AD9288/PCB [ADI]

8-Bit, 40/80/100 MSPS Dual A/D Converter; 8位, 40/80/100 MSPS双通道A / D转换器
AD9288/PCB
型号: AD9288/PCB
厂家: ADI    ADI
描述:

8-Bit, 40/80/100 MSPS Dual A/D Converter
8位, 40/80/100 MSPS双通道A / D转换器

转换器
文件: 总16页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, 40/80/100 MSPS  
Dual A/D Converter  
a
AD9288  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Dual 8-Bit, 40 MSPS, 80 MSPS, and 100 MSPS ADC  
Low Power: 90 mW at 100 MSPS per Channel  
On-Chip Reference and Track/Holds  
475 MHz Analog Bandwidth Each Channel  
SNR = 47 dB @ 41 MHz  
1 V p-p Analog Input Range Each Channel  
Single +3.0 V Supply Operation (2.7 V–3.6 V)  
Standby Mode for Single Channel Operation  
Twos Complement or Offset Binary Output Mode  
Output Data Alignment Mode  
V
DD  
AD9288  
TIMING  
ENC  
A
A
A
A
A
8
8
IN  
T/H  
ADC  
REF  
ADC  
D7 –D0  
A A  
IN  
SELECT #1  
SELECT #2  
REF  
REF  
A
IN  
OUT  
REF  
B
IN  
DATA FORMAT  
SELECT  
APPLICATIONS  
A
A
B
B
8
8
IN  
T/H  
D7 –D0  
Battery Powered Instruments  
Hand-Held Scopemeters  
Low Cost Digital Oscilloscopes  
I and Q Communications  
B
B
IN  
ENC  
TIMING  
B
V
GND  
V
DD  
D
GENERAL DESCRIPTION  
The encode input is TTL/CMOS compatible and the 8-bit  
digital outputs can be operated from +3.0 V (2.5 V to 3.6 V)  
supplies. User-selectable options are available to offer a combi-  
nation of standby modes, digital data formats and digital data  
timing schemes. In standby mode, the digital outputs are driven  
to a high impedance state.  
The AD9288 is a dual 8-bit monolithic sampling analog-to-  
digital converter with on-chip track-and-hold circuits and is  
optimized for low cost, low power, small size and ease of use.  
The product operates at a 100 MSPS conversion rate with out-  
standing dynamic performance over its full operating range.  
Each channel can be operated independently.  
Fabricated on an advanced CMOS process, the AD9288 is avail-  
able in a 48-lead surface mount plastic package (7 × 7 mm,  
1.4 mm LQFP) specified over the industrial temperature range  
(–40°C to +85°C).  
The ADC requires only a single 3.0 V (2.7 V to 3.6 V) power  
supply and an encode clock for full-performance operation. No  
external reference or driver components are required for many  
applications. The digital outputs are TTL/CMOS compatible  
and a separate output power supply pin supports interfacing  
with 3.3 V or 2.5 V logic.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
(V = 3.0 V; V = 3.0 V, Differential Input; External reference unless otherwise noted.)  
AD9288–SPECIFICATIONS  
DD  
D
Test  
AD9288BST-100  
AD9288BST-80  
AD9288BST-40  
Parameter  
Temp  
Level Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUTION  
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
Full  
+25°C  
+25°C  
I
VI  
I
VI  
VI  
I
VI  
VI  
V
±0.5  
+1.25  
+1.50  
±0.5  
+1.25  
+1.50  
±0.5  
+1.25  
+1.50  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
±0.50 +1.25  
±0.50 +1.25  
±0.50 +1.25  
+1.50  
+1.50  
+1.50  
No Missing Codes  
Gain Error1  
Guaranteed  
±2.5  
Guaranteed  
±2.5  
Guaranteed  
±2.5  
–6  
–8  
+6  
+8  
–6  
–8  
+6  
+8  
–6  
–8  
+6  
+8  
% FS  
% FS  
ppm/°C  
% FS  
mV  
Gain Tempco1  
Gain Matching  
Voltage Matching  
80  
±1.5  
±15  
80  
±1.5  
±15  
80  
±1.5  
±15  
V
ANALOG INPUT  
Input Voltage Range  
(With Respect to AIN)  
Common-Mode Voltage  
Input Offset Voltage  
Full  
Full  
+25°C  
Full  
Full  
Full  
+25°C  
Full  
+25°C  
+25°C  
V
V
I
VI  
VI  
VI  
I
VI  
V
±512  
±200  
±10  
±40  
1.25  
±130  
10  
±512  
±200  
±10  
±40  
1.25  
±130  
10  
±512  
±200  
±10  
±40  
1.25  
±130  
10  
mV p-p  
mV  
mV  
mV  
V
ppm/°C  
kΩ  
kΩ  
pF  
MHz  
–35  
1.2  
+35  
1.3  
–35  
1.2  
+35  
1.3  
–35  
1.2  
+35  
1.3  
Reference Voltage  
Reference Tempco  
Input Resistance  
7
5
13  
16  
7
5
13  
16  
7
5
13  
16  
Input Capacitance  
Analog Bandwidth, Full Power  
2
475  
2
475  
2
475  
V
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Full  
VI  
IV  
IV  
IV  
V
V
VI  
VI  
100  
80  
40  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
Full  
1
1
1
Encode Pulsewidth High (tEH  
)
4.3  
4.3  
1000  
1000  
5.0  
5.0  
1000  
1000  
8.0  
8.0  
1000  
1000  
Encode Pulsewidth Low (tEL  
)
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
0
5
3.0  
4.5  
0
5
3.0  
4.5  
0
5
3.0  
4.5  
2
Output Propagation Delay (tPD  
)
Full  
DIGITAL INPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
V
2.0  
2.0  
2.0  
V
V
µA  
µA  
pF  
0.8  
±1  
±1  
0.8  
±1  
±1  
0.8  
±1  
±1  
+25°C  
2.0  
2.0  
2.0  
DIGITAL OUTPUTS3  
Logic “1” Voltage  
Logic “0” Voltage  
Full  
Full  
VI  
VI  
2.45  
2.45  
2.45  
V
V
0.05  
0.05  
0.05  
POWER SUPPLY  
Power Dissipation4  
Standby Dissipation4, 5  
Power Supply Rejection Ratio  
(PSRR)  
Full  
Full  
VI  
VI  
180  
6
218  
11  
171  
6
207  
11  
156  
6
189  
11  
mW  
mW  
+25°C  
I
8
20  
8
20  
8
20  
mV/V  
DYNAMIC PERFORMANCE6  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
+25°C  
+25°C  
V
V
2
2
2
2
2
2
ns  
ns  
f
IN = 10.3 MHz  
+25°C  
+25°C  
+25°C  
I
I
I
47.5  
47.5  
47.0  
47.5  
47  
44  
47.5  
dB  
dB  
dB  
fIN = 26 MHz  
fIN = 41 MHz  
44  
44  
–2–  
REV. 0  
AD9288  
Test  
AD9288BST-100  
AD9288BST-80  
AD9288BST-40  
Parameter  
Temp  
Level Min  
Typ  
Max  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE6 (Continued)  
Signal-to-Noise Ratio (SINAD) (With Harmonics)  
f
f
f
IN = 10.3 MHz  
IN = 26 MHz  
IN = 41 MHz  
+25°C  
+25°C  
+25°C  
I
I
I
47  
47  
47  
47  
47  
47  
44  
7.0  
55  
55  
47  
dB  
dB  
dB  
44  
7.0  
55  
55  
44  
7.0  
55  
52  
Effective Number of Bits  
f
f
fIN = 41 MHz  
2nd Harmonic Distortion  
fIN = 10.3 MHz  
IN = 10.3 MHz  
IN = 26 MHz  
+25°C  
+25°C  
+25°C  
I
I
I
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
70  
60  
60  
Bits  
Bits  
Bits  
+25°C  
+25°C  
+25°C  
I
I
I
70  
70  
70  
70  
70  
70  
dBc  
dBc  
dBc  
f
IN = 26 MHz  
fIN = 41 MHz  
3rd Harmonic Distortion  
fIN = 10.3 MHz  
+25°C  
+25°C  
+25°C  
I
I
I
60  
60  
60  
60  
60  
60  
dBc  
dBc  
dBc  
f
IN = 26 MHz  
fIN = 41 MHz  
Two-Tone Intermod Distortion (IMD)  
fIN = 10.3 MHz +25°C  
V
60  
60  
dBc  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.25 V external reference).  
2tV and tPD are measured from the 1.5 V level of the ENCODE input to the 10%/90% levels of the digital outputs swing. The digital output load during test is not to  
exceed an ac load of 10 pF or a dc current of ±40 µA.  
3Digital supply current based on VDD = +3.0 V output drive with <10 pF loading under dynamic test conditions.  
4Power dissipation measured under the following conditions: fS = 100 MSPS, analog input is –0.7 dBFS, both channels in operation.  
5Standby dissipation calculated with encode clock in operation.  
6SNR/harmonics based on an analog input voltage of –0.7 dBFS referenced to a 1.024 V full-scale input range.  
Specifications subject to change without notice.  
EXPLANATION OF TEST LEVELS  
Test Level  
ABSOLUTE MAXIMUM RATINGS*  
VD, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
VREF IN . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VD + 0.5 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +175°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . +150°C  
I
100% production tested.  
II 100% production tested at +25°C and sample tested at  
specified temperatures.  
III Sample tested only.  
IV Parameter is guaranteed by design and characterization  
testing.  
V
Parameter is a typical value only.  
VI 100% production tested at +25°C; guaranteed by design  
and characterization testing for industrial temperature  
range; 100% production tested at temperature extremes for  
military devices.  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum  
ratings for extended periods may affect device reliability.  
Table I. User Select Options  
ORDERING GUIDE  
S1  
S2  
User Select Options  
Temperature  
Ranges  
Package  
Options  
0
0
1
1
0
1
0
1
Standby Both Channels A and B.  
Standby Channel B Only.  
Normal Operation (Data Align Disabled).  
Data align enabled (data from both channels avail-  
able on rising edge of Clock A. Channel B data is  
delayed a 1/2 clock cycle).  
Model  
AD9288BST  
-40, -80, -100  
AD9288/PCB  
–40°C to +85°C  
+25°C  
ST-48*  
Evaluation Board  
*ST = Thin Plastic Quad Flatpack (1.4 mm thick, 7 × 7 mm: LQFP).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9288 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–3–  
AD9288  
PIN CONFIGURATION  
Aperture Delay  
The delay between a differential crossing of ENCODE and  
ENCODE and the instant at which the analog input is sampled.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
48 47 46 45 44 43 42 41 40 39 38 37  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
1
2
GND  
36  
35  
34  
33  
32  
31  
30  
29  
28  
NC  
PIN 1  
A
A
A
A
IDENTIFIER  
NC  
IN  
3
GND  
IN  
Encode Pulsewidth/Duty Cycle  
4
DFS  
V
DD  
Pulsewidth high is the minimum amount of time that the EN-  
CODE pulse should be left in Logic “1” state to achieve rated  
performance; pulsewidth low is the minimum time ENCODE  
pulse should be left in low state. At a given clock rate, these  
specs define an acceptable Encode duty cycle.  
5
REF  
A
GND  
IN  
AD9288  
TOP VIEW  
(Not to Scale)  
6
REF  
V
D
OUT  
7
REF  
B
V
D
IN  
8
S1  
S2  
B
GND  
9
V
DD  
A
A
10  
11  
27  
GND  
IN  
B
26 NC  
25  
IN  
Integral Nonlinearity  
GND 12  
NC  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line” deter-  
mined by a least square curve fit.  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
PIN FUNCTION DESCRIPTIONS  
Maximum Conversion Rate  
Pin No.  
Name  
Description  
The encode rate at which parametric testing is performed.  
1, 12, 16, 27, 29,  
32, 34, 45  
2
3
Output Propagation Delay  
GND  
AINA  
AINA  
Ground.  
Analog Input for Channel A.  
The delay between a differential crossing of ENCODE and  
ENCODE and the time when all output data bits are within  
valid logic levels.  
Analog Input for Channel A  
(Complementary).  
Data Format Select: (Offset  
binary output available if set  
low. Twos complement output  
available if set high).  
Power Supply Rejection Ratio  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
4
DFS  
Signal-to-Noise-and-Distortion (SINAD)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
5
REFINA  
Reference Voltage Input for  
Channel A.  
Internal Reference Voltage.  
Reference Voltage Input for  
Channel B.  
User Select #1 (Refer to Table  
I), Tied with Respect to VD.  
6
7
REFOUT  
REFINB  
Signal-to-Noise Ratio (SNR)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc.  
8
S1  
Spurious-Free Dynamic Range (SFDR)  
9
S2  
User Select #2 (Refer to Table  
I), Tied with Respect to VD.  
Analog Input for Channel B  
(Complementary).  
Analog Input for Channel B.  
Analog Supply (3 V).  
Clock Input for Channel B.  
Digital Supply (3 V).  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal levels is lowered), or in dBFS (always  
related back to converter full scale).  
10  
AINB  
11  
AINB  
VD  
ENCB  
VDD  
D7B–D0B  
NC  
13, 30, 31, 48  
14  
15, 28, 33, 46  
17–24  
25, 26, 35, 36  
37–44  
47  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms  
value of the worst third order intermodulation product; re-  
ported in dBc.  
Digital Output for Channel B.  
Do Not Connect.  
Two-Tone SFDR  
D0A–D7A Digital Output for Channel A.  
ENCA Clock Input for Channel A.  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal levels is lowered), or in dBFS (always  
related back to converter full scale).  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth (Small Signal)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Worst Harmonic  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component, reported in dBc.  
–4–  
REV. 0  
AD9288  
SAMPLE N  
SAMPLE N+1  
SAMPLE N+5  
A
A, A B  
IN  
IN  
tA  
SAMPLE N+2  
SAMPLE N+3  
SAMPLE N+4  
tEH  
tEL  
1/  
fS  
ENCODE A, B  
D7 –D0  
tPD  
tV  
DATA N–4  
DATA N–4  
DATA N–3  
DATA N–2  
DATA N–1  
DATA N–1  
DATA N  
DATA N+1  
DATA N+1  
A
A
D7 –D0  
B
DATA N–3  
DATA N–2  
DATA N  
B
Figure 1. Normal Operation, Same Clock (S1 = 1, S2 = 0) Channel Timing  
SAMPLE N  
SAMPLE N+1  
SAMPLE N+5  
A
A, A B  
IN IN  
tA  
SAMPLE N+2  
SAMPLE N+3  
SAMPLE N+4  
tEH  
tEL  
1/  
fS  
ENCODE A  
ENCODE B  
tPD  
tV  
D7 –D0  
DATA N–4  
DATA N–3  
DATA N–2  
DATA N–1  
DATA N  
DATA N+1  
A
A
D7 –D0  
B
DATA N–4  
DATA N–3  
DATA N–2  
DATA N–1  
DATA N  
DATA N+1  
B
Figure 2. Normal Operation with Two Clock Sources (S1 = 1, S2 = 0) Channel Timing  
REV. 0  
–5–  
AD9288  
SAMPLE N  
SAMPLE N+1  
SAMPLE N+5  
A
A, A B  
IN  
IN  
tA  
SAMPLE N+2  
SAMPLE N+3  
SAMPLE N+4  
tEH  
tEL  
1/  
fS  
ENCODE A  
ENCODE B  
tPD  
tV  
D7 –D0  
DATA N–4  
DATA N–4  
DATA N–3  
DATA N–2  
DATA N–1  
DATA N–1  
DATA N  
DATA N  
DATA N+1  
DATA N+1  
A
A
D7 –D0  
B
DATA N–3  
DATA N–2  
B
Figure 3. Data Align with Two Clock Sources (S1 = 1, S2 = 1) Channel Timing  
–6–  
REV. 0  
Typical Performance Characteristics–AD9288  
72.00  
0
–10  
–20  
–30  
ENCODE = 100MSPS  
= 10.3MHz  
SNR = 48.52dB  
SINAD = 48.08dB  
2ND HARMONIC = –62.54dBc  
3RD HARMONIC = –63.56dBc  
ENCODE RATE = 100MSPS  
A
IN  
68.00  
64.00  
2ND  
60.00  
56.00  
–40  
–50  
–60  
–70  
–80  
3RD  
52.00  
48.00  
44.00  
40.00  
–90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
SAMPLE  
MHz  
Figure 7. Harmonic Distortion vs. AIN Frequency  
Figure 4. Spectrum: fS = 100 MSPS, fIN = 10 MHz,  
Single-Ended Input  
0
0
ENCODE = 100MSPS  
ENCODE = 100MSPS  
A
= 41MHz  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
A
1 = 9.3MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IN  
SNR = 47.87dB  
SINAD = 46.27dB  
2ND HARMONIC = –54.10dBc  
3RD HARMONIC = –55.46dBc  
A
2 = 10.3MHz  
IN  
IMD = –60.0dBc  
–90  
–90  
SAMPLE  
SAMPLE  
Figure 5. Spectrum: fS = 100 MSPS, fIN = 41 MHz,  
Single-Ended Input  
Figure 8. Two-Tone Intermodulation Distortion  
0
50.00  
ENCODE = 100MSPS  
ENCODE RATE = 100MSPS  
A
= 76MHz  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
48.00  
SNR = 47.1dB  
SINAD = 43.2dB  
2ND HARMONIC = –52.2dBc  
3RD HARMONIC = –51.5dBc  
SNR  
46.00  
SINAD  
44.00  
42.00  
40.00  
38.00  
36.00  
–90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
SAMPLE  
MHz  
Figure 6. Spectrum: fS = 100 MSPS, fIN = 76 MHz,  
Single-Ended Input  
Figure 9. SINAD/SNR vs. AIN Frequency  
REV. 0  
–7–  
AD9288  
49.00  
190  
185  
180  
175  
A
= 10.3MHz  
IN  
SNR  
A
= 10.3MHz  
IN  
SINAD  
48.00  
47.00  
170  
165  
160  
155  
150  
145  
46.00  
45.00  
140  
30  
40  
50  
60  
70  
80  
90  
100  
110  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
MSPS  
MSPS  
Figure 10. SINAD/SNR vs. Encode Rate  
Figure 13. Analog Power Dissipation vs. Encode Rate  
50.00  
46.00  
42.00  
38.00  
34.00  
30.00  
48.0  
A
= 10.3MHz  
ENCODE RATE = 100MSPS  
SNR  
IN  
A
= 10.3MHz  
IN  
47.5  
SINAD  
47.0  
46.5  
46.0  
SNR  
SINAD  
45.5  
45.0  
44.5  
44.0  
43.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
–40  
25  
TEMPERATURE – ؇C  
85  
ENCODE HIGH PULSEWIDTH – ns  
Figure 11. SINAD/SNR vs. Encode Pulsewidth High  
Figure 14. SINAD/SNR vs. Temperature  
0.6  
0.5  
ENCODE RATE = 100MSPS  
ENCODE RATE = 100MSPS  
= 10.3MHz  
0.0  
–0.5  
–1.0  
–1.5  
A
IN  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–3dB  
–1.0  
0
100  
200  
300  
400  
500  
600  
–40  
25  
TEMPERATURE – ؇C  
85  
BANDWIDTH – MHz  
Figure 12. ADC Frequency Response: fS = 100 MSPS  
Figure 15. ADC Gain vs. Temperature (with External  
+1.25 V Reference)  
–8–  
REV. 0  
AD9288  
V
2.0  
1.5  
D
28k  
28k⍀  
A
A
IN  
IN  
12k⍀  
1.0  
12k⍀  
0.5  
Figure 19. Equivalent Analog Input Circuit  
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
V
D
V
BIAS  
REF  
CODE  
IN  
Figure 16. Integral Nonlinearity  
Figure 20. Equivalent Reference Input Circuit  
1.00  
0.75  
V
D
0.50  
ENCODE  
0.25  
0.00  
Figure 21. Equivalent Encode Input Circuit  
–0.25  
–0.50  
–0.75  
–1.00  
V
DD  
OUT  
CODE  
Figure 17. Differential Nonlinearity  
Figure 22. Equivalent Digital Output Circuit  
1.3  
1.2  
1.1  
1.0  
0.9  
ENCODE = 100MSPS  
V
= 3.0V  
D
A
V
D
T
= +25؇C  
OUT  
Figure 23. Equivalent Reference Output Circuit  
0.8  
0.7  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
1.75  
LOAD – mA  
Figure 18. Voltage Reference Out vs. Current Load  
REV. 0  
–9–  
AD9288  
Timing  
APPLICATION NOTES  
The AD9288 provides latched data outputs, with four pipeline  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (see Figures 1, 2  
and 3). The length of the output data lines and loads placed on  
them should be minimized to reduce transients within the  
AD9288. These transients can detract from the converter’s  
dynamic performance.  
THEORY OF OPERATION  
)
The AD9288 ADC architecture is a bit-per-stage pipeline-type  
converter utilizing switch capacitor techniques. These stages  
determine the 5 MSBs and drive a 3-bit flash. Each stage pro-  
vides sufficient overlap and error correction allowing optimiza-  
tion of comparator accuracy. The input buffers are differential  
and both sets of inputs are internally biased. This allows the  
most flexible use of ac or dc and differential or single-ended  
input modes. The output staging block aligns the data, carries  
out the error correction and feeds the data to output buffers.  
The set of output buffers are powered from a separate supply,  
allowing adjustment of the output voltage swing. There is no  
discernible difference in performance between the two channels.  
The minimum guaranteed conversion rate of the AD9288 is  
1 MSPS. At clock rates below 1 MSPS, dynamic performance  
will degrade. Typical power-up recovery time after standby  
mode is 15 clock cycles.  
User Select Options  
Two pins are available for a combination of operational modes.  
These options allow the user to place both channels in standby,  
excluding the reference, or just the B channel. Both modes place  
the output buffers and clock inputs in high impedance states.  
USING THE AD9288  
Good high speed design practices must be followed when using  
the AD9288. To obtain maximum benefit, decoupling capacitors  
should be physically as close to the chip as possible, minimizing  
trace and via inductance between chip pins and capacitor (0603  
surface mount caps are used on the AD9288/PCB evaluation  
board). It is recommended to place a 0.1 µF capacitor at each  
power-ground pin pair for high frequency decoupling, and in-  
clude one 10 µF capacitor for local low frequency decoupling.  
The VREF IN pin should also be decoupled by a 0.1 µF capaci-  
tor. It is also recommended to use a split power plane and  
contiguous ground plane (see evaluation board section). Data  
output traces should be short (<1 inch), minimizing on-chip  
noise at switching.  
The other option allows the user to skew the B channel output  
data by 1/2 a clock cycle. In other words, if two clocks are fed to  
the AD9288 and are 180° out of phase, enabling the data align  
will allow Channel B output data to be available at the rising  
edge of Clock A. If the same encode clock is provided to both  
channels and the data align pin is enabled, then output data  
from Channel B will be 180° out of phase with respect to Chan-  
nel A. If the same encode clock is provided to both channels  
and the data align pin is disabled, then both outputs are deliv-  
ered on the same rising edge of the clock.  
EVALUATION BOARD  
ENCODE Input  
The AD9288 evaluation board offers an easy way to test the  
AD9288. It provides a means to drive the analog inputs single-  
endedly or differentially. The two encode clocks are easily  
accessible at on-board SMB connectors J2, J7. These clocks are  
buffered on the board to provide the clocks for an on-board  
DAC and latches. The digital outputs and output clocks are  
available at a standard 37-pin connector, P2. The board has  
several different modes of operation, and is shipped in the fol-  
lowing configuration:  
Any high speed A/D converter is extremely sensitive to the qual-  
ity of the sampling clock provided by the user. A track/hold  
circuit is essentially a mixer. Any noise, distortion or timing  
jitter on the clock will be combined with the desired signal at  
the A/D output. For that reason, considerable care has been  
taken in the design of the ENCODE input of the AD9288, and  
the user is advised to give commensurate thought to the clock  
source. The ENCODE input is fully TTL/CMOS compatible.  
Digital Outputs  
• Single-Ended Analog Input  
• Normal Operation Timing Mode  
• Internal Voltage Reference  
The digital outputs are TTL/CMOS compatible for lower  
power consumption. During standby, the output buffers transi-  
tion to a high impedance state. A data format selection option  
supports either twos complement (set high) or offset binary  
output (set low) formats.  
Power Connector  
Power is supplied to the board via a detachable 6-pin power  
strip, P1.  
Analog Input  
The analog input to the AD9288 is a differential buffer. For  
best dynamic performance, impedance at AIN and AIN should  
match. Special care was taken in the design of the analog input  
stage of the AD9288 to prevent damage and corruption of  
data when the input is overdriven. The nominal input range is  
1.024 V p-p centered at VD × 0.3.  
VREFA – Optional External Reference Input (1.25 V/1 µA)  
VREFB – Optional External Reference Input (1.25 V/1 µA)  
VDL  
VDD  
VD  
Supply for Support Logic and DAC (3 V/215 mA)  
Supply for ADC Outputs  
(3 V/15 mA)  
(3 V/30 mA)  
Supply for ADC Analog  
Analog Inputs  
Voltage Reference  
The evaluation board accepts a 1 V analog input signal centered  
at ground at each analog input. These can be single-ended sig-  
nals using SMB connectors J5 (channel A) and J1 (Channel B).  
In this mode use jumpers E4–E5 and E6–E7. (E1–E2 and E9–  
E10 jumpers should be lifted.)  
A stable and accurate 1.25 V voltage reference is built into the  
AD9288 (REFOUT). In normal operation, the internal reference  
is used by strapping Pins 5 (REFINA) and 7 (REFINB) to Pin 6  
(REFOUT). The input range can be adjusted by varying the  
reference voltage applied to the AD9288. No appreciable degra-  
dation in performance occurs when the reference is adjusted  
±5%. The full-scale range of the ADC tracks reference voltage,  
which changes linearly.  
Differential analog inputs use SMB connectors J4 and J6. Input  
is 1 V centered at ground. The single-ended input is converted  
–10–  
REV. 0  
AD9288  
to differential by transformers T1, T2—allowing the ADC perfor-  
mance for differential inputs to be measured using a single-  
ended source. In this mode use jumpers E1–E2, E3–E4, E7–E8  
and E9–E10. (E4–E5 and E6–E7 jumpers should be lifted.)  
PIN 22 (DATA)  
Each analog input is terminated on the board with 50 to  
ground. Each input is ac-coupled on the board through a 0.1 µF  
capacitor to an on-chip resistor divider that provides dc bias.  
Note that the inverting analog inputs are terminated on the  
board with 25 (optimized for single-ended operation). When  
driving the board differentially these resistors can be changed to  
50 to provide balanced inputs.  
1
PIN 2 (CLOCK)  
Ch1 2.00V CH2 2.00V M 10.0ns CH4  
40mV  
Figure 24. Data Output and Clock at 37-Pin Connector  
Encode  
DAC Outputs  
The encode clock for channel A uses SMB connector J7. Chan-  
nel B encode is at SMB connector J2. Each clock input is termi-  
nated on the board with 50 to ground. The input clocks are  
fed directly to the ADC and to buffers U5, U6 which drive the  
DAC and latches. The clock inputs are TTL compatible, but  
should be limited to a maximum of VD.  
Each channel is reconstructed by an on-board dual channel  
DAC, an AD9763. This DAC is intended to assist in debug—it  
should not be used to measure the performance of the ADC. It  
is a current output DAC with on-board 50 termination resis-  
tors. Figure 25 is representative of the DAC output with a full-  
scale analog input. The scope setting was low bandwidth, 50 Ω  
termination.  
Voltage Reference  
The AD9288 has an internal 1.25 V voltage reference. An ex-  
ternal reference for each channel may be employed instead. The  
evaluation board is configured for the internal reference (use  
jumpers E18–E41 and E17–E19. To use external references,  
connect to VREFA and VREFB pins on the power connector  
P1 and use jumpers E20–E18 and E21–E19.  
1
Normal Operation Mode  
In this mode both converters are clocked by the same encode  
clock; latency is four clock cycles (see timing diagram). Signal  
S1 (Pin 8) is held high and signal S2 (Pin 9) is held low. This is  
set at jumpers E22–E29 and E26–E23.  
Ch1 500mVB  
W
M 50.0ns CH1  
380mV  
Data Align Mode  
Figure 25. AD9763 Reconstruction DAC Output  
Troubleshooting  
If the board does not seem to be working correctly, try the  
following:  
In this mode channel B output is delayed an additional 1/2 cycle.  
Signal S1 (Pin 8) and signal S2 (Pin 9) are both held high. This  
is set at jumpers E22–E29 and E26–E28.  
Data Format Select  
Verify power at IC pins.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Data Format Select sets the output data format that the ADC  
outputs. Setting DFS (Pin 4) low at E30–E27 sets the output  
format to be offset binary; setting DFS high at E30–E25 sets  
the output to be twos complement.  
Verify VREF is at 1.25 V  
Try running encode clock and analog inputs at low speeds  
(10 MSPS/1 MHz) and monitor 574 outputs, DAC outputs,  
and ADC outputs for toggling.  
Data Outputs  
The ADC digital outputs are latched on the board by two 574s,  
the latch outputs are available at the 37-pin connector at Pins  
22–29 (Channel A) and Pins 30–37 (Channel B). A latch out-  
put clock (data ready) is available at Pin 2 or 21 on the output  
connector. The data ready signal can be aligned with clock A  
input by connecting E31–E32 or aligned with clock B input by  
connecting E31–E33.  
The AD9288 Evaluation Board is provided as a design example  
for customers of Analog Devices, Inc. ADI makes no warran-  
ties, express, statutory, or implied, regarding merchantability or  
fitness for a particular purpose.  
REV. 0  
–11–  
AD9288  
BILL OF MATERIALS  
DEVICE  
#
QTY  
REFDES  
PACKAGE  
VALUE  
1
2
3
4
22  
5
43  
8
C1–C15, C20–C25, C27  
C16–C19, C26  
E1–E43  
J1–J8  
Ceramic Cap  
Tantalum Cap  
W-HOLE  
SMBPN  
0603  
TAJD  
W-HOLE  
SMBP  
0.1 µF  
10 µF  
5
1
P1  
TB6  
TB6  
6
7
8
9
10  
11  
12  
13  
14  
15  
1
10  
2
2
2
2
1
1
2
P2  
37DRFP  
Resistor  
Resistor  
Resistor  
Resistor  
Transformer  
AD9288  
AD9763  
74ACQ574  
SN74LCX86  
C37DRFP  
R1206  
R1206  
R1206  
R1206  
T1–1T  
LQFP48  
LQFP48  
DIP20\SOL  
SO14  
R1, R3, R5–R7, R10–R14  
50 Ω  
25 Ω  
2 kΩ  
0 Ω  
R2, R4  
R8, R9  
R15, R16  
T1, T2  
U1  
U2  
U3, U4  
U5, U6  
2
–12–  
REV. 0  
AD9288  
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
D 2  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
G N D  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 8  
D 9  
D 3  
D 4  
D 5  
D 6  
D 7  
D 8  
D 9  
D B 8 – P 2  
D B 9 – P 2  
D V D D 2  
G N D  
G N D  
S L E E P  
A C O M  
G N D  
F 0 . 1  
C 8  
G N D  
F 0 . 1  
G N D  
G N D 3  
G N D  
D D  
C 6  
A 2  
D L  
V
D D  
V
3
V
D D  
V
A
E
G N D  
G N D  
B 2  
D C O M 2  
B
B
A
E N C  
V
R 0 5 0  
E N C  
E N C  
D D  
V
C L K D A C B  
C L K D A C B D  
C L K D A C A  
C L K D A C A  
G N D  
F S A D J 2  
R E F I O  
W R T 2 / I Q S E L  
R 8 2 k  
C 2 1 0 . 1  
D
D
D
V
3
V
V
C L K 2 / I Q R E S E T  
C L K 1 / I Q C L K  
W R T 1 / I Q W R T  
D V D D 1  
F 0 . 1  
F 0 . 1  
G N D  
F ␮  
C 5  
C 7  
R E F I O  
G N D  
G N D  
G N D  
F S A D J 1  
R 9 2 k  
B 1  
R 1 3 5 0  
A 1  
G N D  
D L  
V
G N D  
D C O M 1  
N C 3  
G N D  
G N D  
A V D D  
M O D E  
N C 2  
Figure 26 . Dual Evaluation Board Schematic  
–13–  
REV. 0  
AD9288  
Figure 27. Printed Circuit Board Top Side Copper  
Figure 29. Printed Circuit Board Ground Layer  
Figure 28. Printed Circuit Board Bottom Side Silkscreen  
Figure 30. Printed Circuit Board “Split” Power Layer  
–14–  
REV. 0  
AD9288  
Figure 31. Printed Circuit Board Bottom Side Copper  
Figure 32. Printed Circuit Board Top Side Silkscreen  
REV. 0  
–15–  
AD9288  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
48-Lead LQFP  
(ST-48)  
0.063 (1.60) MAX  
30 0 7  
0.354 (9.00) BSC  
0.276 (7.0) BSC  
0.057 (1.45)  
0.030 (0.75)  
0.053 (1.35)  
0.018 (0.45)  
37  
36  
48  
1
SEATING  
PLANE  
TOP VIEW  
(PINS DOWN)  
0.006 (0.15)  
12  
13  
25  
24  
0.002 (0.05)  
0° MIN  
0° – 7°  
0.007 (0.18)  
0.004 (0.09)  
0.011 (0.27)  
0.006 (0.17)  
0.019 (0.5)  
BSC  
–16–  
REV. 0  

相关型号:

AD9288BST-100

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BST-40

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BST-80

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZ-100

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZ-40

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZ-80

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZRL

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZRL-40

Dual A/D Converter
ADI

AD9288_17

Dual A/D Converter
ADI

AD9289

Quad 8-Bit, 65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9289-65EB

Serial LVDS 3 V A/D Converter
ADI

AD9289-65EB1

High Speed ADC USB FIFO Evaluation Kit
ADI