AD9623AR [ADI]

IC OP-AMP, 10000 uV OFFSET-MAX, 270 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier;
AD9623AR
型号: AD9623AR
厂家: ADI    ADI
描述:

IC OP-AMP, 10000 uV OFFSET-MAX, 270 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier

放大器 光电二极管
文件: 总6页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband Voltage  
Feedback Amplifier  
a
AD9623*  
CO NNECTIO N D IAGRAM  
FEATURES  
270 MHz Sm all Signal Bandw idth  
190 MHz Large Signal BW (4 V p-p)  
High Slew Rate: 2100 V/ s  
Low Distortion: 64 dB @ 20 MHz  
Fast Settling: 15 ns to 0.01%  
2.6 nV/ Hz Spectral Noise Density  
؎3 V Supply Operation  
1
8
7
6
5
NC #  
NC #  
2
3
4
+V  
S
–INPUT  
+INPUT  
OUTPUT  
NC  
–V  
S
AD9623  
APPLICATIONS  
ADC Input Driver  
Differential Am plifiers  
IF/ RF Am plifiers  
# OPTIONAL CAPACITOR CB CONNECTED HERE  
DECREASES SETTLING TIME (SEE TEXT).  
Pulse Am plifiers  
Professional Video  
DAC Current-to-Voltage  
Baseband and Video Com m unications  
Active Filters/ lntegrators/ Log Am ps  
Other members of the AD962X amplifier family are the  
AD9621 (G = +1), AD9622 (G = +2), and the AD9624  
(G = +6). A separate data sheet is available from Analog  
Devices for each model. Each generic device has been designed  
for a different minimum stable gain setting, allowing users flex-  
ibility in optimizing system performance. Dynamic performance  
specifications such as slew rate, settling time, and distortion vary  
from model to model. T he table below summarizes key perfor-  
mance attributes for the AD962X family and can be used as a  
selection guide.  
GENERAL D ESCRIP TIO N  
T he AD9623 is one of a family of very high speed and wide  
bandwidth amplifiers utilizing a voltage feedback architecture.  
T hese amplifiers define a new level of performance for voltage  
feedback amplifiers, especially in the categories of large signal  
bandwidth, slew rate, settling, low distortion, and low noise.  
Proprietary design architectures have resulted in an amplifier  
family that combines the most attractive attributes of both cur-  
rent feedback and voltage feedback amplifiers. T he AD9623  
exhibits extraordinarily accurate and fast pulse response charac-  
teristics (8 ns settling to 0.1%) as well as extremely wide small  
and large signal bandwidth previously found only in current  
feedback amplifiers. When combined with balanced high imped-  
ance inputs and low input noise current more common to volt-  
age feedback architectures, the AD9623 offers performance not  
previously available in a monolithic operational amplifier.  
T he AD9623 is offered in industrial and military temperature  
ranges. Industrial versions are available in plastic DIP, SOIC,  
and cerdip; MIL versions are packaged in cerdips.  
P RO D UCT H IGH LIGH TS  
1. Wide Large Signal Bandwidth  
2. High Slew Rate  
3. Fast Settling  
4. Low Distortion  
*P r otected by U.S. P atent 5,150,074 and other s pending.  
5. Output Short-Circuit Protected  
6. Low Intermodulation Distortion of High Frequencies  
P aram eter  
AD 9621  
AD 9622  
AD 9623  
AD 9624  
Units  
Minimum Stable Gain  
+1  
+2  
+4  
+6  
V/V  
dB  
MHz  
MHz  
V/µs  
ns  
Harmonic Distortion (20 MHz)  
Large Signal Bandwidth (4 V p-p)  
SSBW (0.5 V p-p)  
–52  
130  
350  
1200  
2.4  
–66  
160  
220  
1500  
1.7  
–64  
190  
270  
2100  
1.6  
–66  
200  
300  
2200  
1.5  
Slew Rate  
Rise/Fall T ime (0.5 V Step)  
Settling T ime (to 0.1%/0.01%)  
Input Noise (0.1 MHz – 200 MHz)  
7/11  
80  
8/14  
49  
8/14  
36  
8/14  
32  
ns  
µV rms  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700 Fax: 617/ 326-8703  
AD9623–SPECIFICATIONS  
DC ELECTRICAL CHARACTERISTICS (؎V = ؎5 V, RLOAD = 100 ; A = +4; R = 270 , unless otherwise noted)  
S
V
F
Test  
AD 9623AN/AQ/AR  
AD 9623SQ  
Typ Max Units  
P aram eter  
Conditions  
Tem p  
Level  
Min  
Typ Max  
Min  
DC SPECIFICAT IONS1  
Input Offset Voltage  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
–8  
–10  
±2  
6
+8  
+10  
12  
–8  
–10  
±2  
6
+8  
+10 mV  
12  
16  
mV  
Input Bias Current  
µA  
µA  
nA/°C  
µA  
VI  
V
I
VI  
V
V
V
VI  
I
V
VI  
VI  
V
16  
Bias Current T C  
Input Offset Current  
30  
±0.3 +2  
+3  
2.0  
600  
30  
±0.3 +2  
+3  
2.0  
600  
–2  
–3  
–2  
–3  
µA  
Offset Current T C  
Input Resistance  
Input Capacitance  
Common-Mode Range  
Common-Mode Rejection Ratio  
Open-Loop Gain  
Output Voltage Range  
Output Current  
Full  
nA/°C  
kΩ  
pF  
+25°C  
+25°C  
Full  
+25°C  
+25°C  
Full  
1.2  
1.2  
±3.0 ±3.4  
52  
±3.0 ±3.4  
52  
V
VCM = 1 V  
VOUT = ±2 V p-p  
63  
69  
63  
69  
dB  
dB  
V
mA  
±3.0 ±3.4  
60  
±3.0 ±3.4  
60  
Full  
+25°C  
70  
0.3  
70  
0.3  
Output Resistance  
FREQUENCY DOMAIN  
Bandwidth (–3 dB)  
Small Signal  
Large Signal  
VOUT = 0.4 V p-p  
VOUT = 4 V p-p  
Full Spectrum  
DC to 100 MHz  
0.3 to 100 MHz  
2 V p-p; 20 MHz  
2 V p-p; 20 MHz  
@ 20 MHz  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
II  
V
II  
II  
V
II  
II  
V
V
V
190  
270  
190  
0.1  
0
190  
270  
190  
0.1  
0
MHz  
MHz  
dB  
dB  
Degree  
Amplitude of Peaking  
Amplitude of Roll-off  
Phase Nonlinearity  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Common-Mode Rejection Ratio  
Spectral Input Noise Voltage  
Spectral Input Noise Current  
Average Equivalent Integrated  
Input Noise Voltage  
1.2  
0.7  
1.2  
0.7  
1.0  
1.0  
–64 –56  
–72 –65  
+21  
2.6  
2.5  
–64 –56 dBc  
–72 –65 dBc  
+21  
2.6  
2.5  
Full  
+25°C  
+25°C  
+25°C  
dB  
1 to 200 MHz  
1 to 200 MHz  
nV/  
Hz  
Hz  
pA/  
0.1 to 200 MHz  
+25°C  
V
36  
36  
µV rms  
T IME DOMAIN  
Slew Rate  
Rise/Fall T ime  
VOUT = 5 V Step  
VOUT = 0.5 V Step +25°C  
VOUT = 5 V Step  
VOUT = 2 V Step  
Full  
IV  
V
VI  
IV  
1500 2100  
1500 2100  
V/µs  
ns  
ns  
1.6  
2.4  
3
1.6  
2.4  
3
Full  
Full  
3.1  
15  
3.1  
15  
Overshoot  
%
Settling T ime  
T o 0.1%  
VOUT = 2 V Step  
VOUT = 2 V Step  
VOUT = 4 V Step  
VOUT = 4 V Step  
2ϫ to ±2 mV  
RL = 150 Ω  
+25°C  
Full  
V
IV  
V
V
V
V
V
8
15  
9
17  
150  
0.01  
<0.01  
8
15  
9
17  
150  
0.01  
<0.01  
ns  
ns  
ns  
ns  
ns  
%
Degree  
T o 0.01%  
20  
20  
T o 0.1%2  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
T o 0.01%2  
Overdrive Recovery  
Differential Gain (4.3 MHz)  
Differential Phase (4.3 MHz)  
RL = 150 Ω  
POWER SUPPLY REQUIREMENT S1  
Supply Voltage (±VS)  
Quiescent Current  
+IS  
–IS  
Full  
IV  
3.0  
60  
5.0  
5.5  
3.0  
60  
5.0  
5.5  
V
+VS = +5 V  
–VS = –5 V  
VS = 1 V  
Full  
Full  
+25°C  
VI  
VI  
I
23  
23  
71  
29  
29  
23  
23  
71  
29  
29  
mA  
mA  
dB  
Power Supply Rejection Ratio  
NOT ES  
1Measured at AV = 21.  
2Measured with a 0.001 µF CB capacitor connected across Pins 1 and 8.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD9623  
ABSO LUTE MAXIMUM RATINGS1  
TH EO RY O F O P ERATIO N  
Supply Voltages (±VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Continuous Output Current2 . . . . . . . . . . . . . . . . . . . . . 90 mA  
Operating T emperature Ranges  
AN, AQ, AR . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
SQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage T emperature  
T he AD9623 is a wide bandwidth voltage feedback amplifier  
that is guaranteed for minimum gain stability of +4. Since its  
open-loop frequency response follows the conventional 6 dB/  
octave roll-off, its gain bandwidth product is basically constant.  
Increasing its closed-loop gain results in a corresponding de-  
crease in small signal bandwidth. T he AD9623 typically main-  
tains a 60 degree unity loop gain phase margin. T his high  
margin minimizes the effects of signal and noise peaking.  
Ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Junction T emperature  
Feedback Resistor Choice  
At minimum stable gain (+4), the AD9623 provides optimum  
dynamic performance with RF 390 . When using this value  
and following the high speed layout guidelines, a shunt capacitor  
(CF) should not be required. T his value for RF provides the best  
combination of wide bandwidth, low peaking, and distortion.  
Ceramic3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
Plastic3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Soldering T emperature (1 minute)4 . . . . . . . . . . +220°C  
NOT ES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Output is short-circuit protected; for maximum reliability, 90 mA continuous  
current should not be exceeded.  
However, if improved gain flatness is desired, a shunt capacitor  
(CF) will provide extra phase margin. T his reduces both over-  
shoot and peaking with only a slight reduction of bandwidth.  
See Figure 1.  
As an example, if the amplifier exhibits (worst case) peaking of  
1 dB with RGʈRF = 98 (AV = 4), then using an effective CF of  
0.5–1 pF across RF will reduce this peaking to 0 dB. In addition,  
overshoot, noise, and settling time (0.01%) will also improve.  
T his comes at the expense of slightly decreased closed-loop  
bandwidth due to the RF ϫ CF time constant created.  
3T ypical thermal impedances (part soldered onto board; no air flow):  
Ceramic DIP: θJA = 100°C/W; θJC = 30°C/W  
Plastic SOIC: θJA = 125°C/W; θJC = 45°C/W  
Plastic DIP:  
θJA = 90°C/W; θJC = 45°C/W  
4T emperature shown is for surface mount devices, mounted by vapor phase  
soldering. T hroughhole devices (ceramic and plastic DIPs) can be soldered at  
+300°C for 10 seconds.  
If total input capacitance greatly exceeds 3 pF (due to source  
drive or long input traces to the amplifier), then added shunt  
capacitance (CF) will be necessary to maintain stability for  
minimum gain.  
O RD ERING GUID E  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
Likewise, if larger RG/RF minimum-gain setting resistors are  
used, CF will be necessary. As a rule of thumb, if the product of  
RFʈRG ϫ CI 300 ϫ 10–12 seconds, then CF is not required (for  
maximum bandwidth at minimum gain) and the amplifier’s  
phase margin will maintain about 60°.  
AD9623AN  
AD9623AQ  
AD9623AR  
AD9623SQ  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Pin Plastic DIP N-8  
8-Pin Cerdip  
8-Pin SOIC  
Q-8  
R-8  
Q-8  
–55°C to +125°C 8-Pin Cerdip  
For RFʈRG >150 , use a CF equal to CI ϫ RG/RF. For CI  
(total) @ 2 pF, requires CF to be 0.5 pF. T his can be achieved  
by two 1 pF capacitors in series, or by using a resistor divider  
network at the amplifier’s output in conjunction with a larger  
capacitor. Increasing CF much beyond these guidelines will also  
cause amplifier instability.  
EXP LANATIO N O F TEST LEVELS  
Test Level  
I
– 100% production tested.  
II – 100% production tested at +25°C, and sample tested at  
specified temperatures. AC testing of “A” grade devices  
done on sample basis.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
P ulse Response  
Unlike a traditional voltage feedback amplifier in which slew  
speed is usually dictated by its front end dc quiescent current  
and gain bandwidth product, the AD9623 provides “on de-  
mand” transconductance current that increases proportionally  
to the input “step” signal amplitude. T his results in slew speeds  
(2100 V/µs) comparable to wideband current feedback designs.  
T his, combined with relatively low input noise current  
V
– Parameter is a typical value only.  
VI – All devices are 100% production tested at +25°C. 100%  
production tested at temperature extremes for extended  
temperature devices; sample tested at temperature ex-  
tremes for commercial/industrial devices.  
(2.5 pA/Hz), gives the AD9623 the best attributes of both volt-  
age and current feedback amplifiers.  
OUTPUT  
+V  
S
Bootstr ap Capacitor (CB)  
54mils  
In most applications, the CB capacitor should not be required.  
Under certain conditions, it can be used to further enhance set-  
tling time performance.  
CB+  
–V  
S
CB–  
–INPUT +INPUT  
46.5mils  
Chip Layout  
REV. 0  
–3–  
AD9623  
+V  
+V  
S
S
6.8µF  
6.8µF  
0.1µF  
8
0.1µF  
8
R
R
G
7
F
7
3
2
3
2
C
(OPTIONAL)  
F
C
(OPTIONAL)  
F
V
IN  
B
B
6
6
V
V
OUT  
OUT  
C
C
1
1
R
G
4
4
V
IN  
R
F
R
R
F
500  
F
0.1µF  
0.1µF  
R
500  
G
C
–R  
R
F
R
F
F
A
=
A
= 1+  
V
V
R
G
V
G
OUT  
C
I
6.8µF  
6.8µF  
–V  
–V  
S
S
Figure 1. Transim pedance  
Configuration  
Figure 2. Inverting Gain Connection  
Diagram  
Figure 3. Noninverting Gain Connection  
Diagram  
Layout Consider ations  
T he CB capacitor (0.001 µF) connects to the internal high im-  
pedance nodes of the amplifier. Using this capacitor will reduce  
the large signal (4 V) step output settling time by 3 ns to 5 ns  
for 0.05% or greater accuracy. For settling accuracy less than  
0.05% or for smaller step sizes, its effect will be less apparent.  
As with all wide bandwidth components, printed circuit layout  
is critical to obtain best dynamic performance with the AD9623.  
T he ground plane in the area of the amplifier and its associated  
components should cover as much of the component side of the  
board as possible (or first interior layer of a multilayer surface  
mount board).  
Under heavy slew conditions, this capacitor forces the internal  
signal (initial step) amplitude to be controlled by the “on”  
(slewed) transistor, preventing its complement from completely  
turning off. T his allows for faster settling time of these (internal)  
nodes and thus, the output also.  
T he ground plane should be removed in the area of the inputs  
and RF and RG to minimize stray capacitance at the input. T he  
same precaution should be used for CB, if used. Each power  
supply trace should be decoupled close to the package with a  
0.1 µF ceramic capacitor, plus a 6.8 µF tantalum nearby.  
In the frequency domain, total (high frequency) distortion will  
be approximately the same with or without CB. T ypically, the  
3rd harmonic will be greater than the 2nd without CB. T his will  
be reversed with CB in place.  
All lead lengths for input, output, and feedback resistor should  
be kept as short as possible. All gain setting resistors should be  
chosen for low values of parasitic capacitance and inductance,  
i.e., microwave resistors and/or carbon resistors.  
AP P LICATIO NS  
T he AD9623 is a voltage feedback amplifier and is well suited  
for such applications as active filters, and log amplifiers. T he  
device’s wide bandwidth (270 MHz), phase margin (60°), low  
noise current (2.6 pA /Hz), and slew rate (2100 V/µs) give  
higher performance capabilities to these applications over previ-  
ous voltage feedback designs.  
Microstrip techniques should be used for lead lengths in excess  
of one inch. Sockets should be avoided if at all possible because  
of their high series inductance. If sockets are necessary, indi-  
vidual pin sockets such as AMP p/n 6-330808-3 should be used.  
T hese contribute far less stray reactance than molded socket  
assemblies.  
Its settling time of 15 ns to 0.01% and 8 ns to 0.1%, and its low  
harmonic distortion make it a good for choice for ADC signal  
amplification. With superb linearity at relatively high signal fre-  
quencies, it is an ideal driver for ADCs up to 14 bits.  
An evaluation board is available from Analog Devices for a  
nominal charge.  
–4–  
REV. 0  
AD9623  
Typical Performance (R = 100 ; A = +4, unless otherwise noted)  
L
V
80  
60  
+90  
+180  
+2  
+2  
+180  
GAIN  
+75  
+60  
+135  
+90  
+45  
0
+135  
+90  
0
–2  
–4  
–6  
–8  
0
–2  
–4  
–6  
–8  
A
= –3  
+45  
+30  
+15  
0
V
+45  
0
PHASE  
A
= 6  
V
40  
A
= 4  
V
–45  
–90  
–135  
–180  
–45  
–90  
20  
–15  
–30  
–135  
–180  
0
A
= 6,12  
V
A
= –6  
V
–45  
–60  
A
= 12  
V
–20  
10k  
100k  
1M  
10M  
100M  
600M  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
50  
FREQUENCY – Hz  
Figure 4. Open-Loop Gain and Phase  
Figure 5. Inverting Frequency  
Response  
Figure 6. Noninverting Frequency  
Response  
+20  
+25  
+30  
–50  
50  
V
= 2Vp-p  
OUT  
–60  
–70  
–80  
2nd HARMONIC  
= 100  
R
L
40  
30  
+35  
+40  
2nd HARMONIC  
= 500  
R
L
+45  
+50  
–90  
–100  
–110  
–120  
50  
3rd HARMONIC  
OUT  
= 100  
R
L
50  
+55  
20  
3rd HARMONIC  
+60  
CMRR  
R
= 500  
L
+65  
PSRR  
10  
+70  
1
10 100 1k 10k 100k 1M 10M 100M 1G  
FREQUENCY – Hz  
1
2
4
6
10  
20  
40 60  
10  
100  
1
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. Harm onic Distortion  
vs. Frequency  
Figure 8. Third Order Intercept  
Figure 9. CMRR and PSRR vs.  
Frequency  
+2  
+180  
+0.1  
+0.1  
AV = 4  
FB = 390  
RFF = 130  
+135  
+90  
+0.08  
+0.06  
TEST CIRCUIT  
100  
+0.08  
+0.06  
VOUT = 2V STEP  
R
0
–2  
–4  
–6  
6pF  
+45  
0
+0.04  
+0.02  
+0.04  
+0.02  
RLOAD = 500  
–45  
–90  
0
0
–0.02  
–0.02  
TEST CIRCUIT  
100  
–135  
–180  
–0.04  
–0.06  
–0.04  
–0.06  
VOUT = 2V STEP  
6pF  
RLOAD = 50  
–0.08  
–0.1  
–0.08  
–0.1  
–8  
0
10  
20  
30  
40  
50  
10K  
100K  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
1
10  
100  
1K  
TIME – ns  
TIME – ns  
Figure 10. Frequency Response  
vs. RLOAD  
Figure 11. Short-Term Settling Tim e  
Figure 12. Long-Term Settling Tim e  
30  
26  
22  
18  
14  
10  
30  
26  
10  
10  
8
8
27  
23  
19  
4
3
2
6
6
4
VOLTAGE  
RS  
1k  
RS  
22  
18  
14  
10  
4
CL  
390  
130  
CURRENT  
tSETTLING  
VOLTAGE  
2
1
2
1
CURRENT  
2
3
4
5
6
1
10  
CLOAD – pF  
100  
10  
10  
10  
FREQUENCY – Hz  
10  
10  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE – ±Volts  
Figure 13. Input Spectral Noise  
Density  
Figure 14. Output Level and Sup-  
ply Current vs. Supply Voltage  
Figure 15. Settling Tim e vs.  
Capacitive Load  
REV. 0  
–5–  
AD9623  
90  
2V  
0.2V  
TO 0.01%  
LOAD = 100  
OUT = 2Vp-p  
70  
50  
30  
10  
R
V
0
0
RLOAD = 100  
OUT = 5Vp-p  
R
V
= 100  
LOAD  
= 0.4V  
V
OUT  
p-p  
–2V  
–0.2V  
INPUT RISE/FALL TIME = 1.6ns  
5ns/DIV  
INPUT RISE/FALL TIME = 1.6ns  
5ns/DIV  
6
8
4
10  
12  
14  
NONINVERTING GAIN  
Figure 16. Large Signal Pulse  
Response  
Figure 17. Sm all Signal Pulse  
Response  
Figure 18. Settling Tim e vs.  
Noninverting Gain  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
P lastic D IP (Suffix N)  
Cer dip (Suffix Q )  
0.005 (0.13) MIN  
0.055 (1.4) MAX  
8
5
4
0.240 (6.096)  
0.260 (6.604)  
PIN 1  
8
5
PIN 1  
1
0.310 (7.87)  
0.220 (5.59)  
1
4
0.290 (7.366)  
0.310 (7.874)  
0.360 (9.144)  
0.400 (10.16)  
0.320 (8.13)  
0.290 (7.37)  
0.405 (10.29) MAX  
0.120 (3.048)  
0.140 (3.556)  
0.200  
(5.08)  
MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.140  
(3.556)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.015 (0.381)  
0.008 (0.204)  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.045 (1.143)  
0.065 (2.667)  
0.016 (0.406)  
0.020(0.508)  
0°-15°  
0.070 (1.78)  
0.030 (0.76)  
0° TO 15°  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
0.100  
(2.54)  
0.100  
(2.54)  
BSC  
BSC  
SEATING  
PLANE  
P lastic SO IC (Suffix R)  
0.196 (5.00)  
0.188 (4.75)  
8
5
0.158 (4.00)  
0.150 (3.80)  
0.244 (6.20)  
0.228 (5.80)  
4
1
0.050  
(1.27)  
TYP  
0.018 (0.46)  
0.014 (0.36)  
0.206 (5.20)  
0.181 (4.60)  
0.069 (1.75)  
0.053 (1.35)  
0.045 (1.15)  
0.020 (0.50)  
0.010 (0.25)  
0.004 (0.10)  
0.015 (0.38)  
0.007 (0.18)  
–6–  
REV. 0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY