AD9288BSTZ-100 [ADI]

8-Bit, 40/80/100 MSPS Dual A/D Converter; 8位, 40/80/100 MSPS双通道A / D转换器
AD9288BSTZ-100
型号: AD9288BSTZ-100
厂家: ADI    ADI
描述:

8-Bit, 40/80/100 MSPS Dual A/D Converter
8位, 40/80/100 MSPS双通道A / D转换器

转换器 模数转换器
文件: 总24页 (文件大小:833K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-Bit, 40/80/100 MSPS  
Dual A/D Converter  
AD9288  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
Dual 8-bit, 40 MSPS, 80 MSPS, and 100 MSPS ADC  
Low power: 90 mW at 100 MSPS per channel  
On-chip reference and track-and-hold  
475 MHz analog bandwidth each channel  
SNR = 47 dB @ 41 MHz  
DD  
AD9288  
ENC  
TIMING  
A
A
A
A
A
8
8
IN  
T/H  
D7 –D0  
A A  
ADC  
IN  
1 V p-p analog input range each channel  
Single 3.0 V supply operation (2.7 V to 3.6 V)  
Standby mode for single-channel operation  
Twos complement or offset binary output mode  
Output data alignment mode  
SELECT 1  
SELECT 2  
REF  
REF  
A
IN  
REF  
ADC  
OUT  
REF  
B
IN  
DATA FORMAT  
SELECT  
A
A
B
B
8
8
Pin-compatible 10-bit upgrade available  
IN  
T/H  
D7 –D0  
B
B
IN  
APPLICATIONS  
ENC  
TIMING  
B
Battery-powered instruments  
Hand-held scopemeters  
Low cost digital oscilloscopes  
I and Q communications  
V
GND  
V
DD  
D
Figure 1.  
GENERAL DESCRIPTION  
The AD9288 is a dual 8-bit monolithic sampling analog-to-  
digital converter with on-chip track-and-hold circuits. It is  
optimized for low cost, low power, small size, and ease of use.  
The product operates at a 100 MSPS conversion rate with  
outstanding dynamic performance over its full operating range.  
Each channel can be operated independently.  
The Encode input is TTL/CMOS-compatible, and the 8-bit  
digital outputs can be operated from 3.0 V (2.5 V to 3.6 V)  
supplies. User-selectable options offer a combination of standby  
modes, digital data formats, and digital data timing schemes. In  
standby mode, the digital outputs are driven to a high  
impedance state.  
The ADC requires only a single 3.0 V (2.7 V to 3.6 V) power  
supply and an Encode clock for full-performance operation. No  
external reference or driver components are required for many  
applications. The digital outputs are TTL/CMOS-compatible,  
and a separate output power supply pin supports interfacing  
with 3.3 V or 2.5 V logic.  
Fabricated on an advanced CMOS process, the AD9288 is  
available in a 48-lead surface-mount plastic package (7 mm ×  
7 mm, 1.4 mm LQFP) specified over the industrial temperature  
range (–40°C to +85°C). The AD9288 is pin-compatible with  
the 10-bit AD9218, facilitating future system migrations.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9288  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Timing ......................................................................................... 14  
User-Selectable Options ............................................................ 14  
AD9218/AD9288 Customer PCB BOM...................................... 15  
Evaluation Board ............................................................................ 16  
Power Connector........................................................................ 16  
Analog Inputs ............................................................................. 16  
Voltage Reference ....................................................................... 16  
Clocking....................................................................................... 16  
Data Outputs............................................................................... 16  
Data Format/Gain ...................................................................... 16  
Timing ......................................................................................... 16  
Troubleshooting.......................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Explanation of Test Levels........................................................... 4  
Timing Diagrams.......................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Test Circuits ..................................................................................... 12  
Terminology .................................................................................... 13  
Theory of Operation ...................................................................... 14  
Using the AD9288 ...................................................................... 14  
Encode Input............................................................................... 14  
Digital Outputs ........................................................................... 14  
Analog Input ............................................................................... 14  
Voltage Reference ....................................................................... 14  
REVISION HISTORY  
12/04—Rev. B to Rev. C  
Change to Absolute Maximum Ratings......................................... 7  
Replaced Evaluation Board Section ............................................. 16  
Updated Outline Dimensions....................................................... 21  
Changes to Ordering Guide .......................................................... 21  
2/02—Rev. A to Rev. B  
Edits to ABSOLUTE MAXIMUM RATINGS .............................. 3  
1/01—Rev. 0 to Rev. A  
2/99—Revision 0: Initial Version  
Rev. C | Page 2 of 24  
AD9288  
SPECIFICATIONS  
VDD = 3.0 V; VD = 3.0 V, differential input; external reference, unless otherwise noted.  
Table 1.  
Test  
Level  
AD9288BST-100  
Typ  
AD9288BST-80  
Typ  
AD9288BST-40  
Typ  
Parameter  
Temp  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
8
8
8
Bits  
DC ACCURACY  
Differential Nonlinearity  
25°C  
Full  
I
ꢀ.5  
ꢀ.5ꢀ  
+1.25  
1.5ꢀ  
ꢀ.5  
ꢀ.5ꢀ  
+1.25  
1.5ꢀ  
ꢀ.5  
ꢀ.5ꢀ  
+1.25  
1.5ꢀ  
LSB  
LSB  
LSB  
LSB  
VI  
I
Integral Nonlinearity  
25°C  
Full  
+1.25  
1.5ꢀ  
+1.25  
1.5ꢀ  
+1.25  
1.5ꢀ  
VI  
VI  
I
No Missing Codes  
Gain Error1  
Full  
Guaranteed  
2.5  
Guaranteed  
2.5  
Guaranteed  
2.5  
25°C  
Full  
–6  
–8  
+6  
+8  
–6  
–8  
+6  
+8  
–6  
–8  
+6  
+8  
% FS  
% FS  
ppm/°C  
% FS  
mV  
VI  
VI  
V
V
Gain Tempco1  
Gain Matching  
Full  
8ꢀ  
1.5  
15  
8ꢀ  
1.5  
15  
8ꢀ  
1.5  
15  
25°C  
25°C  
Voltage Matching  
ANALOG INPUT  
Input Voltage Range (with  
Full  
Full  
V
V
512  
512  
512  
mV p-p  
V
AIN  
)
Respect to  
Common-Mode Voltage  
ꢀ.3 × ꢀ.3 × VD  
VD  
ꢀ.3 ×  
VD  
ꢀ.3 ×  
VD  
ꢀ.3 × VD  
ꢀ.3 ×  
VD  
ꢀ.3 ×  
VD  
ꢀ.3 × VD  
ꢀ.3 ×  
VD  
–ꢀ.2  
+ꢀ.2  
+35  
+4ꢀ  
1.3  
–ꢀ.2  
–35  
–4ꢀ  
1.2  
+ꢀ.2  
+35  
+4ꢀ  
1.3  
–ꢀ.2  
–35  
–4ꢀ  
1.2  
+ꢀ.2  
+35  
+4ꢀ  
1.3  
Input Offset Voltage  
25°C  
Full  
I
–35  
–4ꢀ  
1.2  
1ꢀ  
1ꢀ  
1ꢀ  
mV  
VI  
VI  
VI  
I
mV  
Reference Voltage  
Reference Tempco  
Input Resistance  
Full  
1.25  
1.25  
13ꢀ  
1ꢀ  
1.25  
13ꢀ  
1ꢀ  
V
Full  
13ꢀ  
ppm/°C  
kΩ  
25°C  
Full  
7
5
1ꢀ  
13  
16  
7
5
13  
16  
7
5
13  
16  
VI  
V
V
Input Capacitance  
25°C  
25°C  
2
2
2
pF  
Analog Bandwidth, Full  
Power  
475  
475  
475  
MHz  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Encode Pulse Width High (tEH)  
Encode Pulse Width Low (tEL)  
Aperture Delay (tA)  
Full  
VI  
IV  
IV  
IV  
V
1ꢀꢀ  
8ꢀ  
4ꢀ  
MSPS  
MSPS  
ns  
25°C  
25°C  
25°C  
25°C  
25°C  
Full  
1
1
1
4.3  
4.3  
1ꢀꢀꢀ  
1ꢀꢀꢀ  
5.ꢀ  
5.ꢀ  
1ꢀꢀꢀ  
1ꢀꢀꢀ  
8.ꢀ  
8.ꢀ  
1ꢀꢀꢀ  
1ꢀꢀꢀ  
ns  
3ꢀꢀ  
5
3ꢀꢀ  
5
3ꢀꢀ  
5
ps  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
V
ps rms  
ns  
VI  
VI  
2
3.ꢀ  
4.5  
2
3.ꢀ  
4.5  
2
3.ꢀ  
4.5  
Output Propagation Delay  
Full  
6.ꢀ  
6.ꢀ  
6.ꢀ  
ns  
2
(tPD  
)
DIGITAL INPUTS  
Logic 1 Voltage  
Logic ꢀ Voltage  
Logic 1 Current  
Logic ꢀ Current  
Input Capacitance  
DIGITAL OUTPUTS3  
Logic 1 Voltage  
Logic ꢀ Voltage  
POWER SUPPLY  
Power Dissipation4  
Standby Dissipation4, 5  
Full  
Full  
Full  
Full  
25°C  
VI  
VI  
VI  
VI  
V
2.ꢀ  
2.ꢀ  
2.ꢀ  
V
ꢀ.8  
1
ꢀ.8  
1
ꢀ.8  
1
V
µA  
µA  
pF  
1
1
1
2.ꢀ  
2.ꢀ  
2.ꢀ  
Full  
Full  
VI  
VI  
2.45  
2.45  
2.45  
V
V
ꢀ.ꢀ5  
ꢀ.ꢀ5  
ꢀ.ꢀ5  
Full  
Full  
25°C  
VI  
VI  
I
18ꢀ  
6
218  
11  
171  
6
2ꢀ7  
11  
156  
6
189  
11  
mW  
mW  
Power Supply Rejection  
Ratio (PSRR)  
8
2ꢀ  
8
2ꢀ  
8
2ꢀ  
mV/V  
Rev. C | Page 3 of 24  
 
AD9288  
Test  
Level  
AD9288BST-100  
Typ  
AD9288BST-80  
Typ  
AD9288BST-40  
Typ  
Parameter  
Temp  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE6  
Transient Response  
Overvoltage Recovery Time  
25°C  
25°C  
V
V
2
2
2
2
2
2
ns  
ns  
Signal-to-Noise Ratio (SNR)  
(without Harmonics)  
fIN = 1ꢀ.3 MHz  
fIN = 26 MHz  
fIN = 41 MHz  
25°C  
25°C  
25°C  
I
I
I
47.5  
47.5  
47.ꢀ  
47.5  
47  
44  
47.5  
dB  
dB  
dB  
44  
44  
Signal-to-Noise Ratio  
(SINAD) (with Harmonics)  
fIN = 1ꢀ.3 MHz  
fIN = 26 MHz  
25°C  
25°C  
25°C  
I
I
I
47  
47  
47  
47  
47  
47  
44  
7.ꢀ  
55  
55  
47  
7.5  
7ꢀ  
6ꢀ  
dB  
dB  
dB  
44  
7.ꢀ  
55  
55  
fIN = 41 MHz  
44  
7.ꢀ  
55  
52  
Effective Number of Bits  
fIN = 1ꢀ.3 MHz  
25°C  
25°C  
25°C  
I
I
I
7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
Bits  
Bits  
Bits  
fIN = 26 MHz  
fIN = 41 MHz  
Second Harmonic Distortion  
fIN = 1ꢀ.3 MHz  
25°C  
25°C  
25°C  
I
I
I
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
dBc  
dBc  
dBc  
fIN = 26 MHz  
fIN = 41 MHz  
Third Harmonic Distortion  
fIN = 1ꢀ.3 MHz  
25°C  
25°C  
25°C  
I
I
I
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
6ꢀ  
dBc  
dBc  
dBc  
fIN = 26 MHz  
fIN = 41 MHz  
Two-Tone Intermod  
Distortion (IMD)  
fIN = 1ꢀ.3 MHz  
25°C  
V
6ꢀ  
6ꢀ  
6ꢀ  
dBc  
1 Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.25 V external reference).  
2 tV and tPD are measured from the 1.5 V level of the Encode input to the 1ꢀ%/9ꢀ% levels of the digital outputs swing. The digital output load during test is not to exceed  
an ac load of 1ꢀ pF or a dc current of 4ꢀ µA.  
3 Digital supply current based on VDD = 3.ꢀ V output drive with < 1ꢀ pF loading under dynamic test conditions.  
4 Power dissipation measured under the following conditions: fS = 1ꢀꢀ MSPS, analog input is –ꢀ.7 dBFS, both channels in operation.  
5 Standby dissipation calculated with Encode clock in operation.  
6 SNR/harmonics based on an analog input voltage of –ꢀ.7 dBFS referenced to a 1.ꢀ24 V full-scale input range.  
EXPLANATION OF TEST LEVELS  
Level  
Description  
I
1ꢀꢀ% production tested.  
II  
1ꢀꢀ% production tested at 25°C and sample tested at specified temperatures.  
Sample tested only.  
Parameter is guaranteed by design and characterization testing.  
Parameter is a typical value only.  
III  
IV  
V
VI  
1ꢀꢀ% production tested at 25°C; guaranteed by design and characterization testing for industrial temperature range;  
1ꢀꢀ% production tested at temperature extremes for military devices.  
Rev. C | Page 4 of 24  
 
AD9288  
TIMING DIAGRAMS  
SAMPLE N  
SAMPLE N + 1  
SAMPLE N + 5  
A
A, A B  
IN IN  
tA  
SAMPLE N + 2  
SAMPLE N + 3  
SAMPLE N + 4  
tEH  
tEL  
1/f  
s
ENCODE A, B  
tPD  
tV  
D7 –D0  
A
A
B
DATA N – 4  
DATA N – 4  
DATA N – 3  
DATA N – 3  
DATA N – 2  
DATA N – 1  
DATA N  
DATA N + 1  
DATA N + 1  
D7 –D0  
B
DATA N – 2  
DATA N – 1  
DATA N  
Figure 2. Normal Operation, Same Clock (S1 = 1, S2 = 0) Channel Timing  
SAMPLE SAMPLE SAMPLE  
SAMPLE  
N + 3  
SAMPLE  
N + 4  
N
N + 1  
N + 2  
A
A, A B  
IN IN  
tA  
tEH  
tEL  
1/f  
s
ENCODE A  
ENCODE B  
tPD  
tV  
D7 –D0  
A
A
B
DATA N – 8  
DATA N – 6  
DATA N – 4  
DATA N – 2  
DATA N  
DATA N + 2  
D7 –D0  
B
DATA N – 7  
DATA N – 5  
DATA N – 3  
DATA N – 1  
DATA N + 1  
DATA N + 3  
Figure 3. Normal Operation with Two Clock Sources (S1 = 1, S2 = 0) Channel Timing  
Rev. C | Page 5 of 24  
 
 
 
AD9288  
SAMPLE SAMPLE SAMPLE  
SAMPLE  
N + 3  
SAMPLE  
N + 4  
N
N + 1  
N + 2  
A
A, A B  
IN IN  
tA  
tEH  
tEL  
1/f  
s
ENCODE A  
ENCODE B  
tPD  
tV  
D7 –D0  
A
A
DATA N – 8  
DATA N – 9  
DATA N – 6  
DATA N – 7  
DATA N – 4  
DATA N – 5  
DATA N – 2  
DATA N – 3  
DATA N  
DATA N + 2  
DATA N + 1  
D7 –D0  
B
B
DATA N – 1  
Figure 4. Data Align with Two Clock Sources (S1 = 1, S2 = 1) Channel Timing  
Rev. C | Page 6 of 24  
 
AD9288  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
VD, VDD  
Analog Inputs  
Digital Inputs  
VREF IN  
Digital Output Current  
Operating Temperature  
Storage Temperature  
Maximum Junction Temperature  
Maximum Case Temperature  
Thermal Impedance θja  
4 V  
Stresses above those listed under Absolute Maximum Ratings  
–ꢀ.5 V to VD + ꢀ.5 V  
–ꢀ.5 V to VDD + ꢀ.5 V  
–ꢀ.5 V to VD + ꢀ.5 V  
2ꢀ mA  
–55°C to +125°C  
–65°C to +15ꢀ°C  
15ꢀ°C  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to  
absolute maximum ratings for extended periods may affect  
device reliability.  
15ꢀ°C  
57°C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4ꢀꢀꢀ V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 7 of 24  
 
AD9288  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
GND  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
NC  
PIN 1  
A
A
A
A
IN  
IDENTIFIER  
NC  
3
IN  
GND  
4
DFS  
V
DD  
5
REF  
A
IN  
GND  
AD9288  
6
REF  
V
D
OUT  
TOP VIEW  
7
REF  
B
V
D
IN  
(Not to Scale)  
8
S1  
S2  
B
GND  
9
V
DD  
10  
11  
12  
A
A
27 GND  
IN  
B
26  
25  
NC  
NC  
IN  
GND  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 5. Pin Configuration  
Table 3.  
Pin No.  
Name  
Description  
1, 12, 16, 27, 29, GND  
32, 34, 45  
Ground  
2
3
AINA  
AINA  
DFS  
REFINA  
REFOUT  
REFINB  
S1  
Analog Input for Channel A.  
Analog Input for Channel A (Complementary).  
4
5
6
7
8
9
1ꢀ  
Data Format Select. Offset binary output available if set low. Twos complement output available if set high.  
Reference Voltage Input for Channel A.  
Internal Reference Voltage.  
Reference Voltage Input for Channel B.  
User Select 1. Refer to Table 4. Tied with respect to VD.  
User Select 2. Refer to Table 4. Tied with respect to VD.  
Analog Input for Channel B (Complementary).  
Analog Input for Channel B.  
S2  
AINB  
AINB  
VD  
ENCB  
VDD  
11  
13, 3ꢀ, 31, 48  
14  
15, 28, 33, 46  
17–24  
25, 26, 35, 36  
37–44  
47  
Analog Supply (3 V).  
Clock Input for Channel B.  
Digital Supply (3 V).  
D7B–DB Digital Output for Channel B.  
NC Do Not Connect.  
DꢀA–D7 A Digital Output for Channel A.  
ENC A Clock Input for Channel A.  
Rev. C | Page 8 of 24  
 
AD9288  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
72  
68  
64  
60  
56  
52  
48  
44  
40  
ENCODE = 100MSPS  
ENCODE RATE = 100MSPS  
A
= 10.3MHz  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SNR = 48.52dB  
SINAD = 48.08dB  
SECOND HARMONIC = –62.54dBc  
THIRD HARMONIC = –63.56dBc  
2ND  
3RD  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
SAMPLE  
MHz  
Figure 9. Harmonic Distortion vs. AIN Frequency  
Figure 6. Spectrum: fS = 100 MSPS, fIN = 10 MHz, Single-Ended Input  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
ENCODE = 100MSPS  
ENCODE = 100MSPS  
A
A
1 = 9.3MHz  
A
= 41MHz  
IN  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
2 = 10.3MHz  
SNR = 47.87dB  
SINAD = 46.27dB  
SECOND HARMONIC = –54.10dBc  
THIRD HARMONIC = –55.46dBc  
IN  
IMD = –60.0dBc  
SAMPLE  
SAMPLE  
Figure 10. Two-Tone Intermodulation Distortion  
Figure 7. Spectrum: fS = 100 MSPS, fIN = 41 MHz, Single-Ended Input  
50  
48  
46  
44  
42  
40  
38  
36  
0
ENCODE = 100MSPS  
ENCODE RATE = 100MSPS  
A
= 76MHz  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
SNR = 47.1dB  
SINAD = 43.2dB  
SECOND  
HARMONIC = –52.2dBc  
THIRD HARMONIC = –51.5dBc  
SNR  
SINAD  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
SAMPLE  
MHz  
Figure 8. Spectrum: fS = 100 MSPS, fIN = 76 MHz, Single-Ended Input  
Figure 11. SINAD/SNR vs. AIN Frequency  
Rev. C | Page 9 of 24  
 
AD9288  
49  
190  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
A
= 10.3MHz  
A
= 10.3MHz  
IN  
SNR  
IN  
SINAD  
48  
47  
46  
45  
30  
40  
50  
60  
70  
80  
90  
100  
110  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
MSPS  
MSPS  
Figure 12. SINAD/SNR vs. Encode Rate  
Figure 15. Analog Power Dissipation vs. Encode Rate  
50  
46  
42  
38  
34  
30  
48.0  
47.5  
47.0  
46.5  
46.0  
45.5  
45.0  
44.5  
44.0  
43.5  
A
= 10.3MHz  
ENCODE RATE = 100MSPS  
IN  
SNR  
IN  
A
= 10.3MHz  
SINAD  
SNR  
SINAD  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
–40  
25  
TEMPERATURE (°C)  
85  
ENCODE HIGH PULSE WIDTH (ns)  
Figure 13. SINAD/SNR vs. Encode Pulse Width High  
Figure 16. SINAD/SNR vs. Temperature  
0.5  
0
0.6  
0.4  
ENCODE RATE = 100MSPS  
ENCODE RATE = 100MSPS  
= 10.3MHz  
A
IN  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
0.2  
0
–3dB  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
100  
200  
300  
400  
500  
600  
–40  
25  
TEMPERATURE (°C)  
85  
BANDWIDTH (MHz)  
Figure 14. ADC Frequency Response: fS = 100 MSPS  
Figure 17. ADC Gain vs. Temperature (with External 1.25 V Reference)  
Rev. C | Page 1ꢀ of 24  
AD9288  
2.0  
1.5  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
ENCODE = 100MSPS  
V
= 3.0V  
D
A
T
= 25°C  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
0
0.25  
0.50  
0.75  
LOAD (mA)  
1.00  
1.25  
1.50  
1.75  
CODE  
Figure 20. Voltage Reference Out vs. Current Load  
Figure 18. Integral Nonlinearity  
1.00  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
CODE  
Figure 19. Differential Nonlinearity  
Rev. C | Page 11 of 24  
AD9288  
TEST CIRCUITS  
V
D
V
DD  
28k  
28kΩ  
OUT  
A
IN  
A
IN  
12kΩ  
12kΩ  
Figure 21. Equivalent Analog Input Circuit  
Figure 24. Equivalent Digital Output Circuit  
V
D
V
D
V
BIAS  
REF  
IN  
OUT  
Figure 22. Equivalent Reference Input Circuit  
Figure 25. Equivalent Reference Output Circuit  
V
D
ENCODE  
Figure 23. Equivalent Encode Input Circuit  
Rev. C | Page 12 of 24  
 
AD9288  
TERMINOLOGY  
Output Propagation Delay  
The delay between a 50% crossing of Encode and the time  
when all output data bits are within valid logic levels.  
Analog Bandwidth (Small Signal)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Power Supply Rejection Ratio  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Aperture Delay  
The delay between a 50% crossing of Encode and the instant at  
which the analog input is sampled.  
Signal-to-Noise-and-Distortion (SINAD)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Differential Nonlinearity  
Signal-to-Noise Ratio (SNR)  
The deviation of any code from an ideal 1 LSB step.  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral  
components, excluding the first five harmonics and dc.  
Encode Pulse Width/Duty Cycle  
Pulse width high is the minimum amount of time that the  
Encode pulse should be left in Logic 1 state to achieve rated  
performance; pulse width low is the minimum time Encode  
pulse should be left in low state. At a given clock rate, these  
specs define an acceptable Encode duty cycle.  
Spurious-Free Dynamic Range (SFDR)  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal level is lowered), or in dBFS (always  
related back to converter full scale).  
Integral Nonlinearity  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
Two-Tone Intermodulation Distortion Rejection  
Two-Tone SFDR  
Minimum Conversion Rate  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product. May be reported in dBc  
(i.e., degrades as signal level is lowered), or in dBFS (always  
related back to converter full scale).  
The Encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Maximum Conversion Rate  
The Encode rate at which parametric testing is performed.  
Worst Harmonic  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in  
dBc.  
Rev. C | Page 13 of 24  
 
AD9288  
THEORY OF OPERATION  
the input is overdriven. The nominal input range is 1.024 V p-p  
centered at VD × 0.3.  
The AD9288 ADC architecture is a bit-per-stage pipeline-type  
converter utilizing switch capacitor techniques. These stages  
determine the 5 MSBs and drive a 3-bit flash. Each stage  
provides sufficient overlap and error correction, allowing  
optimization of comparator accuracy. The input buffers are  
differential, and both sets of inputs are internally biased. This  
allows the most flexible use of ac or dc and differential or  
single-ended input modes. The output staging block aligns the  
data, carries out the error correction, and feeds the data to  
output buffers. The set of output buffers are powered from a  
separate supply, allowing adjustment of the output voltage  
swing. There is no discernible difference in performance  
between the two channels.  
VOLTAGE REFERENCE  
A stable and accurate 1.25 V voltage reference is built into the  
AD9288 (REFOUT). In normal operation, the internal reference  
is used by strapping Pins 5 (REFINA) and 7 (REFINB) to Pin 6  
(REFOUT). The input range can be adjusted by varying the  
reference voltage applied to the AD9288. No appreciable  
degradation in performance occurs when the reference is  
adjusted 5%. The full-scale range of the ADC tracks reference  
voltage, which changes linearly.  
TIMING  
The AD9288 provides latched data outputs, with four pipeline  
delays. Data outputs are available one propagation delay (tPD)  
after the rising edge of the Encode command (see Figure 2,  
Figure 3, and Figure 4). The length of the output data lines and  
loads placed on them must be minimized to reduce transients  
within the AD9288. These transients can detract from the  
converter’s dynamic performance.  
USING THE AD9288  
Good high speed design practices must be followed when  
using the AD9288. To obtain maximum benefit, decoupling  
capacitors should be physically as close as possible to the chip,  
minimizing trace and via inductance between chip pins and  
capacitor (0603 surface-mount capacitors are used on the  
AD9288/PCB evaluation board). It is recommended to place a  
0.1 µF capacitor at each power-ground pin pair for high  
frequency decoupling, and to include one 10 µF capacitor for  
local low frequency decoupling. The VREF IN pin should also  
be decoupled by a 0.1 µF capacitor. It is also recommended to  
use a split power plane and a contiguous ground plane (see the  
Evaluation Board section). Data output traces should be short  
(< 1 inch), minimizing on-chip noise at switching.  
The minimum guaranteed conversion rate of the AD9288 is  
1 MSPS. At clock rates below 1 MSPS, dynamic performance  
degrades. Typical power-up recovery time after standby mode is  
15 clock cycles.  
USER-SELECTABLE OPTIONS  
Two pins are available for a combination of operational modes.  
These options allow the user to place both channels, excluding  
the reference, into standby mode, or just the B channel. Both  
modes place the output buffers and clock inputs into high  
impedance states.  
ENCODE INPUT  
Any high speed A/D converter is extremely sensitive to the  
quality of the sampling clock provided by the user. A track-and-  
hold circuit is essentially a mixer. Any noise, distortion, or  
timing jitter on the clock is combined with the desired signal at  
the A/D output. For that reason, considerable care has been  
taken in the design of the Encode (Clock) input of the AD9288,  
and the user is advised to give commensurate thought to the  
clock source. The Encode input is fully TTL/CMOS-compatible.  
The other option allows the user to skew the B channel output  
data by 1/2 of a clock cycle. In other words, if two clocks are fed  
to the AD9288 and are 180° out of phase, enabling the data  
align allows Channel B output data to be available at the rising  
edge of Clock A. If the same Encode clock is provided to both  
channels and the data align pin is enabled, then output data  
from Channel B is 180° out of phase with respect to Channel A.  
If the same Encode clock is provided to both channels and the  
data align pin is disabled, both outputs are delivered on the  
same rising edge of the clock.  
DIGITAL OUTPUTS  
The digital outputs are TTL/CMOS-compatible for lower power  
consumption. During standby, the output buffers transition to a  
high impedance state. A data format selection option supports  
either twos complement (set high) or offset binary output (set  
low) formats.  
Table 4. User-Selectable Options  
S1 S2  
Option  
Standby Both Channels A and B.  
ANALOG INPUT  
1
1
1
1
Standby Channel B Only.  
Normal Operation (Data Align Disabled).  
Data Align Enabled (data from both channels avail-  
able on rising edge of Clock A. Channel B data is  
delayed a 1/2 clock cycle).  
The analog input to the AD9288 is a differential buffer. For best  
dynamic performance, impedance at AIN and  
Special care was taken in the design of the analog input stage of  
the AD9288 to prevent damage and corruption of data when  
AIN  
should match.  
Rev. C | Page 14 of 24  
 
AD9288  
AD9218/AD9288 CUSTOMER PCB BOM  
Table 5. Bill of Materials  
No.  
Qty.  
Reference Designator  
Device  
Package  
Value  
Comments  
1
29  
C1, C3-C15, C2ꢀ, C21, C24,  
C25, C27, C3ꢀ–C35, C39–C42  
Capacitor  
ꢀ6ꢀ3  
ꢀ.1 µF  
2
3
4
2
C2, C36  
Capacitor  
Capacitor  
W-HOLE  
ꢀ6ꢀ3  
15 pF  
1ꢀ µF  
8138 out  
7
C16–C19, C26, C37, C38  
TAJD  
28  
E1, E2, E3, E4, E12–E3ꢀ,  
E34–E38  
W-HOLE  
5
6
7
8
4
5
3
3
H1, H2, H3, H4  
J1, J2, J3, J4, J5  
P1, P4, P11  
MTHOLE  
MTHOLE  
SMA  
SMA  
J2, J3, not placed  
Wieland  
4-pin power connector  
4-pin power connector  
Post  
Z5.531.3425.ꢀ  
25.6ꢀ2.5453.ꢀ  
P1, P4, P11  
Detachable  
Connector  
Wieland  
9
1
4
9
P2, P31  
8ꢀ-pin rt. angle male  
Resistor  
TSW-14ꢀ-ꢀ8-  
L-D-RA  
Samtec  
1ꢀ  
11  
R1, R2, R32, R34  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
36 Ω  
R1, R2, R32, R34,  
not placed  
R3, R7, R11, R14, R22, R23,  
R24, R3ꢀ, R51  
Resistor  
5ꢀ Ω  
R11, R22, R23,  
R24, R3ꢀ, R51  
not placed  
12  
17  
R4, R5, R8, R9, R1ꢀ, R12, R13,  
R2ꢀ, R33, R35, R36, R37, R4ꢀ,  
R42, R43, R5ꢀ, R53  
Resistor  
ꢀ6ꢀ3  
Zero Ω  
R43, R5ꢀ  
not placed  
13  
14  
2
6
R6, R38  
Resistor  
Resistor  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
25 Ω  
R6, R38  
not placed  
R15, R16, R18, R26, R29, R31  
5ꢀꢀ Ω  
R16, R29  
not placed  
15  
16  
17  
2
R17, R25  
R19, R27  
Resistor  
Resistor  
Resistor  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
ꢀ6ꢀ3  
525 Ω  
4 kΩ  
1 kΩ  
2
12  
R21, R28, R39, R41, R44,  
R46–R49, R52, R54, R55  
18  
19  
2ꢀ  
21  
22  
23  
2
1
2
2
4
2
T1, T2  
Transformer  
AD92882  
ADT1-1WT  
LQFP48  
Minicircuits  
7682ꢀ347ꢀG  
U1  
U2, U3  
74LCX821  
U5, U6  
SN74VCX86  
Resistor array  
AD8138 op amp3  
U7, U8, U9, U1ꢀ  
U11, U12  
CTS  
47 Ω  
1 P2, P3 are implemented as one physical 8ꢀ-pin connector SAMTEC TSW-14ꢀ-ꢀ8-L-D-RA.  
2 AD9288/PCB populated with AD9288-1ꢀꢀ.  
3 To use optional amp: place R22, R23, R3ꢀ, R24, R16, R29, remove R4, R36.  
Rev. C | Page 15 of 24  
 
 
 
 
AD9288  
EVALUATION BOARD  
CLOCKING  
The AD9218/AD9288 customer evaluation board offers an easy  
way to test the AD9218 or the AD9288. The compatible pinout  
of the two parts facilitates the use of one PCB for testing either  
part. The PCB requires power supplies, a clock source, and a  
filtered analog source for most ADC testing required.  
Each channel can be clocked by a common clock input at SMA  
input ENCODE A/B. The channels can also be clocked  
independently by a simple board modification. The clock input  
should be a low jitter sine source for maximum performance.  
POWER CONNECTOR  
DATA OUTPUTS  
Power is supplied to the board via a detachable 12-lead power  
strip. The minimum 3 V supplies required to run the board are  
VDD, VDL, and VDD. To allow the use of the optional amplifier  
path, 5 V supplies are required.  
The data outputs are latched on-board by two 10-bit latches and  
drive an 8-pin connector which is compatible with the dual-  
channel FIFO board available from Analog Devices. This board,  
together with ADC analyzer software, can greatly simplify ADC  
testing.  
ANALOG INPUTS  
DATA FORMAT/GAIN  
The DFS/Gain pin can be biased for desired operation at the DFS  
jumper located at the S1, S2 jumpers.  
Each channel has an independent analog path that uses a  
wideband transformer to drive the ADC differentially from a  
single-ended sine source at the input SMAs. The transformer  
paths can be bypassed to allow the use of a dc-coupled path by  
using two AD8138 op amps with a simple board modification.  
The analog input should be band-pass filtered to remove any  
harmonics in the input signal and to minimize aliasing.  
TIMING  
Timing on each channel can be controlled if needed on the  
PCB. Clock signals at the latches or the data ready signals that  
go to the output 80-pin connector can be inverted if required.  
Jumpers also allow for biasing of Pins S1 and S2 for power-  
down and timing alignment control.  
VOLTAGE REFERENCE  
The AD9288 has an internal 1.25 V voltage reference; an  
external reference for each channel can be used instead by  
connecting two external voltage references at the power  
connector and setting jumpers at E18 and E19. The evaluation  
board is shipped configured for internal reference mode.  
Rev. C | Page 16 of 24  
 
AD9288  
0 0 5 8 5 - 0 2 6  
B
B
B
B
B
B
B
B
B
B
B
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
3 7  
3 8  
3 9  
4 0  
4 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 8  
D 2 2 4  
D 3 2 3  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 8  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 8  
D 4  
2 2  
D 5 2 1  
D 6  
D 7  
D 8  
2 0  
A
A
B
B
4 2  
4 3  
1 9  
1 8  
B
A
( M S B D ) 9  
D 9  
( M S B ) D 9  
4 4  
4 5  
4 6  
4 7  
4 8  
D 9  
1 7  
G N D  
1 6  
G N D  
G N D  
G N D  
D D  
D D  
D D  
D D  
V
V
V
V
1 5  
A
A
D
B
B
E N C  
E N C  
E N C  
E N C  
1 4  
1 3  
D
D
D
V
V
V
V
Figure 26. PCB Schematic  
Rev. C | Page 17 of 24  
AD9288  
0 0 5 8 5 - 0 2 7  
Figure 27. PCB Schematic (Continued)  
Rev. C | Page 18 of 24  
AD9288  
Figure 28. Top Silkscreen  
Figure 31. Split Power Plane  
Figure 29. Top Routing  
Figure 32. Bottom Routing  
Figure 33. Bottom Silkscreen  
Figure 30. Ground Plane  
Rev. C | Page 19 of 24  
AD9288  
TROUBLESHOOTING  
If the board does not seem to be working correctly, try the  
following:  
The AD9218/AD9288 evaluation board is provided as a design  
example for customers of Analog Devices, Inc. ADI makes no  
warranties, express, statutory, or implied, regarding  
Verify power at the IC pins.  
merchantability or fitness for a particular purpose.  
Check that all jumpers are in the correct position for the  
desired mode of operation.  
Verify that VREF is at 1.23 V.  
Try running Encode clock and analog inputs at low speeds  
(20 MSPS/1 MHz) and monitor LCX821 outputs, DAC  
outputs, and ADC outputs for toggling.  
Rev. C | Page 2ꢀ of 24  
 
AD9288  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
9.00 BSC  
SQ  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
SEATING  
PLANE  
10°  
6°  
2°  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
VIEW A  
7°  
3.5  
0°  
25  
12  
°
13  
24  
0.15  
0.05  
SEATING  
PLANE  
0.27  
0.22  
0.17  
0.08 MAX  
COPLANARITY  
0.50  
BSC  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BBC  
Figure 34. 48-Lead Low Profile Quad Flat Package [LQFP]  
(ST-48)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Options  
48-Lead Low Profile Quad Flat Package  
48-Lead Low Profile Quad Flat Package  
48-Lead Low Profile Quad Flat Package  
48-Lead Low Profile Quad Flat Package  
48-Lead Low Profile Quad Flat Package  
48-Lead Low Profile Quad Flat Package  
48-Lead Low Profile Quad Flat Package  
Evaluation Board  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
–4ꢀ°C to +85°C  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
ST-48  
AD9288BST-4ꢀ  
AD9288BSTZ-4ꢀ1  
AD9288BSTZRL-4ꢀ1  
AD9288BST-8ꢀ  
AD9288BSTZ-8ꢀ1  
AD9288BST-1ꢀꢀ  
AD9288BSTZ-1ꢀꢀ1  
AD9288/PCB  
1 Z = Pb-free part.  
Rev. C | Page 21 of 24  
 
 
AD9288  
NOTES  
Rev. C | Page 22 of 24  
AD9288  
NOTES  
Rev. C | Page 23 of 24  
AD9288  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00585–0–12/04(C)  
Rev. C | Page 24 of 24  

相关型号:

AD9288BSTZ-40

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZ-80

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZRL

8-Bit, 40/80/100 MSPS Dual A/D Converter
ADI

AD9288BSTZRL-40

Dual A/D Converter
ADI

AD9288_17

Dual A/D Converter
ADI

AD9289

Quad 8-Bit, 65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9289-65EB

Serial LVDS 3 V A/D Converter
ADI

AD9289-65EB1

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9289BBC

Quad 8-Bit, 65 MSPS, Serial LVDS A/D Converter
ADI

AD9289BBC-65

Quad 8-Bit, 65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9289BBC-65EB

Quad 8-Bit, 65 MSPS Serial LVDS 3V A/D Converter
ADI

AD9289BBCZ

Quad 8-Bit, 65 MSPS, Serial LVDS A/D Converter
ADI