AD9444-CMOS/PCB [ADI]

14-Bit, 80 MSPS, A/D Converter; 14位, 80 MSPS ,A / D转换器
AD9444-CMOS/PCB
型号: AD9444-CMOS/PCB
厂家: ADI    ADI
描述:

14-Bit, 80 MSPS, A/D Converter
14位, 80 MSPS ,A / D转换器

转换器
文件: 总40页 (文件大小:1622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80 MSPS, A/D Converter  
AD9444  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
80 MSPS guaranteed sampling rate  
100 dB two-tone SFDR with 69.3 MHz and 70.3 MHz  
73.1 dB SNR with 70 MHz input  
97 dBc SFDR with 70 MHz input  
Excellent linearity  
DNL = 0.4 LSB typical  
INL = 0.6 LSB typical  
1.2 W power dissipation  
AGND AVDD1 AVDD2 DRGND DRVDD  
DFS  
AD9444  
DCS MODE  
BUFFER  
OUTPUT MODE  
14  
VIN+  
VIN–  
2
PIPELINE  
ADC  
CMOS  
OR  
LVDS  
OUTPUT  
STAGING  
T/H  
OR  
28  
D13–D0  
2
CLOCK  
CLK+  
CLK–  
DCO  
AND TIMING  
MANAGEMENT  
REF  
3.3 V and 5 V supply operation  
2.0 V p-p differential full-scale input  
LVDS outputs (ANSI-644 compatible)  
Data format select  
VREF SENSE REFT REFB  
Figure 1.  
Output clock available  
Optional features allow users to implement various selectable  
operating conditions, including data format select and output  
data mode.  
APPLICATIONS  
Multicarrier, multimode cellular receivers  
Antenna array positioning  
Power amplifier linearization  
Broadband wireless  
The AD9444 is available in a 100-lead surface-mount plastic  
package (100-lead TQFP/EP) specified over the industrial  
temperature range (−40°C to +85°C).  
Radar, infared imaging  
Communications instrumentation  
PRODUCT HIGHLIGHTS  
1. High performance: Outstanding SFDR performance for mul-  
ticarrier, multimode 3G and 4G cellular base station  
receivers.  
GENERAL DESCRIPTION  
The AD9444 is a 14-bit monolithic, sampling analog-to-digital  
converter (ADC) with an on-chip, track-and-hold circuit and is  
optimized for power, small size, and ease of use. The product  
operates at up to an 80 MSPS conversion rate and is optimized  
for multicarrier, multimode receivers, such as those found in  
cellular infrastructure equipment.  
2. Ease of use: On-chip reference and track-and-hold. An  
output clock simplifies data capture.  
3. Packaged in a Pb-free, 100-lead TQFP/EP.  
4. Clock DCS maintains overall ADC performance over a wide  
range of clock pulse widths.  
The ADC requires 3.3 V and 5.0 V power supplies and a low  
voltage differential input clock for full performance operation.  
No external reference or driver components are required for  
many applications. Data outputs are LVDS-compatible (ANSI-  
644) or CMOS-compatible and include the means to reduce  
the overall current needed for short trace distances.  
5. OR (out-of-range) outputs indicate when the signal is beyond  
the selected input range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9444  
TABLE OF CONTENTS  
DC Specifications ............................................................................. 3  
Clock Input Considerations...................................................... 22  
Power Considerations................................................................ 23  
Digital Outputs ........................................................................... 23  
Timing ......................................................................................... 23  
Operational Mode Selection..................................................... 23  
Evaluation Board........................................................................ 24  
LVDS Evaluation Board Schematics........................................ 25  
LVDS Mode Evaluation Board Bill of Materials (BOM) ...... 30  
CMOS Evaluation Board Schematics ...................................... 32  
CMOS Mode Evaluation Board Bill of Materials (BOM)..... 37  
Outline Dimensions....................................................................... 39  
Ordering Guide .......................................................................... 39  
AC Specifications.............................................................................. 4  
Digital Specifications........................................................................ 5  
Switching Specifications .................................................................. 6  
Explanation of Test Levels........................................................... 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Definitions of Specifications ........................................................... 9  
Pin Configurations and Function Descriptions ......................... 10  
Equivalent Circuits......................................................................... 14  
Typical Performance Characteristics ........................................... 15  
Theory of Operation ...................................................................... 20  
Analog Input and Reference Overview ................................... 20  
REVISION HISTORY  
10/04—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
AD9444  
DC SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed  
reference (1.0 V mode), AIN = −0.5 dBFS, DCS on, unless otherwise noted.  
Table 1.  
AD9444BSVZ-80  
Parameter  
Temp  
Test Level  
Unit  
Min  
Typ  
Max  
RESOLUTION  
Full  
VI  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Full  
Full  
Full  
Full  
25°C  
Full  
VI  
VI  
VI  
VI  
I
Guaranteed  
6
0.3  
0.4  
0.4  
0.6  
6
mV  
% FSR  
LSB  
LSB  
LSB  
Gain Error1  
−3.0  
−0.8  
−1.3  
−1.7  
+3.0  
+0.8  
+1.3  
+1.7  
Differential Nonlinearity (DNL)2  
Integral Nonlinearity (INL)2  
VI  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
V
V
12  
0.002  
µV/°C  
%FS/°C  
VOLTAGE REFERENCE  
Output Voltage1  
Load Regulation @ 1.0 mA  
Reference Input Current (External 1.0 V Reference)  
INPUT REFERRED NOISE  
ANALOG INPUT  
Full  
Full  
Full  
25°C  
VI  
V
VI  
V
0.87  
1.0  
2
80  
1.0  
1.13  
125  
V
mV  
µA  
LSB rms  
Input Span  
Input Common-Mode Voltage  
Input Resistance3  
Input Capacitance3  
POWER SUPPLIES  
Supply Voltage  
Full  
Full  
Full  
Full  
V
V
V
V
2
3.5  
1
V p-p  
V
kΩ  
pF  
2.5  
AVDD1  
AVDD2  
DRVDD—LVDS Outputs  
DRVDD—CMOS Outputs  
Supply Current  
Full  
Full  
Full  
Full  
IV  
IV  
IV  
IV  
3.14  
4.75  
3.0  
3.3  
5.0  
3.46  
5.25  
3.6  
V
V
V
V
3.0  
3.3  
3.6  
AVDD1  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
V
217  
71  
55  
240  
80  
62  
mA  
mA  
mA  
mA  
AVDD22  
IDRVDD2—LVDS Outputs  
IDRVDD2—CMOS Outputs  
PSRR  
12  
Offset  
Gain  
Full  
Full  
V
V
1
0.2  
mV/V  
%/V  
POWER CONSUMPTION  
DC Input—LVDS Outputs  
DC Input—CMOS Outputs  
Sine Wave Input2—LVDS Outputs  
Sine Wave Input2—CMOS Outputs  
Full  
Full  
Full  
Full  
VI  
V
VI  
V
1.21  
1.07  
1.25  
1.11  
1.4  
W
W
W
W
1 The internal voltage reference is trimmed at final test to minimize the gain error of the AD9444.  
2 Measured at the maximum clock rate, fIN = 15 MHz, full-scale sine wave, with a 100 Ω differential termination on each pair of output bits for LVDS output mode and  
approximately 5 pF loading on each output bit for CMOS output mode.  
3 Input capacitance or resistance refers to the effective impedance between one differential input pin and AGND. Refer to Figure 6 for the equivalent analog input  
structure.  
Rev. 0 | Page 3 of 40  
 
 
 
 
 
 
AD9444  
AC SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, LVDS mode, sample rate = 80 MSPS, 2 V p-p differential input, internal trimmed  
reference (1.0 V mode), AIN = −0.5 dBFS, DCS on, unless otherwise noted.  
Table 2.  
AD9444BSVZ-80  
Parameter  
Temp  
Test Level  
Unit  
Min  
Typ  
74.0  
73.7  
73.1  
72.3  
74.0  
73.7  
73.1  
72.3  
Max  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 10 MHz  
25°C  
Full  
IV  
IV  
I
73.0  
72.7  
72.4  
72.3  
72.3  
72.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 35 MHz  
fIN = 70 MHz  
25°C  
Full  
IV  
IV  
IV  
V
25°C  
Full  
fIN = 100 MHz  
25°C  
SIGNAL-TO-NOISE-AND DISTORTION (SINAD)  
fIN = 10 MHz  
25°C  
Full  
IV  
IV  
I
73.0  
72.7  
72.4  
72.2  
72.2  
72.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
fIN = 35 MHz  
fIN = 70 MHz  
25°C  
Full  
IV  
IV  
IV  
V
25°C  
Full  
fIN = 100 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 10 MHz  
25°C  
25°C  
25°C  
25°C  
V
V
V
V
12.1  
12.0  
11.9  
11.8  
Bits  
Bits  
Bits  
Bits  
fIN = 35 MHz  
fIN = 70 MHz  
fIN = 100 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 10 MHz  
25°C  
Full  
IV  
IV  
I
91  
87  
91  
87  
90  
87  
97  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 35 MHz  
fIN = 70 MHz  
25°C  
Full  
97  
IV  
IV  
IV  
V
25°C  
Full  
97  
fIN = 100 MHz  
25°C  
96  
WORST HARMONIC, SECOND OR THIRD  
fIN = 10 MHz  
25°C  
Full  
IV  
IV  
I
−97  
−97  
−97  
−96  
−102  
−103  
−102  
−99  
−91  
−87  
−91  
−87  
−90  
−87  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 35 MHz  
fIN = 70 MHz  
25°C  
Full  
IV  
IV  
IV  
V
25°C  
Full  
fIN = 100 MHz  
25°C  
WORST SPUR EXCLUDING SECOND OR HARMONICS  
fIN = 10 MHz  
25°C  
Full  
IV  
IV  
I
−93  
−93  
−93  
−93  
−93  
−93  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 35 MHz  
fIN = 70 MHz  
25°C  
Full  
IV  
IV  
IV  
V
25°C  
Full  
fIN = 100 MHz  
25°C  
TWO-TONE SFDR  
fIN = 10.8 MHz @ −7 dBFS, 9.8 MHz @ −7 dBFS  
fIN = 70.3 MHz @ −7 dBFS, 69.3 MHz @ −7 dBFS  
ANALOG BANDWIDTH  
25°C  
25°C  
Full  
V
V
V
−102  
dBFS  
dBFS  
MHz  
−100  
650  
Rev. 0 | Page 4 of 40  
 
AD9444  
DIGITAL SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, RLVDSBIAS = 3.74 kΩ, unless otherwise noted.  
Table 3.  
AD9444BSVZ-80  
Parameter  
Temp  
Test Level  
Unit  
Min  
Typ  
Max  
CMOS LOGIC INPUTS (DFS, DCS MODE, OUTPUT MODE)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
DIGITAL OUTPUT BITS—CMOS Mode (D0 to D13, OTR)1  
DRVDD = 3.3 V  
High Level Output Voltage  
Low Level Output Voltage  
Full  
Full  
Full  
Full  
Full  
IV  
IV  
VI  
VI  
V
2.0  
V
V
µA  
µA  
pF  
0.8  
+200  
+10  
−10  
3.25  
2
Full  
Full  
IV  
IV  
V
V
0.2  
DIGITAL OUTPUT BITS LVDS Mode (D0 to D13, OTR)  
VOD Differential Output Voltage2  
VOS Output Offset Voltage  
Full  
Full  
VI  
VI  
247  
1.125  
545  
1.375  
mV  
V
CLOCK INPUTS (CLK+, CLK−)  
Differential Input Voltage  
Common-Mode Voltage  
Differential Input Resistance  
Differential Input Capacitance  
Full  
Full  
Full  
Full  
IV  
VI  
V
0.2  
1.3  
8
V
V
kΩ  
pF  
1.5  
10  
4
1.6  
12  
V
1 Output voltage levels measured with 5 pF load on each output.  
2 LVDS RTERM = 100 Ω.  
Rev. 0 | Page 5 of 40  
 
 
AD9444  
SWITCHING SPECIFICATIONS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, unless otherwise noted.  
Table 4.  
AD9444BSVZ-80  
Parameter  
Temp  
Test Level  
Unit  
Min  
Typ  
Max  
CLOCK INPUT PARAMETERS  
Maximum Conversion Rate  
Minimum Conversion Rate  
CLK Period  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
V
80  
MSPS  
MSPS  
ns  
ns  
ns  
10  
12.5  
4
4
CLK Pulse Width High1 (tCLKH  
)
CLK Pulse Width Low1 (tCLKL  
)
DATA OUTPUT PARAMETERS  
Output Propagation Delay—CMOS (tPD)2 (DX, DCO+)  
Output Propagation Delay—LVDS (tPD)3 (DX+, DCO+)  
Pipeline Delay (Latency)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Full  
Full  
Full  
Full  
Full  
IV  
VI  
V
V
V
3
3
5.25  
5
12  
8
7.5  
ns  
ns  
Cycles  
ns  
ps rms  
0.2  
1 With duty cycle stabilizer (DCS) enabled.  
2 Output propagation delay is measured from clock 50% transition to data 50% transition, with 5 pF load.  
3 LVDS RTERM = 100 Ω. Measured from the 50% point of the rising edge of CLK+ to the 50% point of the data transition.  
N–1  
N
N+1  
A
IN  
tCLKL  
tCLKH  
1/fS  
CLK+  
CLK–  
tPD  
N–12  
N
N+1  
N–11  
12 CLOCK CYCLES  
DATA OUT  
DCO+  
DCO–  
tCPD  
Figure 2. LVDS Mode Timing Diagram  
Rev. 0 | Page 6 of 40  
 
 
 
 
 
AD9444  
N
N–1  
N+1  
VIN  
N+2  
tCLKL  
tCLKH  
CLK–  
CLK+  
tPD  
12 CYCLES  
N-11  
N-12  
N-1  
N
DX  
tDCOPD  
DCO+  
DCO–  
Figure 3. CMOS Timing Diagram  
EXPLANATION OF TEST LEVELS  
Test Level Definitions  
I
100% production tested.  
II  
100% production tested at 25°C and sample tested at specified temperatures.  
Sample tested only.  
Parameter is guaranteed by design and characterization testing.  
Parameter is a typical value only.  
III  
IV  
V
VI  
100% production tested at 25°C and guaranteed by design and characterization for industrial temperature range.  
Rev. 0 | Page 7 of 40  
 
 
AD9444  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Thermal Resistance  
With  
Respect to  
The heat sink of the AD9444 package must be soldered to  
ground.  
Parameter  
ELECTRICAL  
AVDD1  
AVDD2  
DRVDD  
AGND  
AVDD1  
AVDD2  
AVDD2  
D0 to D13  
CLK, MODE  
VIN+, VIN−  
VREF  
SENSE  
REFT, REFB  
ENVIRONMENTAL  
Min Max  
Unit  
Table 6.  
AGND  
AGND  
DGND  
DGND  
DRVDD  
DRVDD  
AVDD1  
DGND  
AGND  
AGND  
AGND  
AGND  
AGND  
−0.3 +4  
−0.3 +6  
−0.3 +4  
−0.3 +0.3  
V
V
V
V
V
V
V
V
V
V
V
V
V
Package Type  
θJA  
θJB  
θJC  
Unit  
100-Lead TQFP/EP  
19.8  
8.3  
2
°C/W  
−4  
−4  
−4  
+4  
+6  
+6  
Typical θJA = 19.8°C/W (heat-sink soldered) for multilayer  
board in still air.  
–0.3 DRVDD + 0.3  
–0.3 AVDD1 + 0.3  
–0.3 AVDD2 + 0.3  
–0.3 AVDD1 + 0.3  
–0.3 AVDD1 + 0.3  
–0.3 AVDD1 + 0.3  
Typical θJB = 8.3°C/W (heat-sink soldered) for multilayer board  
in still air.  
Typical θJC = 2°C/W (junction to exposed heat sink) represents  
the thermal resistance through heat-sink path.  
Airflow increases heat dissipation effectively reducing θJA. Also,  
more metal directly in contact with the package leads, from  
metal traces, through holes, ground, and power planes, reduces  
the θJA. It is required that the exposed heat sink be soldered to  
the ground plane.  
Storage Temperature  
Operating Temperature Range –40  
Lead Temperature Range  
(Soldering 10 sec)  
–65  
+125  
+85  
300  
°C  
°C  
°C  
Junction Temperature  
150  
°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features proprie-  
tary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic  
discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of  
functionality.  
Rev. 0 | Page 8 of 40  
 
AD9444  
DEFINITIONS OF SPECIFICATIONS  
Analog Bandwidth (Full Power Bandwidth)  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Minimum Conversion Rate  
The clock rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed  
limit.  
Aperture Delay (tA)  
Offset Error  
The delay between the 50% point of the rising edge of the clock  
and the instant at which the analog input is sampled.  
The major carry transition should occur for an analog value  
½ LSB below VIN+ = VIN−. Offset error is defined as the  
deviation of the actual transition from that point.  
Aperture Uncertainty (Jitter, tJ)  
The sample-to-sample variation in aperture delay.  
Out-of-Range Recovery Time  
The time it takes for the ADC to reacquire the analog input  
after a transition from 10% above positive full scale to 10%  
above negative full scale, or from 10% below negative full scale  
to 10% below positive full scale.  
Clock Pulse Width and Duty Cycle  
Pulse width high is the minimum amount of time that the  
clock pulse should be left in the Logic 1 state to achieve rated  
performance. Pulse width low is the minimum time the clock  
pulse should be left in the low state. At a given clock rate, these  
specifications define an acceptable clock duty cycle.  
Output Propagation Delay (tPD)  
The delay between the clock rising edge and the time when all  
bits are within valid logic levels.  
Differential Nonlinearity (DNL, No Missing Codes)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Guaranteed no  
missing codes to 14-bit resolution indicates that all 16384 codes  
must be present over all operating ranges.  
Power-Supply Rejection Ratio  
The change in full scale from the value with the supply at the  
minimum limit to the value with the supply at its maximum limit.  
Signal-to-Noise and Distortion (SINAD)  
Effective Number of Bits (ENOB)  
The ratio of the rms input signal amplitude to the rms value of  
the sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc.  
The effective number of bits for a sine wave input at a given  
input frequency can be calculated directly from its measured  
SINAD using the following formula  
Signal-to-Noise Ratio (SNR)  
The ratio of the rms input signal amplitude to the rms value of  
the sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc.  
(
SINAD 1.76  
)
ENOB =  
Gain Error  
6.02  
Spurious-Free Dynamic Range (SFDR)  
The first code transition should occur at an analog value ½ LSB  
above negative full scale. The last transition should occur at an  
analog value 1 ½ LSB below the positive full scale. Gain error is  
the deviation of the actual difference between first and last code  
transitions and the ideal difference between first and last code  
transitions.  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic. May be reported in dBc  
(i.e., degrades as signal level is lowered) or dBFS (always related  
back to converter full scale).  
Temperature Drift  
Integral Nonlinearity (INL)  
The temperature drift for offset error and gain error specifies  
the maximum change from the initial (25°C) value to the value  
The deviation of each individual code from a line drawn from  
negative full scale through positive full scale. The point used as  
negative full scale occurs ½ LSB before the first code transition.  
Positive full scale is defined as a level 1 ½ LSBs beyond the last  
code transition. The deviation is measured from the middle of  
each particular code to the true straight line.  
at TMIN or TMAX  
.
Total Harmonic Distortion (THD)  
The ratio of the rms input signal amplitude to the rms value of  
the sum of the first six harmonic components.  
Maximum Conversion Rate  
The clock rate at which parametric testing is performed.  
Two-Tone SFDR  
The ratio of the rms value of either input tone to the rms value  
of the peak spurious component. The peak spurious component  
may or may not be an IMD product.  
Rev. 0 | Page 9 of 40  
 
AD9444  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
75  
74  
73  
72  
71  
DRVDD  
DRGND  
AVDD1  
DNC  
1
2
DNC  
3
D10+  
D10–  
DNC  
4
OUTPUT MODE  
DFS  
5
D9+  
70 D9–  
6
69  
LVDSBIAS  
AVDD1  
7
D8+  
68  
8
D8–  
67  
66  
65  
64  
63  
AVDD1  
SENSE  
VREF  
9
DRGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
D7+  
D7–  
AD9444  
AGND  
REFT  
DCO+  
DCO–  
TOP VIEW  
(Not to Scale)  
REFB  
AGND  
62 DRVDD  
61  
DRGND  
60 D6+  
AVDD1  
AVDD1  
AVDD1  
AVDD2  
59  
D6–  
58  
D5+  
57  
56  
D5–  
D4+  
AGND  
VIN+  
55 D4–  
54  
53  
52  
51  
VIN– 22  
DRVDD  
AGND  
23  
24  
25  
DRGND  
D3+  
AVDD1  
AVDD1  
D3–  
DNC = DO NOT CONNECT  
Figure 4. 100-Lead TQFP/EP Pin Configuration in LVDS Mode  
Rev. 0 | Page 10 of 40  
 
AD9444  
Table 7. Pin Function Descriptions—100-Lead TQFP/EP in LVDS Mode  
Pin No.  
Mnemonic Description  
Pin No.  
Mnemonic Description  
1, 8 to 9,  
16 to 18,  
24 to 27,  
34 to 35, 38,  
41 to 42, 87,  
89 to 95, 98  
AVDD1  
3.3 V ( 5%) Analog Supply.  
44  
45  
46  
D0+  
D1−  
D1+  
DRVDD  
D0 True Output Bit.  
D1 Complement Output Bit.  
D1 True Output Bit.  
3.3 V Digital Output Supply  
(3.0 V to 3.6 V).  
Digital Ground.  
47, 54, 62,  
75, 83  
48, 53, 61,  
67, 74, 82  
DRGND  
2 to 4  
DNC  
Do Not Connect. These pins  
should float.  
CMOS Compatible Output Logic  
Mode Control Pin. OUTPUT MODE  
= 0 for CMOS mode, and OUTPUT  
MODE = 1 (AVDD1) for LVDS  
outputs.  
Data Format Select Pin. CMOS  
control pin that determines the  
format of the output data. DFS =  
high (AVDD1) for twos comple-  
ment, DFS = low (ground) for  
offset binary format.  
Set Pin for LVDS Output Current.  
Place 3.7 kΩ resistor terminated to  
DRGND.  
Reference Mode Selection.  
Connect to AGND for internal 1 V  
reference, and connect to AVDD2  
for external reference.  
1.0 V Reference I/O—Function  
Dependent on SENSE. Decouple  
to ground with 0.1 µF and 10 µF  
capacitors.  
Analog Ground. The exposed  
heat sink on the bottom of the  
package must be connected to  
AGND.  
49  
50  
51  
52  
55  
56  
57  
58  
59  
60  
63  
64  
65  
66  
68  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
D2−  
D2+  
D3−  
D3+  
D4−  
D4+  
D5−  
D5+  
D6−  
D6+  
DCO−  
DCO+  
D7−  
D7+  
D8−  
D8+  
D9−  
D2 Complement Output Bit.  
D2 True Output Bit.  
D3 Complement Output Bit.  
D3 True Output Bit.  
D4 Complement Output Bit.  
D4 True Output Bit.  
D5 Complement Output Bit.  
D5 True Output Bit.  
D6 Complement Output Bit.  
D6 True Output Bit.  
Data Clock Output—Complement.  
Data Clock Output—True.  
D7 Complement Output Bit.  
D7 True Output Bit.  
D8 Complement Output Bit.  
D8 True Output Bit.  
D9 Complement Output Bit.  
D9 True Output Bit.  
5
OUTPUT  
MODE  
6
DFS  
7
LVDSBIAS  
SENSE  
10  
11  
VREF  
D9+  
D10−  
D10+  
D11−  
D11+  
D12−  
D12+  
D13−  
D10 Complement Output Bit.  
D10 True Output Bit.  
D11 Complement Output Bit.  
D11 True Output Bit.  
D12 Complement Output Bit.  
D12 True Output Bit.  
D13 Complement Output.  
12, 15, 20,  
23, 32, 86,  
88, 96 to 97,  
99, Exposed  
Heat Sink  
AGND  
13  
REFT  
REFB  
Differential Reference Output.  
Decoupled to ground with 0.1 µF  
capacitor and to REFB (Pin 14) with  
0.1 µF and 10 µF capacitors.  
Differential Reference Output.  
Decoupled to ground with a 0.1 µF  
capacitor and to REFT (Pin 13) with  
0.1 µF and 10 µF capacitors.  
D13+ (MSB) D13 True Output Bit.  
OR−  
Out-of-Range Complement  
Output Bit.  
Out-of-Range True Output Bit.  
14  
85  
100  
OR+  
DCS MODE Clock Duty Cycle Stabilizer (DCS)  
Control Pin, CMOS-Compatible.  
DCS = low (AGND) to enable DCS  
(recommended). DCS = high  
19, 28 to 31, AVDD2  
39 to 40  
5.0 V Analog Supply ( 5%).  
(AVDD1) to disable DCS.  
21  
22  
33  
VIN+  
VIN−  
C1  
Analog Input—True.  
Analog Input—Complement.  
Internal Bypass Node. Connect a  
0.1 µF capacitor from this pin  
to AGND.  
36  
37  
43  
CLK+  
CLK−  
D0− (LSB)  
Clock Input—True.  
Clock Input—Complement.  
D0 Complement Output Bit  
(LVDS Levels).  
Rev. 0 | Page 11 of 40  
 
AD9444  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
DRVDD  
DRGND  
AVDD1  
DNC  
1
2
DNC  
3
D6  
D5  
DNC  
4
OUTPUT MODE  
DFS  
5
D4  
D3  
6
DNC  
7
D2  
AVDD1  
8
D1  
AVDD1  
SENSE  
VREF  
9
DRGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
D0 (LSB)  
65 DNC  
AD9444  
64  
AGND  
REFT  
DCO+  
TOP VIEW  
(Not to Scale)  
63  
DCO–  
REFB  
AGND  
62 DRVDD  
61  
DRGND  
60 DNC  
AVDD1  
AVDD1  
AVDD1  
AVDD2  
59  
DNC  
58  
DNC  
57  
56  
DNC  
DNC  
AGND  
VIN+  
55 DNC  
54  
53  
52  
51  
VIN– 22  
DRVDD  
AGND  
23  
24  
25  
DRGND  
DNC  
AVDD1  
AVDD1  
DNC  
DNC = DO NOT CONNECT  
Figure 5. 100-Lead TQFP/EP Pin Configuration in CMOS Mode  
Rev. 0 | Page 12 of 40  
AD9444  
Table 8. Pin Function Descriptions—100-Lead TQFP/EP in CMOS Mode  
Pin No.  
Mnemonic Description  
Pin No.  
Mnemonic Description  
1, 8 to 9, 16 to 18, AVDD1  
24 to 27, 34 to 35,  
38, 41 to 42, 87,  
3.3 V ( 5%) Analog Supply.  
33  
C1  
Internal Bypass Node.  
Connect a 0.1 µF capacitor  
from this pin to AGND.  
89 to 95, 98  
2 to 4, 7,  
43 to 46, 49 to 52,  
55 to 60, 65  
5
36  
37  
CLK+  
CLK−  
DRVDD  
Clock Input—True.  
Clock Input—Complement.  
3.3 V Digital Output  
Supply (2.5V to 3.6 V).  
Digital Ground.  
DNC  
Do Not Connect. These  
pins should float.  
47, 54, 62,  
75, 83  
48, 53, 61,  
67, 74, 82  
63  
64  
66  
OUTPUT  
MODE  
CMOS Compatible Output  
Logic Mode Control Pin.  
OUTPUT MODE = 0 for CMOS  
mode, and OUTPUT MODE =  
1 (AVDD1) for LVDS outputs.  
Data Format Select Pin.  
CMOS control pin that de-  
termines the format of the  
output data. DFS = high  
(AVDD1) for twos comple-  
ment, DFS = low (ground) for  
offset binary format.  
Reference Mode Selection.  
Connect to AGND for internal  
1 V reference, and connect to  
AVDD2 for external reference.  
1.0 V Reference I/O—  
Function Dependent on  
SENSE. Decouple to ground  
with 0.1 µF and 10 µF  
capacitors.  
Analog Ground. The exposed  
heat sink on the bottom of  
the package must be  
DRGND  
DCO−  
Data Clock Output—  
Complement (CMOS Levels).  
Data Clock Output—  
True.  
D0 Output Bit (LSB)  
(CMOS Levels).  
DCO+  
6
DFS  
D0 (LSB)  
68  
69  
70  
71  
72  
73  
76  
77  
78  
79  
80  
81  
84  
85  
100  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D1 Output Bit.  
D2 Output Bit.  
D3 Output Bit.  
D4 Output Bit.  
D5 Output Bit.  
D6 Output Bit.  
D7 Output Bit.  
D8 Output Bit.  
D9 Output Bit.  
D10 Output Bit.  
D11 Output Bit.  
D12 Output Bit.  
D13 Output Bit.  
Out-of-Range Output.  
10  
11  
SENSE  
VREF  
D9  
D10  
D11  
D12  
D13 (MSB)  
OR  
DCS MODE Clock Duty Cycle Stabilizer  
(DCS) Control Pin, CMOS-  
Compatible. DCS = low  
12, 15, 20, 23,  
32, 86, 88, 96 to  
97, 99, Exposed  
Heat Sink  
AGND  
REFT  
connected to AGND.  
13  
Differential Reference Out-  
put. Decoupled to ground  
with 0.1 µF capacitor and to  
REFB (Pin 14) with 0.1 µF and  
10 µF capacitors.  
(AGND) to enable DCS  
(recommended). DCS =  
high (AVDD1) to disable DCS.  
14  
REFB  
Differential Reference Out-  
put. Decoupled to ground  
with a 0.1 µF capacitor and to  
REFT (Pin 13) with 0.1 µF and  
10 µF capacitors.  
19, 28 to 31,  
39 to 40  
AVDD2  
5.0 V Analog Supply ( 5%).  
21  
22  
VIN+  
VIN−  
Analog Input—True.  
Analog Input—Complement.  
Rev. 0 | Page 13 of 40  
 
AD9444  
EQUIVALENT CIRCUITS  
AVDD2  
DRVDD  
VIN+  
AVDD2  
2.5pF  
1k  
DX  
3.5V  
X1  
SHA  
1k  
AVDD2  
Figure 9. Equivalent CMOS Digital Output Circuit  
VIN–  
VDD  
2.5pF  
Figure 6. Equivalent Analog Input Circuit  
DRVDD DRVDD  
DCS MODE,  
OUTPUT MODE,  
DFS  
30k  
K
1.2V  
LVDSBIAS  
3.74k  
I
LVDSOUT  
Figure 10. Equivalent Digital Input Circuit,  
DFS, DCS MODE, OUTPUT MODE  
Figure 7. Equivalent LVDS BIAS Circuit  
AVDD2  
DRVDD  
12k  
12k  
CLK+  
CLK–  
V
V
DX–  
V
150  
150  
DX+  
V
10k  
10k  
Figure 8. Equivalent LVDS Digital Output Circuit  
Figure 11. Equivalent Sample Clock Input Circuit  
Rev. 0 | Page 14 of 40  
 
 
AD9444  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 3.3 V, AVDD2 = 5.0 V, DRVDD = 3.3 V, sample rate = 80 MSPS, LVDS mode, DCS enabled, TA = 25°C, 2 V p-p differential  
input, AIN = −0.5 dBFS, internal trimmed reference (nominal VREF = 1.0 V), unless otherwise noted.  
0
0
80MSPS  
80MSPS  
100.3MHz @ –0.5dBFS  
SNR: 72.3dB  
ENOB: 11.8BITS  
SFDR: 96dBc  
10.1MHz @ –0.5dBFS  
SNR: 73.9dB  
ENOB: 12.0BITS  
SFDR: 97dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. 64K Point Single-Tone FFT/80 MSPS/10.1 MHz  
Figure 15. 64K Point Single-Tone FFT/80 MSPS/100 MHz  
0
–20  
0
–20  
80MSPS  
125MHz @ –0.5dBFS  
SNR: 71.2dB  
ENOB: 11.6BITS  
SFDR: 91dBc  
80MSPS  
30.3MHz @ –0.5dBFS  
SNR: 74.0dB  
ENOB: 12.1BITS  
SFDR: 95dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 13. 64K Point Single-Tone FFT/80 MSPS/30.3 MHz  
Figure 16. 64K Point Single-Tone FFT/80 MSPS/125 MHz  
0
–20  
0
–20  
80MSPS  
151MHz @ –0.5dBFS  
SNR: 71.1dB  
ENOB: 11.5BITS  
SFDR: 87dBc  
80MSPS  
70.3MHz @ –0.5dBFS  
SNR: 73.3dB  
ENOB: 11.9BITS  
SFDR: 100dBc  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. 64K Point Single-Tone FFT/80 MSPS/151 MHz  
Figure 14. 64K Point Single-Tone FFT/80 MSPS/70 MHz  
Rev. 0 | Page 15 of 40  
 
AD9444  
75  
74  
73  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
SNR dB @ –40°C  
SNR dB @ –40°C  
SNR dB @ +25°C  
SNR dB @ +85°C  
72  
71  
70  
69  
68  
67  
SNR dB @ +25°C  
SNR dB @ +85°C  
66  
65  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 18. SNR vs. Analog Input Frequency, 80 MSPS/LVDS Mode  
Figure 21. SNR vs. Analog Input Frequency, 80 MSPS/CMOS Mode  
105  
105  
SFDR dBc @ +85°C  
SFDR dBc @ +85°C  
100  
SFDR dBc @ +25°C  
100  
95  
90  
85  
80  
75  
70  
SFDR dBc @ +25°C  
95  
SFDR dBc @ –40°C  
90  
SFDR dBc @ –40°C  
85  
80  
75  
70  
0
20  
40  
60  
80  
100 120 140 160 180 200  
0
20  
40  
60  
80  
100 120 140 160 180 200  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Figure 22. SFDR vs. Analog Input Frequency, 80 MSPS/CMOS Mode  
Figure 19. SFDR vs. Analog Input Frequency, 80 MSPS/LVDS Mode  
120  
120  
SECOND –dBFS  
THIRD –dBFS  
SECOND –dBFS  
THIRD –dBFS  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
SFDR –dBFS  
SECOND –dBc  
THIRD –dBc  
SFDR –dBFS  
SFDR –dBFS  
SECOND –dBc  
THIRD –dBc  
SFDR –dBFS  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
ANALOG INPUT AMPLITUDE (dBc)  
ANALOG INPUT AMPLITUDE (dBc)  
Figure 20. Single-Tone SFDR/Second/Third vs.  
Analog Input Level, 80 MSPS, AIN = 30.3 MHz  
Figure 23. Single-Tone SFDR/Second/Third vs.  
Analog Input Level 80 MSPS, AIN = 70.30 MHz  
Rev. 0 | Page 16 of 40  
AD9444  
0
–20  
0
–10  
SFDR: 102dBFS  
90dBFS REFERENCE LINE  
–20  
–30  
SFDR (dBc)  
–40  
–40  
–50  
–60  
–60  
WORST THIRD-ORDER IMD (dBc)  
SFDR (dBFS)  
–70  
–80  
–80  
–90  
–100  
–120  
–100  
–110  
–120  
WORST THIRD-ORDER IMD (dBFS)  
0
5
10  
15  
20  
25  
30  
35  
40  
–110 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
ANALOG INPUT LEVEL (dBFS)  
0
FREQUENCY (MHz)  
Figure 27. Two-Tone SFDR vs. Analog Input Level, AIN = 9.8 MHz/10.8 MHz  
Figure 24. 32K Point Two-Tone FFT 80 MSPS/9.8 MHz/10.8 MHz  
0
0
SFDR: –100dBFS  
–10  
–10  
90dBFS REFERENCE LINE  
–20  
–30  
–20  
–30  
SFDR (dBc)  
–40  
–40  
–50  
–50  
–60  
–60  
WORST THIRD-ORDER IMD (dBc)  
–70  
–70  
–80  
–80  
SFDR (dBFS)  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
WORST THIRD-ORDER IMD (dBFS)  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
–110 –100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
ANALOG INPUT LEVEL (dBFS)  
Figure 25. 32K Point Two-Tone FFT 80 MSPS/69.3 MHz/70.3 MHz  
Figure 28. Two-Tone SFDR vs. Analog Input Level, AIN = 69.3 MHz/70.3 MHz  
100  
100  
95  
90  
85  
80  
75  
70  
95  
90  
85  
80  
75  
70  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110  
SAMPLE RATE (MSPS)  
SAMPLE RATE (MSPS)  
Figure 26. SFDR vs. Sample Rate, VIN = 10.3 MHz @ −0.5 dBFS  
Figure 29. SFDR vs. Sample Rate, VIN = 70.3 MHz @ −0.5 dBFS  
Rev. 0 | Page 17 of 40  
AD9444  
0
–10  
12000  
10000  
8000  
6000  
4000  
2000  
0
61.44MSPS  
TOTAL INPUT SIGNAL  
POWER: –30dBFS  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
8179 8180 8181 8182 8183 8184 8185 8186 8187  
7.68  
15.36  
23.04  
30.72  
B
IN  
FREQUENCY (MHz)  
Figure 33. Ground Input Histogram  
80 MSPS, VIN+ = VIN−, 32K Samples  
Figure 30. 64K FFT, 61.44 MSPS, 4 @ WCDMA, IF = 46.08 MHz  
0
250  
230  
210  
190  
170  
150  
130  
110  
90  
NPR: 63.1dB  
–10  
–20  
–30  
–40  
AVDD1 (3.3V)  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
AVDD2 (5.0V)  
DRVDD (3.3V)  
70  
50  
20  
30  
40  
50  
60  
70  
80  
90 100 110 120 130  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
SAMPLE RATE (MSPS)  
Figure 31. NPR, 80 MSPS/18 MHz Notch  
Figure 34. ISUPPLY vs. Sample Rate, AIN = 10.3 MHz @ −0.5 dBFS  
100  
105  
100  
95  
SFDR (dBc)  
SFDR - DCS ON (dBFS)  
95  
90  
85  
80  
75  
70  
65  
60  
SFDR - DCS OFF (dBFS)  
90  
85  
SNR (dB)  
80  
75  
SNR - DCS ON (dB)  
SNR - DCS OFF (dB)  
70  
2.5  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
20  
30  
40  
50  
60  
70  
80  
CLOCK DUTY CYCLE (%)  
V
COMMON-MODE (V)  
IN  
Figure 32. Single-Tone SNR/SFDR vs. Clock Duty Cycle,  
FSAMPLE = 80 MSPS, 10.3 MHz @ −0.5 dBFS  
Figure 35. Single-Tone SNR/SFDR vs.  
VIN Common-Mode Voltage 80 MSPS/10.3 MHz  
Rev. 0 | Page 18 of 40  
 
AD9444  
0.961  
0.960  
0.959  
0.958  
0.957  
0.956  
0.955  
0.954  
0.953  
0.952  
0.951  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 36. VREF vs. Temperature  
Figure 38. Gain vs. Temperature  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
–0.25  
–0.50  
–0.75  
–1.00  
–0.25  
–0.50  
–0.75  
–1.00  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
OUTPUT CODE  
OUTPUT CODE  
Figure 37. DNL Error vs. Output Code, 80 MSPS, AIN = 15 MHz  
Figure 39. INL Error vs. Output Code, 80 MSPS, AIN = 15 MHz  
Rev. 0 | Page 19 of 40  
 
AD9444  
THEORY OF OPERATION  
Internal Reference Trim  
The AD9444 architecture is optimized for high speed and ease  
of use. The analog inputs drive an integrated, high bandwidth,  
track-and-hold circuit that samples the signal prior to quantiza-  
tion by the 14-bit pipeline ADC core. The device includes an  
on-board reference and input logic that accepts TTL, CMOS, or  
LVPECL levels. The digital output logic levels are user selectable  
as standard 3 V CMOS or LVDS (ANSI-644 compatible) via the  
OUTPUT MODE pin.  
The internal reference voltage is trimmed during the produc-  
tion test to adjust the gain (analog input voltage range) of the  
AD9444. Therefore, there is little advantage to the user supply-  
ing an external voltage reference to the AD9444. The gain trim  
is performed with the AD9444s input range set to 2 V p-p  
nominal (SENSE connected to AGND). Because of this trim,  
and because the 2 V p-p analog input range provides maximum  
ac performance, there is little benefit to using analog input  
ranges < 2 V p-p. Users are cautioned that the differential  
nonlinearity of the ADC varies with the reference voltage.  
Configurations that use < 2 V p-p may exhibit missing codes  
and, therefore, degraded noise and distortion performance.  
ANALOG INPUT AND REFERENCE OVERVIEW  
A stable and accurate 0.5 V voltage reference is built into the  
AD9444. The input range can be adjusted by varying the refer-  
ence voltage applied to the AD9444, using either the internal  
reference or an externally applied reference voltage. The input  
span of the ADC tracks reference voltage changes linearly. The  
various reference modes are described in the next few sections.  
VIN+  
VIN–  
REFT  
Internal Reference Connection  
0.1µF  
+
ADC  
CORE  
A comparator within the AD9444 detects the potential at the  
SENSE pin and configures the reference into four possible  
states, which are summarized in Table 9. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resis-  
tor divider (see Figure 40), setting VREF to ~1 V. Connecting  
the SENSE pin to VREF switches the reference amplifier output  
to the SENSE pin, completing the loop and providing a ~0.5 V  
reference output. If a resistor divider is connected, as shown in  
Figure 41, the switch again sets to the SENSE pin. This puts the  
reference amplifier in a noninverting mode with the VREF  
output defined as  
0.1µF  
10µF  
REFB  
0.1µF  
VREF  
0.1µF  
+
10µF  
SELECT  
LOGIC  
SENSE  
0.5V  
AD9444  
R2  
R1  
Figure 40. Internal Reference Configuration  
VREF = 0.5× 1+  
VIN+  
In all reference configurations, REFT and REFB drive the A/D  
conversion core and establish its input span. The input range of  
the ADC always equals twice the voltage at the reference pin for  
either an internal or an external reference.  
VIN–  
REFT  
0.1µF  
0.1µF  
REFB  
+
ADC  
CORE  
10µF  
0.1µF  
VREF  
+
10µF  
0.1µF  
SELECT  
LOGIC  
R2  
SENSE  
R1  
0.5V  
AD9444  
Figure 41. Programmable Reference Configuration  
Rev. 0 | Page 20 of 40  
 
 
 
 
AD9444  
Table 9. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
Internal Fixed Reference  
Programmable Reference  
AVDD  
VREF  
0.2 V to VREF  
N/A  
0.5  
2 × External Reference  
1.0  
2 × VREF  
R2  
R1  
(See Figure 41)  
0.5 × 1 +  
Internal Fixed Reference  
AGND to 0.2 V  
1.0  
2.0  
External Reference Operation  
The AD9444s internal reference is trimmed to enhance the gain  
accuracy of the ADC. An external reference may be more stable  
over temperature, but the gain of the ADC is not likely to be  
improved. Figure 36 shows the typical drift characteristics of the  
internal reference in both 1 V and 0.5 V modes.  
VIN+  
1Vp-p  
3.5V  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7 kΩ load. The internal buffer still generates the positive and  
negative full-scale references, REFT and REFB, for the ADC  
core. The input span is always twice the value of the reference  
voltage; therefore, the external reference must be limited to a  
maximum of 1 V.  
VIN–  
DIGITAL OUT = ALL 1s  
DIGITAL OUT = ALL 0s  
Figure 42. Differential Analog Input Range for VREF = 1 V  
The AD9444 analog input voltage range is offset from ground  
by 3.5 V. Each analog input connects through a 1 kΩ resistor to  
the 3.5 V bias voltage and to the input of a differential buffer.  
The internal bias network on the input properly biases the  
buffer for maximum linearity and range (see the Equivalent  
Circuits section). Therefore, the analog source driving the  
AD9444 should be ac-coupled to the input pins. The recom-  
mended method for driving the analog input of the AD9444 is  
to use an RF transformer to convert single-ended signals to  
differential (see Figure 44). Series resistors between the output  
of the transformer and the AD9444 analog inputs help isolate  
the analog input source from switching transients caused by the  
internal sample-and-hold circuit. The series resistors, along with  
the 1 kΩ resisters connected to the internal 3.5 V bias, must be  
considered in impedance matching the transformers input. For  
example, if RT were set to 51 Ω and RS were set to 33 Ω, along  
with a 1:1 impedance ratio transformer, the input would match  
a 50 Ω source with a full-scale drive of 10.0 dBm. The 50 Ω  
impedance matching can also be incorporated on the secondary  
side of the transformer, as shown in the evaluation board sche-  
matic (see Figure 47 and Figure 59).  
Analog Inputs  
As with most new high speed, high dynamic range ADCs, the  
analog input to the AD9444 is differential. Differential inputs  
improve on-chip performance as signals are processed through  
attenuation and gain stages. Most of the improvement is a result  
of differential analog stages having high rejection of even-order  
harmonics. There are also benefits at the PCB level. First,  
differential inputs have high common-mode rejection of stray  
signals, such as ground and power noise. Second, they provide  
good rejection of common-mode signals, such as local oscillator  
feedthrough. The specified noise and distortion of the AD9444  
cannot be realized with a single-ended analog input, so such  
configurations are discouraged. Contact ADI for recommenda-  
tions of other 14-bit ADCs that support single-ended analog  
input configurations.  
With the 1 V reference (nominal value, see the Internal Refer-  
ence Trim section), the differential input range of the AD9444s  
analog input is nominally 2 V p-p or 1 V p-p on each input  
(VIN+ or VIN−).  
R
ADT1–1WT  
S
ANALOG  
INPUT  
SIGNAL  
AIN  
R
T
AD9444  
R
S
AIN  
0.1µF  
Figure 43. Transformer-Coupled Analog Input Circuit  
Rev. 0 | Page 21 of 40  
AD9444  
CLOCK INPUT CONSIDERATIONS  
the CLK+ and CLK− pins via a transformer or capacitors.  
Figure 44 shows one preferred method for clocking the AD9444.  
The clock source (low jitter) is converted from single-ended-to-  
differential using an RF transformer. The back-to-back Schottky  
diodes across the transformer secondary limit clock excursions  
into the AD9444 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to other portions of the AD9444 and limits the noise  
presented to the sample clock inputs.  
Any high speed ADC is extremely sensitive to the quality of the  
sampling clock provided by the user. A track-and-hold circuit is  
essentially a mixer, and any noise, distortion, or timing jitter on  
the clock is combined with the desired signal at the A/D output.  
For that reason, considerable care was taken in the design of the  
clock inputs of the AD9444, and the user is advised to give  
careful thought to the clock source.  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be  
sensitive to the clock duty cycle. Commonly a 5% tolerance is  
required on the clock duty cycle to maintain dynamic perform-  
ance characteristics. The AD9444 contains a clock duty cycle  
stabilizer (DCS) that retimes the nonsampling edge, providing  
an internal clock signal with a nominal 50% duty cycle. As  
shown in Figure 32, noise and distortion performance are nearly  
flat for a 30% to 70% duty cycle with the DCS enabled. The DCS  
circuit locks to the rising edge of CLK+ and optimizes timing  
internally. This allows for a wide range of input duty cycles at  
the input without degrading performance. Jitter in the rising  
edge of the input is still of paramount concern and is not re-  
duced by the internal stabilization circuit. The duty cycle con-  
trol loop does not function for clock rates less than 30 MHz  
nominally. The loop has a time constant associated with it that  
needs to be considered in applications where the clock rate can  
change dynamically, which requires a wait time of 1.5 µs to 5 µs  
after a dynamic clock frequency increase (or decrease) before  
the DCS loop is relocked to the input signal. During the time  
period the loop is not locked, the DCS loop is bypassed, and the  
internal device timing is dependant on the duty cycle of the  
input clock signal. In such an application, it may appropriate to  
disable the duty cycle stabilizer. In all other applications,  
enabling the DCS circuit is recommended to maximize ac  
performance.  
If a low jitter clock is available, another option is to ac couple a  
differential ECL/PECL signal to the encode input pins, as shown  
in Figure 46.  
ADT1–1WT  
CLOCK  
SOURCE  
CLK+  
0.1µF  
AD9444  
CLK–  
HSMS2812  
DIODES  
Figure 44. Crystal Clock Oscillator, Differential Encode  
VT  
0.1µF  
ENCODE  
ECL/  
PECL  
AD9444  
0.1µF  
ENCODE  
VT  
Figure 45. Differential ECL for Encode  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. The degradation in SNR at a given input  
frequency (fINPUT) and rms amplitude due only to aperture jitter  
(tJ) can be calculated using the following equation.  
SNR = 20 log[2πfINPUT × tJ]  
The DCS circuit is controlled by the DCS MODE pin; a CMOS  
logic low (AGND) on DCS MODE enables the duty cycle stabi-  
lizer, and logic high (AVDD1 = 3.3 V) disables the controller.  
In the equation, the rms aperture jitter represents the root-mean  
square of all jitter sources, which includes the clock input,  
analog input signal, and ADC aperture jitter specification. IF  
undersampling applications are particularly sensitive to jitter,  
see Figure 46.  
The AD9444 input sample clock signal must be a high quality,  
extremely low phase noise source to prevent degradation of  
performance. Maintaining 14-bit accuracy places a premium on  
the encode clock phase noise. SNR performance can easily  
degrade by 3 dB to 4 dB with 70 MHz analog input signals  
when using a high jitter clock source. (See AN-501, Aperture  
Uncertainty and ADC System Performance, for complete  
details.) For optimum performance, the AD9444 must be  
clocked differentially. The sample clock inputs are internally  
biased to ~2.2 V, and the input signal is usually ac-coupled into  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the  
AD9444. Power supplies for clock drivers should be separated  
from the ADC output driver supplies to avoid modulating the  
clock signal with digital noise. Low jitter, crystal-controlled  
oscillators make the best clock sources. If the clock is generated  
from another type of source (by gating, dividing, or other meth-  
ods), it should be retimed by the original clock at the last step.  
Rev. 0 | Page 22 of 40  
 
 
AD9444  
75  
70  
65  
60  
55  
50  
45  
40  
tion resistor placed at the LVDS receiver inputs results in a  
0.2ps  
0.5ps  
nominal 350 mV swing at the receiver. LVDS mode facilitates  
interfacing with LVDS receivers in custom ASICs and FPGAs  
that have LVDS capability for superior switching performance  
in noisy environments. Single point-to-point net topologies are  
recommended with a 100 Ω termination resistor as close to the  
receiver as possible. It is recommended to keep the trace length  
less than 1 inch to 2 inches and to keep differential output trace  
lengths as equal as possible.  
1.0ps  
1.5ps  
2.0ps  
2.5ps  
3.0ps  
CMOS Mode  
In applications that can tolerate a slight degradation in dynamic  
performance, the AD9444 output drivers can be configured to  
interface with 2.5 V or 3.3 V logic families by matching DRVDD  
to the digital supply of the interfaced logic. CMOS outputs are  
available when OUTPUT MODE is CMOS logic low (or AGND  
for convenience). In this mode, the output data bits are single-  
ended CMOS, DX, as is the overrange output, OR. The output  
clock is provided as a differential CMOS signal, DCO+/DCO−.  
Lower supply voltages are recommended to avoid coupling  
switching transients back to the sensitive analog sections of the  
ADC. The capacitive load to the CMOS outputs should be  
minimized, and each output should be connected to a single  
gate through a series resistor (220 Ω) to minimize switching  
transients caused by the capacitive loading.  
1
10  
100  
1000  
INPUT FREQUENCY (MHz)  
Figure 46. SNR vs. Input Frequency and Jitter  
POWER CONSIDERATIONS  
Care should be taken when selecting a power source. The use of  
linear dc supplies is highly recommended. Switching supplies  
tend to have radiated components that may be received by the  
AD9444. Each of the power supply pins should be decoupled as  
closely to the package as possible using 0.1 µF chip capacitors.  
The AD9444 has separate digital and analog power supply  
pins. The analog supplies are denoted AVDD1 (3.3 V) and  
AVDD2 (5 V) and the digital supply pins are denoted DRVDD.  
Although the AVDD1 and DRVDD supplies may be tied  
together, best performance is achieved when the supplies are  
separate. This is because the fast digital output swings can  
couple switching current back into the analog supplies. Note  
that both AVDD1 and AVDD2 must be held within 5% of the  
specified voltage.  
TIMING  
The AD9444 provides latched data outputs with a pipeline delay  
of 12 clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of CLK+. Refer to Figure 2 and  
Figure 3 for detailed timing diagrams.  
OPERATIONAL MODE SELECTION  
Data Format Select  
The DRVDD supply of the AD9444 is a dedicated supply for the  
digital outputs, in either LVDS or CMOS output modes. When  
in LVDS mode, the DRVDD should be set to 3.3 V. In CMOS  
mode, the DRVDD supply may be connected from 2.5 V to  
3.6 V to be compatible with the receiving logic.  
The data format select (DFS) pin of the AD9444 determines  
the coding format of the output data. This pin is 3.3 V CMOS  
compatible, with logic high (or AVDD1, 3.3 V) selecting twos  
complement, and DFS logic low (AGND) selecting offset binary  
format. Table 10 summarizes the output coding.  
DIGITAL OUTPUTS  
LVDS Mode  
Output Mode Select  
The OUPUT MODE pin controls the logic compatibility,  
as well as the pinout of the digital outputs. This pin is a CMOS  
compatible input. With OUTPUT MODE = 0 (AGND), the  
AD9444 outputs are CMOS-compatible and the pin assignment  
for the device is defined in Table 8. With OUTPUT MODE = 1  
(AVDD1, 3.3 V), the AD9444 outputs are LVDS-compatible and  
the pin assignment for the device is defined in Table 7.  
The off-chip drivers on the chip can be configured to provide  
LVDS-compatible output levels via Pin 5 (OUTPUT MODE).  
LVDS outputs are available when OUTPUT MODE is CMOS  
logic high (or AVDD1 for convenience) and a 3.74 kΩ RSET  
resistor is placed at Pin 7 (LVDSBIAS) to ground. Dynamic  
performance, including both SFDR and SNR, is maximized  
when the AD9444 is used in LVDS mode, and designers are  
encouraged to take advantage of this mode. The AD9444 out-  
puts include complimentary LVDS outputs for each data bit  
(DX+/DX−), the overrange output (OR+/OR−), and the output  
data clock output (DCO+/DCO−). The RSET resistor current is  
ratioed on-chip, setting the output current at each output equal  
Duty Cycle Stabilizer  
The DCS circuit is controlled by the DCS MODE pin; a CMOS  
logic low (AGND) on DCS MODE enables the DCS, and logic  
high (AVDD1, 3.3 V) disables the controller.  
to a nominal 3.5 mA (11 × IR ). A 100 Ω differential termina-  
SET  
Rev. 0 | Page 23 of 40  
 
AD9444  
Table 10. Digital Output Coding  
VIN+ − VIN−  
Input Span = 2 V p-p (V)  
VIN+ − VIN−  
Input Span = 1 V p-p (V)  
Digital Output  
Offset Binary (D9••••••D0)  
Digital Output  
Twos Complement (D9••••••D0)  
Code  
16383  
8192  
8191  
0
1.000  
0
−0.000122  
−1.00  
0.500  
0
−0.000061  
−0.5000  
11 1111 1111 1111  
10 0000 0000 0000  
01 1111 1111 1111  
00 0000 0000 0000  
01 1111 1111 1111  
00 0000 0000 0000  
11 1111 1111 1111  
10 0000 0000 0000  
Both the LVDS and CMOS versions of the evaluation board are  
compatible with the high speed ADC FIFO evaluation kit (part  
number HSC-ADC-EVALA-SC). The kit includes a high speed  
data capture board that provides a hardware solution for captur-  
ing up to 32Ksamples of high speed ADC output data in a FIFO  
memory chip (user upgradeable to 256K samples). Software is  
provided to enable the user to download the captured data to a  
PC via the USB port. This software also includes a behavioral  
model of the AD9444 and many other high speed ADCs.  
EVALUATION BOARD  
Evaluation boards are offered to configure the AD9444 in  
either CMOS or LVDS mode. Each represents a recommended  
configuration for using the device over a wide range of sample  
rates and analog input frequencies. These evaluation boards  
provide all the support circuitry required to operate the ADC in  
its various modes and configurations. Complete schematics and  
layout plots follow and demonstrate the proper routing and  
grounding techniques that should be applied at the system level.  
Behavioral modeling of the AD9444 is also available at  
www.analog.com/ADIsimADC. The ADIsimADC™ software  
supports virtual ADC evaluation using ADI proprietary  
behavioral modeling technology. This allows rapid comparison  
between the AD9444 and other high speed ADCs, with or  
without hardware evaluation boards.  
It is critical that signal sources with very low phase noise  
(< 1 ps rms jitter) be used to realize the ultimate performance  
of the converter. Proper filtering of the input signal, to remove  
harmonics and lower the integrated noise at the input, is also  
necessary to achieve the specified noise performance.  
The evaluation boards are shipped with an ac to 6 V dc power  
supply. The evaluation boards include low dropout regulators to  
generate the various dc supplies required by the AD9444 and its  
support circuitry. Separate power supplies are provided to iso-  
late the DUT from the support circuitry. Each input configura-  
tion can be selected by proper connection of various jumpers  
(see Figure 47 to Figure 50 and Figure 59 to Figure 61).  
The AD9444 LVDS evaluation board includes an on-board,  
LVDS-to-CMOS translator, but the user may choose to remove  
the translator and terminations to access the LVDS outputs  
directly.  
The CMOS evaluation board includes a buffer for the output  
data and the DCO output clock of the AD9444.  
Rev. 0 | Page 24 of 40  
 
AD9444  
LVDS EVALUATION BOARD SCHEMATICS  
GND  
GND  
GND  
H4  
MTHOLE6  
8
7
6
5
4
3
2
1
VDL  
H3  
MTHOLE6  
DRVDD  
H2  
MTHOLE6  
VCC  
5V  
GND  
H1  
MTHOLE6  
GND  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
D2+  
D2–  
D11_C/D7_YN  
D11_T/D8_YN  
D12_C/D9_YN  
D11–  
D2_TN  
D2_CN  
GND  
D11+  
DRGND  
D12–  
D12+  
DRVDD  
D1+  
D12_T/D10_YN  
D13_C/D11_YN  
DRVDD  
D1_TN  
D1_CN  
D0_TN  
D0_CN  
VCC  
D13–  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
D1–  
D13_T/D12_YN  
D13+ (MSB)  
DRGND  
DRVDD  
OR–  
GND  
D0+  
(LSB) D0–  
AVDD1  
AVDD1  
DRVDD  
DOR_C/D13_YN  
DOR_T/DOR_YN  
GND  
OR+  
VCC  
AGND  
AVDD1  
AVDD2  
AVDD2  
AVDD1  
CLK–  
1
2
VCC  
5V  
3
GND  
AGND  
VCC  
ENCB  
ENC  
VCC  
VCC  
VCC  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
VCC  
CLK+  
CR2  
VCC  
AVDD1  
VCC  
AVDD1  
C1  
AGND  
AVDD2  
AVDD2  
VCC  
GND  
VCC  
AVDD1  
AVDD1  
AGND  
AGND  
GND  
C40  
0.1µF  
VCC  
GND  
GND  
AVDD2  
AVDD2  
AVDD1  
AVDD1  
AVDD1  
AGND  
DCS MOD  
5V  
VCC  
VCC  
R39  
XX  
C36  
0.1µF  
EPAD  
101  
C26  
0.1µF  
50Ω  
R7  
50Ω  
R8  
XTALINPUTB  
C2  
0.1µF  
OPTIONAL  
R28  
33Ω  
R35  
33Ω  
C51  
10µF  
C91  
0.1µF  
C3  
0.1µF  
C9  
0.1µF  
GND  
C24  
0.1µF  
R37  
XX  
R27  
XX  
+
R36  
XX  
R20  
XX  
R1  
R2  
3.8kΩ  
3.8kΩ  
R3  
3.8kΩ  
Figure 47. LVDS Mode Evaluation Board Schematic  
Rev. 0 | Page 25 of 40  
 
AD9444  
POWER OPTIONS  
ADP3338  
U4  
ADP3338  
U15  
P4  
3.3V  
3.3V  
PJ-102A  
1
2
3
1
2
3
2
3
1
GND  
GND  
2
3
1
4
4
OUT1  
IN  
OUT1  
IN  
OUT  
OUT  
+
+
+
C1  
C6  
C33  
10µF  
10µF  
10µF  
+
+
C57  
C87  
10µF  
10µF  
ADP3338  
ADP3338  
U14  
U3  
3.3V  
5V  
1
2
3
1
2
3
GND  
OUT1  
IN  
GND  
OUT1  
IN  
4
4
OUT  
OUT  
+
+
C34  
C4  
10µF  
10µF  
+
+
C88  
C89  
10µF  
10µF  
Figure 48. LVDS Mode Evaluation Board Schematic (Continued)  
VCC  
+
P19  
C43  
0.1µF  
C35  
0.1µF  
C32  
0.1µF  
C30  
0.1µF  
C28  
0.1µF  
C27  
0.1µF  
C48  
0.1µF  
C50  
0.1µF  
C60  
0.1µF  
C61  
0.1µF  
C46  
0.1µF  
C75  
0.1µF  
C64  
10µF  
GND  
GND  
VCC  
C10  
XX  
C11  
XX  
C14  
XX  
C17  
XX  
C16  
XX  
C15  
XX  
C31  
XX  
C37  
XX  
C38  
XX  
C29  
XX  
C19  
XX  
C18  
XX  
C90  
XX  
GND  
DRVDD  
GND  
DRVDD  
+
C69  
XX  
C70  
XX  
C45  
XX  
C49  
XX  
C59  
XX  
C65  
10µF  
C47  
0.1µF  
C23  
0.1µF  
C22  
0.1µF  
C21  
0.1µF  
C20  
0.1µF  
GND  
5V  
EXTREF  
GND  
5V  
+
+
C55  
10µF  
C71  
XX  
C72  
XX  
C73  
XX  
C62  
XX  
C56  
10µF  
C85  
0.1µF  
C53  
0.1µF  
C52  
0.1µF  
C58  
0.1µF  
GND  
GND  
Figure 49. LVDS Mode Evaluation Board Schematic (Continued)  
Rev. 0 | Page 26 of 40  
AD9444  
U7  
SN75LVDS386  
1
2
3
4
5
6
7
8
9
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
DOR_T/DOR_YN  
DOR_C/D13_YN  
D13_T/D12_YN  
D13_C/D11_YN  
D12_T/D10_YN  
D12_C/D9_YN  
A1A  
A1B  
A2A  
A2B  
A3A  
A3B  
A4A  
A4B  
B1A  
B1B  
B2A  
B2B  
B3A  
B3B  
B4A  
B4B  
C1A  
C1B  
C2A  
C2B  
C3A  
C3B  
C4A  
C4B  
D1A  
D1B  
D2A  
D2B  
D3A  
D3B  
D4A  
D4B  
GND  
VCC1  
VCC2  
GND1  
ENA  
A1Y  
A2Y  
A3Y  
A4Y  
ENB  
B1Y  
B2Y  
B3Y  
B4Y  
GND2  
VCC3  
VCC4  
GND3  
C1Y  
C2Y  
C3Y  
C4Y  
ENC  
D1Y  
D2Y  
D3Y  
D4Y  
END  
GND4  
VCC5  
VCC6  
GND5  
GND  
VDL  
VDL  
GND  
VDL  
RZ5  
220  
P6  
C40MS  
RSO16ISO  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
1
2
3
4
5
6
7
8
16  
ORO  
39  
37  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
P39  
GND  
GND  
P40  
P38  
P36  
P34  
P32  
P30  
P28  
P26  
P24  
P22  
P20  
P18  
P16  
P14  
P12  
P10  
P8  
15  
D13O  
P37  
P35  
P33  
P31  
P29  
P27  
P25  
P23  
P21  
P19  
P17  
P15  
P13  
P11  
P9  
D11_T/D8_YN  
D11_C/D7_YN  
D10_T/D6_YN  
D10_C/D5_YN  
D9_T/D4_YN  
D9_C/D3_YN  
D8_T/D2_YN  
14  
D12O  
GND  
GND  
DOR_C/D13_YN  
D13_C/D11_YN  
D12_C/D9_YN  
D11_C/D7_YN  
D10_C/D5_YN  
13  
D11O  
DOR_T/DOR_YN  
D13_T/D12_YN  
D12_T/D10_YN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
VDL  
12  
D10O  
11  
D9O  
10  
D11_T/D8_YN  
D10_T/D6_YN  
D9_T/D4_YN  
D8O  
D8_C/D1_YN  
D7_T/D0_YN  
D7_CN  
DRN  
9
GND  
VDL  
VDL  
GND  
DRP  
D7O  
D9_C/D3_YN  
D8_C/D1_YN  
D7_CN  
220  
D8_T/D2_YN  
D7_T/D0_YN  
DRBN  
RSO16ISO  
D6_TN  
D6_CN  
D5_TN  
D5_CN  
D4_TN  
D4_CN  
D3_TN  
D3_CN  
D2_TN  
D2_CN  
D1_TN  
D1_CN  
D0_TN  
D0_CN  
R1  
1
2
3
4
5
6
7
8
16  
D6O  
DRN  
DRBN  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
15  
D5O  
D6_TN  
D5_TN  
D4_TN  
D3_TN  
D2_TN  
D1_TN  
D0_TN  
GND  
D6_CN  
14  
VDL  
D4O  
D5_CN  
13  
D3O  
D4_CN  
12  
D3_CN  
D2O  
7
P7  
11  
D2_CN  
D1O  
VDL  
GND  
VDL  
VDL  
GND  
6
5
P5  
P6  
D1_CN  
10  
D0O  
4
3
P3  
P4  
D0_CN  
GND  
9
2
1
P1  
P2  
RZ4  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
39  
P39  
P37  
P35  
P33  
P31  
P29  
P27  
P25  
P23  
P21  
P19  
P17  
P15  
P13  
P11  
P9  
GND  
P40  
P38  
P36  
P34  
P32  
P30  
P28  
P26  
P24  
P22  
P20  
P18  
P16  
P14  
P12  
P10  
P8  
37  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
DRO  
GND  
D13O  
D12O  
D11O  
D10O  
D9O  
D8O  
D7O  
D6O  
D5O  
D4O  
D3O  
D2O  
D1O  
D0O  
ORO  
74VCX86  
3
6
1
2
4
5
9
1A  
1B  
2A  
2B  
3A  
1Y  
2Y  
3Y  
4Y  
GND  
00  
8
DRO  
R52  
00  
XORN  
11  
14  
VDL  
E43  
E34  
R53  
10 3B  
12 4A  
13 4B  
PWR  
GND  
E32  
VDL  
GND  
GND  
7
GND  
U10  
VDL  
+
C76  
10µF  
C97  
0.1µF  
C82  
0.1µF  
C80  
0.1µF  
81  
0.1µF  
GND  
7
P7  
6
5
P5  
P6  
4
3
P3  
P4  
2
1
P1  
GND  
P2  
GND  
P3  
C40MS  
Figure 50. LVDS Mode Evaluation Board Schematic (Continued)  
Rev. 0 | Page 27 of 40  
AD9444  
Figure 54. LVDS Mode Evaluation Board Layout, Ground Plane 2  
Figure 55. LVDS Mode Evaluation Board Layout, Power Plane 1  
Figure 56. LVDS Mode Evaluation Board Layout, Power Plane 2  
Figure 51. LVDS Mode Evaluation Board Layout, Primary Side  
Figure 52. LVDS Mode Evaluation Board Layout, Secondary Side  
Figure 53. LVDS Mode Evaluation Board Layout, Ground Plane 1  
Rev. 0 | Page 28 of 40  
AD9444  
Figure 58. LVDS Mode Evaluation Board Layout, Secondary Silkscreen  
Figure 57. LVDS Mode Evaluation Board Layout, Primary Silkscreen  
Rev. 0 | Page 29 of 40  
AD9444  
LVDS MODE EVALUATION BOARD BILL OF MATERIALS (BOM)  
Table 11.  
Item Qty. REFDES  
Description  
Manufacturer  
PCSM  
MFG_PART_NO  
1
2
1
AD9444PCB  
PCB, AD9444 LVDS Engineering Evaluation Board  
Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10%  
AD9444LVDSCUSTREVC  
T491C106K016AS  
16  
C1, C4, C6,  
C33, C34,  
C39, C44,  
C55 to C57,  
C64, C65,  
C76, C87 to  
C89  
KEMET  
3
38  
C2, C3, C5,  
C9, C12, C20  
to C24, C26  
to C28, C30,  
C32, C35,  
C40, C42,  
C43, C46 to  
C48, C50,  
C52, C53,  
C58, C60,  
C61, C75,  
C80 to C82,  
C85, C86,  
C91 to C93,  
C97  
Capacitors, 0.1 µF 10 V Ceramic X5R 0402  
Panasonic  
ECJ-0EB1A104K  
4
5
6
1
C51  
CR2  
Capacitor, Ceramic 10 µF 6.3 V X5R 0805  
KEMET  
Panasonic  
3M  
C0805C106K9PACTU  
MA716-(TX)  
1
Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA  
17  
E1 to E3, E24, 40-Pin Breakable Header  
2340-611TN  
to E27, E32,  
E34, E38,  
E39, E40,  
E41, E43,  
E46, E47, E52  
7
2
1
1
1
1
2
1
4
J1, J4  
L1  
Connector, Gold, Male, Coaxial, SMA, Vertical  
Johnston Comp.  
Coilcraft  
142-0701-201  
0603CJ-10NXGBU  
TSW-120-08-T-D-RA  
RAPC722  
8
10 nH Inductor  
9
P3  
Header, 40-Pin, Male, 40-Pin Right Angle  
Power Jack  
Samtec  
10  
11  
12  
13  
14  
P4  
Swithcraft  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
R3  
Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD  
Resistor, 36 Ω 1/16 W 5% 0402 SMD  
Resistor, 49.9 Ω 1/16 W 1% 0402 SMD  
ERJ-2GEJ362X  
ERJ-2GEJ360X  
ERJ-2RKF49R9X  
ERJ-2RKF1001X  
R4, R6  
R8  
R9, R12, R14, Resistor, 1.00 kΩ 1/16 W 1% 0402 SMD  
R15  
15  
16  
2
3
R28, R35  
Resistor, 33 Ω 1/16 W 5% 0402 SMD  
Resistor, 0 Ω 1/16 W 5% 0402 SMD  
Panasonic  
Panasonic  
ERJ-2GEJ330X  
ERJ-2GE0R00X  
R39, R52,  
R53  
17  
18  
19  
20  
21  
22  
23  
24  
25  
2
2
1
3
1
1
1
1
4
RZ4, RZ5  
T3, T5  
U1  
22 Ω Resistor Array, 16 Term  
Transformer, ADT1-1WT, CD542, ADT1-1WT  
14-Bit, 80 MSPS ADC  
CTS Corp.  
Mini-Circuits  
ADI  
742163220JTR  
ADT1-1WT  
AD9444BSVZ-80  
ADP3338-3.3 V  
ADP3338-5.0 V  
MX045-80  
U3, U4, U15  
U14  
3.3 V Voltage Regulator  
ADI  
5 V Voltage Regulator  
ADI  
U6  
Clock Oscillator, 80 MHz  
CTS Reeves  
U7  
LVDS-to-CMOS Translator with 100 Term  
2 Input XOR Gate  
Texas Instruments SN75LVDT386DGG  
U10  
Fairchild  
AMP  
74VCX86M  
5-330808-3  
U6  
Pin Sockets, Closed End  
Rev. 0 | Page 30 of 40  
 
AD9444  
Item Qty. REFDES  
Description  
Manufacturer  
MFG_PART_NO  
26  
24  
C10, C11,  
C13, to C19,  
C29, C31,  
C36 to C38,  
C45, C49,  
C59, C62,  
C69, C70 to  
C73, C901  
Capacitors, Select 10 V Ceramic X5R 0402  
Panasonic  
27  
28  
29  
1
2
1
J51  
Connector, Gold, Male, Coaxial, SMA, Vertical  
Power Connectors  
Johnston Comp.  
Weiland  
142-0701-201  
P5, P61  
R1, R2, R5,  
R7, R131  
Resistors, Select 1/16 W 1% 0402 SMD  
Panasonic  
30  
31  
1
5
R17 to R20,  
R27, R36 to  
R38, R401  
U21  
Resistors, Select 1/16 W 1% 0402 SMD  
XO Select  
Panasonic  
Vectron  
1 Parts not placed.  
Rev. 0 | Page 31 of 40  
 
 
AD9444  
CMOS EVALUATION BOARD SCHEMATICS  
GND  
8
VDL  
7
6
5
4
3
2
1
GND  
GND  
DRVDD  
VCC  
5V  
GND  
H4  
MTHOLE6  
H3  
MTHOLE6  
H2  
MTHOLE6  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
D11C/D7YN  
D11T/D8YN  
D12C/D9YN  
DNC  
DNC  
D7  
H1  
MTHOLE6  
D8  
GND  
GND  
DRGND  
DRVDD  
DNC  
D9  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
D12T/D10YN  
D13C/D11YN  
DRVDD  
D10  
D11  
D13T/D12YN  
GND  
DNC  
D12  
DNC  
DRGND  
DRVDD  
(MSB) D13  
OR  
DRVDD  
DORC/D13Y  
DORT/DORY  
GND  
DNC  
VCC  
VCC  
AVDD1  
AVDD1  
AVDD2  
AVDD2  
AVDD1  
CLK–  
AGND  
DRVDD  
AGND  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AGND  
AGND  
AVDD1  
AGND  
DCS MODE  
1
2
VCC  
5V  
3
GND  
VCC  
ENCB  
ENC  
VCC  
VCC  
VCC  
VCC  
CLK+  
CR2  
VCC  
AVDD1  
VCC  
AVDD1  
C1  
AGND  
AVDD2  
AVDD2  
VCC  
GND  
VCC  
GND  
C40  
0.1µF  
VCC  
GND  
GND  
AVDD2  
AVDD2  
AVDD1  
AVDD1  
5V  
VCC  
VCC  
R39  
XX  
C36  
0.1µF  
EPAD  
101  
C26  
0.1µF  
50Ω  
R7  
50Ω  
R8  
C78  
0.1µF  
OPTIONAL  
R28  
33Ω  
R35  
33Ω  
C51  
10µF  
C91  
0.1µF  
C3  
0.1µF  
C9  
0.1µF  
GND  
R37  
XX  
C2  
R27  
0.1µF  
XX  
R36  
XX  
R20  
XX  
+
R1  
R2  
3.8kΩ  
3.8kΩ  
R3  
3.8kΩ  
Figure 59. CMOS Mode Evaluation Board Schematic  
Rev. 0 | Page 32 of 40  
 
AD9444  
ADP3338  
U8  
ADP3338  
U15  
P4  
3.3V  
3.3V  
PJ-102A  
1
2
3
1
2
3
2
3
1
GND  
GND  
2
3
1
4
4
OUT1  
IN  
OUT1  
IN  
OUT  
OUT  
+
C1  
C6  
C33  
+
+
10µF  
10µF  
10µF  
C57  
C87  
+
+
10µF  
10µF  
ADP3338  
ADP3338  
U14  
U3  
3.3V  
5V  
1
2
3
1
2
3
GND  
OUT1  
IN  
GND  
OUT1  
IN  
4
4
OUT  
OUT  
C34  
C4  
+
+
10µF  
10µF  
C88  
C89  
+
+
10µF  
10µF  
Figure 60. CMOS Mode Evaluation Board Schematic (Continued)  
Rev. 0 | Page 33 of 40  
AD9444  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
39  
37  
35  
33  
31  
29  
27  
25  
23  
21  
19  
17  
15  
13  
11  
9
P39  
P37  
P35  
P33  
P31  
P29  
P27  
P25  
P23  
P21  
P19  
P17  
P15  
P13  
P11  
P9  
GND  
DRM  
GND  
D13M  
D12M  
D11M  
D10M  
D9M  
D8M  
D7M  
D6M  
D5M  
D4M  
D3M  
D2M  
D1M  
D0M  
ORM  
P40  
P38  
P36  
P34  
P32  
P30  
P28  
P26  
P24  
P22  
P20  
P18  
P16  
P14  
P12  
P10  
P8  
RZ1  
220  
RZ5  
220  
RSO16ISO  
RSO16ISO  
U5  
SN74LVCH16373A  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
ORM  
D13M  
D12M  
D11M  
D10M  
D9M  
DORT/DORY  
DORC/D13Y  
D13T/D12Y  
D13C/D11Y  
D12T/D10Y  
D12C/D9Y  
D11T/D8Y  
Q = OUTPUT  
D = INPUT  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
LE2  
OE2  
2Q8  
2Q7  
GND  
2Q6  
2Q5  
VCC  
2Q4  
2Q3  
GND  
2Q2  
2Q1  
1Q8  
1Q7  
XOR2IN  
GND  
GND  
VDL  
GND  
2D8  
2D7  
GND  
2D6  
2D5  
VCC  
2D4  
2D3  
GND  
2D2  
2D1  
1D8  
1D7  
GND  
1D6  
1D5  
VCC  
1D4  
1D3  
GND  
1D2  
1D1  
LE1  
GND  
VDL  
D8M  
9
GND  
D7M  
D11C/D7Y  
RZ2  
RSO16ISO  
220  
RZ5  
RSO16ISO  
220  
R1  
R1  
1
2
3
4
5
6
7
8
16  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
VDL  
GND  
GND  
GND  
VDL  
GND  
1Q6  
1Q5  
VCC  
1Q4  
1Q3  
GND  
1Q2  
1Q1  
OE1  
D6M  
D5M  
D4M  
D3M  
D2M  
D1M  
D0M  
D10T/D6Y  
D10C/D5Y  
D9T/D4Y  
D9C/D3Y  
D8T/D2Y  
D8C/D1Y  
D7T/D0Y  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
15  
14  
13  
12  
11  
10  
9
7
P7  
GND  
6
5
P5  
P6  
4
3
P3  
XOR2IN  
P4  
2
1
P1  
GND  
GND  
P2  
RZ4  
RZ4  
P3  
C40MS  
NOT PLACED  
00  
R50  
00  
COUTB  
U4  
74VCX86  
XORZIN  
COUT  
VDL  
R16  
00  
3
6
1
1A  
1B  
2A  
2B  
3A  
DRM  
1Y  
E49  
R14  
00  
2
4
5
9
E42  
R41  
E45  
GND  
GND  
2Y  
3Y  
4Y  
8
GATE  
00  
11  
DRM  
10 3B  
12 4A  
13 4B  
R42  
PWR  
GND  
14  
7
VDL  
GATE2  
VDL  
E32  
E30  
GND  
E31  
GND  
U10  
VDL  
+
C66  
10µF  
C25  
0.1µF  
C41  
0.1µF  
C24  
0.1µF  
C68  
0.1µF  
C67  
0.1µF  
63  
0.01µF  
GND  
Figure 61. CMOS Mode Evaluation Board Schematic (Continued)  
Rev. 0 | Page 34 of 40  
AD9444  
Figure 65. CMOS Mode Evaluation Board Layout, Ground Plane 2  
Figure 62. CMOS Mode Evaluation Board Layout, Primary Side  
Figure 63. CMOS Mode Evaluation Board Layout, Secondary Side  
Figure 64. CMOS Mode Evaluation Board Layout, Ground Plane 1  
Figure 66. CMOS Mode Evaluation Board Layout, Power Plane 1  
Figure 67. CMOS Mode Evaluation Board Layout, Power Plane 2  
Rev. 0 | Page 35 of 40  
AD9444  
Figure 69. CMOS Mode Evaluation Board Layout, Secondary Silkscreen  
Figure 68. CMOS Mode Evaluation Board Layout, Primary Silkscreen  
Rev. 0 | Page 36 of 40  
AD9444  
CMOS MODE EVALUATION BOARD BILL OF MATERIALS (BOM)  
Table 12.  
Item Qty. REFDES  
Description  
Manufacturer  
MFG_PART_NO  
1
2
1
AD9444PCB  
PCB, AD9444 LVDS Evaluation Board  
PCSM  
AD9444LVDSCUSTREVC  
T491C106K016AS  
16  
C1, C4, C6, C33, C34,  
C39, C44, C55 to  
C57, C64 to C66,  
C87 to C89  
Capacitors, Tantalum, SMT BCAPTAJC, 10 µF, 16 V, 10% KEMET  
3
32  
C2, C3, C5, C9, C12,  
C20 to C23, C26 to  
C28, C30, C32, C35,  
C40, C42, C43, C46 to  
C48, C50, C52, C53,  
C58, C60, C61, C75,  
C78, C85, C91, C92  
Capacitors, 0.1 µF 10 V Ceramic X5R 0402  
Panasonic  
ECJ-0EB1A104K  
4
5
C24, C25, C41, C67,  
C68  
Capacitors, 0.1 µF 16 V Ceramic X7R 0603  
Panasonic  
ECJ-1VB1C104K  
5
6
7
1
C51  
CR2  
Capacitor, Ceramic 10 µF 6.3 V X5R 0805  
Diode, Dual Schottky HSMS2812, SOT-23, 30 V, 20 mA  
40-Pin Breakable Header  
KEMET  
Panasonic  
3M  
C0805C106K9PACTU  
MA716-(TX)  
1
20  
E1 to E3, E24 to E27,  
E30 to E32, E38 to  
E42, E45 to E47,  
E49, E52  
2340-611TN  
8
2
1
1
1
1
2
1
4
2
2
1
4
2
1
4
1
1
4
J1, J4  
Connector, Gold, Male, Coaxial, SMA, Vertical  
10 nH O402 Inductor  
Johnston Comp. 142-0701-201  
9
L1  
Coilcraft  
Samtec  
0402CS-10NX_B_  
TSW-120-08-T-D-RA  
RAPC722  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
P3  
Header, 40-Pin, Male, 40-Pin Right Angle  
Power Jack  
P4  
Swithcraft  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
CTS Corp.  
Mini-Circuits  
ADI  
R3  
Resistor, 3.6 kΩ 1/16 W 1% 0402 SMD  
Resistors, 36 Ω 1/16 W 5% 0402 SMD  
Resistor, 49.9 Ω 1/16 W 1% 0402 SMD  
Resistors, 1.00 kΩ 1/16 W 1% 0402 SMD  
Resistors, 0 Ω 1/10 W 5% 0603 SMD  
Resistors, 33 Ω 1/16 W 5% 0402 SMD  
Resistor, 0 Ω 1/16 W 5% 0402 SMD  
220 Ω Resistor Array, 16 Term  
Transformer, ADT1-1WT, CD542, ADT1-1WT  
14-Bit, 80 MSPS ADC  
ERJ-2GEJ362X  
ERJ-2GEJ360X  
ERJ-2RKF49R9X  
ERJ-2RKF1001X  
ERJ-3GEY0R00V  
ERJ-2GEJ330X  
ERJ-2GE0R00X  
742163221JTR  
ADT1-1WT  
R4, R6  
R8  
R9, R12, R15, R21  
R14, R50  
R28, R35  
R39  
RZ1 to RZ3, RZ6  
T3, T5  
U1  
AD9444BSVZ-80  
ADP3338-3.3 V  
ADP3338-5.0 V  
74LVTH162374  
5-330808-3  
U3, U8, U15  
U14  
3.3 V Voltage Regulator  
ADI  
5 V Voltage Regulator  
ADI  
U5  
16-Bit Flip Flop  
Fairchild  
AMP  
U6  
Pin Sockets, Closed End  
Rev. 0 | Page 37 of 40  
 
AD9444  
Item Qty. REFDES  
Description  
Manufacturer  
MFG_PART_NO  
26  
26  
C10, C11, C13, C14 to Capacitors, Select 10 V Ceramic X5R 0402  
C19, C29, C31, C36 to  
Panasonic  
C37, C38, C45, C49,  
C59, C62,C69, C70 to  
C73, C90, C93, C961  
27  
28  
1
J51  
Connector, Gold, Male, Coaxial, SMA, Vertical  
Resistors, Select 1/16 W 1% 0402 SMD  
Johnston Comp. 142-0701-201  
Panasonic  
15  
R1,R2,R5,R7, R13,  
R17 to R20, R27,  
R36 to R401  
29  
30  
31  
32  
3
1
1
2
R16, R41, R421  
C631  
U41  
Resistors, Select 1/16 W 5% 0603 SMD  
Capacitor, Select 10 V Ceramic X5R 0603  
XOR 74VCX86D  
Panasonic  
Panasonic  
Fairchild  
Weiland  
74VCX86D  
P5, P61  
Power Connectors  
1 Parts not placed.  
Rev. 0 | Page 38 of 40  
 
 
AD9444  
OUTLINE DIMENSIONS  
1.20  
MAX  
16.00 SQ  
14.00 SQ  
0.75  
0.60  
0.45  
100  
1
76  
75  
76  
100  
75  
1
SEATING  
PLANE  
BOTTOM VIEW  
(PINS UP)  
TOP VIEW  
(PINS DOWN)  
CONDUCTIVE  
HEAT SINK  
51  
51  
25  
25  
26  
50  
50  
26  
0.20  
0.09  
1.05  
1.00  
0.95  
6.50  
NOM  
7°  
3.5°  
0°  
0.15  
0.05  
COPLANARITY  
0.08  
0.27  
0.22  
0.17  
0.50 BSC  
COMPLIANT TO JEDEC STANDARDS MS-026AED-HD  
1. CENTER FIGURES ARE TYPICAL UNLESS OTHERWISE NOTED.  
NOTES  
2. THE PACKAGE HAS A CONDUCTIVE HEAT SLUG TO HELP DISSIPATE HEAT AND ENSURE RELIABLE OPERATION OF  
THE DEVICE OVER THE FULL INDUSTRIAL TEMPERATURE RANGE. THE SLUG IS EXPOSED ON THE BOTTOM OF  
THE PACKAGE AND ELECTRICALLY CONNECTED TO CHIP GROUND. IT IS RECOMMENDED THAT NO PCB SIGNAL  
TRACES OR VIAS BE LOCATED UNDER THE PACKAGE THAT COULD COME IN CONTACT WITH THE CONDUCTIVE  
SLUG. ATTACHING THE SLUG TO A GROUND PLANE WILL REDUCE THE JUNCTION TEMPERATURE OF THE  
DEVICE WHICH MAY BE BENEFICIAL IN HIGH TEMPERATURE ENVIRONMENTS.  
3. THE EXPOSED HEAT SINK SOLDERED TO THE GROUND PLANE IS REQUIRED FOR THE 100-LEAD TQFP/EP.  
Figure 70. 100-Lead Thin Quad Flat Package, Exposed Pad [TQFP_EP]  
(SV-100-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9444BSVZ-801  
AD9444-CMOS/PCB  
AD9444-LVDS/PCB  
Temperature Range  
Package Description  
Package Outline  
SV-100-1  
–40°C to +85°C  
100-Lead TQFP_EP  
CMOS Mode Evaluation Board  
LVDS Mode Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 39 of 40  
 
 
AD9444  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05089–0–10/04(0)  
Rev. 0 | Page 40 of 40  

相关型号:

AD9444-CMOSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9444-LVDS/PCB

14-Bit, 80 MSPS, A/D Converter
ADI

AD9444-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9444BSVZ-80

14-Bit, 80 MSPS, A/D Converter
ADI

AD9445

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-BB-LVDS

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-BB-LVDS/PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-BB-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI

AD9445-BB-PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-IF-LVDS

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-IF-LVDS/PCB

14-Bit, 105/125 MSPS, IF Sampling ADC
ADI

AD9445-IF-LVDSPCB

High Speed ADC USB FIFO Evaluation Kit
ADI