.6  
82.4  
82.2  
82.0  
120  
100  
80  
60  
40  
20  
0
SFDR  
(dBFS)  
SNR  
(dBFS)  
SFDR  
(dBc)  
SNR  
(dB)  
1.70  
1.75  
1.80  
1.85  
1.90  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
INPUT AMPLITUDE (dBFS)  
COMMON-MODE VOLTAGE (V)  
Figure 14. SNR vs. Input Common-Mode Voltage  
Figure 11. Single-Tone SNR and SFDR vs. Input Amplitude with fIN = 2.4 MHz  
83.4  
91  
90  
83.2  
83.0  
82.8  
82.6  
82.4  
82.2  
82.0  
81.8  
89  
1.9V  
1.8V  
1.7V  
1.9V  
88  
87  
1.8V  
86  
85  
1.7V  
84  
83  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. SNR vs. Temperature  
Figure 12. SFDR vs. Temperature  
Rev. 0 | Page 10 of 24  
AD9267  
–40  
–50  
84  
83  
82  
81  
80  
79  
78  
2.4MHz  
8.4MHz  
–60  
SFDR (dBc)  
–70  
–80  
–90  
SFDR (dBFS)  
–100  
–110  
–120  
4.0  
5.0  
7.0  
6.0  
8.0  
9.0  
10.5 12.5 15.0 17.0  
–60  
–50  
–40  
–30  
–20  
–10  
4.5  
7.5  
8.5  
10.0 12.0 14.0 16.0 21.0  
INPUT AMPLITUDE (dBFS)  
PLL DIVIDE RATIO  
Figure 16. Two-Tone SFDR vs. Input Amplitude with  
fIN1 = 2.1 MHz, fIN2 = 2.4 MHz  
Figure 18. Single-Tone SNR vs. PLL Divide Ratio with  
fIN1 = 2.4 MHz, fIN2 = 8.4 MHz  
–40  
–50  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–60  
SFDR (dBc)  
–70  
–80  
–90  
–100  
–110  
–120  
SFDR (dBFS)  
–60  
–50  
–40  
–30  
–20  
–10  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
OUTPUT CODE  
INPUT AMPLITUDE (dBFS)  
Figure 19. INL with fIN = 2.4 MHz  
Figure 17. Two-Tone SFDR vs. Input Amplitude with  
fIN1 = 7.2 MHz, fIN2 = 8.4 MHz  
Rev. 0 | Page 11 of 24  
 
AD9267  
EQUIVALENT CIRCUITS  
1k  
SCLK  
30kΩ  
500  
2V p-p DIFFERENTIAL  
1.8V CM  
500Ω  
Figure 20. Equivalent Analog Input Circuit  
Figure 23. Equivalent SCLK Input Circuit  
CVDD  
AVDD  
26k  
1kΩ  
CSB  
CLK+  
CVDD  
CLK–  
10kΩ  
90kΩ  
10kΩ  
30kΩ  
Figure 21. Equivalent Clock Input Circuit  
Figure 24. Equivalent CSB Input Circuit  
DRVDD  
V
V
D–  
D+  
DRVDD  
V
V
1k  
SDIO  
DGND  
NOTES  
1. D– AND D+ REFERS TO  
THE D0±x TO D3±x PINS.  
Figure 22. Equivalent SDIO Input Circuit  
Figure 25. Equivalent Digital Output Circuit  
2.85k  
8.5kΩ  
10kΩ  
0.5V  
3.5kΩ  
10µF  
TO CURRENT  
GENERATOR  
Figure 26. Equivalent VREF Circuit  
Rev. 0 | Page 12 of 24  
 
 
AD9267  
THEORY OF OPERATION  
The AD9267 uses a continuous time Σ-Δ modulator to convert  
the analog input to a digital word. The modulator consists of a  
continuous time loop filter preceding a quantizer (see Figure 27),  
which samples at fMOD = 640 MSPS. This produces an oversam-  
pling ratio (OSR) of 32 for a 10 MHz input bandwidth. The output  
of the quantizer is fed back to a DAC that ideally cancels the  
input signal. The incomplete input cancellation residue is filtered  
by the loop filter and is used to form the next quantizer sample.  
MODULATOR  
In contrast, the continuous time Σ-Δ modulator used within the  
AD9267 has inherent antialiasing. The antialiasing property  
results from sampling occurring at the output of the loop filter  
(see Figure 31), and thus aliasing occurs at the same point in the  
loop as quantization noise is injected; aliases are shaped by the  
same mechanism as quantization noise. The quantization noise  
transfer function, NTF(f), has zeros in the band of interest and  
in all alias bands because NTF(f) is a discrete time transfer  
function, whereas the loop filter transfer function, LF(f),  
introduces poles only in the band of interest because LF(f) is a  
continuous time transfer function. The signal transfer function,  
being the product of NTF(f) and LF(f), only has zeros in all  
alias bands and therefore suppresses all aliases.  
LOOP FILTER  
QUANTIZER  
+
ADC  
H(f)  
LF(f)  
LOOP FILTER  
INPUT  
LF(f)  
Figure 27. Σ-Δ Modulator Overview  
QUANTIZATION  
fMOD  
The quantizer produces a nine-level digital word. The quantiza-  
tion noise is spread uniformly over the Nyquist band (see  
Figure 28) but the feedback loop causes the quantization noise  
present in the nine-level output to have a nonuniform spectral  
shape. This noise shaping technique (see Figure 29) pushes the  
in-band noise out of band; therefore, the amount of quantiza-  
tion noise in the frequency band of interest is minimal.  
NOISE  
fMOD  
OUTPUT  
H(z)  
NTF(f)  
f
fMOD  
Figure 31. Continuous Time Converter  
Input Common Mode  
QUANTIZATION NOISE  
The analog inputs of the AD9267 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device such that VCM = AVDD is  
recommended for optimum performance. The analog inputs  
are 500 Ω resistors and the internal reference loop aims to  
fMOD/2  
BAND OF INTEREST  
Figure 28. Quantization Noise  
develop 0.5 V across each input resistor (see Figure 32). With  
0 V differential input, the driver sources 1 mA into each  
analog input.  
2.3V  
NOISE SHAPING  
AVDD – 0.5V  
1.8V  
1.3V  
fMOD/2  
500  
BAND OF INTEREST  
VIN+x  
TO LOOP FILTER  
Figure 29. Noise Shaping  
STAGE 2  
VIN–x  
ANALOG INPUT CONSIDERATIONS  
500Ω  
2.3V  
1.8V  
The continuous time modulator removes the need for an anti-  
alias filter at the input to the AD9267. A discrete time converter  
aliases signals around the sample clock frequency and its  
multiples to the band of interest (see Figure 30). An external  
antialias filter is needed to reject these signals.  
1.3V  
DAC  
FROM QUANTIZER  
Figure 32. Input Common Mode  
DESIRED  
INPUT  
UNDESIRED  
SIGNAL  
fS  
fS/2  
ADC  
Figure 30. Discrete Time Converter  
Rev. 0 | Page 13 of 24  
 
 
 
 
 
 
 
 
AD9267  
AVDD – 0.5V  
Differential Input Configurations  
V
V
= AVDD  
p-p = 2V  
Optimum performance can be achieved by driving the AD9267  
in a differential input configuration. The ADA4937-2 differential  
driver provides excellent performance and a flexible interface to  
the ADC. The output common-mode voltage of the ADA4937-2 is  
easily set by connecting AVDD to the VOCMx pin of the ADA4937-2  
(see Figure 33). The noise and linearity of the ADA4937-2 needs  
important consideration because the system performance may  
be limited by the ADA4937-2.  
CM  
IN  
500  
500Ω  
VIN+x  
VIN–x  
0.5V  
TO LOOP  
FILTER  
STAGE 2  
VREF  
10kΩ  
AVDD  
500Ω  
REF  
10µF  
AVDD – 0.5V  
+5V  
+1.8V  
CFILT  
10µF  
0.1µF  
0.1µF  
Figure 35. Voltage Reference Loop  
200  
Internal Reference Connection  
9
2V p-p  
R
50Ω  
200Ω  
6
11  
7
13  
AVDD  
VIN–x  
VIN+x  
To minimize thermal noise, the internal reference on the AD9267  
is an unbuffered 0.5 V. It has an internal 10 kΩ series resistor,  
which, when externally decoupled with a 10 ꢀF capacitor, limits  
the noise (see Figure 36). Do not use the unbuffered reference  
to drive any external circuitry. The internal reference is used by  
default and when Serial Register 0x18[6] is reset.  
V
OCM2  
ADA4937-2  
AD9267  
V
S
T
60.4  
12  
15  
SIGNAL  
SOURCE  
200Ω  
0.1µF  
49.9Ω  
0.1µF  
60.4Ω  
–5V  
Figure 33. Differential Input Configuration Using the ADA4937-2  
For frequencies offset from dc, where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 34. The center  
tap of the secondary winding of the transformer is connected to  
AVDD to bias the analog input.  
2.85k  
8.5kΩ  
10kΩ  
0.5V  
3.5kΩ  
10µF  
TO CURRENT  
GENERATOR  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies  
below a couple of megahertz (MHz), and excessive signal power  
can cause core saturation, which leads to distortion.  
Figure 36. Internal Reference Configuration  
External Reference Operation  
If an external reference is desired, the internal reference can be  
disabled by setting Serial Register 0x18[6] high. Figure 37 shows  
an application using the ADR130B as a stable external reference.  
0.5V  
2V p-p  
VIN+x  
50  
1:1  
R
50Ω  
T
V
AD9267  
S
ADR130B  
AVDD  
10kΩ  
0.1µF  
10µF  
SIGNAL  
SOURCE  
VIN–x  
AVDD  
TO CURRENT  
GENERATOR  
0.1µF  
Figure 37. External Reference Configuration  
Figure 34. Differential Transformer Configuration  
CLOCK INPUT CONSIDERATIONS  
Voltage Reference  
The AD9267 offers two modes of sourcing the ADC sample  
clock (CLK+ and CLK−). The first mode uses an on-chip clock  
multiplier that accepts a reference clock operating at the lower  
input frequency. The on-chip phase-locked loop (PLL) then  
multiplies the reference clock up to a higher frequency, which is  
then used to generate all the internal clocks required by the Σ-Δ  
modulator.  
A stable and accurate 0.5 V voltage reference is built into the  
AD9267. The reference voltage should be decoupled to minim-  
ize the noise bandwidth using a 10 μF capacitor. The reference  
is used to generate a bias current into a matched resistor such  
that when used to bias the current in the feedback DAC, a  
voltage of AVDD − 0.5 V is developed at the internal side of the  
input resistors (see Figure 35). The current bias circuit should  
also be decoupled on the CFILT pin with a 10 ꢀF capacitor. For  
this reason, the VREF voltage should always be 0.5 V.  
The clock multiplier provides a high quality clock that meets  
the performance requirements of most applications. Using the  
on-chip clock multiplier removes the burden of generating and  
distributing the high speed clock.  
Rev. 0 | Page 14 of 24  
 
 
 
 
 
 
AD9267  
The second mode bypasses the clock multiplier circuitry and  
allows the clock to be directly sourced. This mode enables the  
user to source a very high quality clock directly to the Σ-Δ  
modulator. Sourcing the clock directly may be necessary in  
demanding applications that require the lowest possible output  
noise. Refer to Figure 18, which shows the degradation in SNR  
performance for the various PLL settings.  
If a differential clock is not available, the AD9267 can be driven  
by a single-ended signal into the CLK+ terminal with the CLK−  
terminal ac-coupled to ground. Figure 39 shows the circuit  
configuration.  
0.1µF  
CLK+  
CLK–  
CLOCK  
INPUT  
ADC  
AD9267  
In either case, when using the on-chip clock multiplier or  
sourcing the high speed clock directly, it is necessary that the  
clock source have low jitter to maximize the Σ-Δ modulator  
noise performance. High speed, high resolution ADCs and  
modulators are sensitive to the quality of the clock input. As  
jitter increases, the SNR performance of the AD9267 degrades  
from that specified in Table 2. The jitter inherent to the part due  
to the PLL root sum squares with any external clock jitter,  
thereby degrading performance. To prevent jitter from dominating  
the performance of the AD9267, the input clock source should be  
no greater than 1 ps rms of jitter.  
50  
SCHOTTKY  
DIODES:  
HSM2812  
0.1µF  
Figure 39. Single-Ended Clock  
Another option is to ac couple a differential LVPECL signal to  
the sample clock input pins, as shown in Figure 40. The AD951x  
family of clock drivers is recommended because it offers excellent  
jitter performance.  
The CLK inputs are self-biased to 450 mV (see Figure 21); if  
dc-coupled, it is important to maintain the specified 450 mV  
input common-mode voltage. Each input pin can safely swing  
from 200 mV p-p to 1 V p-p single-ended about the 450 mV  
common-mode voltage. The recommended clock inputs are  
CMOS or LVPECL.  
0.1µF  
0.1µF  
CLK+  
CLK–  
CLOCK  
INPUT  
CLK  
ADC  
AD9267  
AD951x  
LVPECL  
DRIVER  
100Ω  
CLOCK  
INPUT  
CLK  
0.1µF  
0.1µF  
240Ω  
240Ω  
1
1
50Ω  
50Ω  
The specified clock rate of the Σ-Δ modulator, fMOD, is 640 MHz.  
The clock rate possesses a direct relationship with the available  
input bandwidth of the ADC.  
1
50RESISTORS ARE OPTIONAL.  
Figure 40. Differential LVPECL Sample Clock  
Internal PLL Clock Distribution  
Bandwidth = fMOD ÷ 64  
The alternative clocking option available on the AD9267 is to  
apply a low frequency reference clock and use the on-chip clock  
multiplier to generate the high frequency fMOD rate. The internal  
clock architecture is shown in Figure 41.  
In either case, using the on-chip clock multiplier to generate the  
Σ-Δ modulator clock rate or directly sourcing the clock, any  
deviation from 640 MHz results in a change in input bandwidth.  
The input range of the clock is limited to 640 MHz 5%.  
CLK±  
Direct Clocking  
PHASE  
DETECTOR  
LOOP  
FILTER  
VCO  
The default configuration of the AD9267 is for direct clocking  
where the PLL is bypassed. Figure 38 shows one preferred  
method for clocking the AD9267. A low jitter clock source is  
converted from a single-ended signal to a differential signal  
using an RF transformer. The back-to-back Schottky diodes  
across the secondary side of the transformer limits clock  
excursions into the AD9267 to approximately 0.8 V p-p differen-  
tial. This helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9267 while  
preserving the fast rise and fall times of the signal, which are  
critical to achieving low jitter.  
PLL  
÷2  
DIVIDER  
÷N  
PLLMULT  
0x0A[5:0]  
MODULATOR  
CLOCK  
640MSPS  
PLLENABLE  
0x09[2]  
Figure 41. Internal Clock Architecture  
The clock multiplication circuit operates such that the VCO  
outputs a frequency, fVCO, equal to the reference clock input  
multiplied by N  
MINI-CIRCUITS  
TC1-1-13M+, 1:1  
0.1µF  
0.1µF  
XFMR  
CLK+  
CLK–  
CLOCK  
INPUT  
f
VCO = (CLK ) × (N)  
ADC  
AD9267  
50  
0.1µF  
where N is the PLL multiplication (PLLMULT) factor.  
SCHOTTKY  
DIODES:  
HSM2812  
The Σ-Δ modulator clock frequency, fMOD, is equal to  
0.1µF  
f
MOD = fVCO ÷ 2  
Figure 38. Transformer-Coupled Differential Clock  
Rev. 0 | Page 1ꢀ of 24  
 
 
 
 
AD9267  
The reference clock, CLK , is limited to 30 MHz to 160 MHz  
when configured to use the on-chip clock multiplier. Given the  
input range of the reference clock and the available multiplica-  
tion factors, the fVCO is approximately 1280 MHz. This results in  
the desired fMOD rate of 640 MHz with a 50% duty cycle.  
Table 8. PLL Multiplication Factors  
0x0A[5:0]  
PLLMULT (N) 0x0A[5:0]  
PLLMULT (N)  
1
2
3
4
6
8
8
8
8
8
8
8
8
8
33  
34  
3ꢀ  
36  
3ꢁ  
38  
39  
40  
41  
42  
43  
44  
4ꢀ  
46  
4ꢁ  
48  
49  
ꢀ0  
ꢀ1  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
ꢀ6  
ꢀꢁ  
ꢀ8  
ꢀ9  
60  
61  
62  
63  
64  
32  
34  
34  
34  
34  
34  
34  
34  
34  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
42  
The PLL of the AD9267 can be controlled through either the serial  
port interface or the PLLMULTx pins. For serial port interface  
control, Register 0x09 and Register 0x0A are used. Before the  
PLL enable register bit (PLLENABLE) is set, the PLL multiplica-  
tion factor should be programmed into Register 0x0A[5:0].  
After setting the PLLENABLE bit, the PLL locks and reports a  
locked state in Register 0x0A[7]. If the PLL multiplication factor  
is changed, the PLL enable bit should be reset and set again.  
Some common clock multiplication factors are shown in Table 8.  
9
9
10  
11  
12  
13  
14  
1ꢀ  
16  
1ꢁ  
18  
19  
20  
21  
22  
23  
24  
2ꢀ  
26  
2ꢁ  
28  
29  
30  
31  
32  
10  
10  
12  
12  
14  
1ꢀ  
16  
1ꢁ  
18  
18  
20  
21  
21  
21  
24  
2ꢀ  
2ꢀ  
2ꢀ  
28  
28  
30  
30  
32  
The recommended sequence for enabling and programming the  
on-chip clock multiplier is as follows:  
1. Apply a reference clock to the CLK pins.  
2. Program the PLL multiplication factor in  
Register 0x0A[5:0]. See Table 8.  
3. Enable the PLL; Register 0x09 = 04 (decimal).  
External PLL Control  
At power-up, the serial interface is disabled until the first serial  
port access. If the serial interface is disabled, the PLLMULTx  
pins control the PLL multiplication factor. The five PLLMULTx  
pins (Pin 44 to Pin 48) offer all the available multiplication  
factors. If all PLLMULTx pins are tied high, the PLL is disabled  
and the AD9267 assumes the high frequency modulator clock  
rate that is applied to the CLK pins. Table 10 shows the relation-  
ship between PLLMULTx pins and the PLL multiplication factor.  
PLL Autoband Select  
The PLL VCO has a wide operating range that is covered by  
overlapping frequency bands. For any desired VCO output fre-  
quency, there are multiple valid PLL band select values. The  
AD9267 possesses an automatic PLL band select feature on chip  
that determines the optimal PLL band setting. This feature can  
be enabled by writing to Register 0x0A[6] and is the recom-  
mended configuration with the PLL clocking option.  
Table 9. Common Modulator Clock Multiplication Factors  
CLK  
(MHz)  
0x0A[5:0]  
(PLLMULT)  
fVCO  
(MHz)  
fMOD  
BW  
(MHz)  
(MHz)  
30.ꢁ2  
39.3216  
ꢀ2.00  
61.44  
ꢁ6.80  
ꢁ8.00  
ꢁ8.6432  
89.60  
42  
32  
2ꢀ  
21  
1ꢁ  
1ꢁ  
16  
1ꢀ  
14  
10  
10  
8
1290.24  
12ꢀ8.29  
1300.00  
1290.24  
130ꢀ.60  
1326.00  
12ꢀ8.29  
1344.00  
1290.24  
1228.80  
1344.00  
1228.80  
12ꢀ8.29  
64ꢀ.12  
629.1ꢀ  
6ꢀ0.00  
64ꢀ.12  
6ꢀ2.80  
663.00  
629.1ꢀ  
6ꢁ2.00  
64ꢀ.12  
614.40  
6ꢁ2.00  
614.40  
629.1ꢀ  
10.08  
9.83  
10.16  
10.08  
10.20  
10.36  
9.83  
10.ꢀ0  
10.08  
9.60  
92.16  
122.88  
134.40  
1ꢀ3.60  
1ꢀꢁ.2864  
10.ꢀ0  
9.60  
9.83  
8
Rev. 0 | Page 16 of 24  
 
AD9267  
Table 10. PLLMULTx Pins and PLL Multiplication Factor  
DIGITAL OUTPUTS  
Digital Output Format  
PLLMULT[4:0] Pins  
PLL Multiplication Factors (N)  
0
8
The AD9267 digital bus outputs twos complement, single data  
rate, LVDS data at 640 MSPS. The output is four bits wide per  
channel.  
1
9
2
10  
3
12  
The AD9267 supports both the ANSI-644 and a reduced power  
data format similar to the IEEE1596.3 standard. The default  
configuration at power-up is ANSI-644. This can be changed to  
a low power reduced signal option by addressing Register  
0x14[7], DRVSTD.  
4
6
14  
1ꢀ  
16  
1ꢁ  
8
18  
9
10  
11  
12  
13  
14  
1ꢀ  
16  
20  
21  
24  
2ꢀ  
28  
30  
32  
34  
The LVDS driver current is derived on chip and sets the output  
current at each output equal to a nominal 3.5 mA for the ANSI-  
644 standard. A 100 Ω differential termination resistor placed at  
the LVDS receiver inputs result in a nominal 350 mV swing at  
the receiver. In the reduced power data format, the output swing  
is limited to 200 mV and the resulting output current into the  
100 Ω termination is 2 mA. As a result of the reduced LVDS  
voltage swing, an additional 25% digital power savings can be  
achieved over the ANSI-644 standard.  
1ꢁ to 30  
31  
42  
Direct clocking  
The desired output format can be selected by addressing  
Register 0x14[7], DRVSTD. The LVDSTERM bits, Register  
0x15[5:4], provide either 100 Ω or 200 Ω, or no termination  
at the output of the data bus. Selecting the appropriate termina-  
tion resistor is important to allow maximum signal transfer and  
to minimize reflections for signal integrity. This can be achieved  
by selecting a termination resistor that impedance matches the  
termination of the receiver.  
POWER DISSIPATION AND STANDBY MODE  
The AD9267 consumes 415 mW. This power consumption can  
be further reduced by configuring the chip in channel power-  
down, standby, or sleep mode. The low power modes turn off  
internal blocks of the chip including the reference. As a result,  
the wake-up time is dependent on the amount of circuitry that  
is turned off. Fewer internal circuits powered down result in  
proportionally shorter wake-up time. The different low power  
modes are shown in Table 11. In the standby mode, all clock  
related activity is disabled in addition to each channel; the  
references and LVDS outputs remain powered up to ensure a  
short recovery and link integrity, respectively. During sleep  
mode, all internal circuits are powered down, putting the device  
into its lowest power mode; the LVDS outputs are disabled.  
Overrange (OR) Condition  
An overrange condition can be triggered by large in-band signals  
that exceed the full-scale range of the Σ-Δ modulator, or it  
can be triggered by out-of-band signals gained by the transfer  
characteristics of the modulator. Figure 43 shows the signal  
transfer function of the Σ-Δ modulator. The modulator output  
possesses out-of-band gain above 10 MHz. As a result, the input  
signal may exceed full scale for input frequencies beyond 10 MHz  
and the ADC may be in an overrange state. The OR x pins  
serve as indicators for the overrange condition.  
Each ADC channel can be independently powered down or  
both channels can be set simultaneously by writing to the  
channel index, Register 0x05[1:0]. Additionally, if the serial  
port interface is not available, each channel can be indepen-  
dently configured by tying the PDWNA (Pin 3) or PDWNB  
(Pin 4) high.  
The OR x pins are synchronous outputs that are updated at the  
output data rate. The pins indicate whether an overrange condi-  
tion has occurred within the AD9267. Ideally, OR x should be  
latched on the falling edge of DCO to ensure proper setup-and-  
hold time. However, because an overrange condition typically  
extends well beyond one clock cycle (that is, does not toggle at  
the DCO rate); data can usually be successfully detected on  
the rising edge of DCO or monitored asynchronously. The  
user has the ability to select how the overrange condition is  
reported and this is controlled through the SPI bits (AUTORST,  
OR_IND1, and OR_IND2) in Register 0x111[7:5]. The two  
modes of operation are normal and data valid mode.  
Table 11. Low Power Modes  
Analog  
Mode  
0x08[1:0] Circuitry  
Clock Ref.  
Normal  
Channel Power-Down  
Standby  
0x0  
0x1  
0x2  
0x3  
On  
Off  
Off  
Off  
On  
On  
Off  
Off  
On  
On  
On  
Off  
Sleep  
Rev. 0 | Page 1ꢁ of 24  
 
 
 
 
 
AD9267  
In normal operation mode, the analog input can toggle the  
OR x pin for a number of clock cycles as it approaches full  
scale. The OR x pin is a pulse-width modulated (PWM) signal;  
therefore, as the analog input increases in amplitude, the  
duration of OR x pin toggling increases. Eventually, when the  
OR x pin is high for an extended period of time, the ADC  
overloads; thus, there is little correspondence between analog  
input and digital output. In this mode, the duration of the  
OR x pin can be used as a coarse indicator to the signal  
amplitude at the input of the ADC. In data valid mode, the  
OR x pin remains high when there are no memory access  
operations taking place, such as internal calibration or factory  
memory transfer, and the inputs of the ADC are within the  
operating range.  
cycles where OR x remains high or if the loop filter becomes  
saturated. The OR x pin remains high until the automatic reset  
has completed.  
If the AD9267 is used in a system that incorporates automatic  
gain control (AGC), the OR x signals can be used to indicate  
that the signal amplitude should be reduced. This may be  
particularly effective for use in maximizing the signal dynamic  
range if the signal includes high occurrence components that  
occasionally exceed full scale by a small amount.  
TIMING  
The AD9267 provides latched data outputs with a latency of  
seven clock cycles. The AD9267 also provides a data clock  
output (DCO ) pin intended to assist in capturing the data in  
an external register. The data outputs are valid on the rising  
edge of DCO , unless changed by setting Serial Register 0x16[7]  
(see the Serial Port Interface (SPI) section). See Figure 2 for a  
graphical timing description.  
In either modes of operation, the AUTORST bit can be enabled  
and this automatically resets the modulator in an overload  
condition. Because the OR x signal is a PWM signal and the  
toggling of OR x does not always indicate an overload  
condition, the modulator only resets after 16 consecutive clock  
Table 12. OR x Conditions  
Reset State  
AUTORST  
OR_IND1  
OR_IND2  
Function  
Normal Reset Off  
Data Valid Reset Off  
Normal Reset On  
Data Valid Reset On  
0
0
1
1
0
1
0
1
0
1
0
1
If overrange: OR x = 1, else OR x = 0  
If memory access: OR x = 0, else OR x = 1  
If overrange or reset: OR x = 1, else OR x = 0  
If memory access, or reset: OR x = 0, else OR x = 1  
Rev. 0 | Page 18 of 24  
 
 
AD9267  
SERIAL PORT INTERFACE (SPI)  
additional external timing. When CSB is tied high, SPI  
functions are placed in a high impedance mode.  
The AD9267 serial port interface (SPI) allows the user to  
configure the converter for specific functions or operations  
through a structured register space provided inside the ADC.  
This provides the user added flexibility and customization  
depending on the application. Addresses are accessed via the  
serial port and can be written to or read from via the port.  
Memory is organized into bytes that are further divided into  
fields, as documented in the Memory Map section. For detailed  
operational information, see the see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase and the length is determined  
by the W0 bit and the W1 bit. All data is composed of 8-bit words.  
The first bit of each individual byte of serial data indicates whether  
a read or write command is issued. This allows the serial data  
input/output (SDIO) pin to change direction from an input to  
an output.  
In addition to word length, the instruction phase determines if  
the serial frame is a read or write operation, allowing the serial  
port to be used to both program the chip as well as to read the  
contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an  
output at the appropriate point in the serial frame.  
CONFIGURATION USING THE SPI  
As summarized in Table 13, three pins define the SPI of this  
ADC. The SCLK pin synchronizes the read and write data  
presented to the ADC. The SDIO pin allows data to be sent and  
read from the internal ADC memory map registers. The CSB  
pin is an active low control that enables or disables the read and  
write cycles.  
Data can be sent in MSB- or in LSB-first mode. MSB first is  
the default setting on power-up and can be changed via the  
configuration register. For more information, see the AN-877  
Application Note, Interfacing to High Speed ADCs via SPI.  
Table 13. Serial Port Interface Pins  
Pin  
Function  
SCLK  
SCLK (serial clock) is the serial shift clock. SCLK  
synchronizes serial interface reads and writes.  
Table 14. SPI Timing Diagram Specifications  
SDIO  
CSB  
SDIO (serial data input/output) is an input and output  
depending on the instruction being sent and the  
relative position in the timing frame.  
CSB (chip select) is an active low control that gates the  
read and write cycles.  
Parameter Definition  
tSDS  
tSDH  
tSCLK  
tSS  
Setup time between data and rising edge of SCLK  
Hold time between data and rising edge of SCLK  
Period of the clock  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
The falling edge of CSB in conjunction with the rising edge of  
the SCLK determines the start of the framing. Figure 42 and  
Table 14 provide an example of the serial timing and its  
definitions.  
tSH  
tSHIGH  
Minimum period that SCLK should be in a logic  
high state  
tSLOW  
Minimum period that SCLK should be in a logic  
low state  
Other modes involving CSB are available. CSB can be held low  
indefinitely to permanently enable the device (this is called  
streaming). CSB can stall high between bytes to allow for  
tSHIGH  
tSDS  
tSCLK  
tSH  
tSS  
tSDH  
tSLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 42. Serial Port Interface Timing Diagram  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
AD9267  
The SPI interface is flexible enough to be controlled by either  
PROM or PIC microcontrollers. This provides the user with the  
ability to use an alternate method to program the ADC. One  
such method is described in detail in the AN-812 Application  
Note, MicroController-Based Serial Port Interface (SPI) Boot  
Circuit.  
HARDWARE INTERFACE  
The pins described in Table 13 comprise the physical interface  
between the programming device of the user and the serial port  
of the AD9267. The SCLK and CSB pins function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
When the SPI interface is not used, SCLK/PLLMULT0 and  
SDIO/PLLMULT1 serve a dual function. When strapped to  
AVDD or ground during device power-on, the pins are  
associated with a specific function.  
Rev. 0 | Page 20 of 24  
 
AD9267  
APPLICATIONS INFORMATION  
Figure 43 shows the gain profile of the AD9267 and this can be  
interpreted as the level in which the signal power should be  
scaled back to prevent an overload condition. This is the  
ultimate trip point and before this point is reached, the in-band  
noise (IBN) slowly degrades. As a result, it is recommended that  
the low-pass filter be designed to match the profile of Figure 44,  
which shows the maximum input signal for a 3 dB degradation  
of in-band noise. The input signal is attenuated to allow only  
3 dB of noise degradation over frequency.  
FILTERING REQUIREMENT  
The need for anti-alias protection often requires one or two  
octaves for a transition band, which reduces the usable  
bandwidth of a Nyquist converter to between 25% and 50% of  
the available bandwidth. A CT Σ-Δ converter maximizes the  
available signal bandwidth by forgoing the need for an  
antialiasing filter because the architecture possesses inherent  
antialiasing. Although a high order, sharp cutoff antialiasing  
filter may not be necessary because of the unique characteristics  
of the architecture, a low order filter may still be required to  
precede the ADC for out-of-band signal handling.  
The noise performance is normalized to a −2 dBFS in-band  
signal. The AD9267 STF and NTF are flat within the band of  
interest and should result in almost no change in input level and  
IBN. Beyond the bandwidth of the AD9267, out-of-band  
peaking adds gain to the system, therefore requiring the input  
power to be scaled back to prevent in-band noise degradation.  
The input power is scaled back to a point where only 3 dB of  
noise degradation is allowed, therefore resulting in Figure 44.  
5
Depending on the application and the system architecture, this  
low order filter may or may not be necessary. The signal  
transfer function (STF) of a continuous time feedforward ADC  
usually contains out-of-band peaks. Because these STF peaks  
are typically one or two octaves above the pass-band edge, they  
are not problematic in applications where the bulk of the signal  
energy is in or near the pass band. However, in applications  
with large far-out interferers, it is necessary to either add a filter  
to attenuate these problematic signals or to allocate some of the  
ADC dynamic range to accommodate them.  
0
–5  
–40°C  
Figure 43 shows the normalized STF of the AD9267 CT Σ-Δ  
converter. The figure shows out-of-band peaking beyond the  
band edge of the ADC. Within the 10 MHz band of interest, the  
STF is maximally flat with less than 0.1 dB of gain. Maximum  
peaking occurs at 60 MHz with 10 dB of gain. To put this into  
perspective, for a fixed input power, a 5 MHz in-band-signal  
appears at −5 dBFS, a 25 MHz tone appears at −2 dBFS and  
60 MHz tone at +5 dBFS. Because the maximum input to the  
ADC is −2 dBFS, large out-of-band signals can quickly saturate  
the system. This implies that under these conditions, the digital  
outputs of the ADC no longer accurately represents the input.  
Refer to the Overrange (OR) Condition section for details on  
overrange detection and recovery.  
–10  
CHEBYSHEV II  
FILTER RESPONSE  
–15  
+85°C  
+25°C  
–20  
–25  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 44. Maximum Input Level for 3 dB Noise Degradation  
An example third-order low-pass Chebyshev II type filter is  
shown in Figure 45 and the corresponding magnitude vs.  
frequency response of the filter is shown in Figure 44.  
15  
L1  
180nH  
13  
11  
9
VIN+  
C2  
390pF  
C1  
39pF  
C3  
220pF  
AD9267  
1k  
7
CT Σ-Δ  
L1  
180nH  
5
VIN–  
3
1
C2  
390pF  
–1  
–3  
–5  
Figure 45. Third-Order Low-Pass Chebyshev II Filter  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (MHz)  
Figure 43. STF  
Rev. 0 | Page 21 of 24  
 
 
 
 
 
AD9267  
0
–2  
40  
Referring to Figure 46, the 3 dB cutoff frequency of the low-  
pass Chebyshev II filter response resides at 15.75 MHz, and at  
10 MHz, there is 0.43 dB of attenuation due to the sharp roll-off  
of the filter. Table 15 summarizes the components and  
manufacturers used to build the circuit.  
30  
–4  
20  
–6  
10  
–8  
0
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–20  
–30  
–40  
–50  
–60  
Table 15. Chebyshev II Filter Components  
Parameter  
Value  
Unit  
Manufacturer  
C1  
L1  
C2  
C3  
39  
pF  
nH  
pF  
Murata GRM188 series, 0603  
Coil Craft 0402AF, 2%  
Murata GRM188 series, 0603  
Murata GRM188 series, 0603  
180  
390  
220  
pF  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
Figure 46. Low-Pass Chebyshev II Filter Response  
In addition to matching the profile of Figure 44, group delay  
and channel matching are important filter design criteria. Low  
tolerance components are highly recommended for improved  
channel matching, which translates to minimal degradation in  
image rejection for quadrature systems.  
Rev. 0 | Page 22 of 24  
 
 
AD9267  
MEMORY MAP  
Table 16. Memory Map  
Register  
Address (Hex)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI Port Config  
Chip ID  
00  
01  
02  
0ꢀ  
08  
09  
0A  
14  
1ꢀ  
16  
18  
111  
0
LSBFIRST  
SOFTRESET  
1
1
SOFTRESET LSBFIRST  
0
CHIPID[ꢁ:0]  
CHILDID[1:0]  
Chip Grade  
Channel Index  
Power Modes  
PLLENABLE  
PLL  
Channel[1:0]  
PWRDWN[1:0]  
PLLENABLE  
PLLMULT[ꢀ:0]  
PLLLOCKED PLLAUTO  
DRVSTD  
Output Modes  
Output Adjust  
Output Clock  
Reference  
OUTENB  
LVDSTERM[1:0]  
DCOINV  
EXTREF  
Overrange  
AUTORST  
OR_IND1  
OR_IND2  
MEMORY MAP DEFINITIONS  
Table 17. Memory Map Definitions  
Register  
Address  
Bit Name  
Bit(s)  
Default  
Description  
SPI Port Config  
0x00  
LSBFIRST  
[6], [1]  
0
0: serial interface uses MSB-first format  
1: serial interface uses LSB-first format  
SOFTRESET  
CHIPID  
[ꢀ], [2]  
[ꢁ:0]  
ꢀ:4]  
0
1: default all serial registers except 0x00, 0x09, and 0x0A  
0x22: AD926ꢁ  
Chip ID  
0x01  
0x02  
0x22  
0
Chip Grade  
CHILDID  
0x00: 10 MHz bandwidth  
0x10: ꢀ MHz bandwidth  
0x20: 2.ꢀ MHz bandwidth  
0x30: modulator only  
Channel Index  
Power Modes  
0x0ꢀ  
0x08  
Channel  
[1:0]  
[1:0]  
0
0
0x1: Channel A only addressed  
0x2: Channel B only addressed  
0x3: both channels addressed simultaneously  
PWRDWN  
0x0: normal operation  
0x1: channel power-down (local)  
0x2: standby (everything except reference circuits)  
0x3: sleep  
PLLENABLE  
PLL  
0x09  
0x0A  
PLLENABLE  
PLLLOCKED  
[2]  
[ꢁ]  
0
0
1: enable PLL  
0: PLL is not locked  
1: PLL is locked  
PLLAUTO  
[6]  
0
0: disable PLL auto band select  
1: enable PLL auto band select  
PLLMULT  
DRVSTD  
[ꢀ:0]  
[ꢁ]  
0
0
See Table 8  
Output Modes  
Output Adjust  
0x14  
0x1ꢀ  
0: ANSI-644  
1: Low power (IEEE1ꢀ96.3 similar)  
OUTENB  
[4]  
0
0
1: Channel A and Channel B outputs tristated  
LVDSTERM  
[ꢀ:4]  
0: no termination  
1: 200 Ω  
2: 100 Ω  
3: 100 Ω  
Output Clock  
Reference  
0x16  
0x18  
0x111  
DCOINV  
EXTREF  
[ꢁ]  
[6]  
[ꢁ]  
[6]  
[ꢀ]  
0
0
0
0
0
1: invert DCO  
1: use external reference  
1: enable autoreset  
See Table 12  
Overrange  
AUTORST  
OR_IND1  
OR_IND2  
See Table 12  
Rev. 0 | Page 23 of 24  
 
 
AD9267  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
6.35  
6.20 SQ  
6.05  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 47. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD926ꢁBCPZ1  
AD926ꢁEBZ1  
−40°C to +8ꢀ°C  
64-Lead Lead Frame Chip Scale Package (LFCSP_VQ)  
Evaluation Board  
CP-64-4  
1 Z = RoHs Compliant Part.  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07773-0-7/09(0)  
Rev. 0 | Page 24 of 24  
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY