AD9623 [ADI]

Wideband Voltage Feedback Amplifier; 宽带电压反馈放大器
AD9623
型号: AD9623
厂家: ADI    ADI
描述:

Wideband Voltage Feedback Amplifier
宽带电压反馈放大器

放大器
文件: 总6页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband Voltage  
Feedback Amplifier  
a
AD9621*  
CONNECTION DIAGRAM  
FEATURES  
350 MHz Small Signal Bandwidth  
130 MHz Large Signal BW (4 V p-p)  
High Slew Rate: 1200 V/s  
Fast Settling: 11 ns to 0.01%/7 ns to 0.1%  
؎3 V Supply Operation  
1
2
3
4
8
7
6
5
NC #  
–INPUT  
+INPUT  
NC #  
+V  
S
OUTPUT  
NC  
APPLICATIONS  
ADC Input Driver  
–V  
S
AD9621  
Differential Amplifiers  
IF/RF Amplifiers  
# OPTIONAL CAPACITOR CB CONNECTED HERE  
DECREASES SETTLING TIME  
Pulse Amplifiers  
Professional Video  
DAC Current-to-Voltage  
Baseband and Video Communications  
Pin Diode Receivers  
Active Filters/lntegrators/Log Amps  
GENERAL DESCRIPTION  
Other members of the AD962X amplifier family are the  
AD9622 (G = +2), AD9623 (G = +4), and the AD9624  
(G = +6). A separate data sheet is available from Analog De-  
vices for each model. Each generic device has been designed for  
a different minimum stable gain setting, allowing users flexibility  
in optimizing system performance. Dynamic performance speci-  
fications such as slew rate, settling time, and distortion vary  
from model to model. The table below summarizes key perfor-  
mance attributes for the AD962X family and can be used as a  
selection guide.  
The AD9621 is one of a family of very high speed and wide  
bandwidth amplifiers utilizing a voltage feedback architecture.  
These amplifiers define a new level of performance for voltage  
feedback amplifiers, especially in the categories of large signal  
bandwidth, slew rate, settling, and low noise.  
Proprietary design architectures have resulted in an amplifier  
family that combines the most attractive attributes of both cur-  
rent feedback and voltage feedback amplifiers. The AD9621 ex-  
hibits extraordinarily accurate and fast pulse response  
characteristics (7 ns settling to 0.1%) as well as extremely wide  
small and large signal bandwidth previously found only in cur-  
rent feedback amplifiers. When combined with balanced high  
impedance inputs and low input noise current more common to  
voltage feedback architectures, the AD9621 offers performance  
not previously available in a monolithic operational amplifier.  
The AD9621 is offered in industrial and military temperature  
ranges. Industrial versions are available in plastic DIP, SOIC,  
and cerdip; MIL versions are packaged in cerdips.  
PRODUCT HIGHLIGHTS  
1. Wide Large Signal Bandwidth  
2. High Slew Rate  
*Protected by U.S. Patent 5,150,074 and others pending.  
3. Fast Settling  
4. Output Short-Circuit Protected  
Parameter  
AD9621  
AD9622  
AD9623  
AD9624  
Units  
Minimum Stable Gain  
+1  
+2  
+4  
+6  
V/V  
dB  
MHz  
MHz  
V/µs  
ns  
Harmonic Distortion (20 MHz)  
Large Signal Bandwidth (4 V p-p)  
SSBW (0.5 V p-p)  
–52  
130  
350  
1200  
2.4  
–66  
160  
220  
1500  
1.7  
–64  
190  
270  
2100  
1.6  
–66  
200  
300  
2200  
1.5  
Slew Rate  
Rise/Fall Time (0.5 V Step)  
Settling Time (to 0.1%/0.01%)  
Input Noise (0.1 MHz – 200 MHz)  
7/11  
80  
8/14  
49  
8/14  
36  
8/14  
32  
ns  
µV rms  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 617/329-4700 Fax: 617/326-8703  
AD9621–SPECIFICATIONS  
DC ELECTRICAL CHARACTERISTICS (؎VS = ؎5 V, RLOAD = 100 ; AV = 1, unless otherwise noted)  
Test  
AD9621AN/AQ/AR  
AD9621SQ  
Parameter  
Conditions  
Temp Level  
Min  
Typ Max Min Typ Max Units  
DC SPECIFICATIONS1  
Input Offset Voltage  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
–12  
–15  
±2  
7
+12  
+15  
16  
–12  
–15  
±2  
7
+12 mV  
+15 mV  
Input Bias Current  
16  
+20 µA  
nA/°C  
µA  
VI  
V
I
VI  
V
V
V
VI  
I
V
VI  
VI  
V
–20  
+20  
–20  
Input Bias Current TC  
Input Offset Current  
35  
35  
–2.0 ±0.3 +2.0 –2.0  
–3.0 +3.0 –3.0  
+2.0 µA  
+3.0 µA  
Offset Current TC  
Input Resistance  
Input Capacitance  
Common-Mode Range  
Common-Mode Rejection Ratio  
Open Loop Gain  
Output Voltage Range  
Output Current  
Full  
2.5  
500  
1.2  
2.5  
500  
1.2  
nA/°C  
+25°C  
+25°C  
Full  
+25°C  
+25°C  
Full  
kΩ  
pF  
V
dB  
dB  
V
±3.0 ±3.4  
46  
±3.0 ±3.4  
46  
VCM = 1 V  
49  
56  
49  
56  
V
OUT = ±2 V p-p  
±3.0 ±3.4  
60  
±3.0 ±3.4  
60  
Full  
+25°C  
70  
0.3  
70  
0.3  
mA  
Output Resistance  
FREQUENCY DOMAIN  
Bandwidth (–3 dB)  
Small Signal  
Large Signal  
V
V
OUT 0.4 V p-p  
OUT 4.0 V p-p  
Full  
Full  
Full  
Full  
+25°C  
Full  
Full  
+25°C  
+25°C  
+25°C  
II  
V
II  
II  
V
II  
II  
V
V
V
230  
350  
130  
0.1  
0
230  
350  
130  
0.1  
0
MHz  
MHz  
dB  
dB  
Degree  
Amplitude of Peaking  
Amplitude of Roll-off  
Phase Nonlinearity  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
Common-Mode Rejection Mode  
Spectral Input Noise Voltage  
Spectral Input Noise Current  
Average Equivalent Integrated  
Input Noise Voltage  
Full Spectrum  
100 MHz  
DC to 100 MHz  
2 V p-p; 20 MHz  
2 V p-p; 20 MHz  
@ 20 MHz  
1.2  
0.6  
1.2  
0.6  
1.1  
1.1  
–55 –44  
–52 –43  
+28  
5.6  
3.6  
–55 –44 dBc  
–52 –43 dBc  
+28  
5.6  
3.6  
dB  
nV/Hz  
pA/Hz  
1 to 200 MHz  
1 to 200 MHz  
0.1 to 200 MHz  
+25°C  
V
80  
80  
µV rms  
TIME DOMAIN  
Slew Rate  
Rise/Fall Time  
V
V
V
V
OUT = 5 V Step  
OUT = 0.5 V Step +25°C  
OUT = 5 V Step  
OUT = 2 V Step  
Full  
IV  
V
IV  
IV  
850  
1200  
2.4  
4.8  
0
850  
1200  
2.4  
4.8  
0
V/µs  
ns  
ns  
Full  
Full  
7
15  
7
15  
Overshoot  
%
Settling Time  
To 0.1%  
V
V
OUT = 2 V Step  
OUT = 2 V Step  
+25°C  
Full  
V
IV  
V
V
V
V
V
7
11  
9
13  
50  
0.01  
<0.01  
7
11  
9
13  
50  
0.01  
<0.01  
ns  
ns  
ns  
ns  
ns  
%
Degree  
To 0.01%  
15  
15  
To 0.1%2  
VOUT = 4 V Step  
VOUT = 4 V Step  
1.5x to ±2 mV  
RL = 150 Ω  
+25°C  
+25°C  
+25°C  
+25°C  
+25°C  
T0 0.012  
Overdrive Recovery  
Differential Gain (4.3 MHz)  
Differential Phase (4.3 MHz)  
RL = 150 Ω  
POWER SUPPLY REQUIREMENTS1  
Supply Voltage (±VS)  
Quiescent Current  
+IS  
–IS  
Full  
IV  
3.0  
54  
5.0  
5.5  
3.0  
54  
5.0  
5.5  
V
+VS = +5 V  
–VS = –5 V  
VS = 0.5 V  
Full  
Full  
+25°C  
VI  
VI  
I
23  
23  
66  
29  
29  
23  
23  
66  
29  
29  
mA  
mA  
dB  
Power Supply Rejection Ratio  
NOTES  
1Measured at AV = 21.  
2Measured with a 0.001 µF CB capacitor connected across Pins 1 and 8.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD9621  
ABSOLUTE MAXIMUM RATINGS1  
THEORY OF OPERATION  
Supply Voltages (±VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . ±6 V  
Common-Mode Input Voltage . . . . . . . . . . . . . . . . . . . . . . ±VS  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . .6 V  
Continuous Output Current2 . . . . . . . . . . . . . . . . . . . . . 90 mA  
Operating Temperature Ranges  
AN, AQ, AR . . . . . . . . . . . . . . . . . . . . . . . .40°C to +85°C  
SQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55°C to +125°C  
Storage Temperature  
The AD9621 is a wide bandwidth, unity gain stable voltage  
feedback amplifier. Since its open-loop frequency response fol-  
lows the conventional 6 dB/octave roll-off, its gain bandwidth  
product is basically constant. Increasing its closed-loop gain re-  
sults in a corresponding decrease in small signal bandwidth. The  
AD9621 typically maintains a 55 degree unity loop gain phase  
margin. This high margin minimizes the effects of signal and  
noise peaking.  
Ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . .65°C to +150°C  
Plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . .65°C to +125°C  
Junction Temperature  
Feedback Resistor Choice  
At minimum stable gain (+1), the AD9621 provides optimum  
dynamic performance with RF 51 . This resistor acts only as  
a parasitic suppressor against damped RF oscillations that can  
occur due to lead (input, feedback) inductance and parasitic ca-  
pacitance. For settling accuracy to 0.1% or less, this resistor  
should not be required if layout guidelines are closely followed.  
This value for RF provides the best combination of wide band-  
width, low parasitic peaking, and fast settling time.  
Ceramic3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175°C  
Plastic3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Lead Soldering Temperature (1 minute)4 . . . . . . . . . . +220°C  
NOTES  
1Absolute maximum ratings are limiting values to be applied individually, and  
beyond which the serviceability of the circuit may be impaired. Functional  
operability is not necessarily implied. Exposure to absolute maximum rating  
conditions for an extended period of time may affect device reliability.  
2Output is short-circuit protected; for maximum reliability, 90 mA continuous  
current should not be exceeded.  
When the AD9621 is used in the transimpedance (I-to-V)  
mode, such as for photo-diode detection, the value for RF and  
diode capacitance (CI) are usually known. See Figure 1. Gener-  
ally, the value of RF selected will be in the krange, and a shunt  
capacitor (CF) across RF will be required to maintain good am-  
plifier stability. The value of CF required to maintain < 1 dB of  
peaking can be estimated as:  
3Typical thermal impedances (part soldered onto board; no air flow):  
Ceramic DIP: θJA = 100°C/W; θJC = 30°C/W  
Plastic SOIC: θJA = 125°C/W; θJC = 45°C/W  
Plastic DIP:  
θJA = 90°C/W; θJC = 45°C/W  
4Temperature shown is for surface mount devices, mounted by vapor phase  
soldering. Throughhole devices (ceramic and plastic DIPs) can be soldered at  
+300°C for 10 seconds.  
2
CF [(2ωοCI RF 1)ωο2RF  
]
1 2  
ORDERING GUIDE  
|
RF 1kΩ  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
where ωo is equal to the unity gain bandwidth product of the  
amplifier in RAD/sec, and CI is the equivalent total input ca-  
pacitance at the inverting input. Typically ωo is 700 × 106  
RAD/sec (See Open Loop Frequency Response curve).  
AD9621AN –40°C to +85°C  
AD9621AQ –40°C to +85°C  
8-Pin Plastic DIP N-8  
8-Pin Cerdip  
8-Pin SOIC  
Q-8  
R-8  
Q-8  
AD9621AR  
AD9621SQ  
–40°C to +85°C  
As an example, choosing RF of 10 kand CI of 5 pF, requires  
CF to be 1.1 pF (Note: CI includes both the source and parasitic  
circuit capacitance). The bandwidth of the amplifier can be esti-  
mated using the CF calculated as:  
–55°C to +125°C 8-Pin Cerdip  
EXPLANATION OF TEST LEVELS  
Test Level  
I
– 100% production tested.  
1. 6  
2 π RF C F  
f3 dB  
II – 100% production tested at +25°C, and sample tested at  
specified temperatures. AC testing of “A” grade devices  
done on sample basis.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characterization  
testing.  
For general voltage gain applications, the amplifier bandwidth  
can be estimated as:  
ωο  
f3 dB  
V
– Parameter is a typical value only.  
RF  
RG  
VI – All devices are 100% production tested at +25°C. 100%  
production tested at temperature extremes for extended  
temperature devices; sample tested at temperature ex-  
tremes for commercial/industrial devices.  
1+  
This estimation loses accuracy for gains approaching +2/–1 or  
lower due to the amplifier’s damping factor. For these “low  
gain” cases, the bandwidth will actually extend beyond the cal-  
culated value. See Closed Loop BW plots.  
OUTPUT  
+V  
S
As a rule of thumb, capacitor CF will not be required if:  
54mils  
CB+  
–V  
S
NG  
4ωο  
R
RG C ≤  
(
)
F
I
CB–  
–INPUT +INPUT  
46.5mils  
where NG is the Noise Gain (l + RF/RG) of the circuit. For most  
voltage gain applications, this should be the case.  
Chip Layout  
REV. 0  
–3–  
AD9621  
+V  
+V  
S
S
6.8µF  
6.8µF  
0.1µF  
0.1µF  
R
R
G
7
4
7
4
F
3
2
3
2
C
(OPTIONAL)  
C (OPTIONAL)  
B
8
8
V
B
IN  
6
6
V
V
OUT  
OUT  
C
C
F
F
1
1
R
G
V
IN  
RF  
R
R
F
F
0.1µF  
0.1µF  
R
500Ω  
500Ω  
G
CF  
–R  
R
R
R
F
F
A
=
A
= 1+  
V
V
G
G
VOUT  
CI  
6.8µF  
6.8µF  
–V  
–V  
S
S
Figure 1. Transimpedance  
Configuration  
Figure 2. Inverting Gain Connection  
Diagram  
Figure 3. Noninverting Gain Connection  
Diagram  
phase margin (55°), low noise current (3.6 pA/Hz), and slew  
Pulse Response  
rate (1200 V/µs) give higher performance capabilities to these  
Unlike a traditional voltage feedback amplifier in which slew  
speed is dictated by its front end dc quiescent current and gain  
bandwidth product, the AD9621 provides “on demand” trans-  
conductance current that increases proportionally to the input  
“step” signal amplitude. This results in slew speeds (1200 V/µs)  
comparable to wideband current feedback designs. This, com-  
bined with relatively low input noise current (3.6 pA/Hz), gives  
the AD9621 the best attributes of both voltage and current feed-  
back amplifiers.  
applications over previous voltage feedback designs.  
With a settling time of 11 ns to 0.01% and 7 ns to 0.1%, the de-  
vice is an excellent choice for DAC I/V conversion. The same  
characteristics, along with low harmonic distortion, make it a  
good choice for ADC buffering/amplification. With its superb  
linearity at relatively high signal frequencies, it is an ideal driver  
for ADCs up to 14 bits.  
Layout Considerations  
Bootstrap Capacitor (CB)  
As with all wide bandwidth components, printed circuit layout  
is critical to obtain best dynamic performance with the AD9621.  
The ground plane in the area of the amplifier and its associated  
components should cover as much of the component side of the  
board as possible (or first interior layer of a multi layer surface  
mount board).  
In most applications, the CB capacitor will not be required.  
Under certain conditions, it can be used to further enhance set-  
tling time performance.  
The CB capacitor (0.001 µF) connects to the internal high im-  
pedance nodes of the amplifier. Using this capacitor will reduce  
the large signal (4 V) step output settling time by 3 to 5 ns for  
0.05% or greater accuracy. For settling accuracy less than  
0.05% or for smaller step sizes, its effect will be less apparent.  
The ground plane should be removed in the area of the inputs  
and RF and RG to minimize stray capacitance at the input. The  
same precaution should be used for CB, if used. Each power  
supply trace should be decoupled close to the package with a  
0.1 µF ceramic capacitor, plus a 6.8 µF tantalum nearby.  
Under heavy slew conditions, this capacitor forces the internal  
signal (initial step) amplitude to be controlled by the “on”  
(slewed) transistor, preventing its complement from completely  
turning off. This allows for faster settling time of these internal  
nodes and also the output.  
All lead lengths for input, output, and feedback resistor should  
be kept as short as possible. All gain setting resistors should be  
chosen for low values of parasitic capacitance and inductance,  
i.e., microwave resistors and/or carbon resistors.  
In the frequency domain, total (high frequency) distortion will  
be approximately the same with or without CB. Typically, the  
3rd harmonic will be greater than the 2nd without CB. This will  
be reversed with CB in place.  
Microstrip techniques should be used for lead lengths in excess  
of one inch. Sockets should be avoided if at all possible because  
of their high series inductance. If sockets are necessary, indi-  
vidual pin sockets such as AMP p/n 6-330808-3 should be used.  
These contribute far less stray reactance than molded socket  
assemblies.  
APPLICATIONS  
The AD9621 is a voltage feedback amplifier and is well suited  
for such applications as photo-detector preamp, active filters,  
and log amplifiers. The device’s wide bandwidth (350 MHz),  
An evaluation board is available from Analog Devices for a  
nominal charge.  
–4–  
REV. 0  
AD9621  
Typical Performance  
(RL = 100 ; AV = +1, unless otherwise noted)  
80  
60  
40  
20  
0
+180  
+2  
+90  
+75  
+60  
+45  
+30  
+15  
0
+2  
+180  
+135  
+90  
+135  
GAIN  
+90  
0
–2  
–4  
–6  
–8  
0
+45  
+45  
0
0
–2  
–45  
AV = 1  
–45  
–90  
AV = –1  
–90  
PHASE  
–4  
–6  
–8  
–15  
–30  
–135  
–180  
–135  
–180  
AV = 2  
–45  
–60  
AV = 4  
A
V = –2  
–20  
10k  
100k  
1M  
10M  
100M  
600M  
100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
50  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
FREQUENCY – Hz  
Figure 4. Open-Loop Gain and  
Phase  
Figure 5. Inverting Frequency  
Response  
Figure 6. Noninverting Frequency  
Response  
–50  
40  
+20  
+25  
+30  
2ndHARMONIC  
50  
–60  
OUT  
RL=100Ω  
VOUT = 2Vp-p  
50  
30  
–70  
+35  
+40  
–80  
2nd HARMONIC  
20  
10  
+45  
RL = 500Ω  
–90  
+50  
3rd HARMONIC  
CMRR  
R
L = 100Ω  
–100  
–110  
–120  
+55  
+60  
3rd HARMONIC  
PSRR  
+65  
RL = 500Ω  
0
+70  
1
2
4
6
10  
20  
40 60  
10  
100  
1
1
10 100  
1k 10k 100k 1M 10M 100M 1G  
FREQUENCY – Hz  
FREQUENCY – MHz  
FREQUENCY – MHz  
Figure 7. Harmonic Distortion  
vs. Frequency  
Figure 8. Third Order Intercept  
Figure 9. CMRR and PSRR vs.  
Frequency  
+2  
+180  
+0.1  
+0.1  
+135  
+90  
+0.08  
+0.06  
TEST CIRCUIT  
VOUT = 2V STEP  
+0.08  
+0.06  
0
–2  
–4  
–6  
100Ω  
6pF  
+45  
0
+0.04  
+0.02  
+0.04  
+0.02  
RLOAD = 500Ω  
–45  
–90  
0
0
–0.02  
–0.02  
RLOAD = 50Ω  
MEASURING  
POINT  
–135  
–180  
–0.04  
–0.06  
VOUT = 2V STEP  
–0.04  
–0.06  
TEST CIRCUIT  
AV = 1  
F = 51Ω  
+2V  
6pF  
R
0
100  
–0.08  
–0.1  
–0.08  
–0.1  
–8  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY – MHz  
0
10  
20  
30  
40  
50  
10K  
100K  
1
10  
100  
1K  
TIME – ns  
TIME – ns  
Figure 10. Frequency Response  
vs. RLOAD  
Figure 11. Short-Term Settling  
Time  
Figure 12. Long-Term Settling Time  
50  
40  
30  
30  
26  
10  
8
10  
8
27  
23  
19  
4
3
2
VOLTAGE  
6
4
6
4
VOLTAGE  
RS  
1k  
RS  
22  
18  
CL  
51  
CURRENT  
20  
10  
0
tSETTLING  
2
1
2
1
CURRENT  
14  
10  
1
10  
100  
3.5  
4.0  
4.5  
5.0  
5.5  
2
3
4
5
6
10  
10  
10  
10  
FREQUENCY – Hz  
10  
CLOAD – pF  
SUPPLY VOLTAGE – ±Volts  
Figure 15. Settling Time vs.  
Capacitive Load  
Figure 14. Output Level and  
Supply Current vs. Supply Voltage  
Figure 13. Input Spectral Noise  
Density  
REV. 0  
–5–  
AD9621  
50  
0.2V  
2V  
TO 0.01%  
40  
30  
RLOAD = 100Ω  
VOUT = 2V p-p  
0
0
R
V
= 100  
RLOAD = 100Ω  
LOAD  
= 0.4V  
VOUT = 5V p-p  
OUT  
p-p  
20  
10  
–0.2V  
–2V  
INPUT RISE/FALL TIME = 0.3ns  
5ns/DIV  
INPUT RISE/FALL TIME = 1.6ns  
5ns/DIV  
1
3
5
NONINVERTING GAIN  
Figure 16. Large Signal Pulse  
Response  
Figure 17. Small Signal Pulse  
Response  
Figure 18. Settling Time vs.  
Noninverting Gain  
MECHANICAL INFORMATION  
Dimensions shown in inches and (mm).  
Cerdip (Suffix Q)  
Plastic DIP (Suffix N)  
0.055 (1.4) MAX  
0.005 (0.13) MIN  
8
5
0.240 (6.096)  
0.260 (6.604)  
PIN 1  
8
5
PIN 1  
0.310 (7.87)  
0.220 (5.59)  
1
4
1
4
0.290 (7.366)  
0.310 (7.874)  
0.320 (8.13)  
0.290 (7.37)  
0.360 (9.144)  
0.400 (10.16)  
0.405 (10.29) MAX  
0.120 (3.048)  
0.140 (3.556)  
0.200  
(5.08)  
MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200  
(5.08)  
MAX  
0.015 (0.38)  
0.008 (0.20)  
0.140  
(3.556)  
MIN  
0.015 (0.381)  
0.008 (0.204)  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.045 (1.143)  
0.065 (2.667)  
0.016 (0.406)  
0.020(0.508)  
0°-15°  
0.070 (1.78)  
0.030 (0.76)  
0
° TO 15°  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.100  
(2.54)  
BSC  
SEATING  
PLANE  
Plastic SOIC (Suffix R)  
0.196 (5.00)  
0.188 (4.75)  
0.244 (6.20)  
0.228 (5.80)  
0.158 (4.00)  
0.150 (3.80)  
TOP  
VIEW  
0.180 (0.46)  
0.014 (0.36)  
0.050  
(1.27)  
TYP  
0.206 (5.20)  
0.181 (4.60)  
0.069 (1.75)  
0.053 (1.35)  
0.010 (0.25)  
0.004 (0.10)  
0.045 (1.15)  
0.020 (0.50)  
0.015 (0.38)  
0.007 (0.18)  
–6–  
REV. 0  

相关型号:

AD9623AN

IC OP-AMP, 10000 uV OFFSET-MAX, 270 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

AD9623AQ

IC OP-AMP, 10000 uV OFFSET-MAX, 270 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
ADI

AD9623AR

IC OP-AMP, 10000 uV OFFSET-MAX, 270 MHz BAND WIDTH, PDSO8, SOIC-8, Operational Amplifier
ADI

AD9623SQ

IC OP-AMP, 10000 uV OFFSET-MAX, 270 MHz BAND WIDTH, CDIP8, CERDIP-8, Operational Amplifier
ADI

AD9624

Wideband Voltage Feedback Amplifier
ADI

AD9624AN

Voltage-Feedback Operational Amplifier
ETC

AD9624AQ

Voltage-Feedback Operational Amplifier
ETC

AD9624AR

Voltage-Feedback Operational Amplifier
ETC

AD9624SQ

Voltage-Feedback Operational Amplifier
ETC

AD9625

1.3 V/2.5 V Analog-to-Digital Converter
ADI

AD9625-2.0EBZ

1.3 V/2.5 V Analog-to-Digital Converter
ADI

AD9625-2.5EBZ

1.3 V/2.5 V Analog-to-Digital Converter
ADI