AD9609BCPZRL7-65 [ADI]

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter;
AD9609BCPZRL7-65
型号: AD9609BCPZRL7-65
厂家: ADI    ADI
描述:

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter

转换器
文件: 总32页 (文件大小:1122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS,  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9609  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
GND  
SDIO SCLK CSB  
DRVDD  
1.8 V analog supply operation  
1.8 V to 3.3 V output supply  
SNR  
61.5 dBFS at 9.7 MHz input  
61.0 dBFS at 200 MHz input  
SFDR  
RBIAS  
VCM  
SPI  
OR  
PROGRAMMING DATA  
D9 (MSB)  
VIN+  
VIN–  
ADC  
CORE  
75 dBc at 9.7 MHz input  
D0 (LSB)  
DCO  
73 dBc at 200 MHz input  
Low power  
45 mW at 20 MSPS  
VREF  
SENSE  
AD9609  
REF  
SELECT  
76 mW at 80 MSPS  
Differential input with 700 MHz bandwidth  
On-chip voltage reference and sample-and-hold circuit  
2 V p-p differential analog input  
DNL = 0.10 LSB  
DIVIDE  
BY  
MODE  
DCS  
CONTROLS  
1 TO 8  
CLK+ CLK–  
PDWN DFS MODE  
Serial port control options  
Figure 1.  
Offset binary, gray code, or twos complement data format  
Optional clock duty cycle stabilizer  
Integer 1-to-8 input clock divider  
Built-in selectable digital test pattern generation  
Energy-saving power-down modes  
Data clock out with programmable clock and data alignment  
PRODUCT HIGHLIGHTS  
1. The AD9609 operates from a single 1.8 V analog power  
supply and features a separate digital output driver supply  
to accommodate 1.8 V to 3.3 V logic families.  
2. The sample-and-hold circuit maintains excellent performance  
for input frequencies up to 200 MHz and is designed for low  
cost, low power, and ease of use.  
APPLICATIONS  
Communications  
3. A standard serial port interface supports various product  
features and functions, such as data output formatting,  
internal clock divider, power-down, DCO and data output  
(D9 to D0) timing and offset adjustments, and voltage  
reference modes.  
4. The AD9609 is packaged in a 32-lead RoHS compliant  
LFCSP that is pin compatible with the AD9629 12-bit ADC  
and the AD9649 14-bit ADC, enabling a simple migration  
path between 10-bit and 14-bit converters sampling from  
20 MSPS to 80 MSPS.  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, TD-SCDMA  
Smart antenna systems  
Battery-powered instruments  
Handheld scope meters  
Portable medical imaging  
Ultrasound  
Radar/LIDAR  
PET/SPECT imaging  
Rev. C  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
AD9609  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Voltage Reference ....................................................................... 19  
Clock Input Considerations...................................................... 20  
Power Dissipation and Standby Mode .................................... 22  
Digital Outputs ........................................................................... 22  
Timing.......................................................................................... 23  
Built-In Self-Test (BIST) and Output Test .................................. 24  
Built-In Self-Test (BIST) ............................................................ 24  
Output Test Modes..................................................................... 24  
Serial Port Interface (SPI).............................................................. 25  
Configuration Using the SPI..................................................... 25  
Hardware Interface..................................................................... 26  
Configuration Without the SPI ................................................ 26  
SPI Accessible Features.............................................................. 26  
Memory Map .................................................................................. 27  
Reading the Memory Map Register Table............................... 27  
Open Locations .......................................................................... 27  
Default Values............................................................................. 27  
Memory Map Register Table..................................................... 28  
Memory Map Register Descriptions........................................ 30  
Applications Information .............................................................. 31  
Design Guidelines ...................................................................... 31  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 6  
Switching Specifications .............................................................. 7  
Timing Specifications .................................................................. 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Characteristics .............................................................. 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
AD9609-80 .................................................................................. 11  
AD9609-65 .................................................................................. 13  
AD9609-40 .................................................................................. 14  
AD9609-20 .................................................................................. 15  
Equivalent Circuits ......................................................................... 16  
Theory of Operation ...................................................................... 17  
Analog Input Considerations.................................................... 17  
REVISION HISTORY  
10/2009—Revision 0: Initial Version  
11/2018—Rev. B to Rev. C  
Updated Outline Dimensions....................................................... 32  
Changes to Ordering Guide .......................................................... 32  
2/2017—Rev. A to Rev. B  
Added Endnote 1, Table 17 ........................................................... 28  
Changes to Power and Ground Recommendations Section..... 31  
Added Soft Reset Section............................................................... 31  
6/2015—Rev. 0 to Rev. A  
Change to Product Highlights Section .......................................... 1  
Changes to Figure 3 and Table 8 ................................................... 10  
Updated Outline Dimensions....................................................... 32  
Changes to Ordering Guide .......................................................... 32  
Rev. C | Page 2 of 32  
 
Data Sheet  
AD9609  
GENERAL DESCRIPTION  
The AD9609 is a monolithic, single channel 1.8 V supply, 10-bit,  
20/40/65/80 MSPS analog-to-digital converter (ADC). It features  
a high performance sample-and-hold circuit and on-chip voltage  
reference.  
A differential clock input with selectable internal 1 to 8 divide ratio  
controls all internal conversion cycles. An optional duty cycle  
stabilizer (DCS) compensates for wide variations in the clock duty  
cycle while maintaining excellent overall ADC performance.  
The product uses multistage differential pipeline architecture  
with output error correction logic to provide 10-bit accuracy at  
80 MSPS data rates and to guarantee no missing codes over the  
full operating temperature range.  
The digital output data is presented in offset binary, gray code, or  
twos complement format. A data output clock (DCO) is provided  
to ensure proper latch timing with receiving logic. Both 1.8 V and  
3.3 V CMOS levels are supported.  
The ADC contains several features designed to maximize flexibility  
and minimize system cost, such as programmable clock and data  
alignment and programmable digital test pattern generation. The  
available digital test patterns include built-in deterministic and  
pseudorandom patterns, along with custom user-defined test  
patterns entered via the serial port interface (SPI).  
The AD9609 is available in a 32-lead RoHS-compliant LFCSP  
and is specified over the industrial temperature range (−40°C  
to +85°C).  
Rev. C | Page 3 of 32  
 
AD9609  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 1.  
AD9609-20/AD9609-40  
AD9609-65  
Typ  
AD9609-80  
Typ  
Parameter  
Temp Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
Full  
10  
10  
10  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Gain Error1  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
Guaranteed  
−0.45 +0.05  
−1.5  
+0.55  
−0.45 +0.05 +0.55 −0.45 +0.05 +0.55 % FSR  
−1.5 −1.5 % FSR  
0.25 LSB  
Differential Nonlinearity (DNL)2  
0.15/ 0.25  
0.25  
0.45  
0.05/ 0.08  
0.15  
0.07  
LSB  
0.45 LSB  
LSB  
Integral Nonlinearity (INL)2  
0.35  
0.15  
2
0.15  
2
0.15  
2
TEMPERATURE DRIFT  
Offset Error  
Full  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation Error at 1.0 mA  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
Full  
Full  
0.984 0.996  
2
1.008  
0.984 0.996 1.008 0.984 0.996 1.008  
V
mV  
2
2
25°C  
0.06  
0.08  
0.08  
LSB rms  
ANALOG INPUT  
Input Span, VREF = 1.0 V  
Input Capacitance3  
Input Common-Mode Voltage  
Input Common-Mode Range  
REFERENCE INPUT RESISTANCE  
POWER SUPPLIES  
Supply Voltage  
AVDD  
DRVDD  
Full  
Full  
Full  
Full  
Full  
2
6
0.9  
2
6
0.9  
2
6
0.9  
V p-p  
pF  
V
0.5  
1.3  
0.5  
1.3  
0.5  
1.3  
V
7.5  
7.5  
1.8  
7.5  
1.8  
kΩ  
Full  
Full  
1.7  
1.7  
1.8  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
1.7  
1.7  
1.9  
3.6  
V
V
Supply Current  
IAVDD2  
IDRVDD2 (1.8 V)  
IDRVDD2 (3.3 V)  
Full  
Full  
Full  
24.9/29.7  
1.4/2.2  
27.0/32.0  
37.1  
3.6  
39.5  
41.8  
4.3  
45  
mA  
mA  
mA  
2.5/4.1  
6.6  
7.9  
POWER CONSUMPTION  
DC Input  
Sine Wave Input2 (DRVDD = 1.8 V)  
Sine Wave Input2 (DRVDD = 3.3 V)  
Standby Power4  
Full  
Full  
Full  
Full  
Full  
45.2/54.7  
46.3/57.4  
53.1/67.0  
34  
67.7  
73.3  
88.6  
34  
76.3  
83.0  
89.5  
34  
mW  
mW  
mW  
mW  
mW  
52.0/61.0  
78.0  
92  
Power-Down Power  
0.5  
0.5  
0.5  
1 Measured with 1.0 V external reference.  
2 Measured with a 10 MHz input frequency at rated sample rate, full-scale sine wave, with approximately 5 pF loading on each output bit.  
3 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
4 Standby power is measured with a dc input and the CLK active.  
Rev. C | Page 4 of 32  
 
 
 
Data Sheet  
AD9609  
AC SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 2.  
AD9609-20/AD9609-40  
AD9609-65  
Min Typ Max  
AD9609-80  
Min Typ Max Unit  
Parameter1  
Temp Min  
Typ  
Max  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
25°C  
61.7  
61.7  
61.5  
61.5  
61.5  
61.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
61.2  
61.0  
60.5  
fIN = 70 MHz  
61.6  
61.5  
61.0  
61.5  
61.0  
61.0  
60.5  
fIN = 200 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
61.6  
61.5  
61.4  
61.3  
61.4  
61.4  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
60.7/60.9  
fIN = 70 MHz  
61.5  
61.4  
60  
61.4  
60  
fIN = 200 MHz  
25°C  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 200 MHz  
25°C  
25°C  
25°C  
25°C  
9.9  
9.9  
9.9  
9.9  
9.9  
9.9  
9.6  
9.9  
9.9  
9.9  
9.6  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
−81  
−80  
−78  
−80  
−78  
−80  
dBc  
dBc  
dBc  
dBc  
−67  
−65.5  
fIN = 70 MHz  
−82  
−78  
−73  
−78  
−73  
−68 dBc  
fIN = 200 MHz  
25°C  
dBc  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
25°C  
Full  
78  
80.5  
75  
75  
75  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
67  
65.5  
fIN = 70 MHz  
78  
75  
73  
75  
73  
68  
fIN = 200 MHz  
25°C  
WORST OTHER (HARMONIC OR SPUR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
25°C  
25°C  
Full  
−82  
−82  
−80  
−80  
−80  
−80  
dBc  
dBc  
dBc  
−74  
−72  
fIN = 70 MHz  
25°C  
Full  
25°C  
−82  
−80  
−80  
−80  
−80  
dBc  
−73 dBc  
dBc  
fIN = 200 MHz  
TWO-TONE SFDR  
fIN = 30.5 MHz (−7 dBFS), 32.5 MHz (−7 dBFS)  
ANALOG INPUT BANDWIDTH  
25°C  
25°C  
78  
78  
dBc  
700  
700  
700  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
Rev. C | Page 5 of 32  
 
AD9609  
Data Sheet  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 3.  
AD9609-20/AD9609-40/AD9609-65/AD9609-80  
Parameter  
Temp  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
High Level Input Current  
Low Level Input Current  
Input Resistance  
CMOS/LVDS/LVPECL  
0.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
0.2  
GND − 0.3  
−10  
−10  
8
3.6  
AVDD + 0.2  
+10  
+10  
12  
V p-p  
V
µA  
µA  
kΩ  
pF  
10  
4
Input Capacitance  
LOGIC INPUTS (SCLK/DFS, MODE, SDIO/PDWN)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−50  
−10  
DRVDD + 0.3  
0.8  
−75  
+10  
V
V
µA  
µA  
kΩ  
pF  
30  
2
Input Capacitance  
LOGIC INPUTS (CSB)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.2  
0
−10  
40  
DRVDD + 0.3  
0.8  
+10  
135  
V
V
µA  
µA  
kΩ  
pF  
26  
2
Input Capacitance  
DIGITAL OUTPUTS  
DRVDD = 3.3 V  
High Level Output Voltage, IOH = 50 µA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 µA  
DRVDD = 1.8 V  
Full  
Full  
Full  
Full  
3.29  
3.25  
V
V
V
V
0.2  
0.05  
High Level Output Voltage, IOH = 50 µA  
High Level Output Voltage, IOH = 0.5 mA  
Low Level Output Voltage, IOL = 1.6 mA  
Low Level Output Voltage, IOL = 50 µA  
Full  
Full  
Full  
Full  
1.79  
1.75  
V
V
V
V
0.2  
0.05  
1 Internal 30 kΩ pull-down.  
2 Internal 30 kΩ pull-up.  
Rev. C | Page 6 of 32  
 
Data Sheet  
AD9609  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
Table 4.  
AD9609-20/AD9609-40  
AD9609-65  
AD9609-80  
Max Min Typ Max Unit  
Parameter  
Temp Min  
Typ  
Max  
Min  
Typ  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
CLK Period—Divide-by-1 Mode (tCLK  
CLK Pulse Width High (tCH)  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
DATA OUTPUT PARAMETERS  
Data Propagation Delay (tPD)  
Full  
Full  
Full  
625  
20/40  
625  
65  
625  
80  
MHz  
MSPS  
ns  
ns  
ns  
3
3
3
12.5  
50/25  
)
15.38  
25.0/12.5  
1.0  
0.1  
7.69  
1.0  
0.1  
6.25  
1.0  
0.1  
Full  
Full  
ps rms  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
3
3
0.1  
8
350  
600/400  
2
3
3
3
3
ns  
ns  
ns  
Cycles  
µs  
DCO Propagation Delay (tDCO  
DCO to Data Skew (tSKEW  
)
)
0.1  
8
350  
300  
2
0.1  
8
350  
260  
2
Pipeline Delay (Latency)  
Wake-Up Time2  
Standby  
ns  
OUT-OF-RANGE RECOVERY TIME  
Cycles  
1 Conversion rate is the clock rate after the CLK divider.  
2 Wake-up time is dependent on the value of the decoupling capacitors.  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCO  
tSKEW  
DATA  
N – 8  
N – 7  
N – 6  
N – 5  
N – 4  
tPD  
Figure 2. CMOS Output Data Timing  
Rev. C | Page 7 of 32  
 
 
AD9609  
Data Sheet  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an  
output relative to the SCLK falling edge  
2
2
40  
2
2
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an  
input relative to the SCLK rising edge  
10  
ns  
Rev. C | Page 8 of 32  
 
 
Data Sheet  
AD9609  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
Parameter  
Rating  
The exposed paddle is the only ground connection for the chip.  
The exposed paddle must be soldered to the AGND plane of the  
users circuit board. Soldering the exposed paddle to the users  
board also increases the reliability of the solder joints and  
maximizes the thermal capability of the package.  
AVDD to AGND  
DRVDD to AGND  
VIN+, VIN− to AGND  
CLK+, CLK− to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
CSB to AGND  
SCLK/DFS to AGND  
SDIO/PDWN to AGND  
MODE/OR to AGND  
D0 through D9 to AGND  
DCO to AGND  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature Under Bias  
Storage Temperature Range (Ambient)  
−0.3 V to +2.0 V  
−0.3 V to +3.9 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DRVDD + 0.3 V  
−40°C to +85°C  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
Package  
Type  
1, 2  
1, 3  
1, 4  
1,2  
θJA  
θJC  
3.1  
θJB  
20.7  
ΨJT  
0.3  
0.5  
0.8  
Unit  
°C/W  
°C/W  
°C/W  
32-Lead LFCSP  
5 mm × 5 mm  
0
1.0  
2.5  
37.1  
32.4  
29.1  
1 Per JEDEC 51-7, plus JEDEC 51-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
150°C  
−65°C to +150°C  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces the θJA.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. C | Page 9 of 32  
 
 
 
 
AD9609  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK+  
CLK–  
AVDD  
1
2
3
4
5
6
24 AVDD  
23  
22 DCO  
MODE/OR  
AD9609  
TOP VIEW  
(Not to Scale)  
CSB  
SCLK/DFS  
SDIO/PDWN  
21 D9 (MSB)  
20  
19  
D8  
D7  
NIC 7  
NIC 8  
18 D6  
17 D5  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. EXPOSED PADDLE. THE EXPOSED PADDLE IS THE ONLY GROUND CONNECTION.  
IT MUST BE SOLDEREDTO THE ANALOG GROUND OF THE PCB  
TO ENSURE PROPER FUNCTIONALITY AND HEAT DISSIPATION,  
NOISE, AND MECHANICAL STRENGTH BENEFITS.  
Figure 3. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
EPAD  
Exposed Paddle. The exposed paddle is the only ground connection. It must be soldered to the analog  
ground of the PCB to ensure proper functionality and heat dissipation, noise, and mechanical strength  
benefits.  
1, 2  
3, 24, 29, 32  
CLK+, CLK−  
AVDD  
Differential Encode Clock for PECL, LVDS, or 1.8 V CMOS Inputs.  
1.8 V Supply Pin for ADC Core Domain.  
4
5
CSB  
SCLK/DFS  
SPI Chip Select. Active low enable, 30 kΩ internal pull-up.  
SPI Clock Input in SPI Mode (SCLK). 30 kΩ internal pull-down.  
Data Format Select in Non-SPI Mode (DFS). Static control of data output format. 30 kΩ internal pull-down.  
DFS high = twos complement output; DFS low = offset binary output.  
6
SDIO/PDWN  
SPI Data Input/Output (SDIO). Bidirectional SPI data I/O with 30 kΩ internal pull-down.  
Non-SPI Mode Power-Down (PDWN). Static control of chip power-down with 30 kΩ internal pull-  
down. See Table 15 for details.  
7 to 10  
NIC  
No Internal Connection.  
ADC Digital Outputs.  
11 to 12, 14 to 21 D0 (LSB) to  
D9 (MSB)  
13  
22  
23  
DRVDD  
DCO  
MODE/OR  
1.8 V to 3.3 V Supply Pin for Output Driver Domain.  
Data Clock Digital Output.  
Chip Mode Select Input (MODE)/Out-of-Range Digital Output in SPI Mode (OR).  
Default = out-of-range (OR) digital output (SPI Register 0x2A, Bit 0 = 1).  
Option = chip mode select input (SPI Register 0x2A, Bit 0 = 0).  
Chip power-down (SPI Register 0x08, Bits[7:5] = 100b).  
Chip stand-by (SPI Register 0x08, Bits[7:5] = 101b).  
Normal operation, output disabled (SPI Register 0x08, Bits[7:5] = 110b).  
Normal operation, output enabled (SPI Register 0x08, Bits[7:5] = 111b).  
Out-of-range (OR) digital output only in non-SPI mode.  
25  
26  
27  
28  
VREF  
SENSE  
VCM  
RBIAS  
VIN−, VIN+  
1.0 V Voltage Reference Input/Output. See Table 10.  
Reference Mode Selection. See Table 10.  
Analog Output Voltage at Mid AVDD Supply. Sets common mode of the analog inputs.  
Set Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
ADC Analog Inputs.  
30, 31  
Rev. C | Page 10 of 32  
 
Data Sheet  
AD9609  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9609-80  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
0
0
80MSPS  
80MSPS  
30.5MHz @ –1dBFS  
SNR = 60.5dB (61.5dBFS)  
SFDR = 83.5dBc  
9.7MHz @ –1dBFS  
SNR = 60.5dB (61.5dBFS)  
SFDR = 80.3dBc  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. AD9609-80 Single-Tone FFT with fIN = 9.7 MHz  
Figure 7. AD9609-80 Single-Tone FFT with fIN = 30.5 MHz  
0
0
80MSPS  
80MSPS  
200MHz @ –1dBFS  
SNR = 60.1dB (60.1dBFS)  
SFDR = 74.176dBc  
70.3MHz @ –1dBFS  
SNR = 60.4dB (61.4dBFS)  
SFDR = 82.2dBc  
–20  
–40  
–20  
–40  
–60  
–60  
2
–80  
–80  
3
+
6
5
4
–100  
–120  
–100  
–120  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. AD9609-80 Single-Tone FFT with fIN = 70.3 MHz  
Figure 8. AD9609-80 Single-Tone FFT with fIN = 200 MHz  
0
80MSPS  
–10  
30.5MHz @ –7dBFS  
32.5MHz @ –7dBFS  
SFDR = 78dBc  
–15  
–30  
–45  
–60  
–30  
–50  
SFDR (dBc)  
IMD3 (dBc)  
F1 + F2  
2F1 – F2  
2F2 + F1  
–75  
–90  
–70  
SFDR (dBFS)  
IMD3 (dBFS)  
F2 – F1  
2F1 – F2  
–90  
–105  
–120  
–110  
–60  
–54  
–48  
–42  
–36  
–30  
–24  
–18  
–12  
–6  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 9. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with fIN1 = 30.5 MHz  
and fIN2 = 32.5 MHz  
Figure 6. AD9609-80 Two-Tone FFT with fIN1 = 30.5 MHz and fIN2 = 32.5 MHz  
Rev. C | Page 11 of 32  
 
 
AD9609  
Data Sheet  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
85  
80  
75  
70  
65  
60  
55  
50  
0.20  
0.16  
0.12  
0.08  
0.04  
0
SFDR (dBc)  
–0.04  
–0.08  
–0.12  
–0.16  
–0.20  
SNR (dBFS)  
0
50  
100  
150  
200  
24  
224  
424  
624  
824  
1024  
AIN FREQUENCY (MHz)  
OUTPUT CODE  
Figure 10. AD9609-80 SNR/SFDR vs. Input Frequency (AIN) with 2 V p-p Full Scale  
Figure 13. DNL Error with fIN = 9.7 MHz  
85  
1.0  
0.8  
SFDR (dBc)  
80  
0.6  
0.4  
75  
70  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
65  
SNR (dBFS)  
60  
0
10  
20  
30  
40  
50  
60  
70  
80  
24  
224  
424  
624  
824  
1024  
SAMPLE RATE (MHz)  
OUTPUT CODE  
Figure 14. INL with fIN = 9.7 MHz  
Figure 11. AD9609-80 SNR/SFDR vs. Sample Rate with AIN = 9.7 MHz  
90  
80  
SFDRFS  
70  
SNRFS  
60  
50  
40  
SFDR  
30  
20  
SNR  
10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBc)  
Figure 12. AD9609-80 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
Rev. C | Page 12 of 32  
Data Sheet  
AD9609  
AD9609-65  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
0
65MSPS  
9.7MHz @ –1dBFS  
–10  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.1dBc  
–20  
–30  
–40  
SFDR (dBc)  
–50  
–60  
IMD3 (dBc)  
–70  
–80  
SFDR (dBFS)  
–90  
–100  
IMD3 (dBFS)  
–120  
–110  
–60  
0
5
10  
15  
20  
25  
30  
–54  
–48  
–42  
–36  
–30  
–24  
–18  
–12  
–6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 15. AD9609-65 Single-Tone FFT with fIN = 9.7 MHz  
Figure 18. AD9609-65 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
85  
65MSPS  
70.3MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.4dBc  
80  
–20  
SFDR (dBc)  
75  
70  
–40  
–60  
65  
SNR (dBFS)  
–80  
60  
55  
50  
–100  
–120  
0
5
10  
15  
20  
25  
30  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
AIN FREQUENCY (MHz)  
Figure 16. AD9609-65 Single-Tone FFT with fIN = 70.3 MHz  
Figure 19. AD9609-65 SNR/SFDR vs. Input Frequency (AIN) with  
2 V p-p Full Scale  
0
65MSPS  
30.5MHz @ –1dBFS  
–20  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.9dBc  
–40  
–60  
–80  
–100  
–120  
0
5
10  
15  
20  
25  
30  
FREQUENCY (MHz)  
Figure 17. AD9609-65 Single-Tone FFT with fIN = 30.5 MHz  
Rev. C | Page 13 of 32  
 
AD9609  
Data Sheet  
AD9609-40  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
40MSPS  
SFDRFS  
SNRFS  
9.7MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 82.0dBc  
–20  
–40  
–60  
SFDR  
–80  
SNR  
–100  
–120  
0
5
10  
FREQUENCY (MHz)  
15  
20  
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT AMPLITUDE (dBc)  
Figure 22. AD9609-40 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
Figure 20. AD9609-40 Single-Tone FFT with fIN = 9.7 MHz  
0
40MSPS  
30.5MHz @ –1dBFS  
SNR = 60.6dB (61.6dBFS)  
SFDR = 83.8dBc  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (MHz)  
Figure 21. AD9609-40 Single-Tone FFT with fIN = 30.5 MHz  
Rev. C | Page 14 of 32  
 
Data Sheet  
AD9609  
AD9609-20  
AVDD = 1.8 V; DRVDD = 1.8 V, maximum sample rate, 2 V p-p differential input, 1.0 V internal reference; AIN = −1.0 dBFS, 50% duty  
cycle clock, DCS disabled, unless otherwise noted.  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20MSPS  
SFDR (dBFS)  
9.7MHz @ –1dBFS  
SNR = 60.6dBFS (61.6dBFS)  
SFDR = 81.3dBc  
–20  
SNR (dBFS)  
–40  
–60  
SFDR (dBc)  
SNR (dBc)  
–80  
–100  
–120  
–10  
0
2
4
6
8
10  
–60  
–50  
–40  
–30  
–20  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBc)  
Figure 23. AD9609-20 Single-Tone FFT with fIN = 9.7 MHz  
Figure 25. AD9609-20 SNR/SFDR vs. Input Amplitude (AIN) with fIN = 9.7 MHz  
0
20MSPS  
30.5MHz @ –1dBFS  
SNR = 60.6dBFS (61.6dBFS)  
SFDR = 84.0dBc  
–20  
–40  
–60  
–80  
–100  
–120  
0
2
4
6
8
10  
FREQUENCY (MHz)  
Figure 24. AD9609-20 Single-Tone FFT with fIN = 30.5 MHz  
Rev. C | Page 15 of 32  
 
AD9609  
Data Sheet  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
VIN±  
Figure 26. Equivalent Analog Input Circuit  
Figure 30. Equivalent D0 to D9 and OR Digital Output Circuit  
DRVDD  
AVDD  
SCLK/DFS,  
350Ω  
MODE,  
375Ω  
VREF  
SDIO/PDWN  
30kΩ  
7.5kΩ  
Figure 27. Equivalent VREF Circuit  
Figure 31. Equivalent SCLK/DFS, MODE, and SDIO/PDWN Input Circuit  
DRVDD  
AVDD  
AVDD  
30kΩ  
350Ω  
375Ω  
CSB  
SENSE  
Figure 32. Equivalent CSB Input Circuit  
Figure 28. Equivalent SENSE Circuit  
5Ω  
CLK+  
15kΩ  
0.9V  
AVDD  
15kΩ  
5Ω  
CLK–  
375Ω  
RBIAS  
AND VCM  
Figure 29. Equivalent Clock Input Circuit  
Figure 33. Equivalent RBIAS and VCM Circuit  
Rev. C | Page 16 of 32  
 
 
Data Sheet  
AD9609  
THEORY OF OPERATION  
high IF frequencies. Either a shunt capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter at the  
input to limit unwanted broadband noise. See the AN-742  
Application Note, the AN-827 Application Note, and the Analog  
Dialogue article Transformer-Coupled Front-End for Wideband  
A/D Converters(Volume 39, April 2005) for more information. In  
general, the precise values depend on the application.  
The AD9609 architecture consists of a multistage, pipelined ADC.  
Each stage provides sufficient overlap to correct for flash errors in  
the preceding stage. The quantized outputs from each stage are  
combined into a final 10-bit result in the digital correction logic.  
The pipelined architecture permits the first stage to operate with a  
new input sample while the remaining stages operate with pre-  
ceding samples. Sampling occurs on the rising edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9609 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide a  
dc bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 35 and Figure 36.  
100  
The output staging block aligns the data, corrects errors, and  
passes the data to the CMOS output buffers. The output buffers  
are powered from a separate (DRVDD) supply, allowing adjust-  
ment of the output voltage swing. During power-down, the  
output buffers go into a high impedance state.  
90  
80  
SFDR (dBc)  
ANALOG INPUT CONSIDERATIONS  
70  
The analog input to the AD9609 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
SNR (dBFS)  
60  
50  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 35. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 32.1 MHz, fS = 80 MSPS  
H
100  
90  
80  
70  
60  
50  
CPAR  
H
VIN+  
CSAMPLE  
S
S
S
S
CSAMPLE  
SFDR (dBc)  
SNR (dBFS)  
VIN–  
H
CPAR  
H
Figure 34. Switched-Capacitor Input Circuit  
The clock signal alternately switches the input circuit between  
sample-and-hold mode (see Figure 34). When the input circuit  
is switched to sample mode, the signal source must be capable  
of charging the sample capacitors and settling within one-half  
of a clock cycle. A small resistor in series with each input can  
help reduce the peak transient current injected from the output  
stage of the driving source. In addition, low Q inductors or ferrite  
beads can be placed on each leg of the input to reduce high diffe-  
rential capacitance at the analog inputs and, therefore, achieve  
the maximum bandwidth of the ADC. Such use of low Q inductors  
or ferrite beads is required when driving the converter front end at  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 36. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 10.3 MHz, fS = 20 MSPS  
An on-board, common-mode voltage reference is included in  
the design and is available from the VCM pin. The VCM pin  
must be decoupled to ground by a 0.1 µF capacitor, as described  
in the Applications Information section.  
Rev. C | Page 17 of 32  
 
 
 
 
 
AD9609  
Data Sheet  
Differential Input Configurations  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9609. For applications above  
~10 MHz where SNR is a key parameter, differential double balun  
coupling is the recommended input configuration (see Figure 40).  
Optimum performance is achieved while driving the AD9609 in a  
differential input configuration. For baseband applications, the  
AD8138, ADA4937-2, and ADA4938-2 differential drivers provide  
excellent performance and a flexible interface to the ADC. The  
output common-mode voltage of the ADA4938-2 is easily set  
with the VCM pin of the AD9609 (see Figure 37), and the driver  
can be configured in a Sallen-Key filter topology to provide  
band limiting of the input signal.  
An alternative to using a transformer-coupled input at frequencies  
in the second Nyquist zone is to use the AD8352 differential driver.  
An example is shown in Figure 41. See the AD8352 data sheet  
for more information.  
200Ω  
33Ω  
VIN–  
VIN  
76.8Ω  
AVDD  
In any configuration, the value of Shunt Capacitor C is dependent  
on the input frequency and source impedance and may need to  
be reduced or removed. Table 9 displays the suggested values to set  
the RC network. However, these values are dependent on the  
input signal and should be used only as a starting guide.  
90Ω  
10pF  
ADC  
ADA4938-2  
33Ω  
0.1µF  
120Ω  
VCM  
VIN+  
200Ω  
Figure 37. Differential Input Configuration Using the ADA4938-2  
Table 9. Example RC Network  
For baseband applications below ~10 MHz where SNR is a key  
parameter, differential transformer-coupling is the recommended  
input configuration. An example is shown in Figure 38. To bias  
the analog input, the VCM voltage can be connected to the  
center tap of the secondary winding of the transformer.  
R Series  
(Ω Each)  
Frequency Range (MHz)  
0 to 70  
C Differential (pF)  
33  
22  
Open  
70 to 200  
125  
Single-Ended Input Configuration  
VIN+  
R
A single-ended input can provide adequate performance in cost-  
sensitive applications. In this configuration, SFDR and distortion  
performance degrade due to the large input common-mode swing.  
If the source impedances on each input are matched, there should  
be little effect on SNR performance. Figure 39 shows a typical  
single-ended input configuration.  
2V p-p  
49.9Ω  
C
ADC  
R
VCM  
VIN–  
0.1µF  
Figure 38. Differential Transformer-Coupled Configuration  
10µF  
AVDD  
The signal characteristics must be considered when selecting a  
transformer. Most RF transformers saturate at frequencies below  
a few megahertz (MHz). Excessive signal power can also cause  
core saturation, which leads to distortion.  
1kΩ  
R
VIN+  
1V p-p  
0.1µF  
49.9Ω  
1kΩ  
AVDD  
ADC  
C
1kΩ  
R
VIN–  
10µF  
0.1µF  
1kΩ  
Figure 39. Single-Ended Input Configuration  
0.1µF  
R
0.1µF  
VIN+  
2V p-p  
25Ω  
25Ω  
P
A
S
S
P
C
ADC  
0.1µF  
0.1µF  
R
VCM  
VIN–  
Figure 40. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0Ω  
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+  
VIN–  
2
200Ω  
C
ADC  
AD8352  
10  
R
R
G
C
D
D
3
4
5
200Ω  
VCM  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 41. Differential Input Configuration Using the AD8352  
Rev. C | Page 18 of 32  
 
 
 
 
 
 
Data Sheet  
AD9609  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9609. The VREF can be configured using either the internal  
1.0 V reference or an externally applied 1.0 V reference voltage.  
The various reference modes are summarized in the sections that  
follow. The Reference Decoupling section describes the best  
practices for PCB layout of VREF.  
INTERNAL VREF = 0.996V  
Internal Reference Connection  
A comparator within the AD9609 detects the potential at the  
SENSE pin and configures the reference into two possible modes,  
which are summarized in Table 10. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 42), setting VREF to 1.0 V.  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
LOAD CURRENT (mA)  
Figure 43. VREF Accuracy vs. Load Current  
VIN+  
VIN–  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 44 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
ADC  
CORE  
VREF  
4
1.0µF  
0.1µF  
3
SELECT  
LOGIC  
2
SENSE  
VREF ERROR (mV)  
1
0
0.5V  
–1  
–2  
–3  
–4  
–5  
–6  
ADC  
Figure 42. Internal Reference Configuration  
In either internal or external reference mode, the maximum input  
range of the ADC can be varied by configuring SPI Address 0x18  
as shown in Table 11, resulting in a selectable differential span  
from 1 V p-p to 2 V p-p.  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
If the internal reference of the AD9609 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 43 shows  
how the internal reference voltage is affected by loading.  
Figure 44. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 27). The internal buffer generates the posi-  
tive and negative full-scale references for the ADC core. Therefore,  
the external reference must be limited to a maximum of 1.0 V.  
Table 10. Reference Configuration Summary  
Selected Mode  
SENSE Voltage (V) Resulting VREF (V)  
Resulting Differential Span (V p-p)  
Fixed Internal Reference  
Fixed External Reference  
AGND to 0.2  
AVDD  
1.0 internal  
1.0 applied to external VREF pin  
2.0  
2.0  
Table 11. Scaled Differential Span Summary  
Selected Mode  
Resulting VREF (V)  
SPI Register 0x18 (Hex)  
Resulting Differential Span (V p-p)  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
Fixed Internal or External Reference  
1.0 (internal or external)  
1.0 (internal or external)  
1.0 (internal or external)  
1.0 (internal or external)  
1.0 (internal or external)  
0xC0  
0xC8  
0xD0  
0xD8  
0xE0  
1.0  
1.14  
1.33  
1.6  
2.0  
Rev. C | Page 19 of 32  
 
 
 
 
 
 
AD9609  
Data Sheet  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 48. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516-4/AD9517-4 clock drivers  
offer excellent jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9609 sample clock inputs,  
CLK+ and CLK−, with a differential signal. The signal is typically  
ac-coupled into the CLK+ and CLK− pins via a transformer or  
capacitors. These pins are biased internally (see Figure 45) and  
require no external bias.  
AVDD  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
PECL DRIVER  
0.9V  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
CLK–  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
2pF  
2pF  
Figure 48. Differential PECL Sample Clock (Up to 625 MHz)  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 49. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516-4/  
AD9517-4 clock drivers offer excellent jitter performance.  
Figure 45. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9609 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of great concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
Figure 46 and Figure 47 show two preferred methods for clock-  
ing the AD9609 (at clock rates up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF transformer or an RF balun.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 49. Differential LVDS Sample Clock (Up to 625 MHz)  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is  
recommended for clock frequencies from 10 MHz to 200 MHz.  
The back-to-back Schottky diodes across the transformer/  
balun secondary limit clock excursions into the AD9609 to  
approximately 0.8 V p-p differential.  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 μF capacitor (see  
Figure 50).  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9609 while  
preserving the fast rise and fall times of the signal that are  
critical to a low jitter performance.  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
CLK–  
®
Mini-Circuits  
0.1µF  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
1
50Ω RESISTOR IS OPTIONAL.  
CLK+  
100Ω  
50Ω  
ADC  
Figure 50. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
0.1µF  
CLK–  
Input Clock Divider  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
The AD9609 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. Optimum  
performance can be obtained by enabling the internal duty cycle  
stabilizer (DCS) when using divide ratios other than 1, 2, or 4.  
Figure 46. Transformer-Coupled Differential Clock (Up to 200 MHz)  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 47. Balun-Coupled Differential Clock (Up to 625 MHz)  
Rev. C | Page 20 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD9609  
Clock Duty Cycle  
Jitter Considerations  
Typical high speed ADCs use both clock edges to generate a  
variety of internal timing signals and, as a result, may be sensitive  
to clock duty cycle. Commonly, a 5% tolerance is required on  
the clock duty cycle to maintain dynamic performance  
characteristics.  
High speed, high resolution ADCs are sensitive to the quality of  
the clock input. The degradation in SNR from the low frequency  
SNR (SNRLF) at a given input frequency (fINPUT) due to jitter  
(tJRMS) can be calculated by  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
The AD9609 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9609. Noise and distortion performance  
are nearly flat for a wide range of duty cycles with the DCS on,  
as shown in Figure 51.  
In the previous equation, the rms aperture jitter represents the  
clock input jitter specification. IF undersampling applications  
are particularly sensitive to jitter, as illustrated in Figure 52.  
80  
75  
70  
65  
0.05ps  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz nominally. The loop has a time constant associated  
with it that must be considered in applications in which the  
clock rate can change dynamically. A wait time of 1.5 µs to 5 µs  
is required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal.  
0.2ps  
60  
55  
50  
0.5ps  
1.0ps  
1.5ps  
2.0ps  
2.5ps  
3.0ps  
45  
80  
75  
70  
1
10  
100  
1k  
FREQUENCY (MHz)  
Figure 52. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal when  
aperture jitter may affect the dynamic range of the AD9609. To  
avoid modulating the clock signal with digital noise, keep power  
supplies for clock drivers separate from the ADC output driver  
supplies. Low jitter, crystal-controlled oscillators make the best  
clock sources. If the clock is generated from another type of source  
(by gating, dividing, or another method), it should be retimed by  
the original clock at the last step.  
DCS ON  
65  
60  
55  
DCS OFF  
50  
45  
40  
For more information, see the AN-501 Application Note and  
the AN-756 Application Note.  
10  
20  
30  
40  
50  
60  
70  
80  
POSITIVE DUTY CYCLE (%)  
Figure 51. SNR vs. DCS On/Off  
Rev. C | Page 21 of 32  
 
 
 
AD9609  
Data Sheet  
Low power dissipation in power-down mode is achieved by  
POWER DISSIPATION AND STANDBY MODE  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation. As a result, wake-up time is related to the time spent  
in power-down mode, and shorter power-down cycles result in  
proportionally shorter wake-up times.  
As shown in Figure 53, the analog core power dissipated by the  
AD9609 is proportional to its sample rate. The digital power  
dissipation of the CMOS outputs are determined primarily by  
the strength of the digital drivers and the load on each output bit.  
The maximum DRVDD current (IDRVDD) can be calculated as  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details.  
where N is the number of output bits (22, in the case of the  
AD9609).  
This maximum current occurs when every output bit switches  
on every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is estab-  
lished by the average number of output bits switching, which  
is determined by the sample rate and the characteristics of the  
analog input signal.  
DIGITAL OUTPUTS  
The AD9609 output drivers can be configured to interface with  
1.8 V to 3.3 V CMOS logic families. Output data can also be  
multiplexed onto a single output bus to reduce the total number  
of traces required.  
Reducing the capacitive load presented to the output drivers can  
minimize digital power consumption. The data in Figure 53 was  
taken using the same operating conditions as those used for the  
Typical Performance Characteristics, with a 5 pF load on each  
output driver.  
The CMOS output drivers are sized to provide sufficient output  
current to drive a wide variety of logic families. However, large  
drive currents tend to cause current glitches on the supplies and  
may affect converter performance.  
85  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
80  
75  
70  
The output data format can be selected to be either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 12).  
65  
AD9609-80  
60  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
55  
50  
45  
40  
35  
AD9609-65  
AD9609-40  
Table 12. SCLK/DFS and SDIO/PDWN Mode Selection  
(External Pin Mode)  
AD9609-20  
20 30  
Voltage at Pin SCLK/DFS  
SDIO/PDWN  
10  
40  
50  
60  
70  
80  
CLOCK RATE (MSPS)  
AGND  
Offset binary (default) Normal operation  
(default)  
Figure 53. AD9609 Analog Core Power vs. Clock Rate  
DRVDD  
Twos complement  
Outputs disabled  
In SPI mode, the AD9609 can be placed in power-down mode  
directly via the SPI port, or by using the programmable external  
MODE pin. In non-SPI mode, power-down is achieved by assert-  
ing the PDWN pin high. In this state, the ADC typically dissipates  
500 µW. During power-down, the output drivers are placed in a  
high impedance state. Asserting PDWN low (or the MODE pin  
in SPI mode) returns the AD9609 to its normal operating mode.  
Note that PDWN is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
Digital Output Enable Function (OEB)  
When using the SPI interface, the data outputs and DCO can be  
independently three-stated by using the programmable external  
MODE pin. The MODE pin (OEB) function is enabled via  
Bits[6:5] of Register 0x08.  
If the MODE pin is configured to operate in traditional OEB  
mode, and the MODE pin is low, the output data drivers and  
DCOs are enabled. If the MODE pin is high, the output data  
drivers and DCOs are placed in a high impedance state. This  
OEB function is not intended for rapid access to the data bus.  
Note the MODE pin is referenced to the digital output driver  
supply (DRVDD) and should not exceed that supply voltage.  
Rev. C | Page 22 of 32  
 
 
 
 
Data Sheet  
AD9609  
The lowest typical conversion rate of the AD9609 is 3 MSPS. At  
clock rates below 3 MSPS, dynamic performance can degrade.  
TIMING  
The AD9609 provides latched data with a pipeline delay of eight  
clock cycles. Data outputs are available one propagation delay  
(tPD) after the rising edge of the clock signal.  
Data Clock Output (DCO)  
The AD9609 provides a data clock output (DCO) signal intended  
for capturing the data in an external register. The CMOS data  
outputs are valid on the rising edge of DCO, unless the DCO  
clock polarity has been changed via the SPI. See Figure 2 for a  
graphical timing description.  
Minimize the length of the output data lines and loads placed  
on them to reduce transients within the AD9609. These transients  
can degrade converter dynamic performance.  
Table 13. Output Data Format  
Input (V)  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
Offset Binary Output Mode  
00 0000 0000  
00 0000 0000  
10 0000 0000  
11 1111 1111  
Twos Complement Mode  
10 0000 0000  
10 0000 0000  
00 0000 0000  
01 1111 1111  
OR  
1
0
0
0
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
11 1111 1111  
01 1111 1111  
1
Rev. C | Page 23 of 32  
 
AD9609  
Data Sheet  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9609 includes a built-in test feature designed to enable  
verification of the integrity of each channel as well as to facili-  
tate board level debugging. A built-in self-test (BIST) feature that  
verifies the integrity of the digital datapath of the AD9609 is  
included. Various output test options are also provided to place  
predictable values on the outputs of the AD9609.  
Bit 2 (BIST INIT) of Register 0x0E. At the completion of the BIST,  
Bit 0 of Register 0x24 is automatically cleared. The PN sequence  
can be continued from its last value by writing a 0 in Bit 2 of  
Register 0x0E. However, if the PN sequence is not reset, the  
signature calculation does not equal the predetermined value at  
the end of the test. At that point, the user needs to rely on  
verifying the output data.  
BUILT-IN SELF-TEST (BIST)  
OUTPUT TEST MODES  
The BIST is a thorough test of the digital portion of the selected  
AD9609 signal path. Perform the BIST test after a reset to ensure  
that the part is in a known state. During BIST, data from an internal  
pseudorandom noise (PN) source is driven through the digital  
datapath of both channels, starting at the ADC block output.  
At the datapath output, CRC logic calculates a signature from  
the data. The BIST sequence runs for 512 cycles and then stops.  
Once completed, the BIST compares the signature results with a  
pre-determined value. If the signatures match, the BIST sets Bit 0  
of Register 0x24, signifying the test passed. If the BIST test failed,  
Bit 0 of Register 0x24 is cleared. The outputs are connected during  
this test, so the PN sequence can be observed as it runs. Writing  
0x05 to Register 0x0E runs the BIST. This enables the Bit 0 (BIST  
enable) of Register 0x0E and resets the PN sequence generator,  
The output test options are described in Table 17 at Address 0x0D.  
When an output test mode is enabled, the analog section of the  
ADC is disconnected from the digital back-end blocks and the  
test pattern is run through the output formatting block. Some of  
the test patterns are subject to output formatting, and some are  
not. The PN generators from the PN sequence tests can be reset  
by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be  
performed with or without an analog signal (if present, the analog  
signal is ignored), but they do require an encode clock. For more  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Rev. C | Page 24 of 32  
 
 
 
Data Sheet  
AD9609  
SERIAL PORT INTERFACE (SPI)  
The AD9609 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending  
on the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are  
documented in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK, determines the start of the framing. An example of the  
serial timing and its definitions can be found in Figure 54 and  
Table 5.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device; this is  
called streaming. The CSB can stall high between bytes to allow for  
additional external timing. When CSB is tied high, SPI functions  
are placed in high impedance mode. This mode turns on any  
SPI pin secondary functions.  
CONFIGURATION USING THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits, as shown in Figure 54.  
Three pins define the SPI of this ADC: SCLK, SDIO, and CSB  
(see Table 14). The SCLK (a serial clock) is used to synchronize  
the read and write data presented from and to the ADC. SDIO  
(serial data input/output) is a dual-purpose pin that allows data to  
be sent and read from the internal ADC memory map registers.  
The CSB (chip select bar) is an active-low control that enables  
or disables the read and write cycles.  
All data is composed of 8-bit words. The first bit of the first byte  
in a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. This allows the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. If the instruction is a readback  
operation, performing a readback causes the serial data input/  
output (SDIO) pin to change direction from an input to an output  
at the appropriate point in the serial frame.  
Table 14. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
Data can be sent in MSB-first mode or in LSB-first mode. MSB  
first is the default on power-up and can be changed via the SPI  
port configuration register. For more information about this and  
other features, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
CSB  
Chip select bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 54. Serial Port Interface Timing Diagram  
Rev. C | Page 25 of 32  
 
 
 
 
AD9609  
Data Sheet  
HARDWARE INTERFACE  
CONFIGURATION WITHOUT THE SPI  
The pins described in Table 14 constitute the physical interface  
between the programming device of the user and the serial port  
of the AD9609. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
In applications that do not interface to the SPI control registers,  
the SDIO/PDWN pin and the SCLK/DFS pin serve as standalone  
CMOS-compatible control pins. When the device is powered up, it  
is assumed that the user intends to use the pins as static control  
lines for the power-down and output data format feature control.  
In this mode, connect the CSB chip select to DRVDD, which  
disables the serial port interface.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note,  
Table 15. Mode Selection  
External  
Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.  
Pin  
SDIO/PDWN DRVDD  
AGND (default)  
DRVDD  
AGND (default)  
Voltage  
Configuration  
Chip power-down mode  
Normal operation (default)  
Twos complement enabled  
Offset binary enabled  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9609 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
SCLK/DFS  
SPI ACCESSIBLE FEATURES  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9609 part-specific features are described in  
detail in Table 17.  
SDIO/PDWN and SCLK/DFS serve a dual function when the  
SPI interface is not being used. When the pins are strapped to  
DRVDD or ground during device power-on, they are associated  
with a specific function. The Digital Outputs section describes  
the strappable functions supported on the AD9609.  
Table 16. Features Accessible Using the SPI  
Feature  
Description  
Modes  
Allows the user to set either power-down mode  
or standby mode  
Clock  
Offset  
Allows the user to access the DCS via the SPI  
Allows the user to digitally adjust the  
converter offset  
Test I/O  
Allows the user to set test modes to have known  
data on output bits  
Output Mode Allows the user to set up outputs  
Output Phase Allows the user to set the output clock polarity  
Output Delay Allows the user to vary the DCO delay  
VREF  
Allows the user to set the reference voltage  
Rev. C | Page 26 of 32  
 
 
 
 
 
Data Sheet  
AD9609  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
DEFAULT VALUES  
Each row in the memory map register table (see Table 17)  
contains eight bit locations. The memory map is roughly  
divided into four sections: the chip configuration registers  
(Address 0x00 to Address 0x02); the device index and transfer  
register (Address 0xFF); the program registers, including setup,  
control, and test (Address 0x08 to Address 0x2A); and the  
AD9609-specific customer SPI control register (Address 0x101).  
After the AD9609 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table (see Table 17).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
Table 17 documents the default hexadecimal value for each  
hexadecimal address shown. The column with the heading Bit 7  
(MSB) is the start of the default hexadecimal value given. For  
example, Address 0x2A, the OR/MODE select register, has a hexa-  
decimal default value of 0x01. This means that in Address 0x2A,  
Bits[7:1] = 0, and Bit 0 = 1. This setting is the default OR/MODE  
setting. The default value results in the programmable external  
MODE/OR pin (Pin 23) functioning as an out-of-range digital  
output. For more information on this function and others, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
This application note details the functions controlled by Register  
0x00 to Register 0xFF. The remaining register, Register 0x101, is  
documented in the Memory Map Register Descriptions section  
that follows Table 17.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 to Address 0x18 are shadowed. Writes to these  
addresses do not affect part operation until a transfer command  
is issued by writing 0x01 to Address 0xFF, setting the transfer bit.  
This allows these registers to be updated internally and simulta-  
neously when the transfer bit is set. The internal update takes  
place when the transfer bit is set, and then the bit autoclears.  
OPEN LOCATIONS  
All address and bit locations that are not included in the SPI map  
are not currently supported for this device. Unused bits of a valid  
address location should be written with 0s. Writing to these loca-  
tions is required only when part of an address location is open  
(for example, Address 0x2A). If the entire address location is  
open, it is omitted from the SPI map (for example, Address 0x13)  
and should not be written.  
Rev. C | Page 27 of 32  
 
 
 
 
AD9609  
Data Sheet  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17.  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0
LSB  
first  
1
1
Soft  
LSB  
first  
0
0x18  
The nibbles are  
mirrored so that LSB  
or MSB first mode  
registers correctly,  
regardless of shift  
mode  
Soft  
reset1  
reset1  
0x01  
0x02  
Chip ID  
8-bit chip ID, Bits[7:0]  
AD9609 = 0x71  
Read only  
Read only  
Unique chip ID used  
to differentiate  
devices; read only  
Unique speed grade  
ID used to  
differentiate  
Chip grade  
Speed grade ID, Bits[6:4]  
(identify device variants of  
chip ID)  
Open  
Open  
20 MSPS = 000  
devices; read only  
40 MSPS = 001  
65 MSPS = 010  
80 MSPS = 011  
Device Index and Transfer Register  
0xFF  
Transfer  
Open  
Open Open  
Open  
Open  
Open Open  
Open Open  
Open  
Transfer  
0x00  
0x00  
Synchronously  
transfers data from  
the master shift  
register to the slave  
Program Registers  
0x08  
Modes  
External  
Pin 23  
mode  
External Pin 23  
function when  
high  
00 = chip run  
01 = full power-down  
10 = standby  
Determines various  
generic modes of  
chip operation  
input  
enable  
00 = full power  
down  
11 = chip wide digital  
reset  
01 = standby  
10 = normal  
mode: output  
disabled  
11 = normal  
mode: output  
enabled  
0x09  
0x0B  
Clock  
Open  
Open Open  
Open  
Open  
Duty cycle  
stabilize  
0x01  
0x00  
Enable internal duty  
cycle stabilizer (DCS)  
The divide ratio is  
the value plus 1  
Clock divide  
Clock divider, Bits[2:0]  
Clock divide ratio  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
Open  
0x0D  
Test mode  
User test mode  
00 = single  
01 = alternate  
10 = single once  
11 = alternate once  
Reset  
PN  
long  
gen  
Reset  
PN  
short  
gen  
Output test mode, Bits[3:0] (local)  
0000 = off (default)  
0001 = midscale short  
0010 = positive FS  
0x00  
When set, the test  
data is placed on  
the output pins in  
place of normal  
data  
0011 = negative FS  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = 1/0 word toggle  
1000 = user input  
1001 = 1/0 bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x0E  
BIST enable  
Open  
Open Open  
Open  
Open BIST  
INIT  
BIST enable  
0x00  
When Bit 0 is set,  
the built in self-test  
Open  
Rev. C | Page 28 of 32  
 
 
Data Sheet  
AD9609  
Default  
Value  
(Hex)  
Addr  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Register Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
function is initiated.  
0x10  
0x14  
Offset adjust  
Output mode  
8-bit device offset adjustment, Bits[7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x00  
Device offset trim  
00 = 3.3 V CMOS  
10 = 1.8 V CMOS  
Open  
Output  
disable  
Open Output  
invert  
00 = offset binary  
01 = twos complement  
10 = gray code  
Configures the  
outputs and the  
format of the data  
11 = offset binary  
0x15  
Output adjust  
3.3 V DCO  
1.8 V DCO  
3.3 V data  
1.8 V data  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes (default)  
11 = 4 stripes  
0x22  
Determines CMOS  
output drive  
strength properties  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
drive strength  
00 = 1 stripe  
01 = 2 stripes  
10 = 3 stripes  
(default)  
drive strength  
00 = 1 stripe  
(default)  
01 = 2 stripes  
10 = 3 stripes  
11 = 4 stripes  
11 = 4 stripes  
0x16  
Output phase  
DCO  
Open Open  
Open  
Open  
Input clock phase adjust, Bits[2:0]  
(Value is number of input clock  
cycles of phase delay)  
0x00  
On devices that  
utilize global clock  
divide, determines  
which phase of the  
divider output is  
used to supply the  
output clock;  
Output  
polarity  
0 =  
normal  
1 =  
000 = no delay  
001 = 1 input clock cycle  
010 = 2 input clock cycles  
011 = 3 input clock cycles  
100 = 4 input clock cycles  
101 = 5 input clock cycles  
110 = 6 input clock cycles  
111 = 7 input clock cycles  
inverted  
internal latching is  
unaffected  
0x17  
Output delay  
Enable  
DCO  
delay  
Open Enable  
data  
Open  
DCO/data delay[2:0]  
000 = 0.56 ns  
001 = 1.12 ns  
010 = 1.68 ns  
011 = 2.24 ns  
100 = 2.80 ns  
101 = 3.36 ns  
110 = 3.92 ns  
111 = 4.48 ns  
0x00  
Sets the fine output  
delay of the output  
clock but does not  
change internal  
timing  
delay  
0x18  
VREF  
Reserved =11  
Internal VREF adjustment,  
Bits[2:0]  
000 = 1.0 V p-p  
001 = 1.14 V p-p  
010 = 1.33 V p-p  
011 = 1.60 V p-p  
100 = 2.0 V p-p  
Open  
0xE0  
Selects and/or  
adjusts the VREF  
full-scale span  
0x19  
0x1A  
0x1B  
0x1C  
0x24  
USER_PATT1_LSB  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
0x00  
User-defined  
pattern, 1 LSB  
User-defined  
pattern, 1 MSB  
User-defined  
pattern, 2 LSB  
User-defined  
pattern, 2 MSB  
Least significant  
byte of BIST  
USER_PATT1_MSB B15  
USER_PATT2_LSB B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
USER_PATT2_MSB B15  
BIST signature LSB  
B14  
B13  
B12  
B11  
B10  
BIST signature, Bits[7:0]  
signature, read only  
0x2A  
OR/MODE select  
Open  
Open Open  
Open  
Open  
Open  
Open  
Open  
0 = MODE  
1 = OR  
(default)  
0x01  
Selects I/O  
functionality in  
conjunction with  
Address 0x08 for  
MODE (input) or OR  
(output) on external  
Pin 23  
1.1. AD9609-Specific Customer SPI Control  
0x101 USR2  
1
Open  
Enable Run  
GCLK  
detect  
Disable SDIO  
pull-down  
0x88  
Enables internal  
oscillator for clock  
rates <5 MHz  
GCLK  
1 See the Soft Reset section for limitations on the use of soft reset.  
Rev. C | Page 29 of 32  
AD9609  
Data Sheet  
Bit 2—Run GCLK  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
This bit enables the GCLK oscillator. For some applications  
with encode rates below 10 MSPS, it may be preferable to set  
this bit high to supersede the GCLK detector.  
USR2 (Register 0x101)  
Bit 0—Disable SDIO Pull-Down  
Bit 3—Enable GCLK Detect  
This bit can be set high to disable the internal 30 kΩ pull-down  
on the SDIO pin, which can be used to limit the loading when  
many devices are connected to the SPI bus.  
Normally set high, this bit enables a circuit that detects encode  
rates below about 5 MSPS. When a low encode rate is detected,  
an internal oscillator, GCLK, is enabled ensuring the proper  
operation of several circuits. If set low, the detector is disabled.  
Rev. C | Page 30 of 32  
 
Data Sheet  
AD9609  
APPLICATIONS INFORMATION  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP).  
DESIGN GUIDELINES  
Before starting design and layout of the AD9609 as a system, it  
is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements needed for certain pins.  
Power and Ground Recommendations  
When connecting power to the AD9609, it is strongly  
recommended that two separate supplies be used. Use one 1.8 V  
supply for analog (AVDD); use a separate 1.8 V to 3.3 V supply for  
the digital output supply (DRVDD). If a common 1.8 V AVDD  
and DRVDD supply must be used, the AVDD and DRVDD  
domains must be isolated with a ferrite bead or filter choke and  
separate decoupling capacitors. Several different decoupling  
capacitors can be used to cover both high and low frequencies.  
Locate these capacitors close to the point of entry at the PCB  
level and close to the pins of the part, with minimal trace length.  
Encode Clock  
For optimum dynamic performance a low jitter encode clock  
source with a 50% duty cycle 5% should be used to clock the  
AD9609.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 μF  
capacitor, as shown in Figure 38.  
A single PCB ground plane should be sufficient when using the  
AD9609. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
RBIAS  
The AD9609 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
When powering down the AD9609, power off AVDD and  
DRVDD simultaneously, or DRVDD must be removed before  
AVDD.  
Reference Decoupling  
Externally decoupled the VREF pin to ground with a low ESR, 1.0  
μF capacitor in parallel with a low ESR, 0.1 μF ceramic capacitor.  
Exposed Paddle Thermal Heat Sink Recommendations  
The exposed paddle (Pin 0) is the only ground connection for  
the AD9609; therefore, it must be connected to analog ground  
(AGND) on the customers PCB. To achieve the best electrical  
and thermal performance, mate an exposed (no solder mask)  
continuous copper plane on the PCB to the AD9609 exposed  
paddle, Pin 0.  
SPI Port  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9609 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
The copper plane should have several vias to achieve the  
lowest possible resistive thermal path for heat dissipation to  
flow through the bottom of the PCB. Fill or plug these vias  
with nonconductive epoxy.  
Soft Reset  
In applications with DRVDD ≥ 2.75 V, do not perform soft reset  
(Register 0x00 Bit 2 and Bit 5 = 1). Soft reset restores AD9609  
defaults already available at power-up and is not needed.  
Rev. C | Page 31 of 32  
 
 
 
 
AD9609  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
25  
32  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
24  
1
0.50  
BSC  
3.65  
EXPOSED  
PAD  
3.50 SQ  
3.45  
8
17  
9
16  
0.50  
0.40  
0.30  
0.20 MIN  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
3.50 REF  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD  
Figure 55. 32-Lead Lead Frame Chip Scale Package [LFCSP]  
5 mm × 5 mm Body and 0.75 mm Package Height  
(CP-32-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
Temperature Range  
Package Description  
Package Option  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
CP-32-11  
AD9609BCPZ-80  
AD9609BCPZRL7-80  
AD9609BCPZ-65  
AD9609BCPZRL7-65  
AD9609BCPZ-40  
AD9609BCPZRL7-40  
AD9609BCPZ-20  
AD9609BCPZRL7-20  
AD9609-80EBZ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
32-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
AD9609-65EBZ  
Evaluation Board  
AD9609-40EBZ  
Evaluation Board  
AD9609-20EBZ  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 For the AD9609BCPZ models, the exposed paddle (Pin 0) is the only GND connection on the chip and must be connected to the PCB AGND.  
©2009–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08541-0-11/18(C)  
Rev. C | Page 32 of 32  
 
 

相关型号:

AD9609BCPZRL7-80

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9609_17

10-Bit, 20 MSPS/40 MSPS/65 MSPS/80 MSPS, 1.8 V Analog-to-Digital Converter
ADI

AD9610

Wide Bandwidth, Fast Settling Operational Amplifier
ADI

AD9610BH

Wide Bandwidth, Fast Settling Operational Amplifier
ADI

AD9610TH

Wide Bandwidth, Fast Settling Operational Amplifier
ADI

AD9610TH/883B

Wide Bandwidth, Fast Settling Operational Amplifier
ADI

AD9611BH

Current-Feedback Operational Amplifier
ETC

AD9611TH

Current-Feedback Operational Amplifier
ETC

AD9613-170EBZ

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613-210EBZ

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613-250EBZ

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9613BCPZ-170

12-Bit, 170 MSPS/210 MSPS/250 MSPS,1.8 V Dual Analog-to-Digital Converter (ADC)
ADI