AD9381 [ADI]

HDMI Display Interface; HDMI显示接口
AD9381
型号: AD9381
厂家: ADI    ADI
描述:

HDMI Display Interface
HDMI显示接口

文件: 总44页 (文件大小:738K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HDMI™ Display Interface  
AD9381  
FUNCTIONAL BLOCK DIAGRAM  
R/G/B 8 × 3  
FEATURES  
Internal HDCP keys  
HDMI interface  
Supports high bandwidth digital content protection  
RGB to YCbCr 2-way color conversion  
1.8 V/3.3 V power supply  
100-lead Pb-free LQFP  
SCL  
SDA  
SERIAL REGISTER  
YCbCr (4:2:2  
OR 4:4:4)  
AND  
POWER MANAGEMENT  
2
DATACK  
HSOUT  
VSOUT  
R/G/B 8 × 3  
RGB and YCbCr output formats  
Digital video interface  
OR YCbCr  
Rx0+  
Rx0–  
2
DATACK  
Rx1+  
HDMI 1.1, DVI 1.0  
150 MHz HDMI receiver  
Supports high bandwidth digital content protection  
(HDCP 1.1)  
HSYNC  
VSYNC  
Rx1–  
HDMI RECEIVER  
Rx2+  
DE  
Rx2–  
DE  
RxC+  
RxC–  
RTERM  
S/PDIF  
Digital audio interface  
8-CHANNEL  
HDMI 1.1-compatible audio interface  
S/PDIF (IEC90658-compatible) digital audio output  
Multichannel I2S audio output (up to 8 channels)  
2
I S  
MCLK  
LRCLK  
DDCSDA  
DDCSCL  
HDCP  
HDCP KEYS  
APPLICATIONS  
AD9381  
Advanced TVs  
HDTVs  
Figure 1.  
Projectors  
LCD monitors  
GENERAL DESCRIPTION  
The AD9381 offers a high definition multimedia interface  
(HDMI) receiver integrated on a single chip. Also included is  
support for high bandwidth digital content protection (HDCP)  
via an internal key storage.  
Fabricated in an advanced CMOS process, the AD9381 is  
provided in a space-saving, 100-lead, surface-mount, Pb-free  
plastic LQFP and is specified over the 0°C to 70°C temperature  
range.  
The AD9381 contains an HDMI 1.0-compatible receiver and  
supports all HDTV formats (up to 1080p) and display  
resolutions up to SXGA (1280×1024 @ 75 Hz). The receiver  
features an intrapair skew tolerance of up to one full clock cycle.  
With the inclusion of HDCP, displays may now receive  
encrypted video content. The AD9381 allows for authentication  
of a video receiver, decryption of encoded data at the receiver,  
and renewability of that authentication during transmission as  
specified by the HDCP 1.1 protocol.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights ofthird parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD9381  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
4:4:4 to 4:2:2 Filter...................................................................... 11  
Audio PLL Setup......................................................................... 12  
Audio Board Level Muting........................................................ 13  
Output Data Formats................................................................. 13  
2-Wire Serial Register Map ........................................................... 14  
2-Wire Serial Control Register DetailS........................................ 26  
Chip Identification..................................................................... 26  
BT656 Generation...................................................................... 28  
Macrovision................................................................................. 29  
Color Space Conversion............................................................ 30  
2-Wire Serial Control Port............................................................ 37  
Data Transfer via Serial Interface............................................. 37  
Serial Interface Read/Write Examples..................................... 38  
PCB Layout Recommendations.................................................... 39  
Power Supply Bypassing............................................................ 39  
Outputs (Both Data and Clocks).............................................. 39  
Digital Inputs .............................................................................. 39  
Color Space Converter (CSC) Common Settings...................... 40  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Digital Interface Electrical Characteristics ............................... 3  
Absolute Maximum Ratings............................................................ 5  
Explanation of Test Levels........................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Design Guide..................................................................................... 9  
General Description..................................................................... 9  
Digital Inputs ................................................................................ 9  
Serial Control Port ....................................................................... 9  
Output Signal Handling............................................................... 9  
Timing.............................................................................................. 10  
VSYNC Filter and Odd/Even Fields ........................................ 10  
HDMI Receiver........................................................................... 10  
DE Generator.............................................................................. 10  
REVISION HISTORY  
10/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 44  
AD9381  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD, VD = 3.3 V, DVDD = PVDD = 1.8 V, ADC clock = maximum.  
Table 1.  
AD9381KSTZ-100  
Typ  
AD9381KSTZ-150  
Typ  
Parameter  
Temp  
Test Level  
Min  
Max  
Min  
Max  
Unit  
DIGITAL INPUTS (5 V Tolerant)  
Input Voltage, High (VIH)  
Input Voltage, Low (VIL)  
Input Current, High (IIH)  
Input Current, Low (IIL)  
Input Capacitance  
Full  
Full  
Full  
Full  
25°C  
VI  
VI  
V
V
V
2.6  
2.6  
V
V
μA  
μA  
pF  
0.8  
0.8  
−82  
82  
3
−82  
82  
3
DIGITAL OUTPUTS  
Output Voltage, High (VOH)  
Output Voltage, Low (VOL)  
Duty Cycle, DATACK  
Full  
Full  
Full  
VI  
VI  
V
VDD − 0.1  
45  
VDD − 0.1  
45  
V
V
%
0.4  
55  
0.4  
55  
50  
50  
Output Coding  
Binary  
Binary  
THERMAL CHARACTERISTICS  
θJA-Junction-to-Ambient  
V
35  
35  
°C/W  
DIGITAL INTERFACE ELECTRICAL CHARACTERISTICS  
VDD = VD = 3.3 V, DVDD = PVDD = 1.8 V, ADC clock = maximum.  
Table 2.  
AD9381KSTZ-150  
AD9381KSTZ-100  
Parameter  
Test Level  
Conditions  
Min  
Typ  
Max  
Min  
Typ Max  
Unit  
RESOLUTION  
8
8
Bit  
DC DIGITAL I/O Specifications  
High-Level Input Voltage, (VIH)  
Low-Level Input Voltage, (VIL)  
High-Level Output Voltage, (VOH)  
Low-Level Output Voltage, (VOL)  
DC SPECIFICATIONS  
Output High Level  
IOHD, (VOUT = VOH)  
Output Low Level  
IOLD, (VOUT = VOL)  
DATACK High Level  
VOHC, (VOUT = VOH)  
VI  
VI  
VI  
VI  
2.5  
2.5  
V
V
V
V
0.8  
0.1  
0.8  
0.1  
VDD − 0.1  
VDD − 0.1  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
Output drive = high  
Output drive = low  
Output drive = high  
Output drive = low  
Output drive = high  
Output drive = low  
Output drive = high  
Output drive = low  
36  
24  
12  
8
40  
20  
30  
15  
36  
24  
12  
8
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mV  
40  
20  
30  
15  
700  
DATACK Low Level  
VOLC, (VOUT = VOL)  
Differential Input Voltage, Single-  
Ended Amplitude  
75  
700  
75  
POWER SUPPLY  
VD Supply Voltage  
VDD Supply Voltage  
IV  
IV  
IV  
IV  
V
3.15  
1.7  
1.7  
3.3  
3.3  
1.8  
1.8  
80  
3.47  
347  
1.9  
1.9  
100  
1003  
3.15  
1.7  
1.7  
3.3  
3.3  
1.8  
1.8  
80  
3.47  
347  
1.9  
1.9  
110  
1753  
V
V
V
V
mA  
mA  
DVDD Supply Voltage  
PVDD Supply Voltage  
IVD Supply Current (Typical Pattern)1  
IVDD Supply Current (Typical  
Pattern)2  
1.7  
1.7  
V
40  
55  
Rev. 0 | Page 3 of 44  
 
 
 
AD9381  
AD9381KSTZ-150  
Min Typ Max  
AD9381KSTZ-100  
Parameter  
Test Level  
Conditions  
Min  
Typ  
Max  
Unit  
IDVDD Supply Current (Typical  
Pattern)1, 4  
V
88  
110  
110  
145  
mA  
IPVDD Supply Current (Typical  
Pattern)1  
Power-Down Supply Current (IPD)  
AC SPECIFICATIONS  
V
26  
35  
30  
40  
mA  
mA  
VI  
130  
130  
Intrapair (+ to −) Differential Input  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
IV  
360  
6
ps  
Skew (TDPS  
Channel to Channel Differential  
Input Skew (TCCS  
Low-to-High Transition Time for  
Data and Controls (DLHT  
)
Clock  
Period  
ps  
)
Output drive = high;  
CL = 10 pF  
Output drive = low;  
CL = 5 pF  
Output drive = high;  
CL = 10 pF  
Output drive = low;  
CL = 5 pF  
Output drive = high;  
CL = 10 pF  
Output drive = low;  
CL = 5 pF  
Output drive = high;  
CL = 10 pF  
Output drive = low;  
CL = 5 pF  
900  
)
1300 ps  
650 ps  
1200 ps  
850 ps  
1250 ps  
800 ps  
1200 ps  
Low-to-High Transition Time for  
DATACK (DLHT  
)
High-to-Low Transition Time for  
Data and Controls (DHLT  
)
High-to-Low Transition Time for  
DATACK (DHLT  
)
Clock to Data Skew5 (TSKEW  
Duty Cycle, DATACK5  
DATACK Frequency (FCIP)  
)
IV  
IV  
VI  
–0.5  
45  
20  
+2.0  
–0.5  
+2.0  
55  
150  
ns  
%
MHz  
50  
1 The typical pattern contains a gray scale area, output drive = high. Worst-case pattern is alternating black and white pixels.  
2 The typical pattern contains a gray scale area, output drive = high.  
3 Specified current and power values with a worst-case pattern (on/off).  
4 DATACK load = 10 pF, data load = 5 pF.  
5 Drive strength = high.  
Rev. 0 | Page 4 of 44  
 
 
 
 
AD9381  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VD  
3.6 V  
VDD  
3.6 V  
DVDD  
1.98 V  
PVDD  
1.98 V  
Analog Inputs  
Digital Inputs  
VD to 0.0 V  
5 V to 0.0 V  
20 mA  
−25°C to +85°C  
−65°C to +150°C  
150°C  
EXPLANATION OF TEST LEVELS  
Table 4.  
Digital Output Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Maximum Case Temperature  
Level  
Test  
I
100% production tested.  
II  
100% production tested at 25°C and sample tested at  
specified temperatures.  
150°C  
III  
Sample tested only.  
IV  
Parameter is guaranteed by design and  
characterization testing.  
V
Parameter is a typical value only.  
VI  
100% production tested at 25°C; guaranteed by design  
and characterization testing.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 44  
 
AD9381  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
GND  
NC  
GND  
PIN 1  
2
3
GREEN 7  
GREEN 6  
GREEN 5  
GREEN 4  
GREEN 3  
GREEN 2  
GREEN 1  
GREEN 0  
NC  
4
V
D
5
NC  
6
NC  
7
GND  
NC  
8
9
V
D
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
V
NC  
AD9381  
DD  
TOP VIEW  
GND  
BLUE 7  
BLUE 6  
BLUE 5  
BLUE 4  
BLUE 3  
BLUE 2  
BLUE 1  
BLUE 0  
MCLKIN  
MCLKOUT  
SCLK  
GND  
GND  
GND  
GND  
GND  
GND  
(Not to Scale)  
PV  
DD  
GND  
FILT  
PV  
DD  
GND  
PV  
DD  
LRCLK  
GND  
PU1  
PU2  
2
I S3  
2
I S2  
NC = NO CONNECT  
Figure 2. Pin Configuration  
Table 5. Complete Pinout List  
Pin Type  
Pin No.  
81  
Mnemonic  
Function  
Value  
3.3 V CMOS  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
TMDS  
VDD  
INPUTS  
PWRDN  
Rx0+  
Rx0−  
Rx1+  
Rx1−  
Power-Down Control  
DIGITAL VIDEO DATA INPUTS  
35  
34  
38  
37  
41  
40  
Digital Input Channel 0 True  
Digital Input Channel 0 Complement  
Digital Input Channel 1 True  
Digital Input Channel 1 Complement  
Digital Input Channel 2 True  
Digital Input Channel 2 Complement  
Digital Data Clock True  
Rx2+  
Rx2−  
DIGITAL VIDEO CLOCK INPUTS 43  
44  
RxC+  
RxC−  
Digital Data Clock Complement  
Outputs of Red Converter, Bit 7 is MSB  
OUTPUTS  
92 to 99  
RED [7:0]  
2 to 9  
12 to 19  
89  
87  
85  
GREEN [7:0] Outputs of Green Converter, Bit 7 is MSB  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
BLUE [7:0]  
DATACK  
HSOUT  
VSOUT  
SOGOUT  
O/E FIELD  
Outputs of Blue Converter, Bit 7 is MSB  
Data Output Clock  
HSYNC Output Clock (Phase-Aligned with DATACK)  
VSYNC Output Clock (Phase-Aligned with DATACK)  
SOG Slicer Output  
86  
84  
Odd/Even Field Output  
Rev. 0 | Page 6 of 44  
 
AD9381  
Pin Type  
Pin No.  
Mnemonic  
Function  
Value  
REFERENCES  
POWER SUPPLY  
57  
FILT  
Connection for External Filter Components for Audio PLL  
Analog Power Supply and DVI Terminators  
PVDD  
3.3 V  
80, 76, 72, 67, VD  
45, 33  
100, 90, 10  
59, 56, 54  
48, 32, 30  
VDD  
PVDD  
DVDD  
GND  
Output Power Supply  
PLL Power Supply  
Digital Logic Power Supply  
Ground  
1.8 V to 3.3 V  
1.8 V  
1.8 V  
0 V  
CONTROL  
HDCP  
83  
82  
49  
50  
51  
52  
28  
27  
26  
25  
24  
20  
21  
22  
23  
88  
46  
SDA  
SCL  
Serial Port Data I/O  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
3.3 V CMOS  
Serial Port Data Clock  
HDCP Slave Serial Port Data Clock  
HDCP Slave Serial Port Data I/O  
This should be pulled up to 3.3 V through a 10 kΩ resistor 3.3 V CMOS  
This should be pulled up to 3.3 V through a 10 kΩ resistor 3.3 V CMOS  
DDCSCL  
DDCSDA  
PU2  
PU1  
AUDIO DATA OUTPUTS  
S/PDIF  
I2S0  
S/PDIF Digital Audio Output  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
I2S Audio (Channel 1, Channel 2)  
I2S Audio (Channels 3, Channel 4)  
I2S Audio (Channels 5, Channel 6)  
I2S Audio (Channels 7, Channel 8)  
External Reference Audio Clock In  
Audio Master Clock Output  
I2S1  
I2S2  
I2S3  
MCLKIN  
MCLKOUT  
SCLK  
LRCLK  
DE  
Audio Serial Clock Output  
Data Output Clock for Left and Right Audio Channels  
Data Enable  
VDD  
DATA ENABLE  
RTERM  
3.3 V CMOS  
500 Ω  
RTERM  
Sets Internal Termination Resistance  
Table 6. Pin Function Descriptions  
Mnemonic  
INPUTS  
Rx0+  
Description  
Digital Input Channel 0 True.  
Rx0−  
Rx1+  
Digital Input Channel 0 Complement.  
Digital Input Channel 1 True.  
Rx1−  
Rx2+  
Digital Input Channel 1 Complement.  
Digital Input Channel 2 True.  
Rx2−  
Digital Input Channel 2 Complement.  
These six pins receive three pairs of transition minimized differential signaling (TMDS) pixel data (at 10× the pixel  
rate) from a digital graphics transmitter.  
RxC+  
RxC−  
Digital Data Clock True.  
Digital Data Clock Complement.  
This clock pair receives a TMDS clock at 1× pixel data rate.  
External Filter Connection.  
FILT  
For proper operation, the audio clock generator PLL requires an external filter. Connect the filter shown in  
Figure 8 to this pin. For optimal performance, minimize noise and parasitics on this node. For more information  
see the PCB Layout Recommendations section .  
PWRDN  
Power-Down Control/Three-State Control.  
The function of this pin is programmable via Register 0x26 [2:1].  
Rev. 0 | Page 7 of 44  
AD9381  
Mnemonic  
OUTPUTS  
HSOUT  
Description  
Horizontal Sync Output.  
A reconstructed and phase-aligned version of the HSYNC input. Both the polarity and duration of this output can  
be programmed via serial bus registers. By maintaining alignment with DATACK and Data, data timing with  
respect to horizontal sync can always be determined.  
VSOUT  
Vertical Sync Output.  
The separated VSYNC from a composite signal or a direct pass through of the VSYNC signal. The polarity of this  
output can be controlled via the serial bus bit (Register 0x24[6]).  
O/E FIELD  
Odd/Even Field Bit for Interlaced Video. This output identifies whether the current field (in an interlaced signal) is  
odd or even. The polarity of this signal is programmable via Register 0x24[4].  
SERIAL PORT  
SDA  
SCL  
Serial Port Data I/O for Programming AD9381 Registers—I2C Address is 0x98.  
Serial Port Data Clock for Programming AD9381 Registers.  
DDCSDA  
DDCSCL  
PU2  
Serial Port Data I/O for HDCP Communications to Transmitter—I2C Address is 0x74 or 0x76.  
Serial Port Data Clock for HDCP Communications to Transmitter.  
This should be pulled up to 3.3 V through a 10 kΩ resistor.  
PU1  
This should be pulled up to 3.3 V through a 10 kΩ resistor.  
DATA OUTPUTS  
Red [7:0]  
Green [7:0]  
Blue [7:0]  
Data Output, Red Channel.  
Data Output, Green Channel.  
Data Output, Blue Channel.  
The main data outputs. Bit 7 is the MSB. The delay from pixel sampling time to output is fixed, but will be  
different if the color space converter is used. When the sampling time is changed by adjusting the phase register,  
the output timing is shifted as well. The DATACK and HSOUT outputs are also moved, so the timing relationship  
among the signals is maintained.  
DATA CLOCK OUTPUT  
DATACK  
Data Clock Output.  
This is the main clock output signal used to strobe the output data and HSOUT into external logic. Four possible  
output clocks can be selected with Register 0x25[7:6]. These are related to the pixel clock (1/2× pixel clock, 1×  
pixel clock, 2× frequency pixel clock, and a 90° phase shifted pixel clock). They are produced either by the  
internal PLL clock generator or EXTCLK and are synchronous with the pixel sampling clock. The polarity of  
DATACK can also be inverted via Register 0x24[0]. The sampling time of the internal pixel clock can be changed  
by adjusting the phase register. When this is changed, the pixel-related DATACK timing is shifted as well. The  
DATA, DATACK, and HSOUT outputs are all moved, so the timing relationship among the signals is maintained.  
POWER SUPPLY1  
VD (3.3 V)  
Analog Power Supply.  
These pins supply power to the ADCs and terminators. They should be as quiet and filtered as possible.  
Digital Output Power Supply.  
VDD (1.8 V to 3.3 V)  
A large number of output pins (up to 27) switching at high speed (up to 150 MHz) generates many power supply  
transients (noise). These supply pins are identified separately from the VD pins so special care can be taken to  
minimize output noise transferred into the sensitive analog circuitry. If the AD9381 is interfacing with lower  
voltage logic, VDD may be connected to a lower supply voltage (as low as 1.8 V) for compatibility.  
PVDD (1.8 V)  
Clock Generator Power Supply.  
The most sensitive portion of the AD9381 is the clock generation circuitry. These pins provide power to the clock  
PLL and help the user design for optimal performance. The designer should provide quiet, noise-free power to  
these pins.  
DVDD (1.8 V)  
GND  
Digital Input Power Supply.  
This supplies power to the digital logic.  
Ground.  
The ground return for all circuitry on chip. It is recommended that the AD9381 be assembled on a single solid  
ground plane, with careful attention to ground current paths.  
1 The supplies should be sequenced such that VD and VDD are never less than 300 mV below DVDD. At no time should DVDD be more than 300 mV greater than VD or VDD.  
Rev. 0 | Page 8 of 44  
AD9381  
DESIGN GUIDE  
GENERAL DESCRIPTION  
SERIAL CONTROL PORT  
The AD9381 is a fully integrated solution for receiving DVI/  
HDMI signals and is capable of decoding HDCP-encrypted  
signals through connections to an internal EEPROM. The  
circuit is ideal for providing an interface for HDTV monitors  
or as the front end to high performance video scan converters.  
The serial control port is designed for 3.3 V logic. However, it is  
tolerant of 5 V logic signals.  
OUTPUT SIGNAL HANDLING  
The digital outputs operate from 1.8 V to 3.3 V (VDD).  
Power Management  
Implemented in a high performance CMOS process, the  
interface can capture signals with pixel rates of up to 150 MHz.  
The AD9381 uses the activity detect circuits, the active interface  
bits in the serial bus, the active interface override bits, the  
power-down bit, and the power-down pin to determine the  
correct power state. There are four power states: full-power,  
seek mode, auto power-down, and power-down.  
The AD9381 includes all necessary circuitry for decoding  
TMDS signaling including those encrypted with HDCP. The  
output data formatting includes a color space converter (CSC),  
which accommodates any input color space and can output any  
color space. All controls are programmable via a 2-wire serial  
interface. Full integration of these sensitive mixed signal  
functions makes system design straight-forward and less  
sensitive to the physical and electrical environment.  
Table 7 summarizes how the AD9381 determines which power  
mode to use and which circuitry is powered on/off in each of  
these modes. The power-down command has priority and then  
the automatic circuitry. The power-down pin (Pin 81—polarity  
set by Register 0x26[3]) can drive the chip into four power-  
down options. Bit 2 and Bit1 of Register 0x26 control these four  
options. Bit 0 controls whether the chip is powered down or the  
outputs are placed in high impedance mode (with the exception  
of SOG). Bit 7 to Bit 4 of Register 0x26 control whether the  
outputs, SOG, Sony Philips digital interface (S/PDIF ) or Inter-  
IC sound bus (I2S or IIS) outputs are in high impedance mode  
or not. See the 2-Wire Serial Control Register Detail section for  
more details.  
DIGITAL INPUTS  
The digital control inputs (I2C) on the AD9381 operate to 3.3 V  
CMOS levels. In addition, all digital inputs, except the TMDS  
(HDMI/DVI) inputs, are 5 V tolerant (applying 5 V to them  
does not cause damage). The TMDS input pairs (Rx0+/Rx0−,  
Rx1+/Rx1−, Rx2+/Rx2−, and RxC+/RxC−) must maintain a  
100 Ω differential impedance (through proper PCB layout)  
from the connector to the input where they are internally  
terminated (50 Ω to 3.3 V). If additional ESD protection is  
desired, use of a California Micro Devices (CMD) CM1213  
(among others) series low capacitance ESD protection offers  
8 kV of protection to the HDMI TMDS lines.  
Table 7. Power-Down Mode Descriptions  
Inputs  
Sync Detect2  
Mode  
Power-Down1  
Auto PD Enable3  
Power-On or Comments  
Full Power  
Seek Mode  
Seek Mode  
Power-Down  
1
1
1
0
1
0
0
X
X
0
1
Everything  
Everything  
Serial bus, sync activity detect, SOG, band gap reference  
Serial bus, sync activity detect, SOG, band gap reference  
1 Power-down is controlled via Bit 0 in Serial Bus Register 0x26.  
2 Sync detect is determined by OR’ing Bits 7 to Bit 2 in Serial Bus Register 0x15.  
3 Auto power-down is controlled via Bit 7 in Serial Bus Register 0x27.  
Rev. 0 | Page 9 of 44  
 
 
AD9381  
TIMING  
SYNC SEPARATOR THRESHOLD  
FIELD 1  
FIELD 0  
FIELD 1  
FIELD 0  
The output data clock signal is created so that its rising edge  
always occurs between data transitions and can be used to latch  
the output data externally.  
QUADRANT  
HSIN  
2
3
4
1
2
3
4
1
VSIN  
VSYOUT  
Figure 3 shows the timing operation of the AD9381.  
tPER  
O/E FIELD  
tDCYCLE  
ODD FIELD  
Figure 5. VSYNC Filter—Odd/Even  
DATACK  
HDMI RECEIVER  
tSKEW  
The HDMI receiver section of the AD9381 allows the reception  
of a digital video stream, which is backward compatible with  
DVI and able to accommodate not only video of various for-  
mats (RGB, YCrCb 4:4:4, 4:2:2), but also up to eight channels of  
audio. Infoframes are transmitted carrying information about  
the video format, audio clocks, and many other items necessary  
for a monitor to use fully the information stream available.  
DATA  
HSOUT  
Figure 3. Output Timing  
VSYNC FILTER AND ODD/EVEN FIELDS  
The VSYNC filter eliminates spurious VSYNCs, maintains a  
consistent timing relationship between the VSYNC and HSYNC  
output signals, and generates the odd/even field output.  
The earlier digital visual interface (DVI) format was restricted  
to an RGB 24-bit color space only. Embedded in this data  
stream were HSYNCs, VSYNCs, and display enable (DE)  
signals, but no audio information. The HDMI specification  
allows transmission of all the DVI capabilities, but adds several  
YCrCb formats that make the inclusion of a programmable  
color space converter (CSC) a very desirable feature. With this,  
the scaler following the AD9381 can specify that it always  
wishes to receive a particular format—for instance, 4:2:2  
YCrCb—regardless of the transmitted mode. If RGB is sent, the  
CSC can easily convert that to 4:2:2 YCrCb while relieving the  
scaler of this task.  
The filter works by examining the placement of VSYNC  
with respect to HSYNC and, if necessary, slightly shifting  
it in time at the VSOUT output. The goal is to keep the  
VSYNC and HSYNC leading edges from switching at the  
same time, eliminating confusion as to when the first line  
of a frame occurs. Enabling the VSYNC filter is done with  
Register 0x21[5]. Use of the VSYNC filter is recommended for  
all cases, including interlaced video, and is required when using  
the HSYNC per VSYNC counter. Figure 4 and Figure 5  
illustrate even/odd field determination in two situations.  
SYNC SEPARATOR THRESHOLD  
In addition, the HDMI specification supports the transmission  
of up to eight channels of S/PDIF or I2S audio. The audio  
information is packetized and transmitted during the video  
blanking periods along with specific information about the  
clock frequency. Part of this audio information (audio  
Infoframe) tells the user how many channels of audio are being  
transmitted, where they should be placed, information  
regarding the source (make, model), and other data.  
FIELD 1  
FIELD 0  
FIELD 1  
FIELD 0  
QUADRANT  
HSIN  
2
3
4
1
2
3
4
1
VSIN  
VSOUT  
O/E FIELD  
DE GENERATOR  
EVEN FIELD  
The AD9381 has an onboard generator for DE, for start of  
active video (SAV) and for end of active video (EAV), all of  
which is necessary for describing the complete data stream for a  
BT656-compatible output. In addition to this particular output,  
it is possible to generate the DE for cases in which a scaler is not  
used. This signal alerts the following circuitry as to which are  
displayable video pixels.  
Figure 4.  
Rev. 0 | Page 10 of 44  
 
 
 
 
AD9381  
One of the three channels is represented in Figure 6. In each  
4:4:4 TO 4:2:2 FILTER  
processing channel, the three inputs are multiplied by three  
separate coefficients marked a1, a2, and a3. These coefficients  
are divided by 4096 to obtain nominal values ranging from  
–0.9998 to +0.9998. The variable labeled a4 is used as an offset  
control. The CSC_Mode setting is the same for all three  
processing channels. This multiplies all coefficients and offsets  
The AD9381 contains a filter that allows it to convert a signal  
from YCrCb 4:4:4 to YCrCb 4:2:2 while maintaining the  
maximum accuracy and fidelity of the original signal.  
Input Color Space to Output Color Space  
The AD9381 can accept a wide variety of input formats and  
either retain that format or convert to another. Input formats  
supported are:  
by a factor of 2CSC_Mode  
.
The functional diagram for a single channel of the CSC, as  
shown in Figure 6, is repeated for the remaining G and B  
channels. The coefficients for these channels are b1, b2, b3, b4,  
c1, c2, c3, and c4.  
4:4:4 YCrCb 8-bit  
4:2:2 YCrCb 8-bit, 10-bit, and 12-bit  
RGB 8-bit  
CSC_Mode[1:0]  
a4[12:0]  
+
a1[12:0]  
Output modes supported are:  
×4  
×2  
2
1
0
4:4:4 YCrCb 8-bit  
1
4096  
R
G
B
[11:0]  
[11:0]  
[11:0]  
×
×
×
×
+
+
IN  
IN  
IN  
R
[11:0]  
OUT  
4:2:2 YCrCb 8-bit, 10-bit, and 12-bit  
Dual 4:2:2 YCrCb 8-bit  
a2[12:0]  
1
4096  
×
Color Space Conversion (CSC) Matrix  
a3[12:0]  
The CSC matrix in the AD9381 consists of three identical  
processing channels. In each channel, three input values are  
multiplied by three separate coefficients. Also included are an  
offset value for each row of the matrix and a scaling multiple for  
all values. Each value has a 13-bit, twos complement resolution  
to ensure the signal integrity is maintained. The CSC is  
designed to run at speeds up to 150 MHz supporting resolu-  
tions up to 1080p at 60 Hz. With any-to-any color space  
support, formats such as RGB, YUV, YCbCr, and others are  
supported by the CSC.  
1
4096  
×
Figure 6. Single CSC Channel  
A programming example and register settings for several  
common conversions are listed in the Color Space Converter  
(CSC) Common Settings section.  
For a detailed functional description and more programming  
examples, please refer to the application note AN-795, AD9800  
Color Space Converter User's Guide.  
The main inputs, RIN, GIN, and BIN come from the 8- to 12-bit  
inputs from each channel. These inputs are based on the input  
format detailed in Table 7. The mapping of these inputs to the  
CSC inputs is shown in Table 8.  
Table 8. CSC Port Mapping  
Input Channel  
CSC Input Channel  
R/CR  
Gr/Y  
B/CB  
RIN  
GIN  
BIN  
Rev. 0 | Page 11 of 44  
 
 
 
AD9381  
AUDIO PLL SETUP  
Data contained in the audio infoframes, among other registers,  
define for the AD9381 HDMI receiver not only the type of  
audio, but the sampling frequency (fS). The audio infoframe also  
contains information about the N and CTS values used to  
recreate the clock. With this information it is possible to  
regenerate the audio sampling frequency. The audio clock is  
regenerated by dividing the 20-bit CTS value into the TMDS  
clock, then multiplying by the 20-bit N value. This yields a  
multiple of the fs (sampling frequency) of either 128 × fs or  
256 × fs. It is possible for this to be specified up to 1024 × fs.  
In order to provide the most flexibility in configuring the audio  
sampling clock, an additional PLL is employed. The PLL  
characteristics are determined by the loop filter design, the PLL  
charge pump current, and the VCO range setting. The loop  
filter design is shown in Figure 8.  
PV  
D
C
C
Z
P
8nF  
80nF  
R
Z
1.5kΩ  
FILT  
SOURCE DEVICE  
SINK DEVICE  
Figure 8. PLL Loop Filter Detail  
1
CTS  
DIVIDE  
BY  
N
CYCLE  
TIME  
COUNTER  
128 × fS  
To fully support all audio modes for all video resolutions up to  
1080p, it is necessary to adjust certain audio-related registers  
from their power-on default values. Table 9 describes these  
registers and gives their recommended settings.  
128 × fS  
MULTIPLY  
DIVIDE  
BY  
CTS  
TMDS  
VIDEO  
CLOCK  
BY  
N
CLOCK  
1
N
REGISTER  
N
N
1
N AND CTS VALUES ARE TRANSMITTED USING THE  
AUDIO CLOCK REGENERATION PACKET. VIDEO  
CLOCK IS TRANSMITTED ON TMDS CLOCK CHANNEL.  
Figure 7. N and CTS for Audio Clock  
Table 9. AD9398 Audio Register Settings  
Register  
Bits Recommended  
Setting  
Function  
Comments  
0x01  
0x02  
0x03  
7:0  
7:4  
7:6  
5:3  
2
0x00  
0x40  
01  
010  
1
PLL Divisor (MSBs)  
PLL Divisor (Lab’s)  
VCO Range  
Charge Pump Current  
PLL Enable  
The analog video PLL is also used for the audio clock  
circuit when in HDMI mode. This is done automatically.  
In HDMI mode, this bit enables a lower frequency to be  
used for audio MCLK generation.  
0x34  
0x58  
4
0
Audio Frequency Mode Override  
PLL Enable  
Allows the chip to determine the low frequency mode  
of the audio PLL.  
7
1
This enables the analog PLL to be used for audio MCLK  
generation.  
6:4  
011  
MCLK PLL Divisor  
When the analog PLL is enabled for MCLK generation,  
another frequency divider is provided. These bits set  
the divisor to 4.  
3
0
N/CTS Disable  
The N and CTS values should always be enabled.  
2:0  
0**  
MCLK Sampling Frequency  
000 = 128 × fS  
001 = 256 × fS  
010 = 384 × fS  
011 = 512 × fS  
Rev. 0 | Page 12 of 44  
 
 
 
AD9381  
This information is the fundamental difference between DVI  
AUDIO BOARD LEVEL MUTING  
and HDMI transmissions and is located in read-only registers  
R0x5A to R0xEE. In addition to this information, registers are  
provided to indicate that new information has been received.  
Registers with addresses ending in 0xX7 or 0xXF beginning at  
R0x87 contain the new data flags (NDF) information. All of  
these registers contain the same information and all are reset  
once any of them are read. Although there is no external  
interrupt signal, it is easy for the user to read any of these  
registers and see if there is new information to be processed.  
The audio can be muted through the infoframes or locally  
via the serial bus registers. This can be controlled with  
Register R0x57, Bits [7:4].  
AVI Infoframes  
The HDMI TMDS transmission contains Infoframes with  
specific information for the monitor such as:  
Audio information  
2 to 8 channels of audio identified  
OUTPUT DATA FORMATS  
Audio coding  
The AD9398 supports 4:4:4, 4:2:2, double data-rate (DDR),  
and BT656 output formats. Register 0x25[3:0] controls the  
output mode. These modes and the pin mapping are shown  
in Table 10.  
Audio sampling frequency  
Speaker placement  
N and CTS values (for reconstruction of the audio)  
Muting  
Source information  
CD  
SACD  
DVD  
Video information  
Video ID code (per CEA861B)  
Color space  
Aspect ratio  
Horizontal and vertical bar information  
MPEG frame information (I, B, or P frame)  
Vendor (transmitter source) name and product model  
.
Table 10.  
Port  
Red  
7
Green  
Blue  
Bit  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
4:4:4  
Red/Cr [7:0]  
Green/Y [7:0]  
Y [7:0]  
Blue/Cb [7:0]  
DDR 4:2:2 CbCr Y, Y  
4:2:2  
CbCr [7:0]  
1
4:4:4 DDR  
DDR G [3:0]  
DDR B [7:4]  
DDR B [3:0]  
DDR G [7:4]  
DDR 4:2:2 CbCr [11:0]  
DDR 4:2:2 Y,Y [11:0]  
Y [11:0]  
DDR R [7:0]  
4:2:2 to 12  
CbCr [11:0]  
1 Arrows in the table indicate clock edge. Rising edge of clock = , falling edge = .  
Rev. 0 | Page 13 of 44  
 
 
AD9381  
2-WIRE SERIAL REGISTER MAP  
The AD9381 is initialized and controlled by a set of registers that determines the operating modes. An external controller is employed to  
write and read the control registers through the 2-wire serial interface port.  
Table 11. Control Register Map  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
[7:0]  
[7:0]  
[7:4]  
[7:6]  
[5:3]  
[2]  
Default Value  
00000000  
01101001  
1101****  
01******  
Register Name  
Chip Revision  
PLL Divider MSB  
PLL Divider  
Description  
0x00  
0x01  
0x02  
0x03  
Read  
Chip revision ID. Revision is read [7:4]. [3:0].  
PLL feedback divider value MSB.  
PLL feedback divider value.  
VCO range.  
Charge pump current control for PLL.  
This bit enables a lower frequency to be used for  
audio MCLK generation  
Read/Write  
Read/Write  
Read/Write  
VCO Range  
Charge Pump  
PLL Enable  
**001***  
*****0**  
0x11  
Read/Write  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
[1]  
[0]  
[7]  
[6]  
[5]  
[4]  
0*******  
*0******  
**0*****  
***0****  
****0***  
*****0**  
******0*  
*******0  
1*******  
*0******  
**1*****  
***0****  
HSYNC Source  
0 = HSYNC.  
1 = SOG.  
HSYNC Source Override  
VSYNC Source  
0 = auto HSYNC source.  
1 = manual HSYNC source.  
0 = VSYNC.  
1 = VSYNC from SOG.  
0 = auto HSYNC source.  
1 = manual HSYNC source.  
0 = Channel 0.  
VSYNC Source Override  
Channel Select  
1 = Channel 1.  
Channel Select Override  
Interface Select  
0 = autochannel select.  
1 = manual channel select.  
0 = analog interface.  
1 = digital interface.  
0 = auto-interface select.  
1 = manual interface select.  
0 = active low.  
Interface Override  
Input HSYNC Polarity  
HSYNC Polarity Override  
Input VSYNC Polarity  
VSYNC Polarity Override  
0x12  
Read/Write  
1 = active high.  
0 = auto HSYNC polarity.  
1 = manual HSYNC polarity.  
0 = active low.  
1 = active high.  
0 = auto VSYNC polarity.  
1 = manual VSYNC polarity.  
MSB of HSYNCs per VSYNC.  
HSYNCs per VSYNC count.  
VSYNC duration.  
0x17  
0x18  
0x22  
0x23  
Read  
[3:0]  
[7:0]  
[7:0]  
[7:0]  
****0000  
HSYNCs Per VSYNC MSB  
HSYNCs Per VSYNC  
VSYNC Duration  
Read  
00000000  
Read/Write  
Read/Write  
4
32  
HSYNC Duration  
HSYNC duration. Sets the duration of the output  
HSYNC in pixel clocks.  
0x24  
Read/Write  
[7]  
[6]  
[5]  
1*******  
*1******  
**1*****  
HSYNC Output Polarity  
VSYNC Output Polarity  
DE Output Polarity  
Output HSYNC polarity.  
0 = active low out.  
1 = active high out.  
Output VSYNC polarity.  
0 = active low out.  
1 = active high out.  
Output DE polarity.  
0 = active low out.  
1 = active high out.  
Rev. 0 | Page 14 of 44  
 
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
[4]  
***1****  
Field Output Polarity  
Output field polarity.  
0 = active low out.  
1 = active high out.  
0 = don’t invert clock out.  
1 = invert clock out.  
[0]  
*******0  
01******  
Output CLK Invert  
Output CLK Select  
0x25  
Read/Write  
[7:6]  
Selects which clock to use on output pin. 1× CLK is  
divided down from TMDS clock input when pixel  
repetition is in use.  
00 = ½× CLK.  
01 = 1× CLK.  
10 = 2× CLK.  
11 = 90° phase 1× CLK.  
[5:4]  
[3:2]  
**11****  
****00**  
Output Drive Strength  
Output Mode  
Sets the drive strength of the outputs.  
00 = lowest, 11 = highest.  
Selects the data output mapping.  
00 = 4:4:4 mode (normal).  
01 = 4:2:2 + DDR 4:2:2 on blue.  
10 = DDR 4:4:4 + DDR 4:2:2 on blue.  
11 = 12-bit 4:2:2 (HDMI option only).  
Enables primary output.  
[1]  
[0]  
******1*  
*******0  
Primary Output Enable  
Secondary Output  
Enable  
Enables secondary output (DDR 4:2:2 in Output  
Mode 1 and Mode 2).  
0x26  
Read/Write  
[7]  
[5]  
[4]  
[3]  
0*******  
**0*****  
***0****  
****1***  
Output Three-State  
SPDIF Three-State  
I2S Three-State  
Three-state the outputs.  
Three-state the S/PDIF output.  
Three-state the I2S output and the MCLK out.  
Power-Down Pin Polarity Sets polarity of power-down pin.  
0 = active low.  
1 = active high.  
[2:1]  
*****00*  
Power-Down Pin  
Function  
Selects the function of the power-down pin.  
00 = power-down.  
01 = power-down and three-state SOG.  
10 = three-state outputs only.  
11 = three-state outputs and SOG.  
0 = normal.  
[0]  
[7]  
*******0  
1*******  
Power-Down  
1 = power-down.  
0x27  
Read/Write  
Auto Power-Down  
Enable  
0 = disable auto low power state.  
1 = enable auto low power state.  
[6]  
[5]  
*0******  
**0*****  
HDCP A0  
Sets the LSB of the address of the HDCP I2C.  
Set to 1 only for a second receiver in a dual-link  
configuration.  
0 = use internally generated MCLK.  
1 = use external MCLK input.  
If an external MCLK is used, it must be locked to the  
video clock according to the CTS and N available in  
the I2C. Any mismatch between the internal MCLK  
and the input MCLK results in dropped or repeated  
audio samples.  
MCLK External Enable  
[4]  
[3]  
***0****  
****0***  
BT656 EN  
Enables EAV/SAV codes to be inserted into the  
video output data.  
Allows use of the internal DE generator in DVI  
mode.  
Force DE Generation  
Rev. 0 | Page 15 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
[2:0]  
*****000  
Interlace Offset  
Sets the difference (in HSYNCs) in field length  
between Field 0 and Field 1.  
0x28  
0x29  
Read/Write  
Read/Write  
[7:2]  
011000**  
VS Delay  
Sets the delay (in lines) from the VSYNC leading  
edge to the start of active video.  
MSB, Register 0x29.  
[1:0]  
[7:0]  
******01  
HS Delay MSB  
HS Delay  
00000100  
Sets the delay (in pixels) from the HSYNC leading  
edge to the start of active video.  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
Read/Write  
[3:0]  
[7:0]  
[3:0]  
[7:0]  
[7]  
****0101  
00000000  
****0010  
11010000  
0*******  
Line Width MSB  
Line Width  
MSB, Register 0x2B.  
Sets the width of the active video line in pixels.  
MSB, Register 0x2D.  
Screen Height MSB  
Screen Height  
Ctrl EN  
Sets the height of the active screen in lines.  
Allows Ctrl [3:0] to be output on the I2S data pins.  
00 = I2S mode.  
[6:5]  
*00*****  
I2S Out Mode  
01 = right-justified.  
10 = left-justified.  
11 = raw IEC60958 mode.  
[4:0]  
[6]  
[5]  
***11000  
*0******  
**0*****  
***0****  
I2S Bit Width  
TMDS Sync Detect  
TMDS Active  
AV Mute  
Sets the desired bit width for right-justified mode.  
Detects a TMDS DE.  
Detects a TMDS clock.  
Gives the status of AV mute based on general  
control packets.  
Returns 1 when read of EEPROM keys is successful.  
Returns quality number based on DE edges.  
0x2F  
0x30  
Read  
Read  
[4]  
[3]  
[2:0]  
[6]  
****0***  
*****000  
*0******  
HDCP Keys Read  
HDMI Quality  
HDMI Content Encrypted This bit is high when HDCP decryption is in use  
(content is protected). The signal goes low when  
HDCP is not being used. Customers can use this bit  
to allow copying of the content. The bit should be  
sampled at regular intervals because it can change  
on a frame-by-frame basis.  
[5]  
[4]  
[3:0]  
**0*****  
***0****  
****0000  
DVI HSYNC Polarity  
DVI VSYNC Polarity  
HDMI Pixel Repetition  
Returns DVI HSYNC polarity.  
Returns DVI VSYNC polarity.  
Returns current HDMI pixel repetition amount.  
0 = 1×, 1 = 2×, ... .The clock and data outputs  
automatically de-repeat by this value.  
0x31  
0x32  
Read/Write  
Read/Write  
[7:4]  
[3:0]  
[7]  
1001****  
****0110  
0*******  
*0******  
MV Pulse Max  
MV Pulse Min  
MV Oversample En  
MV Pal En  
Sets the maximum pseudo sync pulse width for  
Macrovision® detection.  
Sets the minimum pseudo sync pulse width for  
Macrovision detection.  
Tells the Macrovision detection engine whether we  
are oversampling or not.  
Tells the Macrovision detection engine to enter PAL  
mode.  
[6]  
[5:0]  
[7]  
**001101  
1*******  
MV Line Count Start  
MV Detect Mode  
Sets the start line for Macrovision detection.  
0 = standard definition.  
1 = progressive scan mode.  
0 = use hard-coded settings for line counts and  
pulse widths.  
1 = use I2C values for these settings.  
0x33  
0x34  
Read/Write  
Read/Write  
[6]  
*0******  
MV Settings Override  
[5:0]  
[7:6]  
**010101  
10******  
MV Line Count End  
MV Pulse Limit Set  
Sets the end line for Macrovision detection.  
Sets the number of pulses required in the last 3  
lines (SD mode only).  
[5]  
**0*****  
Low Freq Mode  
Sets audio PLL to low frequency mode. Low  
frequency mode should only be set for pixel clocks  
<80 MHz.  
Rev. 0 | Page 16 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
[4]  
***0****  
Low Freq Override  
Allows the previous bit to be used to set low  
frequency mode rather than the internal auto-  
detect.  
[3]  
****0***  
Up Conversion Mode  
0 = repeat Cr and Cb values.  
1 = interpolate Cr and Cb values.  
Enables the FIR filter for 4:2:2 CrCb output.  
Enables the color space converter (CSC). The  
default settings for the CSC provide HDT-to-RGB  
conversion.  
[2]  
[1]  
*****0**  
******0*  
CrCb Filter Enable  
CSC_Enable  
Sets the fixed-point position of the CSC  
coefficients, including the A4, B4, and C4 offsets.  
0x35  
0x36  
Read/Write  
Read/Write  
[6:5]  
*01* ****  
CSC_Mode  
00 = 1.0, −4096 to 4095.  
01 = 2.0, −8192 to 8190.  
1× = 4.0, −16384 to 16380.  
MSB, Register 0x36.  
[4:0]  
[7:0]  
***01100  
01010010  
CSC_Coeff_A1 MSB  
CSC_Coeff_A1 LSB  
Color space converter (CSC) coefficient for  
equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x38.  
0x37  
0x38  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***01000  
00000000  
CSC_Coeff_A2 MSB  
CSC_Coeff_A2 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x3A.  
0x39  
0x3A  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***00000  
00000000  
CSC_Coeff_A3 MSB  
CSC_Coeff_A3 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x3C.  
0x3B  
0x3C  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***11001  
11010111  
CSC_Coeff_A4 MSB  
CSC_Coeff_A4 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x3E.  
0x3D  
0x3E  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***11100  
01010100  
CSC_Coeff_B1 MSB  
CSC_Coeff_B1 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
G
OUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x40.  
0x3F  
0x40  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***01000  
00000000  
CSC_Coeff_B2 MSB  
CSC_Coeff_B2  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x42.  
0x41  
0x42  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***11110  
10001001  
CSC_Coeff_B3 MSB  
CSC_Coeff_B3 LSB  
Color space converter (CSC) coefficient for  
equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
Rev. 0 | Page 17 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
[4:0]  
[7:0]  
Default Value  
***00010  
Register Name  
Description  
0x43  
0x44  
Read/Write  
Read/Write  
CSC_Coeff_B4 MSB  
CSC_Coeff_B4 LSB  
MSB, Register 0x44.  
10010010  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
G
OUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x46.  
0x45  
0x46  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***00000  
00000000  
CSC_Coeff_C1 MSB  
CSC_Coeff_C1 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x48.  
0x47  
0x48  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***01000  
00000000  
CSC_Coeff_C2 MSB  
CSC_Coeff_C2 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x4A.  
0x49  
0x4A  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***01110  
10000111  
CSC_Coeff_C3 MSB  
CSC_Coeff_C3 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
MSB, Register 0x4C.  
0x4B  
0x4C  
Read/Write  
Read/Write  
[4:0]  
[7:0]  
***11000  
10111101  
CSC_Coeff_C4 MSB  
CSC_Coeff_C4 LSB  
CSC coefficient for equation:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
BOUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
Must be written to 0x20 for proper operation.  
0x50  
0x56  
Read/Write  
Read/Write  
[7:0]  
[7:0]  
00100000  
00001111  
Test  
Test  
Must be written to default of 0x0F for proper  
operation.  
0x57  
Read/Write  
[7]  
[6]  
[3]  
[2]  
0*******  
*0******  
****0***  
*****0**  
A/V Mute Override  
AV Mute Value  
Disable Video Mute  
Disable Audio Mute  
MCLK PLL Enable  
MCLK PLL_N  
A1 overrides the AV mute value with Bit 6.  
Sets AV mute value if override is enabled.  
Disables mute of video during AV mute.  
Disables mute of audio during AV mute.  
MCLK PLL enable—uses analog PLL.  
MCLK PLL N [2:0]—this controls the division of the  
MCLK out of the PLL: 0 = /1, 1 = /2, 2 = /3, 3 = /4,  
etc.  
0x58  
Read/Write  
[7]  
[6:4]  
[3]  
N_CTS_Disable  
MCLK FS_N  
Prevents the N/CTS packet on the link from writing  
to the N and CTS registers.  
Controls the multiple of 128 Fs, used for MCLK out .  
0 = 128 fS, 1 = 256 fS, 2 = 384, 7 = 1024 fS.  
[2:0]  
0x59  
Read/Write  
[6]  
[5]  
MDA/MCL PU  
CLK Term O/R  
This disables the MDA/MCL pull-ups.  
Clock termination power-down override: 0 = auto,  
1 = manual.  
[4]  
[2]  
Manual CLK Term  
FIFO Reset UF  
Clock termination: 0 = normal, 1 = disconnected.  
This bit resets the audio FIFO if underflow is  
detected.  
[1]  
[0]  
FIFO Reset OF  
This bit resets the audio FIFO if overflow is  
detected.  
This bit three-states the MDA/MCL lines.  
MDA/MCL Three-State  
Rev. 0 | Page 18 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
0x5A  
Read  
[6:0]  
Packet Detected  
These 7 bits are updated if any specific packet has  
been received since last reset or loss of clock  
detect. Normal is 0x00.  
Bit Data Packet Detected  
0
1
2
3
4
5
6
AVI infoframe.  
Audio infoframe.  
SPD infoframe.  
MPEG source infoframe.  
ACP packets.  
ISRC1 packets.  
ISRC2 packets.  
0x5B  
0x5E  
Read  
Read  
[3]  
HDMI Mode  
0 = DVI, 1 = HDMI.  
[7:6]  
[5:3]  
Channel Status  
Mode = 00. All others are reserved.  
When Bit 1 = 0 (Linear PCM).  
000 = 2 audio channels without pre-emphasis.  
001 = 2 audio channels with 50/15 μs pre-  
emphasis.  
010 = reserved.  
011 = reserved.  
2
1
0 = software for which copyright is asserted.  
1 = software for which no copyright is asserted.  
0 = audio sample word represents linear PCM  
samples.  
1 = audio sample word used for other purposes.  
0 = consumer use of channel status block.  
0
Audio Channel Status  
0x5F  
0x60  
Read  
Read  
[7:0]  
Channel Status Category  
Code  
[7:4]  
[3:0]  
[5:4]  
Channel Number  
Source Number  
Clock Accuracy  
0x61  
Read  
Clock accuracy.  
00 = Level II.  
01 = Level III.  
10 = Level I.  
11 = reserved.  
0011 =32 kHz  
0000 = 44.1 kHz  
1000 = 88.2 kHz.  
1100 = 176.4 kHz.  
0010 = 48 kHz.  
1010 = 96 kHz.  
1110 = 192 kHz.  
[3:0]  
Sampling Frequency  
Rev. 0 | Page 19 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
0x62  
Read  
[3:0]  
Word Length  
Word length.  
0000 not specified.  
0100 = 16 bits.  
0011 = 17 bits.  
0010 = 18 bits.  
0001 = 19 bits.  
0101 = 20 bits.  
1000 not specified.  
1100 = 20 bits.  
1011 = 21 bits.  
1010 = 22 bits.  
1001 = 23 bits.  
1101 = 24 bits.  
0x7B  
Read  
[7:0]  
CTS [19:12]  
Cycle time stamp—this 20-bit value is used with  
the N value to regenerate an audio clock. For  
remaining bits, see Register 0x7C and Register  
0x7D.  
0x7C  
0x7D  
Read  
Read  
Read  
[7:0]  
[7:4]  
[3:0]  
CTS [11:4]  
CTS [3:0]  
N [19:16]  
20-bit N used with CTS to regenerate the audio  
clock. For remaining bits, see Register 0x7E and  
Register 0x7F.  
0x7E  
0x7F  
Read  
Read  
[7:0]  
[7:0]  
N [15:8]  
N [7:0]  
AVI Infoframe  
AVI Infoframe Version  
0x80  
0x81  
Read  
Read  
[7:0]  
[6:5]  
Y [1:0] Indicates RGB, 4:2:2 or 4:4:4.  
00 = RGB.  
01 = YCbCr 4:2:2.  
10 = YCbCr 4:4:4.  
4
Active Format  
Information Status  
Active format information present.  
0 = no data.  
1 = active format information valid.  
B [1:0].  
[3:2]  
Bar Information  
00 = no bar information.  
01 =horizontal bar information valid.  
10 = vertical bar information valid.  
11 = horizontal and vertical bar information valid.  
S [1:0].  
00 = no information.  
01 = overscanned (television).  
10 = underscanned (computer).  
C [1:0].  
[1:0]  
[7:6]  
[5:4]  
Scan Information  
Colorimetry  
0x82  
Read  
00 = no data.  
01 = SMPTE 170M, ITU601.  
10 = ITU709.  
Picture Aspect Ratio  
M [1:0].  
00 = no data.  
01 = 4:3.  
10 = 16:9.  
Rev. 0 | Page 20 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
[3:0]  
Active Format Aspect  
Ratio  
R [3:0].  
1000 = same as picture aspect ratio.  
1001 = 4:3 (center).  
1010 = 16:9 (center).  
1011 = 14:9 (center).  
SC [1:0].  
0x83  
Read  
[1:0]  
Nonuniform Picture  
Scaling  
00 = no known nonuniform scaling.  
01 = picture has been scaled horizontally.  
10 = picture has been scaled vertically.  
11 = picture has been scaled horizontally and  
vertically.  
0x84  
0x85  
Read  
Read  
[6:0]  
[3:0]  
Video Identification Code VIC [6:0] video identification code—refer to CEA  
EDID short video descriptors.  
Pixel Repeat  
PR [3:0]—This specifies how many times a pixel has  
been repeated.  
0000 = no repetition (pixel sent once).  
0001 = pixel sent twice (repeated once).  
0010 = pixel sent 3 times.  
1001 = pixel sent 10 times.  
0xA—0xF reserved.  
0x86  
0x87  
Read  
Read  
[7:0]  
[6:0]  
Active Line Start LSB  
New Data Flags  
This represents the line number of the end of the  
top horizontal bar. If 0, there is no horizontal bar.  
Combines with Register 0x88 for a 16-bit value.  
New data flags. These 8 bits are updated if any  
specific data changes. Normal (no NDFs) is 0x00.  
When any NDF register is read, all bits reset to 0x00.  
All NDF registers contain the same data.  
Bit Data Packet Changed  
0
1
2
3
4
5
6
AVI infoframe.  
Audio infoframe.  
SPD infoframe.  
MPEG source infoframe.  
ACP packets.  
ISRC1 packets.  
ISRC2 packets.  
0x88  
0x89  
Read  
Read  
[7:0]  
[7:0]  
Active Line Start MSB  
Active Line End LSB  
Active line start MSB (see Register 0x86).  
This represents the line number of the beginning of  
a lower horizontal bar. If greater than the number  
of active video lines, there is no lower horizontal  
bar. Combines with Register 0x8A for a 16-bit value.  
0x8A  
0x8B  
Read  
Read  
[7:0]  
[7:0]  
Active Line End MSB  
Active Pixel Start LSB  
Active line end MSB. See Register 0x89.  
This represents the last pixel in a vertical pillar bar  
at the left side of the picture. If 0, there is no left  
bar. Combines with Register 0x8C for a 16-bit value.  
0x8C  
0x8D  
Read  
Read  
[7:0]  
[7:0]  
Active Pixel Start MSB  
Active Pixel End LSB  
Active pixel start MSB. See Register 0x8B.  
This represents the first horizontal pixel in a vertical  
pillar-bar at the right side of the picture. If greater  
than the maximum number of horizontal pixels,  
there is no vertical bar. Combines with Register  
0x8E for a16-bit value.  
0x8E  
0x8F  
Read  
Read  
[7:0]  
[6:0]  
Active Pixel End MSB  
New Data Flags  
Active pixel end MSB. See Register 0x8D.  
New data flags (see 0x87).  
Rev. 0 | Page 21 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
[7:0]  
[7:4]  
Default Value  
Register Name  
Description  
0x90  
0x91  
Read  
Read  
Audio Infoframe Version  
Audio Coding Type  
CT [3:0]. Audio coding type.  
0x00 = refer to stream header.  
0x01 = IEC60958 PCM.  
0x02 = AC3.  
0x03 = MPEG1 (Layer 1 and Layer 2).  
0x04 = MP3 (MPEG1 Layer 3).  
0x05 = MPEG2 (multichannel).  
0x06 = AAC.  
0x07 = DTS.  
0x08 = ATRAC.  
[2:0]  
[4:2]  
Audio Coding Count  
Sampling Frequency  
CC [2:0]. Audio channel count.  
000 = refer to stream header.  
001 = 2 channels.  
010 = 3 channels.  
111 = 8 channels.  
0x92  
Read  
SF [2:0]. Sampling frequency.  
000 = refer to stream header.  
001 = 32 kHz.  
010 = 44.1 kHz (CD).  
011 = 48 kHz.  
100 = 88.2 kHz.  
101 = 96 kHz.  
110 = 176.4 kHz.  
111 = 192 kHz.  
[1:0]  
[7:0]  
Sample Size  
Max Bit Rate  
SS [1:0]. Sample size.  
00 = refer to stream header.  
01 = 16-bit.  
10 = 20-bit.  
11 = 24-bit.  
0x93  
Read  
Max bit rate (compressed audio only).The value of  
this field multiplied by 8 kHz represents the  
maximum bit rate.  
0x94  
0x95  
Read  
Read  
[7:0]  
7
Speaker Mapping  
Down-Mix  
CA [7:0]. Speaker mapping or placement for up to 8  
channels. See Table 33.  
DM_INH—down-mix inhibit.  
0 = permitted or no information.  
1 = prohibited.  
[6:3]  
Level Shift  
LSV [3:0]—level shift values with attenuation  
information.  
0000 = 0 dB attenuation.  
0001 = 1 dB attenuation.  
…..  
1111 = 15 dB attenuation.  
Reserved.  
0x96  
0x97  
Read  
Read  
[7:0]  
[6:0]  
New Data Flags  
New data flags (see 0x87).  
Rev. 0 | Page 22 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
Source Product Description (SPD) Infoframe  
0x98  
0x99  
Read  
Read  
[7:0]  
Source Product  
Description (SPD)  
Infoframe Version  
[7:0]  
Vendor Name  
Character 1  
Vendor name character 1 (VN1) 7-bit ASCII code.  
The first character in 8 that is the name of the  
company that appears on the product.  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
VN2  
VN2.  
VN3  
VN3.  
VN4  
VN4.  
VN5  
VN5.  
VN6  
VN6.  
New Data Flags  
New data flags (see 0x87).  
VN7  
VN8  
VN7.  
VN8.  
Product Description  
Character 1  
Product Description Character 1 (PD1) 7-bit ASCII  
code. The first character of 16 that contains the  
model number and a short description.  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
PD2  
PD2.  
PD3  
PD3.  
PD4  
PD4.  
PD5  
PD5.  
New Data Flags  
PD6  
New data flags (see 0x87).  
PD6.  
PD7  
PD7.  
PD8  
PD8.  
PD9  
PD9.  
PD10  
PD10.  
PD11  
PD11.  
PD12  
PD12.  
New Data Flags  
PD13  
New data flags (see 0x87).  
PD13.  
PD14  
PD14.  
PD15  
PD15.  
PD16  
Source Device  
Information Code  
PD16.  
This is a code that classifies the source device.  
0x00 = unknown.  
0x01 = digital STB.  
0x02 = DVD.  
0x03 = D-VHS.  
0x04 = HDD video.  
0x05 = DVC.  
0x06 = DSC.  
0x07 = video CD.  
0x08 = game.  
0x09 = PC general.  
New data flags (see 0x87).  
0xB7  
Read  
[6:0]  
New Data Flags  
Rev. 0 | Page 23 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
Default Value  
Register Name  
Description  
MPEG Source Infoframe  
0xB8  
0xB9  
Read  
Read  
[7:0]  
[7:0]  
MPEG Source Infoframe  
Version  
MB(0)  
MB [0] (Lower byte of MPEG bit rate: Hz). The lower  
8 bits of 32 bits (4 bytes) that specify the MPEG bit  
rate in Hz.  
0xBA  
0xBB  
0xBC  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
4
MB[1]  
MB[2]  
MB [1].  
MB [2].  
MB [3] (upper byte).  
FR—New field or repeated field.  
0 = New field or picture.  
1 = Repeated field.  
Field Repeat  
MPEG Frame  
0xBD  
Read  
[1:0]  
MF [1:0] This identifies whether frame is an I, B, or P  
picture.  
00 = unknown.  
01 = I picture.  
10 = B picture.  
11 = P picture.  
0xBE  
0xBF  
0xC0  
Read  
Read  
Read  
[7:0]  
[6:0]  
[7:0]  
Reserved.  
New Data Flags  
New data flags (see 0x87).  
Audio content protection packet (ACP) type.  
Audio Content  
Protection Packet (ACP)  
Type  
0x00 = generic audio.  
0x01 = IEC 60958-identified audio.  
0x02 = DVD-audio.  
0x03 = reserved for super audio CD (SACD).  
0x04 = 0xFF reserved.  
ACP Packet Byte 0 (ACP_PB0).  
ACP_PB1.  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
Read  
Read  
Read  
Read  
Rea  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
7
ACP Packet Byte 0  
ACP_PB1  
ACP_PB2  
ACP_PB2.  
ACP_PB3  
ACP_PB3.  
ACP_PB4  
ACP_PB4.  
Read  
Read  
ACP_PB5  
ACP_PB5.  
NDF  
New data flags (see 0x87).  
ISRC1 Continued  
International standard recording code (ISRC1)  
continued. This indicates an ISRC2 packet is being  
transmitted.  
Read  
6
ISRC1 Valid  
0 = ISRC1 status bits and PBs not valid.  
1 = ISRC1 status bits and PBs valid.  
001 = starting position.  
010 = intermediate position.  
100 = final position.  
ISRC1 Packet Byte 0 (ISRC1_PB0).  
ISRC1_PB1.  
[2:0]  
ISRC1 Status  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
ISRC1 Packet Byte 0  
ISRC1_PB1  
ISRC1_PB2  
ISRC1_PB3  
ISRC1_PB4  
ISRC1_PB5  
NDF  
ISRC1_PB2.  
ISRC1_PB3.  
ISRC1_PB4.  
ISRC1_PB5.  
New data flags (see 0x87).  
ISRC1_PB6.  
ISRC1_PB6  
ISRC1_PB7  
ISRC1_PB7.  
Rev. 0 | Page 24 of 44  
AD9381  
Hex  
Address  
Read/Write  
or Read Only  
Bits  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Default Value  
Register Name  
ISRC1_PB8  
Description  
ISRC1_PB8.  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
ISRC1_PB9  
ISRC1_PB9.  
ISRC1_PB10  
ISRC1_PB11  
ISRC1_PB12  
NDF  
ISRC1_PB10.  
ISRC1_PB11.  
ISRC1_PB12.  
New data flags (see 0x87).  
ISRC1_PB13.  
ISRC1_PB14.  
ISRC1_PB15.  
ISRC1_PB16.  
ISRC1_PB13  
ISRC1_PB14  
ISRC1_PB15  
ISRC1_PB16  
ISRC2 Packet Byte 0  
ISRC2 Packet Byte 0 (ISRC2_PB0). This is transmitted  
only when the ISRC_ continue bit (Register 0xC8,  
Bit 7) is set to 1.  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
Read  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[6:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
ISRC2_PB1  
ISRC2_PB2  
New Data Flags  
ISRC2_PB3  
ISRC2_PB4  
ISRC2_PB5  
ISRC2_PB6  
ISRC2_PB7  
ISRC2_PB8  
ISRC2_PB9  
New Data Flags  
ISRC2_PB10  
ISRC2_PB11  
ISRC2_PB12  
ISRC2_PB13  
ISRC2_PB14  
ISRC2_PB15  
ISRC2_PB16  
ISRC2_PB1.  
ISRC2_PB2.  
New data flags (see 0x87).  
ISRC2_PB3.  
ISRC2_PB4.  
ISRC2_PB5.  
ISRC2_PB6.  
ISRC2_PB7.  
ISRC2_PB8.  
ISRC2_PB9.  
New data flags (see 0x87).  
ISRC2_PB10.  
ISRC2_PB11.  
ISRC2_PB12.  
ISRC2_PB13.  
ISRC2_PB14.  
ISRC2_PB15.  
ISRC2_PB16.  
Rev. 0 | Page 25 of 44  
AD9381  
2-WIRE SERIAL CONTROL REGISTER DETAILS  
CHIP IDENTIFICATION  
0x12—Bit[4] VSYNC Polarity Override  
0 = auto VSYNC polarity, 1 = manual VSYNC polarity. Manual  
VSYNC polarity is defined in Register 0x11, Bit 5. The power-  
up default is 0.  
0x00—Bits[7:0] Chip Revision  
An 8-bit value that reflects the current chip revision.  
0x11—Bit[7] HSYNC Source  
0x17—Bits[3:0] HSYNCs per VSYNC MSBs  
0 = HSYNC, 1 = SOG. The power-up default is 0. These  
selections are ignored if Register 0x11, Bit 6 = 0.  
The 4 MSBs of the 12-bit counter that reports the number of  
HSYNCs/VSYNC on the active input. This is useful in  
determining the mode and an aid in setting the PLL divide  
ratio.  
0x11—Bit[6] HSYNC Source Override  
0 = auto HSYNC source, 1 = manual HSYNC source. Manual  
HSYNC source is defined in Register 0x11, Bit 7. The power-up  
default is 0.  
0x18—Bits[7:0] HSYNCs per VSYNC LSBs  
The 8 LSBs of the 12-bit counter that reports the number of  
HSYNCs/VSYNC on the active input.  
0x11—Bit[5] VSYNC Source  
0 = VSYNC, 1 = VSYNC from SOG. The power-up default is 0.  
These selections are ignored if Register 0x11, Bit 4 = 0.  
0x21—Bit[5] VSYNC Filter Enable  
The purpose of the VSYNC filter is to guarantee the position of  
the VSYNC edge with respect to the HSYNC edge and to  
generate a field signal. The filter works by examining the  
placement of VSYNC and regenerating a correctly placed  
VSYNC one line later. The VSYNC is first checked to see  
whether it occurs in the Field 0 position or the Field 1 position.  
This is done by checking the leading edge position against the  
sync separator threshold and the HSYNC position. The HSYNC  
width is divided into four quadrants with Quadrant 1 starting at  
the HSYNC leading edge plus a sync separator threshold. If the  
VSYNC leading edge occurs in Quadrant 1 or Quadrant 4, the  
field is set to 0 and the output VSYNC is placed coincident with  
the HSYNC leading edge. If the VSYNC leading edge occurs in  
Quadrant 2 or Quadrant 3, the field is set to 1 and the output  
VSYNC leading edge is placed in the center of the line. In this  
way, the VSYNC filter creates a predictable relative position  
between HSYNC and VSYNC edges at the output.  
0x11—Bit[4] VSYNC Source Override  
0 = auto VSYNC source, 1 = manual VSYNC source. Manual  
VSYNC source is defined in Register 0x11, Bit 5. The power-up  
default is 0.  
0x11—Bit[3] Channel Select  
0 = Channel 0, 1 = Channel 1. The power-up default is 0. These  
selections are ignored if Register 0x11, Bit 2 = 0.  
0x11—Bit[2] Channel Select Override  
0 = auto channel select, 1 = manual channel select. Manual  
channel select is defined in Register 0x11, Bit 3. The power-up  
default is 0.  
0x11—Bit[1] Interface Select  
0 = analog interface, 1 = digital interface. The power-up default  
is 0. These selections are ignored if Register 0x11, Bit 0 = 0.  
If the VSYNC occurs near the HSYNC edge, this guarantees  
that the VSYNC edge follows the HSYNC edge. This performs  
filtering also in that it requires a minimum of 64 lines between  
VSYNCs. The VSYNC filter cleans up extraneous pulses that  
might occur on the VSYNC. This should be enabled whenever  
the HSYNC/VSYNC count is used. Setting this bit to 0 disables  
the VSYNC filter. Setting this bit to 1 enables the VSYNC filter.  
Power-up default is 0.  
0x11—Bit[0] Interface Select Override  
0 = auto interface select, 1 = manual interface select. Manual  
interface select is defined in Register 0x11, Bit 1. The power-up  
default is 0.  
0x12—Bit[7] Input HSYNC Polarity  
0 = active low, 1 = active high. The power-up default is 1. These  
selections are ignored if Register 10x2, Bit 6 = 0.  
0x21—Bit[4] VSYNC Duration Enable  
0x12—Bit[6] HSYNC Polarity Override  
This enables the VSYNC duration block that is designed to be  
used with the VSYNC filter. Setting the bit to 0 leaves the  
VSYNC output duration unchanged; setting the bit to 1 sets the  
VSYNC output duration based on Register 0x22. The power-up  
default is 0.  
0 = auto HSYNC polarity, 1 = manual HSYNC polarity. Manual  
HSYNC polarity is defined in Register 0x11, Bit 7. The power-  
up default is 0.  
0x12—Bit[5] Input VSYNC Polarity  
0 = active low, 1 = active high. The power-up default is 1. These  
selections are ignored if Register 0x11, Bit 4 = 0.  
Rev. 0 | Page 26 of 44  
 
 
AD9381  
0x22—Bits[7:0] VSYNC Duration  
0x25—Bits[5:4] Output Drive Strength  
This is used to set the output duration of the VSYNC, and is  
designed to be used with the VSYNC filter. This is valid only if  
Register 0x21, Bit 4 is set to 1. Power-up default is 4.  
These two bits select the drive strength for all the high speed  
digital outputs (except VSOUT, A0 and O/E field). Higher drive  
strength results in faster rise/fall times and in general makes it  
easier to capture data. Lower drive strength results in slower  
rise/fall times and helps to reduce EMI and digitally generated  
power supply noise. The power-up default setting is 11.  
0x23—Bits[7:0]HSYNC Duration  
An 8-bit register that sets the duration of the HSYNC output  
pulse. The leading edge of the HSYNC output is triggered by  
the internally generated, phase-adjusted PLL feedback clock.  
The AD9381 then counts a number of pixel clocks equal to the  
value in this register. This triggers the trailing edge of the  
HSYNC output, which is also phase-adjusted. The power-up  
default is 32.  
Table 13. Output Drive Strength  
Output Drive  
Result  
00  
01  
10  
11  
Low output drive strength  
Medium low output drive strength  
Medium high output drive strength  
High output drive strength  
0x24—Bit[7] HSYNC Output Polarity  
This bit sets the polarity of the HSYNC output. Setting this bit  
to 0 sets the HSYNC output to active low. Setting this bit to 1  
sets the HSYNC output to active high. Power-up default setting  
is 1.  
0x25—Bits[3:2] Output Mode  
These bits choose between four options for the output mode,  
one of which is exclusive to an HDMI input. 4:4:4 mode is  
standard RGB; 4:2:2 mode is YCrCb, which reduces the number  
of active output pins from 24 to 16; 4:4:4 is double data rate  
(DDR) output mode; and the data is RGB mode that changes on  
every clock edge. The power-up default setting is 00.  
0x24—Bit[6] VSYNC Output Polarity  
This bit sets the polarity of the VSYNC output (both DVI and  
analog). Setting this bit to 0 sets the VSYNC output to active  
low. Setting this bit to 1 sets the VSYNC output to active high.  
Power-up default is 1.  
Table 14. Output Mode  
Output Mode  
Result  
00  
01  
4:4:4 RGB mode  
4:2:2 YCrCb mode + DDR 4:2:2 on blue  
(secondary)  
0x24—Bit[5] Display Enable Output Polarity  
This bit sets the polarity of the display enable (DE) for both  
DVI and analog. 0 = DE output polarity is negative. 1 = DE  
output polarity is positive.  
10  
11  
DDR 4:4:4: DDR mode + DDR 4:2:2 on blue  
(secondary)  
12-bit 4:2:2 (HDMI option only)  
The power-up default is 1.  
0x25—Bit[1] Primary Output Enable  
0x24—Bit[4] Field Output Polarity  
This bit places the primary output in active or high impedance  
mode. The primary output is designated when using either 4:2:2  
or DDR 4:4:4. In these modes, the data on the red and green  
output channels is the primary output, while the output data  
on the blue channel (DDR YCrCb) is the secondary output.  
0 = primary output is in high impedance mode. 1 = primary  
output is enabled. The power-up default setting is 1.  
This bit sets the polarity (both DVI and analog) of the field  
output signal on Pin 21. 0 = active low out. 1 = active high out.  
The power-up default is 1.  
0x24—Bit[0] Output Clock Invert  
This bit allows inversion of the output clock as specified by  
Register 0x25, Bits 7 to 6. 0 = noninverted clock. 1 =inverted  
clock .The power-up default setting is 0.  
0x25—Bit[0] Secondary Output Enable  
0x25—Bits[7:6] Output Clock Select  
This bit places the secondary output in active or high  
impedance mode. The secondary output is designated when  
using either 4:2:2 or DDR 4:4:4. In these modes, the data on  
the blue output channel is the secondary output while the  
output data on the red and green channels is the primary  
output. Secondary output is always a DDR YCrCb data mode.  
The power-up default setting is 0. 0 = secondary output is in  
high impedance mode. 1 = secondary output is enabled.  
These bits select the clock output on the DATACLK pin. They  
include 1/2× clock, a 2× clock, a 90° phase shifted clock or the  
normal pixel clock. The power-up default setting is 01.  
Table 12. Output Clock Select  
Select  
Result  
00  
01  
10  
11  
½× pixel clock  
1× pixel clock  
2× pixel clock  
90° phase 1× pixel clock  
Rev. 0 | Page 27 of 44  
AD9381  
0x27—Bit[5] MCLK External Enable  
0x26—Bit[7] Output Three-State  
This bit enables the MCLK to be supplied externally. If an  
external MCLK is used, then it must be locked to the video  
clock according to the CTS and N available in the I2C. Any  
mismatch between the internal MCLK and the input MCLK  
results in dropped or repeated audio samples. 0 = use internally  
generated MCLK. 1 = use external MCLK input. The power-up  
default setting is 0.  
When enabled, this bit puts all outputs (except SOGOUT)  
in a high impedance state. 0 = normal outputs. 1 = all outputs  
(except SOGOUT) in high impedance mode. The power-up  
default setting is 0.  
0x26—Bit[5] S/PDIF Three-State  
When enabled, this bit places the S/PDIF audio output pins in a  
high impedance state. 0 = normal S/PDIF output. 1 = S/PDIF  
pins in high impedance mode. The power-up default setting  
is 0.  
BT656 GENERATION  
0x27—Bit[4] BT656 Enable  
This bit enables the output to be BT656 compatible with the  
defined start of active video (SAV) and the end of active video  
(EAV) controls to be inserted. These require specification of the  
number of active lines, active pixels per line, and delays to place  
these markers. 0 = disable BT656 video mode. 1 = enable BT656  
video mode. The power-up default setting is 0.  
0x26—Bit[4] I2S Three-State  
When enabled, this bit places the I2S output pins in a high  
impedance state. 0 = normal I2S output. 1 = I2S pins in high  
impedance mode. The power-up default setting is 0.  
0x26—Bit[3] Power-Down Polarity  
0x27—Bit[3] Force DE Generation  
This bit defines the polarity of the input power-down pin.  
0 = power-down pin is active low. 1 = power-down pin is active  
high. The power-up default setting is 1.  
This bit allows the use of the internal DE generator in DVI  
mode. 0 = internal DE generation disabled. 1 = force DE  
generation via programmed registers. The power-up default  
setting is 0.  
0x26—Bits[2-1] Power-Down Pin Function  
These bits define the different operational modes of the power-  
down pin. These bits are functional only when the power-down  
pin is active; when it is not active, the part is powered up and  
functioning. 0 = chip is powered down and all outputs are in  
high impedance mode. 1 = chip remains powered up, but all  
outputs are in high impedance mode. The power-up default  
setting is 00.  
0x27—Bits[2:0] Interlace Offset  
These bits define the offset in HSYNCs from Field 0 to Field 1.  
The power-up default setting is 000.  
0x28—Bits[7:2] VSYNC Delay  
These bits set the delay (in lines) from the leading edge of  
VSYNC to active video. The power-up default setting is 24.  
0x26—Bit[0] Power-Down  
0x28—Bits[1:0] HSYNC Delay MSBs  
This bit is used to put the chip in power-down mode. In this  
mode, the power dissipation is reduced to a fraction of the  
typical power (see Table 1 for exact power dissipation). When in  
power-down, the HSOUT, VSOUT, DATACK, and all 30 of the  
data outputs are put into a high impedance state. Note that the  
SOGOUT output is not put into high impedance. Circuit blocks  
that continue to be active during power-down include the  
voltage references, sync processing, sync detection, and the  
serial register. These blocks facilitate a fast start-up from power-  
down. 0 = normal operation. 1 = power-down. The power-up  
default setting is 0.  
Along with register 0x29, these ten bits set the delay (in pixels)  
from the HSYNC leading edge to the start of active video. The  
power-up default setting is 0x104.  
0x29—Bits[7:0] HSYNC Delay LSBs  
See the HSYNC Delay MSBs section.  
0x2A—Bits[3:0] Line Width MSBs  
Along with register 0x2B, these 12 bits set the width of the  
active video line (in pixels). The power-up default setting is  
0x500.  
0x27—Bit[7] Auto Power-Down Enable  
0x2B—Bits[7:0] Line Width LSBs  
This bit enables the chip to go into low power mode, or seek  
mode if no sync inputs are detected. 0 = auto power-down  
disabled. 1 = chip powers down if no sync inputs present. The  
power-up default setting is 1.  
See the line width MSBs section.  
0x2C—Bits[3:0] Screen Height MSBs  
Along with register 0x2D, these 12 bits, set the height of the  
active screen (in lines). The power-up default setting is 0x2D0.  
0x27—Bit[6] HDCP A0 Address  
This bit sets the LSB of the address of the HDCP I2C. This  
should be set to 1 only for a second receiver in a dual-link  
configuration. The power-up default is 0.  
0x2D—Bits[7:0] Screen Height LSBs  
See the Screen Height MSBs section.  
Rev. 0 | Page 28 of 44  
 
AD9381  
0x2E—Bit[7] Ctrl Enable  
0x30—Bit[5] DVI HSYNC Polarity  
When set, this bit allows Ctrl [3:0] signals decoded from the  
DVI to be output on the I2S data pins. 0 = I2S signals on I2S  
lines. 1 = Ctrl [3:0] output on I2S lines. The power-up default  
setting is 0.  
This read-only bit indicates the polarity of the DVI HSYNC.  
0 = DVI HSYNC polarity is low active. 1 = DVI HSYNC  
polarity is high active.  
0x30—Bit[4] DVI VSYNC Polarity  
0x2E—Bits[6:5] I2S Output Mode  
This read-only bit indicates the polarity of the DVI VSYNC.  
0 = DVI VSYNC polarity is low active. 1 = DVI VSYNC polarity  
is high active.  
These bits select between four options for the I2S output: I2S,  
right-justified, left-justified, or raw IEC60958 mode. The  
power-up default setting is 00.  
0x30—Bits[3:0] HDMI Pixel Repetition  
Table 15. I2S Output Select  
These read-only bits indicate the pixel repetition on DVI. 0 =  
1×, 1 = 2×, 2 = 3×, up to a maximum repetition of 10× (0x9).  
I2S Output Mode  
Result  
00  
01  
10  
11  
I2S mode  
Table 16.  
Right-justified  
Left-justified  
Raw IEC60958 mode  
Select  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
Repetition Multiplier  
1×  
2×  
3×  
4×  
5×  
6×  
7×  
8×  
9×  
10×  
0x2E—Bits[4:0] I2S Bit Width  
These bits set the I2S bit width for right-justified mode. The  
power-up default setting is 24 bits.  
0x2F—Bit[6] TMDS Sync Detect  
This read-only bit indicates the presence of a TMDS DE.  
0 = no TMDS DE present. 1 = TMDS DE detected.  
0x2F—Bit[5] TMDS Active  
This read-only bit indicates the presence of a TMDS clock.  
0 = no TMDS clock present. 1 = TMDS clock detected.  
MACROVISION®  
0x31—Bits[7:4] Macrovision Pulse Max  
0x2F—Bit[4] AV Mute  
These bits set the pseudo sync pulse width maximum for  
Macrovision detection in pixel clocks. This is functional for  
13.5 MHz SDTV or 27 MHz progressive scan. Power-up  
default is 9.  
This read-only bit indicates the presence of AV mute based on  
general control packets. 0 = AV not muted. 1 = AV muted.  
0x2F—Bit[3] HDCP Keys Read  
0x31—Bits[3:0] Macrovision Pulse Min  
This read-only bit reports if the HDCP keys were read  
successfully. 0 = failure to read HDCP keys. 1 = HDCP keys  
read.  
These bits set the pseudo sync pulse width maximum for  
Macrovision detection in pixel clocks. This is functional for  
13.5 MHz SDTV or 27 MHz progressive scan. Power-up  
default is 6.  
0x2F—Bits[2:0] HDMI Quality  
These read-only bits indicate a level of HDMI quality based on  
the DE (display enable) edges. A larger number indicates a  
higher quality.  
0x32—Bit[7] Macrovision Oversample Enable  
Tells the Macrovision detection engine whether oversampling is  
used. This accommodates 27 MHz sampling for SDTV and 54  
MHz sampling for progressive scan and is used as a correction  
factor for clock counts. Power-up default is 0.  
0x30—Bit[6] HDMI Content Encrypted  
This read-only bit is high when HDCP decryption is in use  
(content is protected). The signal goes low when HDCP is not  
being used. Customers can use this bit to determine whether or  
not to allow copying of the content. The bit should be sampled  
at regular intervals since it can change on a frame by frame  
basis. 0 = HDCP not in use. 1 = HDCP decryption in use.  
0x32—Bit[6] Macrovision PAL Enable  
Tells the Macrovision detection engine to enter PAL mode when  
set to 1. Default is 0 for NTSC mode.  
0x32—Bits[5:0] Macrovision Line Count Start  
Set the start line for Macrovision detection. Along with  
Register 0x33, Bits [5:0], they define the region where MV  
pulses are expected to occur. The power-up default is Line 13.  
Rev. 0 | Page 29 of 44  
 
AD9381  
0x33—Bit[7] Macrovision Detect Mode  
0x35—Bits[6:5] Color Space Converter Mode  
0 = standard definition. 1 = progressive scan mode.  
These two bits set the fixed point position of the CSC  
coefficients, including the A4, B4, and C4 offsets.  
0x33—Bit[6] Macrovision Settings Override  
Table 17. CSC Fixed Point Converter Mode  
This defines whether preset values are used for the MV line  
counts and pulse widths or the values stored in I2C registers.  
0 = use hard-coded settings for line counts and pulse widths.  
1 = use I2C values for these settings.  
Select  
Result  
00  
01  
1×  
1.0, −4096 to +4095  
2.0, −8192 to +8190  
4.0, −16384 to +16380  
0x33—Bits[5:0] Macrovision Line Count End  
Set the end line for Macrovision detection. Along with  
Register 0x32, Bits [5:0], they define the region where MV  
pulses are expected to occur. The power-up default is Line 21.  
0x35—Bits[4:0] Color Space Conversion Coefficient A1  
MSBs  
These 5 bits form the 5 MSBs of the Color Space Conversion  
Coefficient A1. This, combined with the 8 LSBs of the following  
register, form a 13-bit, twos complement coefficient which is  
user programmable. The equation takes the form of:  
0x34—Bits[7:6] Macrovision Pulse Limit Select  
Set the number of pulses required in the last three lines (SD  
mode only). If there is not at least this number of MV pulses,  
the engine stops. These 2 bits define these pulse counts:  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
00 = 6  
01 = 4  
B
OUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
10 = 5 (default)  
11 = 7  
The default value for the 13-bit, A1 coefficient is 0x0C52.  
0x36—Bits[7:0] Color Space Conversion Coefficient A1  
LSBs  
0x34—Bit[5] Low Frequency Mode  
Sets the audio PLL to low frequency mode. Low frequency  
mode should only be set for pixel clocks < 80 MHz.  
See the Register 0x35 section.  
0x37—Bits[4:0] CSC A2 MSBs  
0x34—Bit[4] Low Frequency Override  
These five bits form the 5 MSBs of the Color Space Conversion  
Coefficient A2. Combined with the 8 LSBs of the following  
register, they form a 13-bit, twos complement coefficient that is  
user programmable. The equation takes the form of:  
Allows the previous bit to be used to set low frequency mode  
rather than the internal auto-detect.  
0x34—Bit[3] Up Conversion Mode  
ROUT = (A1 × RIN) + (A2 × GIN) + (A3 × BIN) + A4  
GOUT = (B1 × RIN) + (B2 × GIN) + (B3 × BIN) + B4  
0 = repeat Cb/Cr values. 1 = interpolate Cb/Cr values.  
0x34—Bit[2] CbCr Filter Enable  
B
OUT = (C1 × RIN) + (C2 × GIN) + (C3 × BIN) + C4  
Enables the FIR filter for 4:2:2 CbCr output.  
The default value for the 13-bit, A2 coefficient is 0x0800.  
COLOR SPACE CONVERSION  
0x38—Bits[7:0] CSC A2 LSBs  
The default power-up values for the color space converter  
coefficients (R0x35 through R0x4C) are set for ATSC RGB-to-  
YCbCr conversion. They are completely programmable for  
other conversions.  
See the Register 0x37 section.  
0x39—Bits[4:0] CSC A3 MSBs  
The default value for the 13-bit A3 is 0x0000.  
0x34—Bit[1] Color Space Converter Enable  
0x3A—Bits[7:0] CSC A3 LSBs  
This bit enables the color space converter. 0 = disable color  
space converter. 1 = enable color space converter. The power-up  
default setting is 0.  
0x3B—Bits[4:0] CSC A4 MSBs  
The default value for the 13-bit A4 is 0x19D7.  
0x3C—Bits[7:0] CSC A4 LSBs  
0x3D—Bits[4:0] CSC B1 MSBs  
The default value for the 13-bit B1 is 0x1C54.  
0x3E—Bits[7:0] CSC B1 LSBs  
0x3F—Bits[4:0] CSC B2 MSB  
The default value for the 13-bit B2 is 0x0800.  
Rev. 0 | Page 30 of 44  
 
AD9381  
0x40—Bits[7:0] CSC B2 LSBs  
0x58—Bits[2:0] MCLK fS_N  
0x41—Bits[4-0] CSC B3 MSBs  
These bits control the multiple of 128 fS used for MCLK out.  
The default value for the 13-bit B3 is 0x1E89.  
Table 19.  
MCLK fS_N [2:0]  
fS Multiple  
128  
256  
384  
512  
640  
768  
896  
1024  
0x42—Bits[7:0] CSC B3 LSBs  
0
1
2
3
4
5
6
7
0x43—Bits[4-0] CSC B4 MSBs  
The default value for the 13-bit B4 is 0x0291.  
0x44—Bits[7:0] CSC B4 LSBs  
0x45—Bits[4-0] CSC C1 MSBs  
The default value for the 13-bit C1 is 0x0000.  
0x46—Bits[7:0] CSC C1 LSBs  
0x47—Bits[4-0] CSC C2 MSBs  
0x59—Bit[6] MDA/MCL PU Disable  
The default value for the 13-bit C2 is 0x0800.  
This bit disables the inter-MDA/MCL pull-ups.  
0x48—Bits[7:0] CSC C2 LSBs  
0x59—Bit[5] CLK Term O/R  
0x49—Bits[4:0] CSC C3 MSBs  
This bit allows for overriding during power down.  
0 = auto, 1 = manual.  
The default value for the 13-bit C3 is 0x0E87.  
0x4A—Bits[7:0] CSC C3 LSBs  
0x59—Bit[4] Manual CLK Term  
0x4B—Bits[4:0] CSC C4 MSBs  
This bit allows normal clock termination or disconnects this.  
0 = normal, 1 = disconnected.  
The default value for the 13-bit C4 is 0x18BD.  
0x4C—Bits[7:0] CSC C4 LSBs  
0x59—Bit[2] FIFO Reset UF  
0x57—Bit[7] AV Mute Override  
0x57—Bit[6] AV Mute Value  
This bit resets the audio FIFO if underflow is detected.  
0x59—Bit[1] FIFO Reset OF  
0x57—Bit[3] Disable AV Mute  
0x57—Bit[2] Disable Audio Mute  
0x58—Bit[7] MCLK PLL Enable  
This bit enables the use of the analog PLL.  
This bit resets the audio FIFO if overflow is detected.  
0x59—Bit[0] MDA/MCL Three-State  
This bit three-states the MDA/MCL lines to allow in-circuit  
programming of the EEPROM.  
0x58—Bits[6:4] MCLK PLL_N  
These bits control the division of the MCLK out of the PLL.  
Table 18.  
0x5A—Bits[6:0] Packet Detect  
This register indicates if a data packet in specific sections has  
been detected. These seven bits are updated if any specific  
packet has been received since last reset or loss of clock detect.  
Normal is 0x00.  
PLL_N [2:0]  
MCLK Divide Value  
0
1
2
3
4
5
6
7
/1  
/2  
/3  
/4  
/5  
/6  
/7  
/8  
Table 20.  
Packet Detect Bit  
Packet Detected  
AVI infoframe  
Audio infoframe  
SPD infoframe  
MPEG source infoframe  
ACP packets  
0
1
2
3
4
5
6
0x58—Bit[3] N_CTS_Disable  
ISRC1 packets  
ISRC2 packets  
This bit makes it possible to prevent the N/CTS packet on the  
link from writing to the N and CTS registers.  
0x5B—Bit[3] HDMI Mode  
0 = DVI, 1 = HDMI.  
Rev. 0 | Page 31 of 44  
AD9381  
0x5E—Bits[7:6] Channel Status Mode  
0x5E—Bits[5:3] PCM Audio Data  
0x81—Bits[1:0] Scan Information  
Table 24.  
S [1:0]  
Scan Type  
0x5E—Bit[2] Copyright Information  
0x5E—Bit[1] Linear PCM Identification  
0x5E—Bit[0] Use of Channel Status Block  
0x5F—Bits[7:0] Channel Status Category Code  
0x60—Bits[7:4] Channel Number  
00  
No information  
01  
10  
Overscanned (television)  
Underscanned (computer)  
0x82—Bits[7:6] Colorimetry  
Table 25.  
0x60—Bits[3:0] Source Number  
C [1:0]  
Colorimetry  
No data  
SMPTE 170M, ITU601  
ITU 709  
0x61—Bits[5:4] Clock Accuracy  
00  
01  
10  
0x61—Bits[3:0] Sampling Frequency  
Table 21.  
Code  
0x0  
0x2  
0x3  
0x8  
0xA  
0xC  
0xE  
Frequency (kHz)  
44.1  
48  
32  
88.2  
96  
176.4  
192  
0x82—Bits[5:4] Picture Aspect Ratio  
Table 26.  
M[1:0]  
Aspect Ratio  
No data  
4:3  
00  
01  
10  
16:9  
0x62—Bits[3-0] Word Length  
0x82—Bits[3:0] Active Format Aspect Ratio  
Table 27.  
R [3:0]  
0x7B—Bits[7:0] CTS (Cycle Time Stamp) (19:12)  
Active Format A/R  
Same as picture aspect ratio (M [1:0])  
4:3 (center)  
These are the most significant 8 bits of a 20-bit word used in the  
20-bit N term in the regeneration of the audio clock.  
0x8  
0x9  
0x7C—Bits[7:0]CTS (11:4)  
0x7D—Bits[7:4] CTS (3:0)  
0x7D—Bits[3:0] N (19:16)  
0xA  
0xB  
16:9 (center)  
14:9 (center)  
0x83—Bits[1:0] Nonuniform Picture Scaling  
Table 28.  
SC [1:0]  
These are the most significant 4 bits of a 20-bit word used along  
with the 20-bit CTS term to regenerate the audio clock.  
Picture Scaling  
0x80 AVI Infoframe Version  
00  
01  
10  
11  
No known nonuniform scaling  
Has been scaled horizontally  
Has been scaled vertically  
0x81—Bits[6:5] Y [1:0]  
This register indicates whether data is RGB, 4:4:4, or 4:2:2.  
Has been scaled both horizontally and vertically  
Table 22.  
Y
Video Data  
RGB  
YCbCr 4:2:2  
YCbCr 4:4:4  
0x84—Bits[6:0] Video ID Code  
00  
01  
10  
See CEA EDID short video descriptors.  
0x85—Bits[3:0] Pixel Repeat  
This value indicates how many times the pixel was repeated.  
0x0 = no repeats, sent once; 0x8 = 8 repeats, sent 9 times; and  
so on.  
0x81—Bit[4] Active Format Information Present  
0 = no data. 1 = active format information valid.  
0x81—Bits[3:2] Bar Information  
Table 23.  
0x86—Bits[7:0] Active Line Start LSB  
Combined with the MSB in Register 0x88, these bits indicate  
the beginning line of active video. All lines before this comprise  
a top horizontal bar. This is used in letter box modes. If the 2-  
byte value is 0x00, there is no horizontal bar.  
B
Bar Type  
00  
01  
10  
11  
No bar information  
Horizontal bar information valid  
Vertical bar information valid  
Horizontal and vertical bar information valid  
Rev. 0 | Page 32 of 44  
AD9381  
0x87—Bits[6:0] New Data Flags (NDF)  
0x91—Bits[7:4] Audio Coding Type  
This register indicates whether data in specific sections has  
changed. In the address space from 0x80 to 0xFF, each register  
address ending in 0b111 (for example, 0x87, 0x8F, 0x97, 0xAF)  
is an NDF register. They all have the same data and all are reset  
upon reading any one of them.  
These bits identify the audio coding so that the receiver may  
process audio properly.  
Table 30.  
CT [3:0]  
Audio Coding  
Refer to stream header  
IEC60958 PCM  
AC-3  
0x0  
0x1  
0x2  
Table 29.  
NDF Bit number  
Changes Occurred  
AVI infoframe  
Audio infoframe  
SPD infoframe  
MPEG source infoframe  
ACP packets  
ISRC1 packets  
0
1
2
3
4
5
6
0x3  
0x4  
0x5  
0x6  
MPEG1 (Layer 1 and Layer 2)  
MP3 (MPEG1 Layer 3)  
MPEG2 (multichannel)  
AAC  
0x7  
DTS  
0x8  
ATRAC  
ISRC2 packets  
0x91—Bits[2:0] Audio Channel Count  
0x88—Bits[7:0] Active Line Start MSB  
These bits specify how many audio channels are being sent—  
2 channels to 8 channels.  
See Register 0x86.  
0x89—Bits[7:0] Active Line End LSB  
Table 31.  
CC [2:0]  
Channel Count  
Combined with the MSB in Register 0x8A, these bits indicate  
the last line of active video. All lines past this comprise a lower  
horizontal bar. This is used in letter-box modes. If the 2-byte  
value is greater than the number of lines in the display, there is  
no lower horizontal bar.  
000  
001  
010  
011  
100  
101  
110  
111  
Refer to stream header  
2
3
4
5
6
7
8
0x8A—Bits[7:0] Active Line End MSB  
See Register 0x89.  
0x8B—Bits[7:0] Active Pixel Start LSB  
Combined with the MSB in Register 0x8C, these bits indicate  
the first pixel in the display that is active video. All pixels before  
this comprise a left vertical bar. If the 2-byte value is 0x00, there  
is no left bar.  
0x92—Bits[4:2] Sampling Frequency  
0x92—Bits[1:0] Ample Size  
0x93—Bits[7:0] Max Bit Rate  
For compressed audio only, when this value is multiplied by  
8 kHz represents the maximum bit rate. A value of 0x08 in this  
field yields a maximum bit rate of (8 kHz × 8 kHz = 64 kHz).  
0x8C—Bits[7:0] Active Pixel Start MSB  
See Register 0x8B.  
0x8D—Bits[7:0] Active Pixel End LSB  
0x94—Bits[7:0] Speaker Mapping  
These bits define the suggested placement of speakers.  
Table 32.  
Combined with the MSB in Register 0x8E, these bits indicate  
the last active video pixel in the display. All pixels past this  
comprise a right vertical bar. If the 2-byte value is greater than  
the number of pixels in the display, there is no vertical bar.  
Abbreviation  
Speaker Placement  
FL  
Front left  
0x8E—Bits[7:0] Active Pixel End MSB  
FC  
Front center  
FR  
Front right  
See Register 0x8D.  
FCL  
FCR  
RL  
Front center left  
Front center right  
Rear left  
0x8F—Bits[6:0] NDF  
See Register 0x87.  
RC  
RR  
Rear center  
Rear right  
0x90—Bits[7:0] Audio Infoframe Version  
RCL  
RCR  
LFE  
Rear center left  
Rear center right  
Low frequency effect  
Rev. 0 | Page 33 of 44  
AD9381  
Table 33.  
CA  
Bit 2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
Channel Number  
Bit 4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Bit 3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Bit 1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Bit 0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
LFE  
v
LFE  
LFE  
LFE  
LFE  
v
LFE  
Bit 2  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
FR  
Bit 1  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FL  
FC  
FC  
RC  
RC  
RC  
RC  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
RL  
FC  
FC  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
RR  
FC  
FC  
RC  
RC  
RC  
FC  
FC  
RC  
RRC  
RRC  
RRC  
RRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
FRC  
RLC  
RLC  
RLC  
RLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FLC  
FC  
FC  
v
FC  
FC  
RC  
RC  
RC  
RC  
RL  
RL  
RL  
RL  
FC  
FC  
FC  
FC  
RR  
RR  
RR  
RR  
1
LFE  
0x95—Bit[7] Down-Mix Inhibit  
0x95—Bits[6:3] Level Shift Values  
0x9A—Bits[7:0] VN2  
0x9B—Bits[7:0] VN3  
0x9C—Bits[7:0] VN4  
0x9D—Bits[7:0] VN5  
0x9E—Bits[7:0] VN6  
These bits define the amount of attenuation. The value directly  
corresponds to the amount of attenuation: for example, 0000 =  
0 dB, 0001 = 1 dB to 1111 = 15 dB attenuation.  
0x9F—Bits[6:0] New Data Flags  
0x96—Bits[7:0] Reserved  
See Register 0x87 for a description.  
0x97—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xA0—Bits[7:0] VN7  
0xA1—Bits[7:0] VN8  
0x98—Bits[7:0] Source Product Description (SPD)  
Infoframe Version  
0xA2—Bits[7:0] Product Description Character 1 (PD1)  
0x99—Bits[7:0] Vender Name Character 1 (VN1)  
This is the first character of 16 that contains the model number  
and a short description of the product. The data characters are  
7-bit ASCII code.  
This is the first character in eight that is the name of the  
company that appears on the product. The data characters are  
7-bit ASCII code.  
Rev. 0 | Page 34 of 44  
 
AD9381  
0xA3—Bits[7:0] PD2  
0xBD—Bit[4] Field Repeat  
0xA4—Bits[7:0] PD3  
This defines whether the field is new or repeated. 0 = new field  
or picture. 1 = repeated field.  
0xA5—Bits[7:0] PD4  
0xA6—Bits[7:0] PD5  
0xBD—Bits[1:0] MPEG Frame  
This identifies the frame as I, B, or P.  
Table 35.  
0xA7—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xA8—Bits[7:0] PD6  
MF [1-0]  
Frame Type  
Unknown  
I—picture  
B—picture  
P—picture  
0xA9—Bits[7:0] PD7  
00  
01  
10  
11  
0xAA—Bits[7:0] PD8  
0xAB—Bits[7:0] PD9  
0xAC—Bits[7:0] PD10  
0xAD—Bits[7:0] PD11  
0xAE—Bits[7:0] PD12  
0xAF—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xBE—Bits[7:0] Reserved  
0xBF—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xC0—Bits[7:0] AudioContentProtectionPacket(ACPType)  
These bits define which audio content protection is used.  
Table 36.  
0xB0—Bits[7:0] PD13  
0xB1—Bits[7:0] PD14  
0xB2—Bits[7:0] PD15  
Code  
ACP Type  
0xB3—Bits[7:0] PD16  
0x00  
Generic audio  
0xB4—Bits[7:0] Source Device Information Code  
These bytes classify the source device.  
0x01  
0x02  
IEC 60958-identified audio  
DVD-audio  
0x03  
0x04—0xFF  
Reserved for super audio CD (SACD)  
Reserved  
Table 34.  
SDI Code  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
Source  
Unknown  
Digital STB  
DVD  
D-VHS  
HDD video  
DVC  
DSC  
Video CD  
Game  
0xC1—ACP Packet Byte 0 (ACP_PB0)  
0xC2—Bits[7:0] ACP_PB1  
0xC3—Bits[7:0] ACP_PB2  
0xC4—Bits[7:0] ACP_PB3  
0xC5—Bits[7:0] ACP_PB4  
0xC7—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
PC general  
0xC8—Bit[7] International Standard Recording Code  
(ISRC1) Continued  
0xB7—Bits[6:0] New Data Flags  
This bit indicates that a continuation of the 16 ISRC1 packet  
bytes (an ISRC2 packet) is being transmitted.  
See Register 0x87 for a description.  
0xB8—Bits[7:0] MPEG Source Infoframe Version  
0xB9—Bits[7:0] MPEG Bit Rate Byte 0 (MB0)  
0xC8—Bit[6] ISRC1 Valid  
This bit is an indication of the whether ISRC1 packet bytes are  
valid. 0 = ISRC1 status bits and PBs not valid. 1 = ISRC1 status  
bits and PBs valid.  
The lower 8 of 32 bits that specify the MPEG bit rate in Hz.  
0xBA—Bits[7:0] MB1  
0xC8—Bits[2:0] ISRC Status  
0xBB—Bits[7:0] MB2  
0xBC—Bits[7:0] MB3—Upper Byte  
These bits define where in the ISRC track the samples are: at  
least two transmissions of 001 occur at the beginning of the  
track, while continuous transmission of 010 occurs in the  
middle of the track, followed by at least two transmissions of  
100 near the end of the track.  
Rev. 0 | Page 35 of 44  
AD9381  
0xC9—Bits[7:0] ISRC1 Packet Byte 0 (ISRC1_PB0)  
0xCA—Bits[7:0] ISRC1_PB1  
0xDD—Bits[7:0] ISRC2_PB1  
0xDE—Bits[7:0] ISRC2_PB2  
0xDF—Bits[6-0] New Data Flags  
See Register 0x87 for a description.  
0xCB—Bits[7:0] ISRC1_PB2  
0xCC—Bits[7:0] ISRC1_PB3  
0xCD—Bits[7:0] ISRC1_PB4  
0xE0—Bits[7:0] ISRC2_PB3  
0xE1—Bits[7:0] ISRC2_PB4  
0xE2—Bits[7:0] ISRC2_PB5  
0xE3—Bits[7:0] ISRC2_PB6  
0xE4—Bits[7:0] ISRC2_PB7  
0xE5—Bits[7:0] ISRC2_PB8  
0xE6—Bits[7:0] ISRC2_PB9  
0xE7—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xCE—Bits[7:0] ISRC1_PB5  
0xCF—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xD0—Bits[7:0] ISRC1_PB6  
0xD1—Bits[7:0] ISRC1_PB7  
0xD2—Bits[7:0] ISRC1_PB8  
0xD3—Bits[7:0] ISRC1_PB9  
0xD4—Bits[7:0] ISRC1_PB10  
0xD5—Bits[7:0] ISRC1_PB11  
0xD6—Bits[7:0] ISRC1_PB12  
0xD7—Bits[6:0] New Data Flags  
See Register 0x87 for a description.  
0xE8—Bits[7:0] ISRC2_PB10  
0xE9—Bits[7:0] ISRC2_PB11  
0xEA—Bits[7:0] ISRC2_PB12  
0xEB—Bits[7:0] ISRC2_PB13  
0xEC—Bits[7:0] ISRC2_PB14  
0xED—Bits[7:0] ISRC2_PB15  
0xEE—Bits[7:0] ISRC2_PB16  
0xD8—Bits[7:0] ISRC1_PB13  
0xD9—Bits[7:0] ISRC1_PB14  
0xDA—Bits[7:0] ISRC1_PB15  
0xDB—Bits[7:0] ISRC1_PB16  
0xDC—Bits[7:0] ISRC2 Packet Byte 0 (ISRC2_PB0)  
This is transmitted only when the ISRC continue bit (Register  
0xC8 Bit 7) is set to 1.  
Rev. 0 | Page 36 of 44  
AD9381  
2-WIRE SERIAL CONTROL PORT  
A 2-wire serial interface control is provided in the AD9381. Up  
to two AD9381 devices can be connected to the 2-wire serial  
interface, with a unique address for each device.  
DATA TRANSFER VIA SERIAL INTERFACE  
For each byte of data read or written, the MSB is the first bit of  
the sequence. If the AD9381 does not acknowledge the master  
device during a write sequence, the SDA remains high so the  
master can generate a stop signal. If the master device does not  
acknowledge the AD9381 during a read sequence, the AD9381  
interprets this as the end of data. The SDA remains high so the  
master can generate a stop signal.  
The 2-wire serial interface comprises a clock (SCL) and a  
bidirectional data (SDA) pin. The analog flat panel interface  
acts as a slave for receiving and transmitting data over the serial  
interface. When the serial interface is not active, the logic levels  
on SCL and SDA are pulled high by external pull-up resistors.  
To write data to specific control registers of the AD9381, the 8-  
bit address of the control register of interest must be written  
after the slave address has been established. This control register  
address is the base address for subsequent write operations. The  
base address auto-increments by 1 for each byte of data written  
after the data byte intended for the base address. If more bytes  
are transferred than there are available addresses, the address  
does not increment and remains at its maximum value. Any  
base address higher than the maximum value does not produce  
an acknowledge signal.  
Data received or transmitted on the SDA line must be stable for  
the duration of the positive-going SCL pulse. Data on SDA must  
change only when SCL is low. If SDA changes state while SCL is  
high, the serial interface interprets that action as a start or stop  
sequence.  
There are six components to serial bus operation:  
Start signal  
Slave address byte  
Base register address byte  
Data byte to read or write  
Stop signal  
Data are read from the control registers of the AD9381 in a  
similar manner. Reading requires two data transfer operations:  
The base address must be written with the R/ bit of the  
W
Acknowledge (Ack)  
slave address byte low to set up a sequential read  
operation.  
When the serial interface is inactive (SCL and SDA are high),  
communications are initiated by sending a start signal. The start  
signal is a high-to-low transition on SDA while SCL is high.  
This signal alerts all slave devices that a data transfer sequence  
is coming.  
Reading (the R/ bit of the slave address byte high) begins  
W
at the previously established base address. The address of  
the read register auto-increments after each byte is  
transferred.  
The first 8 bits of data transferred after a start signal comprise a  
To terminate a read/write sequence to the AD9381, a stop signal  
must be sent. A stop signal comprises a low-to-high transition  
of SDA while SCL is high.  
7-bit slave address (the first 7 bits) and a single R/ bit (the 8th  
bit). The R/ bit indicates the direction of data transfer, read  
W
from (1) or write to (0) the slave device. If the transmitted slave  
address matches the address of the device (set by the state of the  
SA0 input pin as shown in Table 37), the AD9381 acknowledges  
by bringing SDA low on the 9th SCL pulse. If the addresses do  
not match, the AD9381 does not acknowledge.  
W
A repeated start signal occurs when the master device driving  
the serial interface generates a start signal without first genera-  
ting a stop signal to terminate the current communication. This  
is used to change the mode of communication (read, write)  
between the slave and master without releasing the serial  
interface lines.  
Table 37. Serial Port Addresses  
Bit 7  
A6 (MSB)  
1
Bit 6  
Bit 5  
Bit 4  
Bit 3  
A2  
1
Bit 2  
A1  
0
Bit 1  
A0  
0
A5  
0
A4  
0
A3  
1
SDA  
tBUFF  
tSTAH  
tDSU  
tDHO  
tSTOSU  
tSTASU  
tDAL  
SCL  
tDAH  
Figure 9. Serial Port Read/Write Timing  
Rev. 0 | Page 37 of 44  
 
 
AD9381  
SERIAL INTERFACE READ/WRITE EXAMPLES  
Write to one control register:  
Read from one control register:  
Start signal  
Start signal  
Slave address byte (R/ bit = low)  
W
Slave address byte (R/ bit = low)  
W
Base address byte  
Data byte to base address  
Stop signal  
Base address byte  
Start signal  
Slave address byte (R/ bit = high)  
W
Data byte from base address  
Stop signal  
Write to four consecutive control registers:  
Start signal  
Slave address byte (R/ bit = low)  
W
Read from four consecutive control registers:  
Base address byte  
Start signal  
Data byte to base address  
Data byte to (base address + 1)  
Data byte to (base address + 2)  
Data byte to (base address + 3)  
Stop signal  
Slave address byte (R/ bit = low)  
W
Base address byte  
Start signal  
Slave address byte (R/ bit = high)  
W
Data byte from base address  
Data byte from (base address + 1)  
Data byte from (base address + 2)  
Data byte from (base address + 3)  
Stop signal  
SDA  
SCL  
BIT 7 BIT 6  
BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0  
ACK  
Figure 10. Serial Interface—Typical Byte Transfer  
Rev. 0 | Page 38 of 44  
 
AD9381  
PCB LAYOUT RECOMMENDATIONS  
The AD9381 is a high precision, high speed digital device. To  
achieve the maximum performance from the part, it is impor-  
tant to have a well laid-out board. The following is a guide for  
designing a board using the AD9381.  
In some cases, using separate ground planes is unavoidable, so  
it is recommend to place a single ground plane under the  
AD9381. The location of the split should be at the receiver of  
the digital outputs. In this case, it is even more important to  
place components wisely because the current loops are much  
longer, (current takes the path of least resistance). An example  
of a current loop is power plane to AD9381 to digital output  
trace to digital data receiver to digital ground plane to analog  
ground plane.  
POWER SUPPLY BYPASSING  
It is recommended to bypass each power supply pin with a  
0.1 μF capacitor. The exception is in the case where two or more  
supply pins are adjacent to each other. For these groupings of  
powers/grounds, it is only necessary to have one bypass  
capacitor. The fundamental idea is to have a bypass capacitor  
within about 0.5 cm of each power pin. Also, avoid placing the  
capacitor on the opposite side of the PC board from the  
AD9381, because that interposes resistive vias in the path.  
OUTPUTS (BOTH DATA AND CLOCKS)  
Try to minimize the trace length that the digital outputs have to  
drive. Longer traces have higher capacitance, which require  
more current that causes more internal digital noise.  
The bypass capacitors should be physically located between the  
power plane and the power pin. Current should flow from the  
power plane to the capacitor to the power pin. Do not make the  
power connection between the capacitor and the power pin.  
Placing a via underneath the capacitor pads down to the power  
plane is generally the best approach.  
Shorter traces reduce the possibility of reflections.  
Adding a series resistor of value 50 Ω to 200 Ω can suppress  
reflections, reduce EMI, and reduce the current spikes inside  
the AD9381. If series resistors are used, place them as close as  
possible to the AD9381 pins (although try not to add vias or  
extra length to the output trace to move the resistors closer).  
It is particularly important to maintain low noise and good  
stability of PVDD (the clock generator supply). Abrupt changes  
in PVDD can result in similarly abrupt changes in sampling clock  
phase and frequency. This can be avoided by careful attention to  
regulation, filtering, and bypassing. It is highly desirable to  
provide separate regulated supplies for each of the analog  
circuitry groups (VD and PVDD).  
If possible, limit the capacitance that each of the digital outputs  
drives to less than 10 pF. This can be accomplished easily by  
keeping traces short and by connecting the outputs to only one  
device. Loading the outputs with excessive capacitance increases  
the current transients inside of the AD9381 and creates more  
digital noise on its power supplies.  
DIGITAL INPUTS  
Some graphic controllers use substantially different levels of  
power when active (during active picture time) and when idle  
(during HSYNC and VSYNC periods). This can result in a  
measurable change in the voltage supplied to the analog supply  
regulator, which can in turn produce changes in the regulated  
analog supply voltage. This can be mitigated by regulating the  
analog supply, or at least PVDD, from a different, cleaner power  
source (for example, from a 12 V supply).  
The digital inputs on the AD9381 were designed to work with  
3.3 V signals, but are tolerant of 5.0 V signals. Therefore, no  
extra components need to be added if using 5.0 V logic.  
Any noise that enters the HSYNC input trace can add jitter to  
the system. Therefore, minimize the trace length and do not run  
any digital or other high frequency traces near it.  
It is recommended to use a single ground plane for the entire  
board. Experience has shown repeatedly that the noise perfor-  
mance is the same or better with a single ground plane. Using  
multiple ground planes can be detrimental because each  
separate ground plane is smaller and long ground loops can  
result.  
Rev. 0 | Page 39 of 44  
 
 
AD9381  
COLOR SPACE CONVERTER (CSC) COMMON SETTINGS  
Table 38. HDTV YCrCb (0 to 255) to RGB (0 to 255) (Default Setting for AD9381)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
Red/Cr Offset  
0x3C  
0x35  
0x0C  
0x36  
0x52  
0x37  
0x08  
0x38  
0x00  
0x39  
0x00  
0x3A  
0x00  
0x3B  
0x19  
0xD7  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1C  
0x3F  
0x08  
0x41  
0x3E  
0x43  
0x02  
0x54  
0x00  
0x89  
0x91  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x08  
0x49  
0x0E  
0x4B  
0x18  
0x00  
0x00  
0x87  
0xBD  
Table 39. HDTV YCrCb (16 to 235) to RGB (0 to 255)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x47  
0x36  
0x2C  
0x37  
0x04  
0x38  
0xA8  
0x39  
0x00  
0x3B  
0x1C  
0x00  
0x1F  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1D  
0x3F  
0x04  
0x41  
0x1F  
0x43  
0x01  
0xDD  
0xA8  
0x26  
0x34  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x04  
0x49  
0x08  
0x4B  
0x1B  
0x00  
0xA8  
0x75  
0x7B  
Table 40. SDTV YCrCb (0 to 255) to RGB (0 to 255)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x2A  
0x36  
0xF8  
0x37  
0x08  
0x38  
0x00  
0x39  
0x00  
0x3B  
0x1A  
0x00  
0x84  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1A  
0x3F  
0x08  
0x41  
0x1D  
0x43  
0x04  
0x6A  
0x00  
0x50  
0x23  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x08  
0x49  
0x0D  
0x4B  
0x19  
0x00  
0x00  
0xDB  
0x12  
Table 41. SDTV YCrCb (16 to 235) to RGB (0 to 255)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x46  
0x36  
0x63  
0x37  
0x04  
0x38  
0xA8  
0x39  
0x00  
0x3B  
0x1C  
0x00  
0x84  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x1C  
0x3F  
0x04  
0x41  
0x1E  
0x43  
0x02  
0xC0  
0xA8  
0x6F  
0x1E  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x00  
0x47  
0x04  
0x49  
0x08  
0x4B  
0x1B  
0x00  
0xA8  
0x11  
0xAD  
Rev. 0 | Page 40 of 44  
 
 
AD9381  
Table 42. RGB (0 to 255) to HDTV YCrCb (0 to 255)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x35  
0x08  
0x36  
0x2D  
0x37  
0x18  
0x38  
0x93  
0x39  
0x1F  
0x3B  
0x08  
0x3C  
0x00  
0x3F  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x03  
0x3F  
0x0B  
0x41  
0x01  
0x43  
0x00  
0x68  
0x71  
0x27  
0x00  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1E  
0x47  
0x19  
0x49  
0x08  
0x4B  
0x08  
0x21  
0xB2  
0x2D  
0x00  
Table 43. RGB (0 to 255) to HDTV YCrCb (16 to 235)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x07  
0x36  
0x06  
0x37  
0x19  
0x38  
0xA0  
0x39  
0x1F  
0x3B  
0x08  
0x5B  
0x00  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x02  
0x3F  
0x09  
0x41  
0x00  
0x43  
0x01  
0xED  
0xD3  
0xFD  
0x00  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1E  
0x47  
0x1A  
0x49  
0x07  
0x4B  
0x08  
0x64  
0x96  
0x06  
0x00  
Table 44. RGB (0 to 255) to SDTV YCrCb (0 to 255)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x08  
0x36  
0x2D  
0x37  
0x19  
0x38  
0x27  
0x39  
0x1E  
0x3B  
0x08  
0xAC  
0x00  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x04  
0x3F  
0x09  
0x41  
0x01  
0x43  
0x00  
0xC9  
0x64  
0xD3  
0x00  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1D  
0x47  
0x1A  
0x49  
0x08  
0x4B  
0x08  
0x3F  
0x93  
0x2D  
0x00  
Table 45. RGB (0 to 255) to SDTV YCrCb (16 to 235)  
Register  
Address  
Value  
Red/Cr Coeff 1  
Red/Cr Coeff 2  
Red/Cr Coeff 3  
0x3A  
Red/Cr Offset  
0x3C  
0x35  
0x07  
0x36  
0x06  
0x37  
0x1A  
0x38  
0x1E  
0x39  
0x1E  
0x3B  
0x08  
0xDC  
0x00  
Register  
Address  
Value  
Green/Y Coeff 1  
0x3E  
Green/Y Coeff 2  
0x40  
Green/Y Coeff 3  
0x42  
Green/Y Offset  
0x44  
0x3D  
0x04  
0x3F  
0x08  
0x41  
0x01  
0x43  
0x01  
0x1C  
0x11  
0x91  
0x00  
Register  
Address  
Value  
Blue/Cb Coeff 1  
0x46  
Blue/Cb Coeff 2  
0x48  
Blue/Cb Coeff 3  
0x4A  
Blue/Cb Offset  
0x4C  
0x45  
0x1D  
0x47  
0x1B  
0x49  
0x07  
0x4B  
0x08  
0xA3  
0x57  
0x06  
0x00  
Rev. 0 | Page 41 of 44  
AD9381  
OUTLINE DIMENSIONS  
16.00  
BSC SQ  
1.60 MAX  
0.75  
0.60  
0.45  
100  
1
76  
75  
PIN 1  
14.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08 MAX  
COPLANARITY  
25  
51  
50  
0.15  
0.05  
26  
SEATING  
PLANE  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BED  
Figure 11. 100-Lead Low Profile Quad Flat Package [LQFP]  
(ST-100)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Max Speed (MHz)  
Temperature  
Model  
Analog  
Digital  
100  
150  
Range  
Package Description  
Package Option  
ST-100  
ST-100  
AD9381KSTZ-1001 100  
0°C to 70°C  
0°C to 70°C  
100-Lead Low Profile Quad Flat Package (LQFP)  
100-Lead Low Profile Quad Flat Package (LQFP)  
Evaluation Board  
AD9381KSTZ-1501  
AD9381/PCB  
150  
1 Z = Pb-free part.  
Rev. 0 | Page 42 of 44  
 
 
AD9381  
NOTES  
Rev. 0 | Page 43 of 44  
AD9381  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05689-0-10/05(0)  
Rev. 0 | Page 44 of 44  
 
 
 
 
 
 
 
 
 

相关型号:

AD9381/PCB

HDMI Display Interface
ADI

AD9381KSTZ-100

HDMI Display Interface
ADI

AD9381KSTZ-150

HDMI Display Interface
ADI

AD9387NK

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NK/PCB

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NKBBCZ-80

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NKBBCZRL-80

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9387NKBCPZ-80

High Performance, Low Power HDMI⑩/DVI Transmitter
ADI

AD9388A

10-Bit Integrated, Multiformat, HDTV Video Decoder, RGB Graphics Digitizer, and 2:1 Multiplexed HDMI/DVI Interface
ADI

AD9388ABSTZ-110

10-Bit Integrated, Multiformat, HDTV Video Decoder, RGB Graphics Digitizer, and 2:1 Multiplexed HDMI/DVI Interface
ADI

AD9388ABSTZ-110

SPECIALTY CONSUMER CIRCUIT, PQFP144, 20 X 20 MM, ROHS COMPLIANT, PLASTIC, MS-026BFB, LQFP-144
ROCHESTER

AD9388ABSTZ-1101

IC SPECIALTY CONSUMER CIRCUIT, PQFP144, ROHS COMPLIANT, PLASTIC, MS-026BFB, LQFP-144, Consumer IC:Other
ADI