AD9432BST-100 [ADI]

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, PLASTIC, LQFP-52, Analog to Digital Converter;
AD9432BST-100
型号: AD9432BST-100
厂家: ADI    ADI
描述:

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, PLASTIC, LQFP-52, Analog to Digital Converter

信息通信管理 转换器
文件: 总16页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-Bit, 80 MSPS/105 MSPS ADC  
AD9432  
FEATURES  
GENERAL INTRODUCTION  
On-chip reference and track-and-hold  
On-chip input buffer  
Power dissipation: 850 mW typical at 105 MSPS  
500 MHz analog bandwidth  
SNR: 67 dB @ 49 MHz AIN at 105 MSPS  
SFDR: 80 dB @ 49 MHz AIN at 105 MSPS  
2.0 V p-p analog input range  
5.0 V supply operation  
3.3 V CMOS/TTL outputs  
Twos complement output format  
The AD9432 is a 12-bit, monolithic sampling analog-to-digital  
converter (ADC) with an on-chip track-and-hold circuit and is  
optimized for high speed conversion and ease of use. The prod-  
uct operates up to a 105 MSPS conversion rate with outstanding  
dynamic performance over its full operating range.  
The ADC requires only a single 5.0 V power supply and a 105 MHz  
encode clock for full performance operation. No external refer-  
ence or driver components are required for many applications.  
The digital outputs are TTL-/CMOS-compatible, and a separate  
output power supply pin supports interfacing with 3.3 V logic.  
The encode input supports either differential or single-ended  
mode and is TTL-/CMOS-compatible.  
APPLICATIONS  
Communications  
Base stations and zero-IF subsystems  
Wireless local loop (WLL)  
Local multipoint distribution service (LMDS)  
HDTV broadcast cameras and film scanners  
Fabricated on an advanced BiCMOS process, the AD9432 is  
available in a 52-lead low profile quad flat package (LQFP) and  
in a 52-lead thin quad flat package (TQFP_EP). The AD9432 is  
specified over the industrial temperature range of −40°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
CC  
12  
AIN  
12  
D11 TO D0  
OR  
PIPELINE  
ADC  
BUF  
T/H  
OUTPUT  
STAGING  
AIN  
ENCODE  
ENCODE  
TIMING  
REF  
AD9432  
GND  
VREFOUT VREFIN  
Figure 1.  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2009 Analog Devices, Inc. All rights reserved.  
 
AD9432  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Terminology.................................................................................... 11  
Equivalent Circuits......................................................................... 12  
Theory of Operation ...................................................................... 13  
Analog Input ............................................................................... 13  
Encode Input............................................................................... 13  
Encode Voltage Level Definition.............................................. 13  
Digital Outputs ........................................................................... 14  
Voltage Reference ....................................................................... 14  
Timing ......................................................................................... 14  
Applications Information.............................................................. 15  
Using the AD8138 to Drive the AD9432 ................................ 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Introduction ....................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Explanation of Test Levels........................................................... 6  
Thermal Characteristics .............................................................. 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
6/09—Rev. E to Rev. F  
1/02—Rev. D to Rev. E  
Updated Format..................................................................Universal  
Reorganized Layout............................................................Universal  
Added TQFP_EP Package.................................................Universal  
Deleted LQFP_ED Package...............................................Universal  
Changes to Thermal Characteristics Section................................ 6  
Changes to Pin Configurations and Function Descriptions  
Section................................................................................................ 7  
Changes to Terminology Section.................................................. 11  
Deleted Evaluation Board Section................................................ 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 16  
Edits to Specifications.......................................................................3  
Edits to Absolute Maximum Ratings..............................................4  
Edits to Ordering Guide ...................................................................4  
Addition of Text to Using the AD9432 Section.......................... 10  
Edits to Figure 17a.......................................................................... 15  
Edits to Figure 17b ......................................................................... 16  
Addition of SQ-52 Package Outline............................................. 18  
Rev. F | Page 2 of 16  
 
AD9432  
SPECIFICATIONS  
VDD = 3.3 V, VCC = 5.0 V; external reference; differential encode input, unless otherwise noted.  
Table 1.  
Test  
Level  
80 MSPS  
Typ  
105 MSPS  
Typ  
Parameter  
Temp  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
12  
12  
Bits  
DC ACCURACY  
Differential Nonlinearity (DNL)  
25°C  
Full  
25°C  
Full  
Full  
25°C  
Full  
I
VI  
I
VI  
VI  
I
−0.75  
−1.0  
−1.0  
−1.5  
0.25  
0.5  
0.5  
1.0  
Guaranteed  
+2  
+0.75  
+1.0  
+1.0  
+1.5  
−0.75  
−1.0  
−1.0  
−1.5  
0.25  
0.5  
0.5  
1.0  
Guaranteed  
+2  
+0.75  
+1.0  
+1.0  
+1.5  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity (INL)  
No Missing Codes  
Gain Error1  
Gain Tempco1  
−5  
+7  
−5  
+7  
% FS  
ppm/°C  
V
150  
150  
ANALOG INPUTS (AIN, AIN)  
Input Voltage Range  
Common-Mode Voltage  
Input Offset Voltage  
Input Resistance  
Full  
Full  
Full  
Full  
25°C  
25°C  
V
V
VI  
VI  
V
2
3.0  
0
3
4
2
3.0  
0
3
4
V p-p  
V
mV  
kΩ  
pF  
MHz  
−5  
2
+5  
4
−5  
2
+5  
4
Input Capacitance  
Analog Bandwidth, Full Power  
ANALOG REFERENCE  
Output Voltage  
Tempco  
Input Bias Current  
V
500  
500  
Full  
Full  
Full  
VI  
V
VI  
2.4  
2.5  
50  
15  
2.6  
50  
2.4  
2.5  
50  
15  
2.6  
50  
V
ppm/°C  
μΑ  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Encode Pulse Width High (tEH  
Encode Pulse Width Low (tEL)  
Aperture Delay (tA)  
Full  
Full  
VI  
IV  
IV  
IV  
V
80  
105  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
1
1
)
25°C  
25°C  
25°C  
25°C  
Full  
Full  
Full  
Full  
4.0  
4.0  
6.2  
6.2  
2.0  
0.25  
5.3  
5.5  
2.1  
1.9  
2
4.0  
4.0  
4.8  
4.8  
2.0  
0.25  
5.3  
5.5  
2.1  
1.9  
2
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
V
VI  
VI  
V
V
V
3.0  
3.0  
2
Output Propagation Delay (tPD  
Output Rise Time (tR)2  
Output Fall Time (tF)2  
Out-of-Range Recovery Time  
Transient Response Time  
Latency  
)
8.0  
8.0  
25°C  
25°C  
Full  
ns  
ns  
Cycles  
V
IV  
2
10  
2
10  
DIGITAL INPUTS  
Encode Input Common Mode  
Differential Input  
Full  
Full  
V
V
1.6  
750  
1.6  
750  
V
mV  
(ENCODE, ENCODE)  
Single-Ended Input  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
Full  
25°C  
IV  
IV  
VI  
V
2.0  
3
2.0  
3
V
V
kΩ  
pF  
0.8  
8
0.8  
8
Input Resistance  
5
4.5  
5
4.5  
Input Capacitance  
DIGITAL OUTPUTS  
Logic 1 Voltage (VDD = 3.3 V)  
Logic 0 Voltage (VDD = 3.3 V)  
Output Coding  
Full  
Full  
VI  
VI  
VDD − 0.05  
VDD − 0.05  
V
V
0.05  
0.05  
Twos complement  
Twos complement  
Rev. F | Page 3 of 16  
 
AD9432  
Test  
Level  
80 MSPS  
Typ  
105 MSPS  
Typ  
Parameter  
POWER SUPPLY  
Power Dissipation3  
IVCC  
Temp  
Min  
Max  
Min  
Max  
Unit  
Full  
Full  
Full  
25°C  
VI  
VI  
VI  
I
790  
158  
9.5  
1000  
200  
12.2  
+5  
850  
170  
12.5  
+0.5  
1100  
220  
16  
mW  
mA  
mA  
IVDD  
Power Supply Rejection Ratio  
(PSRR)  
−5  
+0.5  
−5  
+5  
mV/V  
DYNAMIC PERFORMANCE4  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 49 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
65.5  
65  
67.5  
67.2  
67.0  
66.1  
65.5  
64  
67.5  
67.2  
67.0  
66.1  
dB  
dB  
dB  
dB  
Signal-to-Noise and Distortion  
(SINAD) Ratio (with Harmonics)  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 49 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
65  
64.5  
67.2  
66.9  
66.7  
65.8  
65  
63  
67.2  
66.9  
66.7  
65.8  
dB  
dB  
dB  
dB  
fIN = 70 MHz  
Effective Number of Bits (ENOB)  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 49 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
11.0  
10.9  
10.9  
10.7  
11.0  
10.9  
10.9  
10.7  
Bits  
Bits  
Bits  
Bits  
Second-Order and Third-Order  
Harmonic Distortion  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 49 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
−75  
−73  
−85  
−85  
−83  
−80  
−75  
−72  
−85  
−83  
−80  
−78  
dBc  
dBc  
dBc  
dBc  
Worst Other Harmonic or Spur  
(Excluding Second-Order and  
Third-Order Harmonics)  
fIN = 10 MHz  
fIN = 40 MHz  
fIN = 49 MHz  
fIN = 70 MHz  
25°C  
25°C  
25°C  
25°C  
I
I
I
V
−80  
−80  
−90  
−90  
−90  
−90  
−80  
−80  
−90  
−90  
−90  
−90  
dBc  
dBc  
dBc  
dBc  
Two-Tone Intermodulation  
Distortion (IMD)  
fIN1 = 29.3 MHz; fIN2 = 30.3 MHz 25°C  
fIN1 = 70.3 MHz; fIN2 = 71.3 MHz 25°C  
V
V
−75  
−66  
−75  
−66  
dBc  
dBc  
1 Gain error and gain temperature coefficients are based on the ADC only (with a fixed 2.5 V external reference and a 2 V p-p differential analog input).  
2 tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital output swing. The digital output load during testing is not  
to exceed an ac load of 10 pF or a dc current of 40 μA. Rise and fall times are measured from 10% to 90%.  
3 Power dissipation measured with encode at rated speed and a dc analog input (outputs static, IVDD = 0).  
4 SNR/harmonics based on an analog input voltage of –0.5 dBFS referenced to a 2 V full-scale input range.  
Rev. F | Page 4 of 16  
 
 
 
AD9432  
TIMING DIAGRAM  
SAMPLE N  
SAMPLE N + 11  
SAMPLE N – 1  
SAMPLE N + 10  
AIN  
tA  
SAMPLE N + 1  
SAMPLE N + 9  
tEH  
tEL  
1/fS  
ENCODE  
ENCODE  
tPD  
tV  
DATA N + 1  
DATA  
N – 9  
DATA  
N – 2  
D11 TO D0  
DATA N – 11  
DATA N – 10  
DATA N – 1  
DATA N  
Figure 2. Timing Diagram  
Rev. F | Page 5 of 16  
 
 
AD9432  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 2.  
Table 3 lists AD9432 thermal characteristics for simulated typical  
performance in a 4-layer JEDEC board, horizontal orientation.  
Parameter  
Rating  
VDD  
6 V  
VCC  
6 V  
Table 3. Thermal Resistance  
Package Type  
Analog Inputs  
Digital Inputs  
VREFIN  
Digital Output Current  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
Maximum Case Temperature  
−0.5 V to VCC + 0.5 V  
−0.5 V to VDD + 0.5 V  
−0.5 V to VCC + 0.5 V  
20 mA  
−55°C to +125°C  
−65°C to +150°C  
150°C  
θJA  
50  
θJMA  
θJC  
Unit  
52-Lead LQFP (ST-52)  
No Airflow  
52-Lead TQFP_EP (SV-52-2)1  
No Airflow  
1.0 m/s Airflow  
°C/W  
°C/W  
°C/W  
°C/W  
2
19.3  
16  
150°C  
1 Bottom of package (soldered exposed pad).  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
EXPLANATION OF TEST LEVELS  
I
100% production tested.  
II 100% production tested at 25°C and sample tested at  
specified temperatures.  
III Sample tested only.  
IV Parameter is guaranteed by design and characterization  
testing.  
V
Parameter is a typical value only.  
VI 100% production tested at 25°C; guaranteed by design and  
characterization testing for industrial temperature range.  
Rev. F | Page 6 of 16  
 
 
 
AD9432  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
52 51 50 49 48 47 46 45 44 43 42 41 40  
52 51 50 49 48  
46 45 44 43 42 41 40  
47  
1
2
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GND  
GND  
GND  
PIN 1  
V
1
2
CC  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
GND  
GND  
GND  
PIN 1  
3
GND  
GND  
V
V
CC  
CC  
V
CC  
4
3
GND  
GND  
V
V
CC  
CC  
5
V
GND  
GND  
GND  
4
CC  
AD9432  
TOP VIEW  
(Not to Scale)  
6
V
CC  
5
V
V
GND  
GND  
GND  
CC  
AD9432  
TOP VIEW  
7
ENCODE  
ENCODE  
GND  
6
CC  
8
V
(Not to Scale)  
DD  
7
ENCODE  
ENCODE  
GND  
9
DGND  
D0 (LSB)  
D1  
8
V
DD  
10  
11  
12  
13  
V
CC  
9
DGND  
D0 (LSB)  
D1  
GND  
10  
11  
12  
13  
V
CC  
DGND  
D2  
GND  
V
D3  
DD  
DGND  
D2  
V
D3  
DD  
14 15 16 17 18 19 20 21 22 23 24 25 26  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NOTES  
1. ALTHOUGH NOT REQUIRED IN ALL APPLICATIONS, THE EXPOSED PADDLE  
ON THE UNDERSIDE OF THE PACKAGE SHOULD BE SOLDERED TO THE  
GROUND PLANE. SOLDERING THE EXPOSED PADDLE TO THE PCB  
INCREASES THE RELIABILITY OF THE SOLDER JOINTS, MAXIMIZING  
THE THERMAL CAPABILITY OF THE PACKAGE.  
NOTES  
1. DNC = DO NOT CONNECT.  
Figure 3. Pin Configuration, LQFP  
Figure 4. Pin Configuration, TQFP_EP  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 3, 4, 9, 11, 33,  
34, 35, 38, 39, 40,  
43, 48, 51  
GND  
Analog Ground.  
2, 5, 6, 10, 36, 37,  
42, 44, 47, 52  
VCC  
Analog Supply (5 V).  
7
ENCODE  
ENCODE  
DGND  
VDD  
Encode Clock for ADC, Complementary.  
Encode Clock for ADC, True. ADC samples on rising edge of ENCODE.  
Digital Output Ground.  
Digital Output Power Supply (2.7 V to 3.6 V).  
Out-of-Range Output.  
8
12, 21, 24, 31  
13, 22, 23, 32  
14  
OR  
15 to 20, 25 to 30  
D11 to D6, D5 to D0 Digital Output.  
41  
45  
46  
49  
50  
DNC  
Do Not Connect.  
VREFIN  
VREFOUT  
AIN  
Reference Input for ADC (2.5 V Typical). Bypass with 0.1 μF capacitor to ground.  
Internal Reference Output (2.5 V Typical).  
Analog Input, True.  
AIN  
Analog Input, Complementary.  
Exposed Pad  
(TQFP_EP)  
Although not required in all applications, the exposed paddle on the underside of the TQFP_EP  
package should be soldered to the ground plane. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints, maximizing the thermal capability of the package.  
Rev. F | Page 7 of 16  
 
AD9432  
TYPICAL PERFORMANCE CHARACTERISTICS  
90  
70  
65  
60  
AIN = –0.5dBFS  
AIN = 10.3MHz  
85  
SFDR  
80  
75  
70  
SNR  
55  
50  
65  
SINAD  
60  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
50  
100  
150  
200  
250  
ENCODE (MSPS)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 5. SNR/SINAD/SFDR vs. fS, fIN = 10.3 MHz  
Figure 8. SNR vs. fIN, Encode = 105 MSPS  
100  
90  
80  
70  
60  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
AIN = 10.3MHz  
ENCODE = 105MSPS  
2ND or 3RD (–6.0dBFS)  
3RD  
2ND  
2ND or 3RD (–0.5dBFS)  
50  
40  
2ND or 3RD (–3.0dBFS)  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100  
120  
140  
160  
ANALOG INPUT FREQUENCY (MHz)  
ENCODE (MSPS)  
Figure 6. Second-Order and Third-Order Harmonics vs. fS, fIN = 10.3 MHz  
Figure 9. Second-Order and Third-Order Harmonics vs. fIN, fS = 105 MSPS  
70  
100  
ENCODE = 105MSPS  
ENCODE = 105MSPS  
WORST OTHER (–0.5dBFS)  
65  
90  
60  
80  
SINAD (–3.0dBFS)  
WORST OTHER (–6.0dBFS)  
55  
70  
SINAD (–6.0dBFS)  
WORST OTHER (–3.0dBFS)  
50  
60  
SINAD (–0.5dBFS)  
45  
40  
50  
40  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 7. SINAD vs. fIN, fS = 105 MSPS  
Figure 10. Worst Other (Excluding Second-Order and Third-Order  
Harmonics) vs. fIN, fS = 105 MSPS  
Rev. F | Page 8 of 16  
 
AD9432  
0
–10  
–20  
–30  
–40  
–50  
0
–10  
–20  
–30  
–40  
–50  
ENCODE = 105MSPS  
AIN = 50.3MHz (–0.46dBFS)  
SNR = 67.0dB  
SINAD = 66.7dB  
SFDR = –80dBc  
ENCODE = 105MSPS  
AIN = 10.3MHz (–0.53dBFS)  
SNR = 67.32dB  
SINAD = 67.07dB  
SFDR = –85dBc  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
FREQUENCY  
FREQUENCY  
Figure 11. FFT: fS = 105 MSPS, fIN = 10.3 MHz  
Figure 14. FFT: fS = 105 MSPS, fIN = 50.3 MHz  
0
–10  
–20  
–30  
–40  
–50  
0
–10  
–20  
–30  
–40  
–50  
AIN1 = 29.3MHz (–7dBFS)  
AIN2 = 30.3MHz (–7dBFS)  
ENCODE = 105MSPS  
ENCODE = 105MSPS  
AIN = 27.0MHz (–0.52dBFS)  
SNR = 67.3dB  
SINAD = 67.0dB  
SFDR = –83.1dBc  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
FREQUENCY  
FREQUENCY  
Figure 12. FFT: fS = 105 MSPS, fIN = 27 MHz  
Figure 15. Two-Tone FFT, Wideband: fS = 105 MSPS, AIN1 = 29.3 MHz,  
AIN2 = 30.3 MHz  
0
–10  
–20  
–30  
–40  
–50  
0
ENCODE = 105MSPS  
AIN = 40.9MHz (–0.56dBFS)  
SNR = 67.2dB  
SINAD = 66.9dB  
SFDR = –80dBc  
AIN1 = 70.3MHz (–7dBFS)  
AIN2 = 71.3MHz (–7dBFS)  
ENCODE = 105MSPS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
FREQUENCY  
FREQUENCY  
Figure 13. FFT: fS = 105 MSPS, fIN = 40.9 MHz  
Figure 16. Two-Tone FFT, Wideband: fS = 105 MSPS, AIN1 = 70.3 MHz,  
AIN2 = 71.3 MHz  
Rev. F | Page 9 of 16  
AD9432  
1.00  
0.75  
0.50  
0.25  
0
110  
100  
90  
dBFS  
80  
ENCODE = 105MSPS  
AIN = 50.3MHz  
70  
60  
50  
40  
30  
20  
10  
dBc  
–0.25  
–0.50  
–0.75  
–1.00  
0
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
ANALOG INPUT POWER LEVEL (dBFS)  
Figure 17. Single-Tone SFDR, fS = 105 MSPS, fIN = 50.3 MHz  
Figure 19. Integral Nonlinearity, fS = 105 MSPS  
1.00  
3.0  
0.75  
0.50  
0.25  
0
2.5  
2.0  
1.5  
–0.25  
–0.50  
–0.75  
–1.00  
0
2
4
6
8
10  
CURRENT (mA)  
Figure 20. Voltage Reference Output vs. Current Load  
Figure 18. Differential Nonlinearity, fS = 105 MSPS  
Rev. F | Page 10 of 16  
AD9432  
TERMINOLOGY  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
ENCODE  
Analog Bandwidth  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
and the time when all output data bits are within  
valid logic levels.  
Power Supply Rejection Ratio (PSRR)  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Aperture Delay  
The delay between a differential crossing of ENCODE and  
ENCODE  
and the instant at which the analog input is sampled.  
Signal-to-Noise and Distortion (SINAD) Ratio  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc.  
Differential Nonlinearity (DNL)  
The deviation of any code from an ideal 1 LSB step.  
Signal-to-Noise Ratio (SNR)  
Effective Number of Bits (ENOB)  
The effective number of bits (ENOB) is calculated from the  
measured SNR based on the following equation:  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral com-  
ponents, excluding the first five harmonics and dc.  
Full Scale Amplitude  
Spurious-Free Dynamic Range (SFDR)  
SNRMEASURED 1.76 dB + 20 log  
Input Amplitude  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(degrades as signal level is lowered) or in dBFS (always related  
back to converter full scale).  
ENOB =  
6.02  
Encode Pulse Width/Duty Cycle  
Pulse width high is the minimum amount of time that the encode  
pulse should be left in the Logic 1 state to achieve the rated per-  
formance. Pulse width low is the minimum amount of time that  
the encode pulse should be left in the Logic 0 state. At a given clock  
rate, these specifications define an acceptable encode duty cycle.  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone (f1, f2) to the rms  
value of the worst third-order intermodulation product;  
reported in dBc. Products are located at 2f1 − f2 and 2f2 − f1.  
Two-Tone SFDR  
Harmonic Distortion  
The ratio of the rms value of either input tone (f1, f2) to the rms  
value of the peak spurious component. The peak spurious com-  
ponent may or may not be an IMD product. May be reported in  
dBc (degrades as signal level is lowered) or in dBFS (always  
related back to converter full scale).  
The ratio of the rms signal amplitude fundamental frequency  
to the rms signal amplitude of a single harmonic component  
(second, third, and so on); reported in dBc.  
Integral Nonlinearity (INL)  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
Worst Other Spur  
The ratio of the rms signal amplitude to the rms value of the  
worst spurious component (excluding the second-order and  
third-order harmonic); reported in dBc.  
Maximum Conversion Rate  
The maximum encode rate at which parametric testing is  
performed.  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Rev. F | Page 11 of 16  
 
AD9432  
EQUIVALENT CIRCUITS  
V
DD  
V
CC  
VREFIN  
Dx  
Figure 21. Voltage Reference Input Circuit  
Figure 24. Digital Output Circuit  
V
CC  
V
CC  
5k  
5kΩ  
7kΩ  
AIN  
AIN  
VREFOUT  
7kΩ  
Figure 22. Voltage Reference Output Circuit  
Figure 25. Analog Input Circuit  
V
CC  
17k  
100Ω  
17kΩ  
100Ω  
ENCODE  
ENCODE  
8kΩ  
8kΩ  
Figure 23. Encode Input Circuit  
Rev. F | Page 12 of 16  
 
 
AD9432  
THEORY OF OPERATION  
The AD9432 is a 12-bit pipeline converter that uses a switched-  
capacitor architecture. Optimized for high speed, this converter  
provides flat dynamic performance up to frequencies near  
Nyquist. DNL transitional errors are calibrated at final test to  
a typical accuracy of 0.25 LSB or less.  
Note that the encode inputs cannot be driven directly from PECL  
level signals (VIHD is 3.5 V maximum). PECL level signals can  
easily be accommodated by ac coupling, as shown in Figure 27.  
Good performance is obtained using an MC10EL16 translator  
in the circuit to drive the encode inputs.  
ANALOG INPUT  
AD9432  
0.1µF  
ENCODE  
The analog input to the AD9432 is a differential buffer. The  
input buffer is self-biased by an on-chip resistor divider that  
sets the dc common-mode voltage to a nominal 3 V (see the  
Equivalent Circuits section). Rated performance is achieved  
by driving the input differentially. The minimum input offset  
voltage is obtained when driving from a source with a low  
differential source impedance, such as a transformer in ac  
applications. Capacitive coupling at the inputs increases the  
input offset voltage by as much as 25 mV. Driving the ADC  
single-ended degrades performance. For best dynamic perfor-  
PECL  
GATE  
ENCODE  
0.1µF  
510  
510Ω  
Figure 27. AC Coupling to Encode Inputs  
ENCODE VOLTAGE LEVEL DEFINITION  
ENCODE  
The voltage level definitions for driving ENCODE and  
in single-ended and differential mode are shown in Figure 28.  
V
IHD  
AIN  
mance, impedances at AIN and  
should match.  
ENCODE  
ENCODE  
V
V
ID  
ICM  
Special care was taken in the design of the analog input section  
of the AD9432 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is 2 V p-p.  
Each analog input is 1 V p-p when driven differentially.  
4.0  
V
ILD  
V
IHS  
ENCODE  
0.1µF  
V
ILS  
AIN  
3.5  
Figure 28. Differential and Single-Ended Input Levels  
Table 5. Encode Inputs  
3.0  
Input  
Min  
Nominal Max  
Differential Signal Amplitude (VID)  
500 mV 750 mV  
High Differential Input Voltage (VIHD  
Low Differential Input Voltage (VILD  
Common-Mode Input (VICM  
High Single-Ended Voltage (VIHS  
Low Single-Ended Voltage (VILS  
)
)
3.5 V  
2.5  
0 V  
1.25 V  
2 V  
AIN  
)
1.6 V  
)
3.5 V  
0.8 V  
2.0  
)
0 V  
Figure 26. Full-Scale Analog Input Range  
Often, the cleanest clock source is a crystal oscillator producing a  
pure sine wave. In this configuration, or with any roughly symmet-  
rical clock input, the input can be ac-coupled and biased to a  
reference voltage that also provides the encode. This ensures  
that the reference voltage is centered on the encode signal.  
ENCODE INPUT  
Any high speed ADC is extremely sensitive to the quality of the  
sampling clock provided by the user. A track-and-hold circuit is  
essentially a mixer, and any noise, distortion, or timing jitter on  
the clock is combined with the desired signal at the ADC output.  
For this reason, considerable care has been taken in the design  
of the encode input of the AD9432, and the user is advised to  
give commensurate thought to the clock source. The encode  
input supports differential or single-ended mode and is fully  
TTL-/CMOS-compatible.  
Rev. F | Page 13 of 16  
 
 
 
AD9432  
DIGITAL OUTPUTS  
VOLTAGE REFERENCE  
The digital outputs are 3.3 V (2.7 V to 3.6 V) TTL-/CMOS-  
compatible for lower power consumption. The output data  
format is twos complement (see Table 6).  
A stable and accurate 2.5 V voltage reference is built into the  
AD9432 (VREFOUT). In normal operation, the internal refer-  
ence is used by strapping Pin 45 to Pin 46 and placing a 0.1 μF  
decoupling capacitor at VREFIN.  
Table 6. Twos Complement Output Coding (VREF = 2.5 V)  
The input range can be adjusted by varying the reference voltage  
applied to the AD9432. No appreciable degradation in performance  
occurs when the reference is adjusted 5%. The full-scale range  
of the ADC tracks reference voltage changes linearly.  
AIN − AIN (V)  
Code  
+2047  
Digital Output  
0111 1111 1111  
1.000  
0
−1  
0
0000 0000 0000  
1111 1111 1111  
TIMING  
−0.00049  
The AD9432 provides latched data outputs, with 10 pipeline  
delays. Data outputs are included or available one propagation  
delay (tPD) after the rising edge of the encode command (see  
Figure 2). The length of the output data lines and the loads  
placed on them should be minimized to reduce transients  
within the AD9432; these transients can detract from the  
dynamic performance of the converter.  
−2048  
−1.000  
1000 0000 0000  
The out-of-range (OR) output is logic low for normal operation.  
During any clock cycle when the ADC output data (Dx) reaches  
positive or negative full scale (+2047 or −2048), the OR output  
goes high. The OR output is internally generated each clock cycle.  
It has the same pipeline latency and propagation delay as the ADC  
output data and remains high until the output data reflects an  
in-range condition. The ADC output bits (Dx) do not roll over  
and, therefore, remain at positive or negative full scale (+2047  
or −2048) while the OR output is high.  
The minimum guaranteed conversion rate of the AD9432 is  
1 MSPS. At internal clock rates below 1 MSPS, dynamic perfor-  
mance may degrade. Therefore, input clock rates below 1 MHz  
should be avoided.  
During initial power-up, or whenever the clock to the AD9432  
is interrupted, the output data will not be accurate for 200 ns or  
10 clock cycles, whichever is longer.  
Rev. F | Page 14 of 16  
 
 
AD9432  
APPLICATIONS INFORMATION  
66  
65  
64  
63  
62  
61  
60  
USING THE AD8138 TO DRIVE THE AD9432  
The AD8138 differential output op amp can be used to drive the  
AD9432 in dc-coupled applications. The AD8138 was specifically  
designed for ADC driver applications. Superior SNR performance  
is maintained up to analog frequencies of 30 MHz. The AD8138  
op amp provides single-ended-to-differential conversion, which  
allows for a low cost alternative to transformer coupling for ac  
applications, as well.  
SNR  
SINAD  
The circuit in Figure 29 was breadboarded, and the measured  
performance is shown in Figure 30 and Figure 31. These figures  
are for 5 V supplies at the AD8138; with a single 5 V supply at  
the AD8138, performance dropped by about 1 dB to 2 dB.  
0
20  
40  
60  
AIN (MHz)  
Figure 30 shows SNR and SINAD for a −1 dBFS analog input  
frequency varied from 2 MHz to 40 MHz with an encode rate  
of 105 MSPS. The measurements are for nominal conditions  
at room temperature. Figure 31 shows the second-order and  
third-order harmonic distortion performance under the same  
conditions.  
Figure 30. Measured SNR and SINAD (Encode = 105 MSPS)  
–70  
H2  
The dc common-mode voltage for the AD8138 outputs can be  
adjusted via the VOCM input to provide the 3 V common-mode  
voltage that the AD9432 inputs require.  
–80  
–90  
H3  
500  
AD9432  
10pF  
50Ω  
AIN  
AIN  
VIN  
500Ω  
–100  
0
20  
40  
60  
22pF  
50Ω  
AD8138  
OCM  
50Ω  
AIN (MHz)  
Figure 31. Measured Second-Order and Third-Order Harmonic Distortion  
(Encode = 105 MSPS)  
V
5V  
2kΩ  
500Ω  
3kΩ  
0.1µF  
10pF  
25Ω  
500Ω  
Figure 29. AD8138/AD9432 Schematic  
Rev. F | Page 15 of 16  
 
 
 
 
AD9432  
OUTLINE DIMENSIONS  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
52  
40  
39  
1
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
13  
27  
3.5°  
0.15  
0.05  
0°  
14  
26  
SEATING  
PLANE  
0.10  
COPLANARITY  
0.38  
0.32  
0.22  
VIEW A  
0.65  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCC  
Figure 32. 52-Lead Low Profile Quad Flat Package [LQFP]  
(ST-52)  
Dimensions shown in millimeters  
1.20  
MAX  
0.75  
0.60  
0.45  
12.00 BSC  
SQ  
52  
1
40  
52  
40  
39  
39  
1
SEATING  
PLANE  
PIN 1  
10.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
7.30 BSC  
SQ  
EXPOSED  
PAD  
0° MIN  
1.05  
1.00  
0.95  
0.20  
0.09  
7°  
BOTTOM VIEW  
(PINS UP)  
13  
13  
14  
27  
27  
14  
VIEW A  
26  
26  
3.5°  
0°  
0.15  
0.05  
0.65  
BSC  
LEAD PITCH  
0.38  
0.32  
0.22  
0.08 MAX  
COPLANARITY  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
VIEW A  
ROTATED 90  
°
CCW  
SECTION OF THIS DATA SHEET.  
COMPLIANT TO JEDEC STANDARDS MS-026-ACC  
Figure 33. 52-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-52-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9432BSTZ-801  
AD9432BSTZ-1051  
AD9432BSVZ-801  
AD9432BSVZ-1051  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
ST-52  
ST-52  
SV-52-2  
SV-52-2  
52-Lead Low Profile Quad Flat Package [LQFP]  
52-Lead Low Profile Quad Flat Package [LQFP]  
52-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
52-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
1 Z = RoHS Compliant Part.  
©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00587-0-6/09(F)  
Rev. F | Page 16 of 16  
 
 

相关型号:

AD9432BST-105

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BST-80

12-Bit, 80 MSPS/105 MSPS A/D Converter
ADI

AD9432BSTZ-105

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-1051

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-80

1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP52, ROHS COMPLIANT, MS-026BCC, LQFP-52
ROCHESTER

AD9432BSTZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSTZ-801

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-105

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-1051

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-80

12-Bit, 80 MSPS/105 MSPS ADC
ADI

AD9432BSVZ-801

12-Bit, 80 MSPS/105 MSPS ADC
ADI