AD9631ARZ-REEL7 [ADI]

Ultralow Distortion, High Speed Op Amp, Stable at Gain of 1;
AD9631ARZ-REEL7
型号: AD9631ARZ-REEL7
厂家: ADI    ADI
描述:

Ultralow Distortion, High Speed Op Amp, Stable at Gain of 1

放大器 光电二极管
文件: 总20页 (文件大小:519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Distortion, Wide Bandwidth  
Voltage Feedback Op Amps  
AD9631/AD9632  
Data Sheet  
FEATURES  
PIN CONFIGURATION  
Wide bandwidth  
AD9631, G = +1  
AD9632, G = +2  
Small signal  
AD9631/  
1
2
3
4
8
7
6
5
NC  
+V  
NC  
–INPUT  
+INPUT  
AD9632  
S
OUTPUT  
NC  
TOP VIEW  
(Not to Scale)  
–V  
S
AD9631, 320 MHz  
AD9632, 250 MHz  
Large signal (4 V p-p)  
NOTES  
1. NC = NO CONNECT.  
Figure 1. 8-Lead PDIP (N) and SOIC (R) Packages  
AD9631, 175 MHz  
AD9632, 180 MHz  
A proprietary design architecture has produced an amplifier  
that combines many of the best characteristics of both current  
feedback and voltage feedback amplifiers. The AD9631/AD9632  
exhibit exceptionally fast and accurate pulse response (16 ns to  
0.01%) as well as extremely wide small signal and large signal  
bandwidth and ultralow distortion. The AD9631 achieves  
−72 dBc at 20 MHz, 320 MHz small signal bandwidth, and  
175 MHz large signal bandwidths.  
Ultralow distortion (SFDR), low noise  
−113 dBc typical @ 1 MHz  
−95 dBc typical @ 5 MHz  
−72 dBc typical @ 20 MHz  
46 dBm third-order intercept @ 25 MHz  
7.0 nV/√Hz spectral noise density  
High speed  
Slew rate: 1300 V/μs  
These characteristics position the AD9631/AD9632 ideally for  
driving flash as well as high resolution ADCs. Additionally, the  
balanced high impedance inputs of the voltage feedback archi-  
tecture allow maximum flexibility when designing active filters.  
Settling time to 0.01%, 2 V step: 16 ns  
3 V to 5 V supply operation  
17 mA supply current  
APPLICATIONS  
The AD9631/AD9632 are offered in the industrial (−40°C to  
+85°C) temperature range. They are available in PDIP and SOIC.  
ADC input driver  
Differential amplifiers  
IF/RF amplifiers  
Pulse amplifiers  
Professional video  
–30  
V
= ±5V  
S
R
= 500  
= 2V p-p  
L
–40  
–50  
V
OUT  
DAC current to voltage  
Baseband and video communications  
Pin diode receivers  
–60  
–70  
–80  
Active filters/integrators/log amps  
–90  
SECOND HARMONIC  
GENERAL DESCRIPTION  
–100  
–110  
–120  
–130  
The AD9631/AD9632 are very high speed and wide bandwidth  
amplifiers. The AD9631 is unity gain stable. The AD9632 is  
stable at gains of 2 or greater. Using a voltage feedback  
architecture, the exceptional settling time, bandwidth, and low  
distortion of the AD9631/AD9632 meet the requirements of  
many applications that previously depended on current feed-  
back amplifiers. Its classical op amp structure works much more  
predictably in many designs.  
THIRD HARMONIC  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 2. AD9631 Harmonic Distortion vs. Frequency, G = +1  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
AD9631/AD9632  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
General......................................................................................... 15  
Feedback Resistor Choice.......................................................... 15  
Pulse Response ........................................................................... 16  
Large Signal Performance ......................................................... 16  
Power Supply Bypassing............................................................ 16  
Driving Capacitive Loads.......................................................... 16  
Applications Information .............................................................. 17  
Operation as a Video Line Driver............................................ 17  
Active Filters ............................................................................... 17  
Analog-to-Digital Converter (ADC) Driver .......................... 18  
Layout Considerations............................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Pin Configuration............................................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Metallization Photo...................................................................... 5  
Thermal Resistance ...................................................................... 5  
Maximum Power Dissipation ..................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 15  
REVISION HISTORY  
2/14—Rev. C to Rev. D  
Changes to Figure 33...................................................................... 10  
Changes to Analog-to-Digital Converter (ADC) Driver Section  
and Figure 66................................................................................... 18  
Updated Outline Dimensions....................................................... 19  
Changes to Ordering Guide .......................................................... 20  
7/03—Rev. B to Rev. C  
Deleted Evaluation Boards information..........................Universal  
Deleted military CERDIP version....................................Universal  
Change to Absolute Maximum Ratings......................................... 3  
Change to TPC 4............................................................................... 4  
Change to TPC 10............................................................................. 5  
Change to Figure 6 ......................................................................... 14  
Updated Outline Dimensions....................................................... 17  
1/03—Rev. A to Rev. B  
Deleted DIP (N) Inverter, SOIC (R) Inverter, and DIP (N)  
Noninverter Evaluation Boards in Figures 12–14...................... 17  
Updated Outline Dimensions....................................................... 18  
Rev. D | Page 2 of 20  
 
Data Sheet  
AD9631/AD9632  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 5 V; RLOAD = 100 Ω; AV = 1 (AD9631); AV = 2 (AD9632), unless otherwise noted.  
Table 1.  
AD9631  
AD9632  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
Bandwidth (–3 dB)  
Small Signal  
VOUT ≤ 0.4 V p-p  
VOUT = 4 V p-p  
220  
150  
320  
175  
180  
155  
250  
180  
MHz  
MHz  
Large Signal1  
Bandwidth for 0.1 dB Flatness  
VOUT = 300 mV p-p  
RF = 140 Ω (AD9631);  
RF = 425 Ω (AD9632)  
130  
130  
MHz  
Slew Rate, Average  
Rise/Fall Time  
VOUT = 4 V step  
VOUT = 0.5 V step  
VOUT = 4 V step  
1000  
1300  
1.2  
2.5  
1200  
1500  
1.4  
2.1  
V/μs  
ns  
ns  
Settling Time  
To 0.1%  
To 0.01%  
VOUT = 2 V step  
VOUT = 2 V step  
11  
16  
11  
16  
ns  
ns  
HARMONIC/NOISE PERFORMANCE  
Second Harmonic Distortion  
2 V p-p; 20 MHz, RL = 100 Ω  
RL = 500 Ω  
2 V p-p; 20 MHz, RL = 100 Ω  
RL = 500 Ω  
25 MHz  
RS = 50 Ω  
−64  
−72  
−76  
−81  
46  
−57  
−65  
−69  
−74  
−54  
−72  
−74  
−81  
41  
−47  
−65  
−67  
−74  
dBc  
dBc  
dBc  
dBc  
dBm  
dB  
Third Harmonic Distortion  
Third-Order Intercept  
Noise Figure  
18  
14  
Input Voltage Noise  
Input Current Noise  
Average Equivalent Integrated  
Input Noise Voltage  
1 MHz to 200 MHz  
1 MHz to 200 MHz  
0.1 MHz to 200 MHz  
7.0  
2.5  
100  
4.3  
2.0  
60  
nA/√Hz  
pA/√Hz  
μV rms  
Differential Gain Error (3.58 MHz)  
Differential Phase Error (3.58 MHz)  
Phase Nonlinearity  
DC PERFORMANCE2  
Input Offset Voltage3  
RL = 150 Ω  
RL = 150 Ω  
DC to 100 MHz  
RL = 150 Ω  
0.03  
0.02  
1.1  
0.06  
0.04  
0.02  
0.02  
1.1  
0.04  
0.04  
%
Degree  
Degree  
3
10  
13  
2
5
8
mV  
mV  
µV/°C  
µA  
TMIN − TMAX  
Offset Voltage Drift  
Input Bias Current  
10  
2
10  
2
7
7
TMIN − TMAX  
TMIN − TMAX  
10  
3
5
10  
3
5
µA  
µA  
µA  
Input Offset Current  
0.1  
0.1  
Common-Mode Rejection Ratio  
Open-Loop Gain  
VCM  
VOUT  
TMIN − TMAX  
=
=
2.5 V  
2.5 V  
70  
46  
40  
90  
52  
70  
46  
40  
90  
52  
dB  
dB  
dB  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
500  
1.2  
3.4  
500  
1.2  
3.4  
kΩ  
pF  
V
Input Common-Mode Voltage Range  
Rev. D | Page 3 of 20  
 
 
AD9631/AD9632  
Data Sheet  
AD9631  
Typ  
AD9632  
Typ  
Parameter  
Test Conditions/Comments  
Min  
Max  
Min  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
Output Current  
Output Resistance  
Short Circuit Current  
POWER SUPPLY  
RL = 150 Ω  
3.2  
3.9  
70  
0.3  
3.2  
3.9  
70  
0.3  
V
mA  
Ω
240  
240  
mA  
Operating Range  
Quiescent Current  
3.0  
50  
5.0  
17  
6.0  
18  
21  
3.0  
56  
5.0  
16  
6.0  
17  
20  
V
mA  
mA  
dB  
TMIN − TMAX  
TMIN − TMAX  
Power Supply Rejection Ratio  
60  
66  
1 See the Absolute Maximum Ratings and Theory of Operation sections of this data sheet.  
2 Measured at AV = 50.  
3 Measured with respect to the inverting input.  
Rev. D | Page 4 of 20  
Data Sheet  
AD9631/AD9632  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Table 3.  
Parameter  
Rating  
Supply Voltage (+VS to −VS)  
Voltage Swing × Bandwidth Product  
Internal Power Dissipation  
PDIP (N)  
12.6 V  
550 V × MHz  
Package Type1  
8-Lead PDIP (N)  
8-Lead SOIC (R)  
θJA  
Unit  
°C/W  
°C/W  
90  
140  
1.3 W  
0.9 W  
VS  
1.2 V  
Observe Power  
Derating Curves  
−65°C to +125°C  
−40°C to +85°C  
300°C  
1 For device in free air.  
SOIC (R)  
MAXIMUM POWER DISSIPATION  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short Circuit Duration  
The maximum power that can be safely dissipated by these  
devices is limited by the associated rise in junction temperature.  
The maximum safe junction temperature for plastic encapsu-  
lated devices is determined by the glass transition temperature  
of the plastic, approximately 150°C. Exceeding this limit tempo-  
rarily may cause a shift in parametric performance due to a  
change in the stresses exerted on the die by the package.  
Exceeding a junction temperature of 175°C for an extended  
period can result in device failure.  
Storage Temperature Range  
Operating Temperature Range (A Grade)  
Lead Temperature Range (Soldering 10 sec)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
While the AD9631 and AD9632 are internally short circuit  
protected, this may not be sufficient to guarantee that the max-  
imum junction temperature (150°C) is not exceeded under all  
conditions. To ensure proper operation, it is necessary to  
observe the maximum power derating curves.  
2.0  
METALLIZATION PHOTO  
+V  
7
S
–IN  
2
T = 150°C  
J
8-LEAD PDIP PACKAGE  
1.5  
1.0  
0.5  
0
0.046  
(1.17)  
6
OUT  
8-LEAD SOIC PACKAGE  
3
+IN  
4
–V  
AD9631  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
S
0.050 (1.27)  
AMBIENT TEMPERATURE (°C)  
+V  
7
–IN  
2
S
Figure 4. Maximum Power Dissipation vs. Temperature  
ESD CAUTION  
0.046  
(1.17)  
6
OUT  
3
+IN  
4
–V  
AD9632  
S
Figure 3. Dimensions shown in inches and (millimeters) Connect Substrate to −VS  
Rev. D | Page 5 of 20  
 
 
 
 
 
AD9631/AD9632  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
R
F
R
S
F
10µF  
10µF  
+V  
+V  
S
PULSE  
GENERATOR  
0.1µF  
0.1µF  
T
/T = 350ps  
F
R
267Ω  
V
PULSE  
IN  
GENERATOR  
R
T
V
V
OUT  
AD9631  
49.9Ω  
AD9631  
OUT  
T
/T = 350ps  
F
R
130Ω  
V
R
= 100Ω  
IN  
R
= 100Ω  
L
0.1µF  
10µF  
0.1µF  
L
R
49.9Ω  
T
100Ω  
10µF  
–V  
S
–V  
S
Figure 5. AD9631 Noninverting Configuration, G = +1  
Figure 8. AD9631 Inverting Configuration, G = −1  
5ns  
5ns  
1V  
1V  
Figure 9. AD9631 Large Signal Transient Response; VOUT = 4 V p-p, G = −1,  
RF = RIN = 267 Ω  
Figure 6. AD9631 Large Signal Transient Response; VOUT = 4 V p-p,  
G = +1, RF = 250 Ω  
5ns  
100mV  
5ns  
100mV  
Figure 10. AD9631 Small Signal Transient Response; VOUT = 400 mV p-p,  
G = −1, RF = RIN = 267 Ω  
Figure 7. AD9631 Small Signal Transient Response; VOUT = 400 mV p-p,  
G = +1, RF = 140 Ω  
Rev. D | Page 6 of 20  
 
Data Sheet  
AD9631/AD9632  
R
S
R
S
F
F
10µF  
10µF  
+V  
+V  
PULSE  
PULSE  
GENERATOR  
GENERATOR  
0.1µF  
0.1µF  
T
/T = 350ps  
F
T
/T = 350ps  
F
R
R
R
R
IN  
IN  
V
IN  
R
49.9Ω  
T
V
V
OUT  
OUT  
AD9632  
AD9632  
130Ω  
V
IN  
R
= 100Ω  
R = 100Ω  
L
0.1µF  
L
0.1µF  
R
49.9Ω  
T
100Ω  
10µF  
10µF  
–V  
–V  
S
S
Figure 11. AD9632 Noninverting Configuration, G = +2  
Figure 14. AD9632 Inverting Configuration, G = −1  
5ns  
1V  
5ns  
1V  
Figure 12. AD9632 Large Signal Transient Response; VOUT = 4 V p-p, G = +2,  
RF = RIN = 422 Ω  
Figure 15. AD9632 Large Signal Transient Response; VOUT = 4 V p-p, G = −1,  
RF = RIN = 422 Ω, RT = 56.2 Ω  
5ns  
100mV  
5ns  
100mV  
Figure 13. AD9632 Small Signal Transient Response; VOUT = 400 mV p-p,  
G = +2, RF = RIN = 274 Ω  
Figure 16. AD9632 Small Signal Transient Response; VOUT = 400 mV p-p,  
G = −1, RF = RIN = 267 Ω, RT = 61.9 Ω  
Rev. D | Page 7 of 20  
AD9631/AD9632  
Data Sheet  
475  
450  
425  
400  
375  
350  
358  
300  
275  
250  
1
R
= 150Ω  
R
F
F
V
R
= ±5V  
= 100Ω  
S
0
L
G = +1  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
R
= 200Ω  
F
AD9631  
R
= 50Ω  
F
130Ω  
R
L
R
= 100Ω  
F
N PACKAGE  
R PACKAGE  
V
R
= ±5V  
= 100Ω  
= 300mV p-p  
S
–8  
–9  
L
V
OUT  
1M  
10M  
100M  
1G  
20  
40  
60  
80 100 120 140 160 180 200 220 240  
FREQUENCY (Hz)  
VALUE OF FEEDBACK RESISTOR, R (Ω)  
F
Figure 17. AD9631 Small Signal Frequency Response, G = +1  
Figure 20. AD9631 Small Signal −3 dB Bandwidth vs. RF  
0.1  
0
1
0
R
= 150Ω  
= 140Ω  
F
R = 250Ω  
F
R
F
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
R
= 50Ω TO 250Ω  
BY 50Ω  
F
R
= 100Ω  
F
R
F
= 120Ω  
V
R
= ±5V  
= 100Ω  
S
V
R
= ±5V  
= 100Ω  
= 4V p-p  
L
S
G = +1  
V
L
= 300mV p-p  
V
OUT  
OUT  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
Figure 18. AD9631 0.1 dB Flatness, N Package (for R Package Add 20 Ω to RF)  
Figure 21. AD9631 Large Signal Frequency Response, G = +1  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
1
0
PHASE  
60  
–1  
–2  
–3  
40  
20  
R
= 267Ω  
F
0
–4  
–5  
–6  
–7  
–8  
–9  
–20  
–40  
–60  
–80  
–100  
–120  
GAIN  
V
= ±5V  
S
R
= 100Ω  
–10  
–20  
L
V
= 300mV p-p  
OUT  
10k  
100k  
1M  
10M  
100M  
1G  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. AD9631 Open-Loop Gain and Phase Margin vs. Frequency,  
RL = 100 Ω  
Figure 22. AD9631 Small Signal Frequency Response, G = −1  
Rev. D | Page 8 of 20  
 
 
Data Sheet  
AD9631/AD9632  
0.10  
0.05  
0
–30  
V
R
= ±5V  
= 500Ω  
S
L
–40  
–50  
G = +1  
V
= 2V p-p  
OUT  
–60  
–0.05  
–70  
SECOND  
HARMONIC  
–0.10  
0.10  
–80  
–90  
0.05  
0
–100  
–110  
–120  
–130  
THIRD  
HARMONIC  
–0.05  
–0.10  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 23. AD9631 Harmonic Distortion vs. Frequency, RL = 500 Ω  
Figure 26. AD9631 Differential Gain and Phase Error, G = +2, RL = 150 Ω  
–30  
0.3  
0.2  
V
R
= ±5V  
= 100Ω  
S
L
–40  
–50  
G = +1  
V
= 2V p-p  
OUT  
–60  
0.1  
–70  
–80  
0
SECOND  
HARMONIC  
–90  
–0.1  
–0.2  
–0.3  
–100  
–110  
–120  
–130  
THIRD  
HARMONIC  
10k  
100k  
1M  
10M  
100M  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
Figure 24. AD9631 Harmonic Distortion vs. Frequency, RL = 100 Ω  
Figure 27. AD9631 Short-Term Settling Time, 2 V Step, RL = 100 Ω  
60  
55  
50  
45  
40  
35  
30  
25  
20  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
SETTLING TIME (µs)  
Figure 25. AD9631 Third Order Intercept vs. Frequency  
Figure 28. AD9631 Long-Term Settling Time, 2 V Step, RL = 100 Ω  
Rev. D | Page 9 of 20  
AD9631/AD9632  
Data Sheet  
7
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
125  
V
R
= ±5V  
= 100Ω  
S
R
= 325Ω  
F
L
6
G = +2  
R
= 425Ω  
F
5
R
= 125Ω  
F
R
= 225Ω  
4
N PACKAGE  
F
3
2
R
F
1
R
IN  
R PACKAGE  
0
AD9632  
100Ω  
–1  
R
L
V
R
= ±5V  
= 100Ω  
= 300mV p-p  
S
49.9Ω  
–2  
–3  
L
V
OUT  
1M  
10M  
100M  
1G  
50 100 150 200 250 300 350 400 450 500 550 600  
FREQUENCY (Hz)  
VALUE OF R , R (Ω)  
F
IN  
Figure 29. AD9632 Small Signal Frequency Response, G = +2  
Figure 32. AD9632 Small Signal −3 dB Bandwidth vs. RF, RIN  
0.1  
0
7
R
= 425Ω  
F
6
5
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.9  
R
= 275Ω  
F
4
R
= 125Ω TO 425Ω  
BY 100Ω  
R
= 325Ω  
F
F
3
R
= 375Ω  
F
2
R
= 425Ω  
F
1
0
–1  
–2  
–3  
V
R
= ±5V  
= 100Ω  
S
V
R
= ±5V  
= 100Ω  
= 4V p-p  
S
L
G = +2  
V
L
V
= 300mV p-p  
OUT  
OUT  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 33. AD9632 Large Signal Frequency Response, G = +2  
Figure 30. AD9632 0.1 dB Flatness, N Package (for R Package Add 20 Ω to RF)  
1
0
150  
100  
50  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–1  
–2  
–3  
PHASE  
0
R , R = 267Ω  
–4  
–5  
–6  
–7  
–8  
–9  
–50  
–100  
–150  
–200  
–250  
F
IN  
GAIN  
0
V
= ±5V  
S
–5  
–10  
–15  
R
= 100Ω  
L
V
= 300mV p-p  
OUT  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. AD9632 Small Signal Frequency Response, G = −1  
Figure 31. AD9632 Open-Loop Gain and Phase Margin vs. Frequency,  
RL = 100 Ω  
Rev. D | Page 10 of 20  
 
Data Sheet  
AD9631/AD9632  
–30  
0.04  
0.02  
0
V
R
= ±5V  
= 500Ω  
S
L
–40  
–50  
G = +2  
V
= 2V p-p  
OUT  
–60  
–0.02  
–70  
–0.04  
0.04  
–80  
SECOND  
HARMONIC  
–90  
0.02  
0
–100  
–110  
–120  
–130  
THIRD  
HARMONIC  
–0.02  
–0.04  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 35. AD9632 Harmonic Distortion vs. Frequency, RL = 500 Ω  
Figure 38. AD9632 Differential Gain and Phase Error G = +2, RL = 150 Ω  
–30  
0.2  
V
= ±5V  
S
R
= 100Ω  
L
–40  
–50  
G = +2  
V
= 2V p-p  
OUT  
0.1  
0
–60  
SECOND  
HARMONIC  
–70  
–80  
–90  
–0.1  
–0.2  
–0.3  
THIRD  
HARMONIC  
–100  
–110  
–120  
–130  
10k  
100k  
1M  
10M  
100M  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (Hz)  
SETTLING TIME (ns)  
Figure 36. AD9632 Harmonic Distortion vs. Frequency, RL = 100 Ω  
Figure 39. AD9632 Short-Term Settling Time, 2 V Step, RL = 100 Ω  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
10  
100  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (MHz)  
SETTLING TIME (µs)  
Figure 37. AD9632 Third Order Intercept vs. Frequency  
Figure 40. AD9632 Long-Term Settling Time, 2 V Step, RL = 100 Ω  
Rev. D | Page 11 of 20  
AD9631/AD9632  
Data Sheet  
24  
17  
15  
13  
11  
9
V
= ±5V  
V = ±5V  
S
S
21  
18  
15  
12  
9
7
6
5
3
3
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41. AD9631 Noise vs. Frequency  
Figure 44. AD9632 Noise vs. Frequency  
80  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
–PSRR  
–PSRR  
+PSRR  
+PSRR  
0
0
10k  
100k  
1M  
10M  
100M  
1G  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42. AD9631 PSRR vs. Frequency  
Figure 45. AD9632 PSRR vs. Frequency  
100  
100  
V
= ±5V  
V = ±5V  
S
S
ΔV  
= 1V  
= 100Ω  
ΔV  
= 1V  
CM  
CM  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
20  
R
R = 100Ω  
L
L
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43. AD9631 CMRR vs. Frequency  
Figure 46. AD9632 CMRR vs. Frequency  
Rev. D | Page 12 of 20  
Data Sheet  
AD9631/AD9632  
1k  
1350  
1250  
1150  
1050  
950  
V
= ±5V  
S
G = +1  
100  
10  
+A  
OL  
OL  
AD9632  
–A  
850  
1
750  
650  
0.1  
550  
+A  
–A  
OL  
AD9631  
40  
450  
OL  
0.01  
10k  
350  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
60  
80  
100 120 140  
FREQUENCY (Hz)  
JUNCTION TEMPERATURE (°C)  
Figure 47. AD9631 Output Resistance vs. Frequency  
Figure 50. Open-Loop Gain vs. Temperature  
1k  
100  
10  
76  
74  
72  
70  
68  
66  
64  
62  
60  
58  
56  
V
= ±5V  
S
G = +1  
AD9632  
–PSRR  
+PSRR  
–PSRR  
AD9632  
AD9631  
1
0.1  
+PSRR  
40  
AD9631  
0.01  
10k  
100k  
1M  
10M  
100M  
–60 –40 –20  
0
20  
60  
80  
100 120 140  
FREQUENCY (Hz)  
JUNCTION TEMPERATURE (°C)  
Figure 48. AD9632 Output Resistance vs. Frequency  
Figure 51. PSRR vs. Temperature  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
98  
96  
94  
92  
90  
88  
86  
V
= ±5V  
S
+V  
OUT  
R
= 150Ω  
L
|–V  
|
OUT  
R
= 50Ω  
L
+V  
OUT  
–CMRR  
+CMRR  
|–V  
|
OUT  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 49. Output Swing vs. Temperature  
Figure 52. CMRR vs. Temperature  
Rev. D | Page 13 of 20  
AD9631/AD9632  
Data Sheet  
21  
20  
19  
18  
17  
16  
15  
14  
250  
240  
230  
220  
210  
200  
190  
180  
AD9631  
±6V  
AD9631  
SINK  
SOURCE  
AD9632  
AD9631  
±6V  
±5V  
SINK  
AD9632  
AD9632  
SOURCE  
±5V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 53. Supply Current vs. Temperature  
Figure 56. Short Circuit Current vs. Temperature  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
2.0  
1.5  
AD9632  
+I  
–I  
B
1.0  
AD9631  
AD9632  
0.5  
V
= ±5V  
= ±6V  
S
B
0
V
S
–0.5  
–1.0  
–1.5  
–2.0  
AD9631  
–I  
B
V
V
= ±5V  
= ±6V  
S
+I  
B
S
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
JUNCTION TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 54. Input Offset Voltage vs. Temperature  
Figure 57. Input Bias Current vs. Temperature  
220  
200  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3 WAFER LOTS  
3 WAFER LOTS  
COUNT = 573  
COUNT = 1373  
CUMULATIVE  
CUMULATIVE  
FREQUENCY  
DISTRIBUTION  
FREQUENCY  
DISTRIBUTION  
60  
60  
40  
40  
20  
20  
0
0
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
–7 –6 –5 –4 –3 –2 –1  
0
1
2
3
4
5
6
7
INPUT OFFSET VOLTAGE (mV)  
INPUT OFFSET VOLTAGE (mV)  
Figure 55. AD9631 Input Offset Voltage Distribution  
Figure 58. AD9632 Input Offset Voltage Distribution  
Rev. D | Page 14 of 20  
Data Sheet  
AD9631/AD9632  
THEORY OF OPERATION  
When the AD9631 is used in the transimpedance (I to V)  
GENERAL  
mode, such as in photodiode detection, the value of RF and  
diode capacitance (CI) are usually known. Generally, the value  
of RF selected will be in the kΩ range, and a shunt capacitor (CF)  
across RF will be required to maintain good amplifier stability.  
The value of CF required to maintain optimal flatness (<1 dB  
peaking) and settling time can be estimated by  
1
The AD9631/AD9632 are wide bandwidth, voltage feedback  
amplifiers. Because their open-loop frequency response follows  
the conventional 6 dB/octave roll-off, their gain bandwidth  
product is basically constant. Increasing their closed-loop gain  
results in a corresponding decrease in small signal bandwidth.  
This can be observed by noting the bandwidth specification  
between the AD9631 (gain of +1) and AD9632 (gain of +2). The  
AD9631/AD9632 typically maintain 65° of phase margin. This  
high margin minimizes the effects of signal and noise peaking.  
2
2
CF  
where:  
[
(
2ωOCI RF 1  
)
/ωO2RF  
]
ωO is equal to the unity gain bandwidth product of the amplifier  
in rad/sec.  
CI is the equivalent total input capacitance at the inverting input.  
Typically ωO = 800 × 106 rad/sec (see Figure 19).  
FEEDBACK RESISTOR CHOICE  
The value of the feedback resistor is critical for optimum per-  
formance on the AD9631 (gain of +1) and less critical as the  
gain increases. Therefore, this section is specifically targeted  
at the AD9631.  
As an example, choosing RF = 10 kΩ and CI = 5 pF requires CF  
to be 1.1 pF (Note that CI includes both source and parasitic  
circuit capacitance). The bandwidth of the amplifier can be  
estimated using CF:  
At the minimum stable gain (+1), the AD9631 provides opti-  
mum dynamic performance with RF = 140 Ω. This resistor acts  
as a parasitic suppressor only against damped RF oscillations  
that can occur due to lead (input, feedback) inductance and  
parasitic capacitance. This value of RF provides the best combi-  
nation of wide bandwidth, low parasitic peaking, and fast  
settling time.  
1.6  
2πRFCF  
f3dB  
R
F
In fact, for the same reasons, place a 100 Ω to 130 Ω resistor in  
series with the positive input for other AD9631 noninverting  
and all AD9631 inverting configurations. The correct connec-  
tion is shown in Figure 59 and Figure 60.  
C
F
I
C
I
I
AD9631  
V
OUT  
+V  
S
R
10µF  
F
G = 1 +  
R
G
Figure 61. Transimpedance Configuration  
100Ω TO  
130Ω  
0.1µF  
For general voltage gain applications, the amplifier bandwidth  
can be closely estimated as  
V
IN  
R
R
IN  
TERM  
AD9631/  
AD9632  
V
OUT  
ωO  
1+ RF / RG  
R
f3dB  
F
2π  
(
)
0.1µF  
This estimation loses accuracy for gains of +2/−1 or lower due  
to the damping factor of the amplifier. For these low gain cases,  
the bandwidth will actually extend beyond the calculated value  
(see Figure 17 and Figure 29).  
R
G
10µF  
–V  
S
Figure 59. Noninverting Operation  
As a general rule, Capacitor CF will not be required if  
+V  
S
R
R
10µF  
F
NG  
4ωO  
G = 1 –  
(
RF RG × CI ≤  
)
G
100Ω TO  
130Ω  
0.1µF  
where NG is the noise gain (1 + RF/RG) of the circuit. For most  
voltage gain applications, this should be the case.  
R
IN  
AD9631/  
AD9632  
V
OUT  
R
F
R
G
V
IN  
0.1µF  
R
TERM  
10µF  
–V  
S
Figure 60. Inverting Operation  
Rev. D | Page 15 of 20  
 
 
 
 
 
AD9631/AD9632  
Data Sheet  
PULSE RESPONSE  
DRIVING CAPACITIVE LOADS  
Unlike a traditional voltage feedback amplifier, where the slew  
speed is dictated by its front end dc quiescent current and gain  
bandwidth product, the AD9631/AD9632 provide on-demand  
current that increases proportionally to the input step signal  
amplitude. This results in slew rates (1300 V/µs) comparable  
to wideband current feedback designs. This, combined with  
relatively low input noise current (2.0 pA/√Hz), gives the  
AD9631/AD9632 the best attributes of both voltage and  
current feedback amplifiers.  
The AD9631/AD9632 were designed primarily to drive non-  
reactive loads. If driving loads with a capacitive component is  
desired, the best frequency response is obtained by the addition  
of a small series resistance as shown in Figure 62. Figure 63  
shows the optimum value for RSERIES vs. capacitive load. It is  
worth noting that the frequency response of the circuit when  
driving large capacitive loads will be dominated by the passive  
roll-off of RSERIES and CL.  
R
F
LARGE SIGNAL PERFORMANCE  
R
SERIES  
The outstanding large signal operation of the AD9631 and  
AD9632 is due to a unique, proprietary design architecture. To  
maintain this level of performance, the maximum 550 V × MHz  
R
AD9631/  
AD9632  
IN  
R
L
1kΩ  
R
IN  
C
L
product must be observed (for example, @ 100 MHz, VOUT  
5.5 V p-p).  
Figure 62. Driving Capacitive Loads  
40  
30  
20  
10  
POWER SUPPLY BYPASSING  
Adequate power supply bypassing can be critical when optimiz-  
ing the performance of a high frequency circuit. Inductance in  
the power supply leads can form resonant circuits that produce  
peaking in the amplifiers response. In addition, if large current  
transients must be delivered to the load, then bypass capacitors  
(typically greater than 1 µF) will be required to provide the best  
settling time and lowest distortion. A parallel combination of at  
least 4.7 µF, and between 0.1 µF and 0.01 µF, is recommended.  
Some brands of electrolytic capacitors will require a small series  
damping resistor ≈4.7 Ω for optimum results.  
0
5
10  
15  
20  
25  
C
(pF)  
L
Figure 63. Recommended RSERIES vs. Capacitive Load  
Rev. D | Page 16 of 20  
 
 
 
 
 
 
Data Sheet  
AD9631/AD9632  
APPLICATIONS INFORMATION  
The AD9631/AD9632 are voltage feedback amplifiers well  
suited for applications such as photodetectors, active filters,  
and log amplifiers. The wide bandwidth (320 MHz), phase  
margin (65°), low current noise (2.0 pA/√Hz), and slew rate  
(1300 V/µs) of the devices give higher performance capabilities  
to these applications over previous voltage feedback designs.  
Figure 65 is an example of a 20 MHz low-pass multiple feedback  
active filter using an AD9632.  
+5V  
10µF  
R4  
154Ω  
C1  
50pF  
0.1µF  
R1  
154Ω  
R3  
78.7Ω  
V
IN  
C2  
100pF  
V
AD9632  
With a settling time of 16 ns to 0.01% and 11 ns to 0.1%, the  
devices are an excellent choice for DAC I/V conversion. The  
same characteristics along with low harmonic distortion make  
them a good choice for ADC buffering/amplification. With  
superb linearity at relatively high signal frequencies, the  
AD9631/AD9632 are ideal drivers for ADCs up to 12 bits.  
OUT  
100Ω  
0.1µF  
10µF  
–5V  
Figure 65. Active Filter Circuit  
OPERATION AS A VIDEO LINE DRIVER  
Choose  
The AD9631/AD9632 have been designed to offer outstanding  
performance as video line drivers. The important specifications  
of differential gain (0.02%) and differential phase (0.02°) meet  
the most exacting HDTV demands for driving video loads.  
FO = cutoff frequency = 20 MHz  
α = damping ratio = 1/Q = 2  
R4  
R1  
274Ω  
274Ω  
H = absolute value of circuit gain =  
=1  
10µF  
+V  
S
Then  
0.1µF  
k = 2πFOC1  
75Ω  
CABLE  
75Ω  
AD9631/  
AD9632  
4C1(H +1)  
75Ω  
CABLE  
V
OUT  
C2 =  
α2  
75Ω  
0.1µF  
10µF  
V
IN  
75Ω  
α
R1 =  
2HK  
–V  
S
α
R3 =  
Figure 64. Video Line Driver  
2K(H +1)  
ACTIVE FILTERS  
R4 = H(R1)  
The wide bandwidth and low distortion of the AD9631/  
AD9632 are ideal for the realization of higher bandwidth active  
filters. These characteristics, while being more common in  
many current feedback op amps, are offered in the AD9631/  
AD9632 in a voltage feedback configuration. Many active  
filter configurations are not realizable with current feedback  
amplifiers.  
A multiple feedback active filter requires a voltage feedback  
amplifier and is more demanding of op amp performance than  
other active filter configurations, such as the Sallen-Key. In  
general, the amplifier should have a bandwidth that is at least  
10 times the bandwidth of the filter if problems due to phase  
shift of the amplifier are to be avoided.  
Rev. D | Page 17 of 20  
 
 
 
 
AD9631/AD9632  
Data Sheet  
ANALOG-TO-DIGITAL CONVERTER (ADC) DRIVER  
LAYOUT CONSIDERATIONS  
As ADCs move toward higher speeds with higher resolutions,  
there becomes a need for high performance drivers that will not  
degrade the analog signal to the converter. It is desirable from a  
system’s standpoint that the ADC be the element in the signal  
chain that ultimately limits overall distortion. Figure 66 is such  
an example.  
The specified high speed performance of the AD9631/AD9632  
requires careful attention to board layout and component  
selection. Proper RF design techniques and low-pass parasitic  
component selection are mandatory.  
The PCB should have a ground plane covering all unused  
portions of the component side of the board to provide a low  
impedance path. Remove the ground plane from the area near  
the input pins to reduce stray capacitance.  
140  
+5V  
Use chip capacitors for supply bypassing (see Figure 59 and  
Figure 60). Connect one end to the ground plane, and the other  
within 1/8 inch of each power pin. Connect an additional large  
(0.47 μF to 10 μF) tantalum electrolytic capacitor in parallel,  
though not necessarily so close, to supply current for fast, large  
signal changes at the output.  
ADC  
AD9631  
130Ω  
ANALOG IN  
–5V  
Figure 66. AD9631 Used as Driver for an ADC Signal Chain  
The feedback resistor should be located close to the inverting  
input pin to keep the stray capacitance at this node to a mini-  
mum. Capacitance variations of less than 1 pF at the inverting  
input will significantly affect high speed performance.  
Use stripline design techniques for long signal traces (greater  
than about 1 inch). These should be designed with a  
characteristic impedance of 50 Ω or 75 Ω and be properly  
terminated at each end.  
Rev. D | Page 18 of 20  
 
 
 
Data Sheet  
AD9631/AD9632  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 67. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 68. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. D | Page 19 of 20  
 
AD9631/AD9632  
Data Sheet  
ORDERING GUIDE  
Model1  
AD9631ANZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
N-8  
8-Lead Plastic Dual In-Line Package [PDIP]  
AD9631AR  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
AD9631 Evaluation Board  
AD9631AR-REEL  
AD9631AR-REEL7  
AD9631ARZ  
AD9631ARZ-REEL  
AD9631ARZ-REEL7  
AD9631AR-EBZ  
AD9631ACHIPS  
AD9632ANZ  
AD9632AR  
AD9632ARZ  
AD9632ARZ-REEL  
AD9632ARZ-REEL7  
AD9632AR-EBZ  
Die  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic Dual In-Line Package [PDIP]  
N-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
8-Lead Standard Small Outline Package [SOIC_N] R-8  
AD9632 Evaluation Board  
1 Z = RoHS Compliant Part.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00601-0-2/14(D)  
Rev. D | Page 20 of 20  
 

相关型号:

AD9631CHIPS

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631SMD

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631_03

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9631_15

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632-EB

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AN

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AR

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AR-REEL

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632AR-REEL7

Ultralow Distortion, Wide Bandwidth Voltage Feedback Op Amps
ADI

AD9632ARZ

Ultralow Distortion, Wide BandwidthVoltage Feedback Op Amps
ADI

AD9632ARZ-REEL

OP-AMP, 8000uV OFFSET-MAX, 130MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, SOIC-8
ADI