AD9635 [ADI]

1.8 V Analog-to-Digital Converter;
AD9635
型号: AD9635
厂家: ADI    ADI
描述:

1.8 V Analog-to-Digital Converter

文件: 总37页 (文件大小:995K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 12-Bit, 80 MSPS/125 MSPS, Serial LVDS  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9635  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AGND  
DRVDD  
1.8 V supply operation  
Low power: 115 mW per channel at 125 MSPS with scalable  
power options  
SNR = 71 dBFS (to Nyquist)  
D0A+  
D0A–  
D1A+  
D1A–  
D0B+  
D0B–  
D1B+  
D1B–  
DCO+  
DCO–  
FCO+  
FCO–  
AD9635  
12  
VINA+  
VINA–  
12-BIT PIPELINE  
ADC  
SFDR = 93 dBc at 70 MHz  
12  
12  
VCM  
DNL = −0.1 LSB to +0.2 LSB (typical); INL = 0.4 LSB (typical)  
Serial LVDS (ANSI-644, default) and low power, reduced  
range option (similar to IEEE 1596.3)  
650 MHz full power analog bandwidth  
2 V p-p input voltage range  
Serial port control  
Full chip and individual channel power-down modes  
Flexible bit orientation  
VINB+  
VINB–  
12-BIT PIPELINE  
ADC  
12  
REFERENCE  
SERIAL PORT  
INTERFACE  
1 TO 8  
CLOCK DIVIDER  
Built-in and custom digital test pattern generation  
Clock divider  
Programmable output clock and data alignment  
Programmable output resolution  
Standby mode  
SCLK/ SDIO/ CSB  
DFS PDWN  
CLK+ CLK–  
Figure 1.  
APPLICATIONS  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock output (DCO) for  
capturing data on the output and a frame clock output (FCO) for  
signaling a new output byte are provided. Individual channel  
power-down is supported; the AD9635 typically consumes less  
than 2 mW in the full power-down state. The ADC provides  
several features designed to maximize flexibility and minimize  
system cost, such as programmable output clock and data align-  
ment and digital test pattern generation. The available digital  
test patterns include built-in deterministic and pseudorandom  
patterns, along with custom user-defined test patterns entered via  
the serial port interface (SPI).  
Communications  
Diversity radio systems  
Multimode digital receivers  
GSM, EDGE, W-CDMA, LTE, CDMA2000, WiMAX, TD-SCDMA  
I/Q demodulation systems  
Smart antenna systems  
Broadband data applications  
Battery-powered instruments  
Handheld scope meters  
Portable medical imaging and ultrasound  
Radar/LIDAR  
The AD9635 is available in a RoHS-compliant, 32-lead LFCSP.  
It is specified over the industrial temperature range of −40°C  
to +85°C.  
GENERAL DESCRIPTION  
The AD9635 is a dual, 12-bit, 80 MSPS/125 MSPS analog-to-  
digital converter (ADC) with an on-chip sample-and-hold circuit  
designed for low cost, low power, small size, and ease of use.  
The product operates at a conversion rate of up to 125 MSPS  
and is optimized for outstanding dynamic performance and low  
power in applications where a small package size is critical.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Two ADCs are contained in a small, space-  
saving package.  
2. Low Power. The AD9635 uses 115 mW/channel at 125 MSPS  
with scalable power options.  
3. Pin Compatibility with the AD9645, a 14-Bit Dual ADC.  
4. Ease of Use. A data clock output (DCO) operates at  
frequencies of up to 500 MHz and supports double data  
rate (DDR) operation.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
5. User Flexibility. SPI control offers a wide range of flexible  
features to meet specific system requirements.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2012–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD9635* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
REFERENCE MATERIALS  
Press  
• Analog Devices’ Dual 14-bit A/D Converter Reduces  
Power and Size in Communications, Instrumentation, Test  
and Measurement Applications  
EVALUATION KITS  
AD9635 Evalution Board  
Technical Articles  
MS-2210: Designing Power Supplies for High Speed ADC  
DOCUMENTATION  
Application Notes  
DESIGN RESOURCES  
AD9635 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-501: Aperture Uncertainty and ADC System  
Performance  
AN-737: How ADIsimADC Models an ADC  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs  
DISCUSSIONS  
View all AD9635 EngineerZone Discussions.  
AN-835: Understanding High Speed ADC Testing and  
Evaluation  
AN-878: High Speed ADC SPI Control Software  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Data Sheet  
AD9635: Dual, 12-Bit, 80 MSPS/125 MSPS, Serial LVDS 1.8  
V Analog-to-Digital Converter  
User Guides  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
AD9655/AD9645/AD9635 Evaluation Documentation  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9635 IBIS Model  
AD9635 S-Parameter  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9635  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Dissipation and Power-Down Mode ........................... 22  
Digital Outputs and Timing ..................................................... 23  
Output Test Modes..................................................................... 26  
Serial Port Interface (SPI).............................................................. 27  
Configuration Using the SPI..................................................... 27  
Hardware Interface..................................................................... 28  
Configuration Without the SPI................................................ 28  
SPI Accessible Features.............................................................. 28  
Memory Map .................................................................................. 29  
Reading the Memory Map Register Table............................... 29  
Memory Map Register Table..................................................... 30  
Memory Map Register Descriptions........................................ 33  
Applications Information.............................................................. 35  
Design Guidelines ...................................................................... 35  
Power and Ground Guidelines ................................................. 35  
Clock Stability Considerations ................................................. 35  
Exposed Pad Thermal Heat Slug Recommendations............ 35  
VCM............................................................................................. 35  
Reference Decoupling................................................................ 35  
SPI Port ........................................................................................ 35  
Outline Dimensions....................................................................... 36  
Ordering Guide .......................................................................... 36  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 12  
AD9635-80................................................................................... 12  
AD9635-125................................................................................. 15  
Equivalent Circuits......................................................................... 18  
Theory of Operation ...................................................................... 19  
Analog Input Considerations.................................................... 19  
Voltage Reference ....................................................................... 20  
Clock Input Considerations...................................................... 21  
REVISION HISTORY  
10/15—Rev. A to Rev. B  
Changes to Pin 21 Description..................................................... 11  
Changes to Voltage Reference Section......................................... 20  
Changes to Table 11 ....................................................................... 25  
Changes to First Paragraph of Serial Port Interface (SPI)  
Section.............................................................................................. 27  
Changes to SPI Accessible Features Section ............................... 28  
Changes to Output Phase (Register 0x16) Bits[6:4]—Input  
Clock Phase Adjust Section........................................................... 33  
Changes to Resolution/Sample Rate Override (Register 0x100)  
Section and User I/O Control 3 (Register 0x102) Bit 3—VCM  
Power-Down Section ..................................................................... 34  
Added Clock Stability Considerations Section........................... 35  
Changed tSAMPLE/16 to tSAMPLE/12, AD9516 to AD9516-0/  
AD9516-1/AD9516-2/AD9516-3/AD9516-4/AD9516-5,  
and AD9517 to AD9517-0/AD9517-1/AD9517-2/AD9517-3/  
AD9517-4 ....................................................................... Throughout  
Changes to General Description Section ...................................... 1  
Added Endnote 4, Table 4 ............................................................... 6  
Changes to Digital Outputs and Timing Section ....................... 25  
8/14—Rev. 0 to Rev. A  
Added Propagation Delay Parameters of 1.5 ns (min)  
and 3.1 ns (max), Table 4................................................................. 6  
Changes to Figure 2 and Figure 3................................................... 7  
Changes to Figure 4 and Figure 5................................................... 8  
6/12—Revision 0: Initial Version  
Rev. B | Page 2 of 36  
 
Data Sheet  
AD9635  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 1.  
AD9635-80  
Typ  
AD9635-125  
Min Typ  
12  
Parameter1  
Temp  
Min  
Max  
Max Unit  
RESOLUTION  
12  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
Guaranteed  
−0.6 −0.3  
−0.2 +0.1  
−4.0 −0.8  
0.5  
+0.1  
+0.4  
+2.1  
2.4  
−0.6 −0.3  
−0.2 +0.1  
−4.7 −0.4  
0.6  
+0.2  
+0.4  
+4.8  
2.9  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
LSB  
LSB  
LSB  
−0.2  
+0.4  
−0.3  
+0.6  
−0.1 to +0.2  
0.3  
2.9  
−0.1 to +0.2  
0.4  
3.7  
Integral Nonlinearity (INL)  
−0.7  
+0.7  
−1.1  
+1.1  
TEMPERATURE DRIFT  
Offset Error  
Full  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation at 1.0 mA (VREF = 1 V)  
Input Resistance  
Full  
25°C  
25°C  
0.98  
1.0  
2
7.5  
1.02  
0.98 1.0  
1.02  
V
mV  
kΩ  
2
7.5  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
25°C  
0.41  
0.42  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage (VREF = 1 V)  
Common-Mode Voltage  
Common-Mode Range  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
Full  
Full  
25°C  
25°C  
25°C  
2
0.9  
2
0.9  
V p-p  
V
V
kΩ  
pF  
0.5  
1.3  
0.5  
1.3  
5.2  
3.5  
5.2  
3.5  
AVDD  
Full  
Full  
Full  
Full  
25°C  
1.7  
1.7  
1.8  
1.8  
57  
45  
36  
1.9  
1.9  
61  
1.7  
1.7  
1.8  
1.8  
75  
52  
43  
1.9  
1.9  
81  
V
V
mA  
mA  
mA  
DRVDD  
2
IAVDD  
IDRVDD (ANSI-644 Mode)2  
IDRVDD (Reduced Range Mode)2  
TOTAL POWER CONSUMPTION  
DC Input  
47  
55  
Full  
Full  
174  
184  
186  
194  
215  
229  
232  
245  
mW  
mW  
Sine Wave Input (Two Channels; Includes Output Drivers  
in ANSI-644 Mode)  
Sine Wave Input (Two Channels; Includes Output Drivers  
in Reduced Range Mode)  
25°C  
167  
212  
mW  
Power-Down  
Standby3  
25°C  
Full  
2
91  
2
114  
mW  
mW  
99  
124  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured with a low input frequency, full-scale sine wave on both channels.  
3 Can be controlled via the SPI.  
Rev. B | Page 3 of 36  
 
 
 
AD9635  
Data Sheet  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 2.  
AD9635-80  
Typ  
AD9635-125  
Typ  
Parameter1  
Temp  
Min  
Max  
Min  
Max  
Unit  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 139.5 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
71.8  
71.7  
71.2  
69.9  
68.4  
71.5  
71.5  
71.1  
70.2  
68.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
70.6  
70.1  
fIN = 200.5 MHz  
SIGNAL-TO-NOISE-AND-DISTORTION RATIO (SINAD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 139.5 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
71.8  
71.6  
71.2  
69.6  
68.2  
71.5  
71.5  
71.1  
70.2  
68.7  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
70.5  
11.4  
82  
69.7  
11.3  
82  
fIN = 200.5 MHz  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 139.5 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
11.6  
11.6  
11.5  
11.3  
11.0  
11.6  
11.6  
11.5  
11.4  
11.1  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 200.5 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 139.5 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
93  
90  
94  
81  
82  
92  
93  
93  
92  
83  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 200.5 MHz  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 139.5 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−93  
−90  
−94  
−81  
−82  
−92  
−93  
−93  
−92  
−83  
dBc  
dBc  
dBc  
dBc  
dBc  
−85  
−82  
−82  
−82  
fIN = 200.5 MHz  
WORST OTHER HARMONIC OR SPUR  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 139.5 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−96  
−95  
−94  
−95  
−92  
−95  
−95  
−94  
−93  
−89  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 200.5 MHz  
TWO-TONE INTERMODULATION DISTORTION (IMD)—AIN1 AND  
AIN2 = −7.0 dBFS  
fIN1 = 70.5 MHz, fIN2 = 72.5 MHz  
CROSSTALK2  
CROSSTALK (OVERRANGE CONDITION)3  
POWER SUPPLY REJECTION RATIO (PSRR)4  
AVDD  
25°C  
25°C  
25°C  
−92  
−97  
−97  
−92  
−97  
−97  
dBc  
dB  
dB  
25°C  
25°C  
25°C  
44  
59  
43  
66  
dB  
dB  
DRVDD  
ANALOG INPUT BANDWIDTH, FULL POWER  
650  
650  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Crosstalk is measured at 70 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
3 Overrange condition is specified with 3 dB of the full-scale input range.  
4 PSRR is measured by injecting a sinusoidal signal at 10 MHz to the power supply pin and measuring the output spur on the FFT. PSRR is calculated as the ratio of the  
amplitude of the spur voltage over the amplitude of the pin voltage, expressed in decibels (dB).  
Rev. B | Page 4 of 36  
 
Data Sheet  
AD9635  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 3.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Voltage Range  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
25°C  
25°C  
0.2  
AGND − 0.2  
3.6  
AVDD + 0.2  
V p-p  
V
V
kΩ  
pF  
0.9  
15  
4
LOGIC INPUT (SCLK/DFS)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
2
kΩ  
pF  
LOGIC INPUT (SDIO/PDWN)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
5
kΩ  
pF  
LOGIC OUTPUT (SDIO/PDWN)3  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
DIGITAL OUTPUTS (D0x , D1x ), ANSI-644  
Logic Compliance  
Full  
Full  
1.79  
V
V
0.05  
LVDS  
Differential Output Voltage Magnitude (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
290  
1.15  
345  
1.25  
400  
1.35  
mV  
V
Twos complement  
DIGITAL OUTPUTS (D0x , D1x ), LOW POWER,  
REDUCED SIGNAL OPTION  
Logic Compliance  
LVDS  
Differential Output Voltage Magnitude (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
160  
1.15  
200  
1.25  
230  
1.35  
mV  
V
Twos complement  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Specified for LVDS and LVPECL only.  
3 Specified for 13 SDIO/PDWN pins sharing the same connection.  
Rev. B | Page 5 of 36  
 
AD9635  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 4.  
Parameter1, 2  
CLOCK3  
Temp  
Min  
Typ  
Max  
Unit  
Input Clock Rate  
Full  
Full  
Full  
Full  
10  
10  
1000  
80/125  
MHz  
MSPS  
ns  
Conversion Rate4  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
OUTPUT PARAMETERS3  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
FCO Propagation Delay (tFCO  
DCO Propagation Delay (tCPD  
DCO to Data Delay (tDATA  
DCO to FCO Delay (tFRAME  
Lane Delay (tLD)  
6.25/4.00  
6.25/4.00  
ns  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
1.5  
1.5  
2.3  
300  
300  
2.3  
3.1  
3.1  
ns  
ps  
ps  
ns  
ns  
ps  
ps  
ps  
ps  
ns  
μs  
)
)
5
tFCO + (tSAMPLE/12)  
5
)
(tSAMPLE/12) − 300  
(tSAMPLE/12) − 300  
tSAMPLE/12  
tSAMPLE/12  
90  
50  
250  
(tSAMPLE/12) + 300  
(tSAMPLE/12) + 300  
5
)
Data-to-Data Skew (tDATA-MAX − tDATA-MIN  
Wake-Up Time (Standby)  
Wake-Up Time (Power-Down)6  
Pipeline Latency  
)
Full  
200  
25°C  
25°C  
Full  
375  
16  
Clock  
cycles  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Out-of-Range Recovery Time  
25°C  
25°C  
25°C  
1
174  
1
ns  
fs rms  
Clock  
cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured on standard FR-4 material.  
3 Can be adjusted via the SPI. The conversion rate is the clock rate after the divider.  
4 The maximum conversion rate is based on two-lane output mode. See the Digital Outputs and Timing section for the maximum conversion rate in one-lane output  
mode.  
5 tSAMPLE/12 is based on the number of bits in two LVDS data lanes. tSAMPLE = 1/fS.  
6 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
TIMING SPECIFICATIONS  
Table 5.  
Unit  
Parameter  
Description  
Limit  
SPI TIMING REQUIREMENTS  
See Figure 68  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative 10  
to the SCLK falling edge (not shown in Figure 68)  
2
2
40  
2
2
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
10  
10  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative 10  
to the SCLK rising edge (not shown in Figure 68)  
ns min  
Rev. B | Page 6 of 36  
 
 
 
 
Data Sheet  
AD9635  
Timing Diagrams  
Refer to the Memory Map Register Descriptions section and Table 20 for SPI register settings.  
N – 1  
VINx±  
N + 1  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
DCO+  
tCPD  
DDR  
SDR  
DCO–  
DCO+  
DCO–  
FCO–  
tFRAME  
tFCO  
FCO+  
D0A–  
tDATA  
tPD  
BITWISE  
MODE  
D10  
D08  
D06  
D04  
D02  
LSB  
D10  
D08  
D06  
D04  
D02  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0A+  
D1A–  
tLD  
MSB  
D09  
D07  
D05  
D03  
D01  
MSB  
D09  
D07  
D05  
D03  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1A+  
FCO–  
FCO+  
D0A–  
BYTEWISE  
MODE  
D05  
D04  
D03  
D02  
D01  
LSB  
D05  
D04  
D03  
D02  
D01  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0A+  
D1A–  
MSB  
D10  
D09  
D08  
D07  
D06  
MSB  
D10  
D09  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1A+  
Figure 2. 12-Bit DDR/SDR, Two-Lane, 1× Frame Mode (Default)  
N – 1  
VINx±  
N
tA  
N + 1  
tEH  
tEL  
CLK–  
CLK+  
DCO+  
tCPD  
DDR  
SDR  
DCO–  
DCO+  
DCO–  
FCO–  
tFRAME  
tFCO  
FCO+  
D0A–  
tDATA  
tPD  
BITWISE  
MODE  
D08  
D06  
D04  
D02  
LSB  
D08  
D06  
D04  
D02  
LSB  
D08  
D06  
D04  
D02  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D0A+  
D1A–  
tLD  
MSB  
D07  
D05  
D03  
D01  
MSB  
D07  
D05  
D03  
D01  
MSB  
D07  
D05  
D03  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D1A+  
FCO–  
FCO+  
D0A–  
BYTEWISE  
MODE  
D04  
D03  
D02  
D01  
LSB  
D04  
D03  
D02  
D01  
LSB  
D04  
D03  
D02  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D0A+  
D1A–  
MSB  
D08  
D07  
D06  
D05  
MSB  
D08  
D07  
D06  
D05  
MSB  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D1A+  
Figure 3. 10-Bit DDR/SDR, Two-Lane, 1× Frame Mode  
Rev. B | Page 7 of 36  
 
 
 
AD9635  
Data Sheet  
N – 1  
VINx±  
CLK–  
N + 1  
tA  
N
tEH  
tEL  
CLK+  
DCO+  
tCPD  
DDR  
SDR  
DCO–  
DCO+  
DCO–  
FCO–  
tFRAME  
tFCO  
FCO+  
D0A–  
tDATA  
tPD  
BITWISE  
MODE  
D10  
D08  
D06  
D04  
D02  
LSB  
D10  
D08  
D06  
D04  
D02  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0A+  
D1A–  
tLD  
MSB  
D09  
D07  
D05  
D03  
D01  
MSB  
D09  
D07  
D05  
D03  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1A+  
FCO–  
FCO+  
D0A–  
BYTEWISE  
MODE  
D05  
D04  
D03  
D02  
D01  
LSB  
D05  
D04  
D03  
D02  
D01  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0A+  
D1A–  
MSB  
D10  
D09  
D08  
D07  
D06  
MSB  
D10  
D09  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1A+  
Figure 4. 12-Bit DDR/SDR, Two-Lane, 2× Frame Mode  
N – 1  
VINx±  
CLK–  
N
tA  
N + 1  
tEH  
tEL  
CLK+  
DCO+  
tCPD  
DDR  
SDR  
DCO–  
DCO+  
DCO–  
FCO–  
tFRAME  
tFCO  
FCO+  
D0A–  
tDATA  
tPD  
BITWISE  
MODE  
D08  
D06  
D04  
D02  
LSB  
D08  
D06  
D04  
D02  
LSB  
D08  
D06  
D04  
D02  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D0A+  
D1A–  
tLD  
MSB  
D07  
D05  
D03  
D01  
MSB  
D07  
D05  
D03  
D01  
MSB  
D07  
D05  
D03  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D1A+  
FCO–  
FCO+  
D0A–  
BYTEWISE  
MODE  
D04  
D03  
D02  
D01  
LSB  
D04  
D03  
D02  
D01  
LSB  
D04  
D03  
D02  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D0A+  
D1A–  
MSB  
D08  
D07  
D06  
D05  
MSB  
D08  
D07  
D06  
D05  
MSB  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 15 N – 15 N – 15 N – 15  
D1A+  
Figure 5. 10-Bit DDR/SDR, Two-Lane, 2× Frame Mode  
Rev. B | Page 8 of 36  
 
 
Data Sheet  
AD9635  
N – 1  
VINx±  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFCO  
tFRAME  
FCO–  
FCO+  
tDATA  
tPD  
D0x–  
D0x+  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D10  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16  
Figure 6. Wordwise DDR, One-Lane, 1× Frame, 12-Bit Output Mode  
N – 1  
VINx±  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFCO  
tFRAME  
FCO–  
FCO+  
tDATA  
tPD  
D0x–  
D0x+  
MSB  
N – 9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D8  
D7  
D6  
D5  
N – 8  
N – 9 N – 9 N – 9 N – 9 N – 9 N – 9 N – 9 N – 9 N – 9 N – 8 N – 8 N – 8 N – 8  
Figure 7. Wordwise DDR, One-Lane, 1× Frame, 10-Bit Output Mode  
Rev. B | Page 9 of 36  
 
 
AD9635  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
THERMAL RESISTANCE  
Rating  
The exposed paddle is the only ground connection on the chip.  
The exposed paddle must be soldered to the AGND plane of the  
users circuit board. Soldering the exposed paddle to the users  
board also increases the reliability of the solder joints and  
maximizes the thermal capability of the package.  
Electrical  
AVDD to AGND  
DRVDD to AGND  
Digital Outputs to AGND  
(D0x , D1x , DCO+, DCO−,  
FCO+, FCO−)  
CLK+, CLK− to AGND  
VINx+, VINx− to AGND  
SCLK/DFS, SDIO/PDWN, CSB to AGND  
RBIAS to AGND  
VREF to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
Table 7. Thermal Resistance  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
Airflow  
Velocity  
Package Type (m/sec)  
1, 2  
1, 3  
1, 4  
1, 2  
θJA  
θJC  
3.1  
θJB  
20.7  
ΨJT  
0.3  
0.5  
0.8  
Unit  
°C/W  
°C/W  
°C/W  
32-Lead LFCSP,  
5 mm × 5 mm  
0
1.0  
2.5  
37.1  
32.4  
29.1  
VCM to AGND  
Environmental  
1 Per JEDEC JESD51-7, plus JEDEC JESD51-5 2S2P test board.  
Operating Temperature Range (Ambient)  
Maximum Junction Temperature  
Lead Temperature (Soldering, 10 sec)  
Storage Temperature Range (Ambient)  
−40°C to +85°C  
150°C  
300°C  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-STD 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes reduces the θJA.  
−65°C to +150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
Rev. B | Page 10 of 36  
 
 
 
 
Data Sheet  
AD9635  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AVDD  
CLK+  
CLK–  
1
2
3
4
5
6
7
8
24 AVDD  
23  
22 VCM  
RBIAS  
AD9635  
TOP VIEW  
(Not to Scale)  
SDIO/PDWN  
SCLK/DFS  
DRVDD  
D1B–  
21 VREF  
20  
19  
CSB  
DRVDD  
18 D0A+  
17 D0A–  
D1B+  
NOTES  
1. THE EXPOSED PADDLE IS THE ONLY GROUND CONNECTION  
ON THE CHIP. IT MUST BE SOLDERED TO THE ANALOG GROUND  
OF THE PCB TO ENSURE PROPER FUNCTIONALITY AND HEAT  
DISSIPATION, NOISE, AND MECHANICAL STRENGTH BENEFITS.  
Figure 8. Pin Configuration, Top View  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND,  
Exposed Pad  
The exposed paddle is the only ground connection on the chip. It must be soldered to the analog  
ground of the PCB to ensure proper functionality and heat dissipation, noise, and mechanical strength  
benefits.  
1, 24, 25, 28 29, 32 AVDD  
1.8 V Supply Pins for ADC Analog Core Domain.  
2, 3  
4
CLK+, CLK−  
SDIO/PDWN  
Differential Encode Clock for LVPECL, LVDS, or 1.8 V CMOS Inputs.  
Data Input/Output in SPI Mode (SDIO). Bidirectional SPI data I/O with 30 kΩ internal pull-down.  
Power-Down in Non-SPI Mode (PDWN). Static control of chip power-down with 30 kΩ internal pull-down.  
5
SCLK/DFS  
SPI Clock Input in SPI Mode (SCLK). 30 kΩ internal pull-down.  
Data Format Select in Non-SPI Mode (DFS). Static control of data output format, with 30 kΩ internal  
pull-down. DFS high = twos complement output; DFS low = offset binary output.  
6, 19  
7, 8  
DRVDD  
1.8 V Supply Pins for Output Driver Domain.  
Channel B Digital Outputs.  
Channel B Digital Outputs.  
Data Clock Outputs.  
Frame Clock Outputs.  
Channel A Digital Outputs.  
Channel A Digital Outputs.  
SPI Chip Select. Active low enable with 15 kΩ internal pull-up.  
1.0 V Voltage Reference Output.  
D1B−, D1B+  
D0B−, D0B+  
DCO−, DCO+  
FCO−, FCO+  
D1A−, D1A+  
D0A−, D0A+  
CSB  
9, 10  
11, 12  
13, 14  
15, 16  
17, 18  
20  
21  
VREF  
22  
23  
VCM  
RBIAS  
Analog Output Voltage at Mid AVDD Supply. Sets the common-mode voltage of the analog inputs.  
Sets the analog current bias. Connect this pin to a 10 kΩ (1% tolerance) resistor to ground.  
26, 27  
30, 31  
VINA−, VINA+ Channel A ADC Analog Inputs.  
VINB+, VINB− Channel B ADC Analog Inputs.  
Rev. B | Page 11 of 36  
 
AD9635  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9635-80  
0
0
–20  
80MSPS  
9.7MHz AT –1dBFS  
SNR = 70.7dB (71.7dBFS)  
80MSPS  
139.5MHz AT –1dBFS  
SNR = 68.8dB (69.8dBFS)  
SFDR = 80.9dBc  
–20  
SFDR = 92.9dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
FREQUENCY (MHz)  
Figure 9. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Figure 12. Single-Tone 16k FFT with fIN = 139.5 MHz, fSAMPLE = 80 MSPS  
0
0
80MSPS  
80MSPS  
30.5MHz AT –1dBFS  
SNR = 70.6dB (71.6dBFS)  
200.5MHz AT –1dBFS  
SNR = 67.4dB (68.4dBFS)  
–20  
–20  
SFDR = 91.2dBc  
SFDR = 83dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Single-Tone 16k FFT with fIN = 30.5 MHz, fSAMPLE = 80 MSPS  
Figure 13. Single-Tone 16k FFT with fIN = 200.5 MHz, fSAMPLE = 80 MSPS  
0
0
80MSPS  
70.2MHz AT –1dBFS  
SNR = 70.3dB (71.3dBFS)  
SFDR = 93.5dBc  
80MSPS  
–15  
–30  
200.5MHz AT –1dBFS  
SNR = 68.8dB (69.8dBFS)  
SFDR = 81.3dBc  
–20  
–40  
–45  
–60  
–80  
–60  
–75  
–90  
–100  
–120  
–140  
–105  
–120  
–135  
0
10  
20  
30  
40  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Single-Tone 16k FFT with fIN = 70.2 MHz, fSAMPLE = 80 MSPS  
Figure 14. Single-Tone 16k FFT with fIN = 200.5 MHz, fSAMPLE = 80 MSPS,  
Clock Divide = Divide-by-8  
Rev. B | Page 12 of 36  
 
 
Data Sheet  
AD9635  
120  
100  
80  
110  
100  
90  
SFDRFS  
SNRFS  
SFDR  
SFDR  
SNR  
80  
70  
60  
60  
50  
40  
40  
30  
20  
SNR  
20  
0
10  
0
–20  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
20 40 60 80 100 120 140 160 180 200 220 240 260  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 15. SNR/SFDR vs. Analog Input Level; fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Figure 18. SNR/SFDR vs. fIN; fSAMPLE = 80 MSPS  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 91.4dBc  
IMD2 = –92.6dBc  
IMD3 = –92.3dBc  
SFDR  
SNR  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
10  
20  
30  
40  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 16. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
fSAMPLE = 80 MSPS  
Figure 19. SNR/SFDR vs. Temperature; fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
–20  
SFDR (dBc)  
–40  
IMD3 (dBc)  
–60  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–80  
SFDR (dBFS)  
–100  
IMD3 (dBFS)  
–120  
–90  
–70  
–50  
–30  
–10  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 17. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 80 MSPS  
Figure 20. INL; fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Rev. B | Page 13 of 36  
AD9635  
Data Sheet  
0.25  
0.20  
0.15  
0.10  
0.05  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
SFDR  
SNRFS  
–0.05  
–0.10  
–0.15  
0
10  
30  
50  
SAMPLE RATE (MSPS)  
70  
90  
OUTPUT CODE  
Figure 21. DNL; fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Figure 24. SNR/SFDR vs. Sample Rate; fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
2,500,000  
2,000,000  
1,500,000  
1,000,000  
500,000  
110  
100  
0.41LSB rms  
SFDR  
90  
80  
SNRFS  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
30  
50  
70  
90  
1
2
3
4
5
6
7
SAMPLE RATE (MSPS)  
CODE  
Figure 25. SNR/SFDR vs. Sample Rate; fIN = 70 MHz, fSAMPLE = 80 MSPS  
Figure 22. Input Referred Noise Histogram; fSAMPLE = 80 MSPS  
90  
DRVDD  
80  
70  
60  
50  
AVDD  
40  
30  
20  
10  
0
1
10  
FREQUENCY (MHz)  
Figure 23. PSRR vs. Frequency; fCLK = 125 MHz, fSAMPLE = 80 MSPS  
Rev. B | Page 14 of 36  
Data Sheet  
AD9635  
AD9635-125  
0
0
–20  
125MSPS  
125MSPS  
9.7MHz AT –1dBFS  
SNR = 70.6dB (71.6dBFS)  
SFDR = 93.3dBc  
139.5MHz AT –1dBFS  
SNR = 69.1dB (70.1dBFS)  
SFDR = 92.9dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 26. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 29. Single-Tone 16k FFT with fIN = 139.5 MHz, fSAMPLE = 125 MSPS  
0
0
125MSPS  
125MSPS  
30.5MHz AT –1dBFS  
SNR = 70.5dB (71.5dBFS)  
200.5MHz AT –1dBFS  
SNR = 67.8dB (68.8dBFS)  
–20  
–20  
SFDR = 92dBc  
SFDR = 82.4dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
20  
40  
60  
0
20  
40  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 27. Single-Tone 16k FFT with fIN = 30.5 MHz, fSAMPLE = 125 MSPS  
Figure 30. Single-Tone 16k FFT with fIN = 200.5 MHz, fSAMPLE = 125 MSPS  
0
0
125MSPS  
70.2MHz AT –1dBFS  
SNR = 70.1dB (71.1dBFS)  
SFDR = 93.6dBc  
125MSPS  
–15  
–30  
200.5MHz AT –1dBFS  
SNR = 68.6dB (69.6dBFS)  
SFDR = 81.9dBc  
–20  
–40  
–45  
–60  
–80  
–60  
–75  
–90  
–100  
–120  
–140  
–105  
–120  
–135  
0
20  
40  
60  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 28. Single-Tone 16k FFT with fIN = 70.2 MHz, fSAMPLE = 125 MSPS  
Figure 31. Single-Tone 16k FFT with fIN = 200.5 MHz, fSAMPLE = 125 MSPS,  
Clock Divide = Divide-by-8  
Rev. B | Page 15 of 36  
 
AD9635  
Data Sheet  
120  
100  
80  
60  
40  
20  
0
110  
100  
90  
SFDR  
SNR  
SFDRFS  
SNRFS  
80  
70  
60  
50  
SFDR  
SNR  
40  
30  
20  
10  
0
–20  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
20 40 60 80 100 120 140 160 180 200 220 240 260  
INPUT FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 32. SNR/SFDR vs. Analog Input Level; fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 35. SNR/SFDR vs. fIN; fSAMPLE = 125 MSPS  
0
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 89.1dBc  
IMD2 = –93.9dBc  
IMD3 = –91.6dBc  
–20  
SFDR  
SNR  
–40  
–60  
–80  
–100  
–120  
–140  
0
20  
40  
60  
–40  
–20  
0
20  
40  
60  
80  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 33. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
fSAMPLE = 125 MSPS  
Figure 36. SNR/SFDR vs. Temperature; fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
0.4  
0.3  
0
–20  
SFDR (dBc)  
0.2  
–40  
0.1  
IMD3 (dBc)  
0
–60  
–0.1  
–0.2  
–0.3  
–0.4  
–80  
SFDR (dBFS)  
–100  
IMD3 (dBFS)  
–120  
–90  
–70  
–50  
–30  
–10  
INPUT AMPLITUDE (dBFS)  
OUTPUT CODE  
Figure 34. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 125 MSPS  
Figure 37. INL; fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Rev. B | Page 16 of 36  
Data Sheet  
AD9635  
0.25  
0.20  
0.15  
0.10  
0.05  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
SFDR  
SNRFS  
–0.05  
–0.10  
–0.15  
0
10  
30  
50  
70  
90  
110  
130  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 38. DNL; fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 41. SNR/SFDR vs. Sample Rate; fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
2,500,000  
2,000,000  
1,500,000  
1,000,000  
500,000  
110  
100  
0.42LSB rms  
SFDR  
90  
80  
70  
SNRFS  
60  
50  
40  
30  
20  
10  
0
0
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
10  
30  
50  
70  
90  
110  
130  
CODE  
SAMPLE RATE (MSPS)  
Figure 39. Input-Referred Noise Histogram; fSAMPLE = 125 MSPS  
Figure 42. SNR/SFDR vs. Sample Rate; fIN = 70 MHz, fSAMPLE = 125 MSPS  
90  
DRVDD  
80  
70  
60  
50  
AVDD  
40  
30  
20  
10  
0
1
10  
FREQUENCY (MHz)  
Figure 40. PSRR vs. Frequency; fCLK = 125 MHz, fSAMPLE = 125 MSPS  
Rev. B | Page 17 of 36  
AD9635  
Data Sheet  
EQUIVALENT CIRCUITS  
DRVDD  
AVDD  
400Ω  
VINx±  
SCLK/DFS  
30kΩ  
Figure 43. Equivalent Analog Input Circuit  
Figure 47. Equivalent SCLK/DFS Input Circuit  
AVDD  
10Ω  
CLK+  
AVDD  
15kΩ  
15kΩ  
0.9V  
AVDD  
400Ω  
RBIAS  
AND VCM  
10Ω  
CLK–  
Figure 48. Equivalent RBIAS and VCM Circuit  
Figure 44. Equivalent Clock Input Circuit  
DRVDD  
DRVDD  
400Ω  
SDIO/PDWN  
15kΩ  
31kΩ  
400Ω  
CSB  
Figure 49. Equivalent CSB Input Circuit  
Figure 45. Equivalent SDIO/PDWN Input Circuit  
DRVDD  
AVDD  
V
V
D0x–, D1x–  
D0x+, D1x+  
10Ω  
400Ω  
VREF  
V
V
7.5kΩ  
Figure 50. Equivalent VREF Circuit  
Figure 46. Equivalent Digital Output Circuit  
Rev. B | Page 18 of 36  
 
 
Data Sheet  
AD9635  
THEORY OF OPERATION  
The AD9635 is a multistage, pipelined ADC. Each stage provides  
sufficient overlap to correct for flash errors in the preceding  
stage. The quantized outputs from each stage are combined into  
a final 12-bit result in the digital correction logic. The pipelined  
architecture allows the first stage to operate with a new input  
sample while the remaining stages operate with the preceding  
samples. Sampling occurs on the rising edge of the clock.  
A small resistor in series with each input can help reduce the peak  
transient current injected from the output stage of the driving  
source. In addition, low Q inductors or ferrite beads can be placed  
on each leg of the input to reduce high differential capacitance  
at the analog inputs and, therefore, achieve the maximum  
bandwidth of the ADC. Such use of low Q inductors or ferrite  
beads is required when driving the converter front end at high  
IF frequencies. Either a differential capacitor or two single-ended  
capacitors can be placed on the inputs to provide a matching  
passive network. This ultimately creates a low-pass filter at the  
input to limit unwanted broadband noise. See the AN-742  
Application Note, the AN-827 Application Note, and the Analog  
Dialogue article “Transformer-Coupled Front-End for Wideband  
A/D Converters(Volume 39, April 2005) for more information.  
In general, the precise values depend on the application.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage consists of a flash ADC.  
Input Common Mode  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
The analog inputs of the AD9635 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 52.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9635 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
100  
SFDR  
90  
80  
SNRFS  
70  
60  
50  
40  
30  
20  
H
C
PAR  
H
H
VINx+  
VINx–  
C
SAMPLE  
S
S
S
S
C
SAMPLE  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
C
PAR  
INPUT COMMON MODE (V)  
H
Figure 52. SNR/SFDR vs. Input Common-Mode Voltage,  
fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 51. Switched-Capacitor Input Circuit  
An on-chip, common-mode voltage reference is included in the  
design and is available from the VCM pin. The VCM pin must  
be decoupled to ground by a 0.1 µF capacitor, as described in  
the Applications Information section.  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 51). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9635, the largest input span available is 2 V p-p.  
Rev. B | Page 19 of 36  
 
 
 
 
AD9635  
Data Sheet  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
Differential Input Configurations  
There are several ways to drive the AD9635 either actively or  
passively. However, optimum performance is achieved by driving  
the analog inputs differentially. Using a differential double balun  
configuration to drive the AD9635 provides excellent performance  
and a flexible interface to the ADC for baseband applications  
(see Figure 55).  
INTERNAL V  
REF  
= 1V  
For applications where SNR is a key parameter, differential trans-  
former coupling is the recommended input configuration (see  
Figure 56) because the noise performance of most amplifiers is  
not adequate to achieve the true performance of the AD9635.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
LOAD CURRENT (mA)  
Figure 53. VREF Error vs. Load Current  
It is not recommended to drive the AD9635 inputs single-ended.  
4
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9635. The VREF pin should be externally decoupled to  
ground with a low ESR, 1.0 μF capacitor in parallel with a low ESR,  
0.1 μF ceramic capacitor.  
2
0
–2  
–4  
–6  
–8  
Figure 53 shows how the internal reference voltage is affected by  
loading. Figure 54 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
The internal buffer generates the positive and negative full-scale  
references for the ADC core.  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 54. Typical VREF Drift  
0.1µF  
R
*C1  
5pF  
0.1µF  
VINx+  
33Ω  
33Ω  
33Ω  
C
2V p-p  
C
ADC  
0.1µF  
C
R
VCM  
VINx–  
33Ω  
ET1-1-I3  
*C1  
R
200Ω  
*C1 IS OPTIONAL  
0.1µF  
C
0.1µF  
Figure 55. Differential Double Balun Input Configuration for Baseband Applications  
ADT1-1WT  
1:1 Z RATIO  
*C1  
R
VINx+  
VINx–  
33Ω  
2Vp-p  
49.9Ω  
ADC  
C
5pF  
*C1  
R
VCM  
33Ω  
200Ω  
0.1µF  
0.1μF  
*C1 IS OPTIONAL  
Figure 56. Differential Transformer-Coupled Configuration for Baseband Applications  
Rev. B | Page 20 of 36  
 
 
 
 
 
Data Sheet  
AD9635  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 59. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516-0/AD9516-1/AD9516-2/  
AD9516-3/AD9516-4/AD9516-5/AD9517-0/AD9517-1/  
AD9517-2/AD9517-3/AD9517-4 clock drivers offer excellent  
jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9635 sample clock inputs,  
CLK+ and CLK−, with a differential signal. The signal is typically  
ac-coupled into the CLK+ and CLK− pins via a transformer or  
capacitors. These pins are biased internally (see Figure 44) and  
require no external bias.  
Clock Input Options  
The AD9635 has a flexible clock input structure. The clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless  
of the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
PECL DRIVER  
100Ω  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
240Ω  
240Ω  
Figure 57 and Figure 58 show two preferred methods for clocking  
the AD9635 (at clock rates up to 1 GHz prior to the internal clock  
divider). A low jitter clock source is converted from a single-ended  
signal to a differential signal using either an RF transformer or an  
RF balun.  
50kΩ  
50kΩ  
Figure 59. Differential PECL Sample Clock (Up to 1 GHz)  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 60. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516-0/  
AD9516-1/AD9516-2/AD9516-3/AD9516-4/AD9516-5/  
AD9517-0/AD9517-1/AD9517-2/AD9517-3/AD9517-4 clock  
drivers offer excellent jitter performance.  
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
100Ω  
50Ω  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100Ω  
ADC  
Figure 57. Transformer-Coupled Differential Clock (Up to 200 MHz)  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 60. Differential LVDS Sample Clock (Up to 1 GHz)  
0.1µF  
0.1µF  
0.1µF  
In some applications, it may be acceptable to drive the sample clock  
inputs with a single-ended 1.8 V CMOS signal. In such applica-  
tions, drive the CLK+ pin directly from a CMOS gate, and bypass  
the CLK− pin to ground with a 0.1 μF capacitor (see Figure 61).  
CLOCK  
INPUT  
CLK+  
50Ω  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
V
CC  
OPTIONAL  
0.1µF  
1
Figure 58. Balun-Coupled Differential Clock (Up to 1 GHz)  
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
100Ω  
CLOCK  
INPUT  
CLK+  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 1 GHz, and the RF transformer configu-  
ration is recommended for clock frequencies from 10 MHz to  
200 MHz. The back-to-back Schottky diodes across the  
transformer/balun secondary winding limit clock excursions  
into the AD9635 to approximately 0.8 V p-p differential.  
50Ω  
ADC  
CLK–  
0.1µF  
1
50Ω RESISTOR IS OPTIONAL.  
Figure 61. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
This limit helps prevent the large voltage swings of the clock from  
feeding through to other portions of the AD9635 while preserving  
the fast rise and fall times of the signal that are critical to achieving  
low jitter performance. However, the diode capacitance comes into  
play at frequencies above 500 MHz. Care must be taken when  
choosing the appropriate signal limiting diode.  
Input Clock Divider  
The AD9635 contains an input clock divider that can divide the  
input clock by integer values from 1 to 8. To achieve a given sample  
rate, the frequency of the externally applied clock must be multi-  
plied by the divide value. The increased rate of the external clock  
normally results in lower clock jitter, which is beneficial for IF  
undersampling applications.  
Rev. B | Page 21 of 36  
 
 
 
 
 
 
AD9635  
Data Sheet  
Clock Duty Cycle  
The clock input should be treated as an analog signal in cases where  
aperture jitter may affect the dynamic range of the AD9635. Power  
supplies for clock drivers should be separated from the ADC  
output driver supplies to avoid modulating the clock signal with  
digital noise. Low jitter, crystal-controlled oscillators make the  
best clock sources. If the clock is generated from another type of  
source (by gating, dividing, or other methods), it should be  
retimed by the original clock as the last step.  
Typical high speed ADCs use both clock edges to generate a variety  
of internal timing signals and, as a result, may be sensitive to the  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
The AD9635 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows the user to provide  
a wide range of clock input duty cycles without affecting the  
performance of the AD9635. Noise and distortion performance are  
nearly flat for a wide range of duty cycles with the DCS on.  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
POWER DISSIPATION AND POWER-DOWN MODE  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty cycle  
control loop does not function for clock rates of less than 20 MHz,  
nominally. The loop has a time constant associated with it that  
must be considered in applications in which the clock rate can  
change dynamically. A wait time of 1.5 µs to 5 µs is required after  
a dynamic clock frequency increase or decrease before the DCS  
loop is relocked to the input signal.  
As shown in Figure 63, the power dissipated by the AD9635 is  
proportional to its sample rate. The AD9635 is placed in power-  
down mode either by the SPI port or by asserting the PDWN  
pin high. In this state, the ADC typically dissipates 2 mW. During  
power-down, the output drivers are placed in a high impedance  
state. Asserting the PDWN pin low returns the AD9635 to its  
normal operating mode. Note that PDWN is referenced to the  
digital output driver supply (DRVDD) and should not exceed  
that supply voltage.  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by the  
following equation:  
240  
220  
125MSPS  
1
200  
SNR Degradation = 20 log  
10   
2π × fA ×tJ  
105MSPS  
180  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 62).  
80MSPS  
160  
65MSPS  
50MSPS  
140  
40MSPS  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
120  
110  
20MSPS  
100  
10  
30  
50  
70  
90  
110  
130  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
SAMPLE RATE (MSPS)  
Figure 63. Total Power Dissipation vs. fSAMPLE for fIN = 9.7 MHz  
14 BITS  
12 BITS  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when the part enters  
power-down mode and must then be recharged when the part  
returns to normal operation. As a result, wake-up time is related  
to the time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times. When using  
the SPI port interface, the user can place the ADC in power-  
down mode or standby mode. Standby mode allows the user to  
keep the internal reference circuitry powered when faster wake-  
up times are required. See the Memory Map section for more  
details on using these features.  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 62. Ideal SNR vs. Input Frequency and Jitter  
Rev. B | Page 22 of 36  
 
 
 
 
Data Sheet  
AD9635  
Figure 65 shows the LVDS output timing example in reduced  
range mode.  
DIGITAL OUTPUTS AND TIMING  
The AD9635 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This default setting can be changed  
to a low power, reduced signal option (similar to the IEEE 1596.3  
standard) via the SPI. The LVDS driver current is derived on chip  
and sets the output current at each output equal to a nominal  
3.5 mA. A 100 Ω differential termination resistor placed at the  
LVDS receiver inputs results in a nominal 350 mV swing (or  
700 mV p-p differential) at the receiver.  
When operating in reduced range mode, the output current is  
reduced to 2 mA. This results in a 200 mV swing (or 400 mV p-p  
differential) across a 100 Ω termination at the receiver.  
The LVDS outputs facilitate interfacing with LVDS receivers in  
custom ASICs and FPGAs for superior switching performance  
in noisy environments. Single point-to-point net topologies are  
recommended with a 100 Ω termination resistor placed as close  
as possible to the receiver. If there is no far-end receiver termi-  
nation or there is poor differential trace routing, timing errors  
may result. To avoid such timing errors, ensure that the trace  
length is less than 24 inches and that the differential output traces  
are close together and at equal lengths.  
D0 400mV/DIV  
4ns/DIV  
D1 400mV/DIV  
DCO 400mV/DIV  
FCO 400mV/DIV  
Figure 65. AD9635-125, LVDS Output Timing Example in Reduced Range Mode  
Figure 66 shows an example of the LVDS output using the  
ANSI-644 standard (default) data eye and a time interval error  
(TIE) jitter histogram with trace lengths of less than 24 inches  
on standard FR-4 material.  
Figure 64 shows an example of the FCO and data stream with  
proper trace length and position.  
500  
EYE: ALL BITS  
ULS: 7000/400354  
400  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
–0.8ns  
–0.4ns  
0ns  
0.4ns  
0.8ns  
7k  
6k  
5k  
4k  
3k  
2k  
1k  
0
D0 500mV/DIV  
D1 500mV/DIV  
DCO 500mV/DIV  
FCO 500mV/DIV  
4ns/DIV  
Figure 64. AD9635-125, LVDS Output Timing Example in ANSI-644 Mode (Default)  
200ps  
250ps  
300ps  
350ps  
400ps  
450ps  
500ps  
Figure 66. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
of Less Than 24 Inches on Standard FR-4 Material, External 100 Ω Far-End  
Termination Only  
Rev. B | Page 23 of 36  
 
 
 
 
AD9635  
Data Sheet  
Figure 67 shows an example of trace lengths exceeding 24 inches  
on standard FR-4 material. Note that the TIE jitter histogram  
reflects the decrease of the data eye opening as the edge deviates  
from the ideal position.  
The format of the output data is twos complement by default.  
An example of the output coding format can be found in Table 9.  
To change the output data format to offset binary, see the  
Memory Map section.  
Data from each ADC is serialized and provided on a separate  
channel in two lanes in DDR mode. The data rate for each serial  
stream is equal to (12 bits × the sample clock rate)/2 lanes, with  
a maximum of 750 Mbps/lane ((12 bits × 125 MSPS)/(2 lanes) =  
750 Mbps/lane)). The maximum allowable output data rate is  
1 Gbps/lane. If one-lane mode is used, the data rate doubles for a  
given sample rate. To stay within the maximum data rate of  
1 Gbps/lane, the sample rate is limited to a maximum of 83.3 MSPS  
in one-lane output mode.  
500  
400  
EYE: ALL BITS  
ULS: 8000/414024  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
The lowest typical conversion rate is 10 MSPS. For conversion  
rates of less than 20 MSPS, the SPI must be used to reconfigure  
the integrated PLL. See Register 0x21 in the Memory Map section  
for details on enabling this feature.  
–0.8ns  
–0.4ns  
0ns  
0.4ns  
0.8ns  
Two output clocks are provided to assist in capturing data from  
the AD9635. The DCO is used to clock the output data and is  
equal to 3× the sample clock (CLK) rate for the default mode  
of operation. Data is clocked out of the AD9635 and must be  
captured on the rising and falling edges of the DCO that supports  
double data rate (DDR) capturing. The FCO is used to signal  
the start of a new output byte and is equal to the sample clock  
rate in 1× frame mode. See the Timing Diagrams section for  
more information.  
12k  
10k  
8k  
6k  
4k  
2k  
0
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins, if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 180° relative to the  
output data edge.  
–800ps –600ps –400ps –200ps  
0ps  
200ps  
400ps 600ps  
Figure 67. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater Than 24 Inches on Standard FR-4 Material, External 100 Ω Far-End  
Termination Only  
A 10-bit serial stream can also be initiated from the SPI. This  
allows the user to implement and test compatibility to lower  
resolution systems. When changing the resolution to a 10-bit  
serial stream, the data stream is shortened.  
It is the responsibility of the user to determine if the waveforms  
meet the timing budget of the design when the trace lengths exceed  
24 inches. Additional SPI options allow the user to further increase  
the internal termination (increasing the current) of both outputs  
to drive longer trace lengths. This increase in current can be  
achieved by programming Register 0x15. Although an increase  
in current produces sharper rise and fall times on the data edges  
and is less prone to bit errors, the power dissipation of the DRVDD  
supply increases when this option is used.  
In default mode, as shown in Figure 2, the MSB is first in the  
data output serial stream. This can be inverted, by using the SPI,  
so that the LSB is first in the data output serial stream.  
Table 9. Digital Output Coding  
Input (V)  
Condition (V)  
<−VREF − 0.5 LSB  
−VREF  
Offset Binary Output Mode  
Twos Complement Mode  
1000 0000 0000  
1000 0000 0000  
0000 0000 0000  
0111 1111 1111  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
0000 0000 0000  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
1111 1111 1111  
0 V  
+VREF − 1.0 LSB  
>+VREF − 0.5 LSB  
0111 1111 1111  
Rev. B | Page 24 of 36  
 
 
Data Sheet  
AD9635  
Table 10. Flexible Output Test Modes  
Output Test  
Mode Bit  
Sequence  
Subject to  
Data Format  
Select  
Pattern Name  
Off (default)  
Midscale short  
Digital Output Word 1  
Digital Output Word 2  
Not applicable  
Not applicable  
Notes  
0000  
0001  
Not applicable  
10 0000 0000 (10-bit)  
1000 0000 0000 (12-bit)  
N/A  
Yes  
Offset binary  
code shown  
0010  
0011  
0100  
0101  
+Full-scale short  
−Full-scale short  
Checkerboard  
11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
Not applicable  
Not applicable  
Not applicable  
Yes  
Yes  
No  
Yes  
Offset binary  
code shown  
Offset binary  
code shown  
01 0101 0101 (10-bit)  
0101 0101 0101 (12-bit)  
Not applicable  
PN sequence long1  
PN23,  
ITU 0.150  
X23 + X18 + 1  
PN9  
0110  
0111  
PN sequence short1  
Not applicable  
Not applicable  
Yes  
No  
ITU 0.150  
X9 + X5 + 1  
One-/zero-word toggle 11 1111 1111 (10-bit)  
1111 1111 1111 (12-bit)  
00 0000 0000 (10-bit)  
0000 0000 0000 (12-bit)  
1000  
1001  
User input  
1-/0-bit toggle  
Register 0x19 to Register 0x1A  
10 1010 1010 (10-bit)  
1010 1010 1010 (12-bit)  
00 0011 1111 (10-bit)  
0000 0111 1111 (12-bit)  
10 0000 0000 (10-bit)  
Register 0x1B to Register 0x1C No  
Not applicable  
Not applicable  
Not applicable  
No  
No  
No  
1010  
1011  
1× sync  
One bit high  
Pattern  
associated  
with the  
1000 0000 0000 (12-bit)  
external pin  
1100  
Mixed frequency  
10 0011 0011 (10-bit)  
Not applicable  
No  
1000 0110 0111 (12-bit)  
1 All test mode options except PN sequence short and PN sequence long can support 10-bit to 12-bit word lengths to verify data capture to the receiver.  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This is a useful feature when  
Table 11. PN Sequence  
Next Three Output  
Samples (MSB First),  
Twos Complement  
validating receiver capture and timing. Refer to Table 10 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various ways,  
depending on the test pattern chosen.  
Sequence  
Initial Value  
0x7F8  
0x7FF  
PN Sequence Short  
PN Sequence Long  
0xBDF, 0x973, 0xA09  
0x7FE, 0x800, 0xFC0  
Note that some patterns do not adhere to the data format select  
option. In addition, custom user-defined test patterns can be  
assigned in the 0x19, 0x1A, 0x1B, and 0x1C register addresses.  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.6 of the ITU-T 0.150 (05/96) standard. The  
seed value is all 1s (see Table 11 for the initial values) and the  
AD9635 inverts the bit stream with relation to the ITU standard.  
The output is a parallel representation of the serial PN23 sequence  
in MSB-first format. The first output word is the first 12 bits of the  
PN23 sequence in MSB aligned form.  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A description  
of the PN sequence and how it is generated can be found in  
Section 5.1 of the ITU-T 0.150 (05/96) standard. The seed value  
is all 1s (see Table 11 for the initial values). The output is a  
parallel representation of the serial PN9 sequence in MSB-first  
format. The first output word is the first 12 bits of the PN9  
sequence in MSB aligned form.  
Consult the Memory Map section for information on how to  
change these additional digital output timing features through  
the SPI.  
Rev. B | Page 25 of 36  
 
 
AD9635  
Data Sheet  
SDIO/PDWN Pin  
CSB Pin  
For applications that do not require SPI mode operation, the  
CSB pin is tied to DRVDD, and the SDIO/PDWN pin controls  
power-down mode according to Table 12.  
The CSB pin should be tied to DRVDD for applications that do  
not require SPI mode operation. By tying CSB high, all SCLK  
and SDIO information is ignored.  
Note that, in non-SPI mode (CSB tied to DRVDD), the power-up  
sequence described in the Power and Ground Guidelines  
section must be adhered to. Violating the power-up sequence  
necessitates a soft reset via SPI, which is not possible in non-SPI  
mode.  
Table 12. Power-Down Mode Pin Settings  
PDWN Pin Voltage Device Mode  
AGND (Default)  
DRVDD  
Run device, normal operation  
Power down device  
Note that in non-SPI mode (CSB tied to DRVDD), the power-  
up sequence described in the Power and Ground Guidelines  
section must be adhered to. Violating the power-up sequence  
necessitates a soft reset via the SPI, which is not possible in non-  
SPI mode.  
RBIAS Pin  
To set the internal core bias current of the ADC, place a 10.0 kΩ,  
1% tolerance resistor to ground at the RBIAS pin.  
OUTPUT TEST MODES  
SCLK/DFS Pin  
The output test options are described in Table 10 and are controlled  
by the output test mode bits at Address 0x0D. When an output test  
mode is enabled, the analog section of the ADC is disconnected  
from the digital back-end blocks and the test pattern is run through  
the output formatting block. Some of the test patterns are subject  
to output formatting, and some are not. The PN generators from  
the PN sequence tests can be reset by setting Bit 4 or Bit 5 of  
Register 0x0D. These tests can be performed with or without an  
analog signal (if present, the analog signal is ignored), but they  
do require an encode clock. For more information, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
The SCLK/DFS pin is used for output format selection in  
applications that do not require SPI mode operation. This pin  
determines the digital output format when the CSB pin is held  
high during device power-up. When SCLK/DFS is tied to DRVDD,  
the ADC output format is twos complement; when SCLK/DFS  
is tied to AGND, the ADC output format is offset binary.  
Table 13. Digital Output Format  
DFS Voltage  
Output Format  
AGND  
DRVDD  
Offset binary  
Twos complement  
Rev. B | Page 26 of 36  
 
 
 
Data Sheet  
AD9635  
SERIAL PORT INTERFACE (SPI)  
The AD9635 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
offers the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For general operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
The falling edge of CSB, in conjunction with the rising edge of  
SCLK/DFS, determines the start of the framing. An example of  
the serial timing is shown in Figure 68. See Table 5 for  
definitions of the timing parameters.  
Other modes involving the CSB pin are available. CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. CSB can stall high between bytes to allow  
for additional external timing. When the CSB pin is tied high,  
SPI functions are placed in high impedance mode. This mode  
turns on the secondary functions of the SPI pins.  
CONFIGURATION USING THE SPI  
During the instruction phase of a SPI operation, a 16-bit  
instruction is transmitted. Data follows the instruction phase,  
and its length is determined by the W0 and W1 bits.  
Three pins define the SPI of this ADC: the SCLK/DFS pin,  
the SDIO/PDWN pin, and the CSB pin (see Table 14). SCLK/DFS  
(a serial clock when CSB is low) is used to synchronize the read  
and write data presented from and to the ADC. SDIO/PDWN  
(serial data input/output when CSB is low) is a dual-purpose  
pin that allows data to be sent to and read from the internal ADC  
memory map registers. CSB (chip select bar) is an active low  
control that enables or disables the SPI read and write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte  
in a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input  
to an output at the appropriate point in the serial frame.  
Table 14. Serial Port Interface Pins  
Pin  
Function  
SCLK/DFS  
Serial clock when CSB is low. The serial shift clock  
input, which is used to synchronize serial interface  
reads and writes.  
All data is composed of 8-bit words. Data can be sent in MSB-  
first mode or in LSB-first mode. MSB-first mode is the default  
on power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
SDIO/PDWN Serial data input/output when CSB is low. A dual-  
purpose pin that typically serves as an input or an  
output, depending on the instruction being sent  
and the relative position in the timing frame.  
CSB  
Chip select bar. An active low control that enables  
the SPI mode read and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 68. Serial Port Interface Timing Diagram  
Rev. B | Page 27 of 36  
 
 
 
 
AD9635  
Data Sheet  
CONFIGURATION WITHOUT THE SPI  
HARDWARE INTERFACE  
In applications that do not interface to the SPI control registers,  
the SCLK/DFS pin and the SDIO/PDWN pin serve as standalone  
CMOS-compatible control pins. When the device is powered up,  
it is assumed that the user intends to use the pins as static control  
lines for the output data format and power-down feature control.  
In this mode, CSB should be connected to DRVDD, which  
disables the serial port interface.  
The pins described in Table 14 comprise the physical interface  
between the user programming device and the serial port of the  
AD9635. The SCLK/DFS pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO/PDWN pin is bidirec-  
tional, functioning as an input during write phases and as an  
output during readback.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
Note that in non-SPI mode (CSB tied to DRVDD), the power-up  
sequence described in the Power and Ground Guidelines section  
must be adhered to. Violating the power-up sequence necessitates  
a soft reset via the SPI, which is not possible in non-SPI mode.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK/DFS signal, the CSB signal, and the SDIO/PDWN signal  
are typically asynchronous to the ADC clock, noise from these  
signals can degrade converter performance. If the on-board SPI  
bus is used for other devices, it may be necessary to provide buffers  
between this bus and the AD9635 to prevent these signals from  
transitioning at the converter inputs during critical sampling  
periods.  
SPI ACCESSIBLE FEATURES  
Table 15 provides a brief description of the general features that  
are accessible via the SPI. These features are described in  
general in the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI. The AD9635 part-specific features are described in  
detail in Table 16, the external memory map register table, and the  
following text.  
Table 15. Features Accessible Using the SPI  
The SCLK/DFS and SDIO/PDWN pins serve a dual function  
when the SPI interface is not being used. When the pins are  
strapped to DRVDD or ground during device power-on, they  
are associated with a specific function. Table 12 and Table 13  
describe the strappable functions supported on the AD9635.  
Feature Name  
Description  
Power Mode  
Allows the user to set either power-down mode  
or standby mode  
Clock  
Allows the user to access the DCS, set the  
clock divider, and set the clock divider phase  
Offset  
Test I/O  
Allows the user to digitally adjust the  
converter offset  
Allows the user to set test modes to have  
known data on output bits  
Output Mode  
Output Phase  
Allows the user to set the output mode  
Allows the user to set the output clock polarity  
ADC Resolution Allows for power consumption scaling with  
respect to sample rate  
Rev. B | Page 28 of 36  
 
 
 
 
Data Sheet  
AD9635  
MEMORY MAP  
Default Values  
READING THE MEMORY MAP REGISTER TABLE  
After the AD9635 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 16.  
Each row in the memory map register table (see Table 16) has  
eight bit locations. The memory map is roughly divided into three  
sections: the chip configuration registers (Address 0x00 to Address  
0x02); the device index and transfer registers (Address 0x05 and  
Address 0xFF); and the global ADC function registers, including  
setup, control, and test (Address 0x08 to Address 0x102).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table lists the default hexadecimal  
value for each hexadecimal address shown. The column with  
the heading Bit 7 (MSB) is the start of the default hexadecimal  
value given. For example, Address 0x05, the device index register,  
has a hexadecimal default value of 0x33. This means that in  
Address 0x05, Bits[7:6] = 00, Bits[5:4] = 11, Bits[3:2] = 00, and  
Bits[1:0] = 11 (in binary). This setting is the default channel  
index setting. The default value results in both ADC channels  
receiving the next write command. For more information on  
this function and others, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI. This application note  
details the functions controlled by Register 0x00 to Register 0xFF.  
The remaining registers are documented in the Memory Map  
Register Descriptions section.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Channel-Specific Registers  
Some channel setup functions can be programmed differently  
for each channel. In these cases, channel address locations are  
internally duplicated for each channel. These registers and bits  
are designated in Table 16 as local. These local registers and bits  
can be accessed by setting the appropriate data channel bits (A or  
B) and the clock channel DCO bit (Bit 5) and FCO bit (Bit 4) in  
Register 0x05. If all the bits are set, the subsequent write affects  
the registers of both channels and the DCO/FCO clock  
channels. In a read cycle, only one channel (A or B) should be  
set to read one of the two registers. If all the bits are set during a  
SPI read cycle, the part returns the value for Channel A.  
Registers and bits that are designated as global in Table 16 affect  
the entire part or the channel features for which independent  
settings are not allowed between channels. The settings in  
Register 0x05 do not affect the global registers and bits.  
Open Locations  
All address and bit locations that are not included in Table 16  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x05). If the entire address location  
is open or not listed in Table 16 (for example, Address 0x13), this  
address location should not be written.  
Rev. B | Page 29 of 36  
 
 
AD9635  
Data Sheet  
MEMORY MAP REGISTER TABLE  
The AD9635 uses a 3-wire interface and 16-bit addressing and,  
therefore, Bit 0 and Bit 7 in Register 0x00 are set to 0, and Bit 3  
and Bit 4 are set to 1.  
When Bit 5 in Register 0x00 is set high, the SPI enters a soft  
reset, where all of the user registers revert to their default values  
and Bit 2 is automatically cleared.  
Table 16.  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0 = SDO  
active  
LSB first  
Soft reset  
1 = 16-bit 1 = 16-bit  
address address  
Soft reset  
LSB first  
0 = SDO  
active  
0x18  
Nibbles are  
mirrored to  
allow a given  
register value  
to perform  
the same  
function for  
either MSB-  
first or LSB-  
first mode.  
0x01  
0x02  
Chip ID (global)  
8-bit chip ID, Bits[7:0]  
AD9635 0x8D = dual, 12-bit, 80 MSPS/125 MSPS, serial LVDS  
0x8D  
Unique chip  
ID used to  
differentiate  
devices;  
read only.  
Chip grade  
(global)  
Open  
Speed grade ID, Bits[6:4]  
100 = 80 MSPS  
Open  
Open  
Open  
Open  
Unique speed  
grade ID used  
to differentiate  
graded  
110 = 125 MSPS  
devices;  
read only.  
Device Index and Transfer Registers  
0x05  
Device index  
Open  
Open  
Clock  
Channel  
DCO  
Clock  
Channel  
FCO  
Open  
Open  
Data  
Channel B  
Data  
Channel A  
0x33  
Bits are set to  
determine  
which device  
on chip  
receives the  
next write  
command.  
Default is all  
devices on  
chip.  
0xFF  
Transfer  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Initiate  
override  
0x00  
0x00  
Set  
resolution/  
sample rate  
override.  
Global ADC Function Registers  
0x08  
Power modes  
(global)  
Open  
Power mode  
Determines  
various  
generic  
modes of chip  
operation.  
00 = chip run  
01 = full power-down  
10 = standby  
11 = reset  
0x09  
0x0B  
Clock (global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
0 = off  
0x00  
0x00  
Turns  
duty cycle  
stabilizer on  
or off.  
1 = on  
Clock divide  
(global)  
Clock divide ratio[2:0]  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
0x0C  
Enhancement  
control  
Open  
Open  
Open  
Open  
Open  
Chop  
Open  
Open  
0x00  
Enables/  
disables  
chop mode.  
mode  
0 = off  
1 = on  
Rev. B | Page 30 of 36  
 
 
Data Sheet  
AD9635  
Default  
Value  
(Hex)  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Comments  
0x0D  
Test mode  
(local except for  
PN sequence  
resets)  
User input test mode  
00 = single  
Reset PN  
long gen  
Reset PN  
short  
gen  
Output test mode, Bits[3:0] (local)  
0000 = off (default)  
0x00  
When set, the  
test data is  
placed on the  
output pins in  
place of  
01 = alternate  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
10 = single once  
11 = alternate once  
(affects user input  
test mode only,  
Bits[3:0] = 1000)  
normal data.  
0100 = alternating checkerboard  
0101 = PN23 sequence  
0110 = PN9 sequence  
0111 = one-/zero-word toggle  
1000 = user input  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x10  
0x14  
Offset adjust  
(local)  
8-bit device offset adjustment, Bits[7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x01  
Device offset  
trim.  
Output mode  
Open  
LVDS-ANSI/  
LVDS-IEEE  
Open  
Open  
Open  
Output  
invert  
(local)  
Open  
Output  
format  
0 = offset  
binary  
1 = twos  
comple-  
ment  
Configures  
the outputs  
and format of  
the data.  
option  
0 = LVDS-ANSI  
1 = LVDS-IEEE  
reduced range  
link (global)  
see Table 17  
(global)  
0x15  
0x16  
Output adjust  
Output phase  
Open  
Open  
Open  
Output driver  
termination, Bits[1:0]  
00 = none  
Open  
Open  
Open  
Output  
drive  
0 = 1×  
drive  
1 = 2×  
drive  
0x00  
0x03  
Determines  
LVDS or other  
output  
properties.  
01 = 200 Ω  
10 = 100 Ω  
11 = 100 Ω  
Input clock phase adjust, Bits[6:4]  
(value is number of input clock cycles  
of phase delay); see Table 18  
Output clock phase adjust, Bits[3:0]  
(0000 through 1011); see Table 19  
On devices  
using global  
clock divide,  
determines  
which phase  
of the divider  
output is used  
to supply the  
output clock.  
Internal  
latching is  
unaffected.  
0x18  
VREF  
Open  
Open  
Open  
Open  
Open  
Internal VREF adjustment  
digital scheme, Bits[2:0]  
000 = 1.0 V p-p  
0x04  
Selects and/or  
adjusts VREF  
.
001 = 1.14 V p-p  
010 = 1.33 V p-p  
011 = 1.6 V p-p  
100 = 2.0 V p-p  
0x19  
0x1A  
0x1B  
0x1C  
USER_PATT1_LSB  
(global)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
User Defined  
Pattern 1 LSB.  
USER_PATT1_MSB  
(global)  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User Defined  
Pattern 1 MSB.  
USER_PATT2_LSB  
(global)  
User Defined  
Pattern 2 LSB.  
USER_PATT2_MSB  
(global)  
B15  
B14  
B13  
B12  
B11  
B10  
User Defined  
Pattern 2 MSB.  
Rev. B | Page 31 of 36  
AD9635  
Data Sheet  
Default  
Addr.  
(Hex)  
Bit 7  
(MSB)  
Value  
(Hex)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Serial output  
number of bits  
Comments  
0x21  
Serial output data LVDS  
SDR/DDR one-lane/two-lane,  
bitwise/bytewise, Bits[6:4]  
000 = SDR two-lane, bitwise  
001 = SDR two-lane, bytewise  
010 = DDR two-lane, bitwise  
011 = DDR two-lane, bytewise  
(default)  
Encode  
mode  
0 =  
0 = 1×  
frame  
(default)  
1 = 2×  
frame  
0x32  
Serial stream  
control.  
Sample rate of  
<20 MSPS  
requires that  
Bits[6:4] = 100  
(DDR one-lane)  
and Bit 3 = 1  
(low encode  
mode).  
control (global)  
output  
0 = MSB  
first  
(default)  
1 = LSB  
first  
10 = 12 bits (default)  
normal  
encode  
rate mode  
(default)  
1 = low  
encode  
mode for  
sample  
rate of  
11 = 10 bits  
100 = DDR one-lane, wordwise  
<20 MSPS  
0x22  
Serial channel  
status (local)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Channel  
output  
reset  
Channel  
power-  
down  
0x00  
0x00  
Used to  
power down  
individual  
sections of  
a converter.  
0x100  
Resolution/  
sample rate  
override  
Resolution/  
sample rate  
override enable  
Resolution  
10 = 12 bits  
11 = 10 bits  
Open  
Sample rate  
000 = 20 MSPS  
001 = 40 MSPS  
010 = 50 MSPS  
011 = 65 MSPS  
100 = 80 MSPS  
Resolution/  
sample rate  
override  
(requires  
writing to  
the transfer  
register, 0xFF).  
101 = 105 MSPS  
110 = 125 MSPS  
0x101  
0x102  
User I/O Control 2  
User I/O Control 3  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
SDIO  
pull-down  
0x00  
0x00  
Disables SDIO  
pull-down.  
VCM  
Open  
Open  
VCM control.  
power-  
down  
Rev. B | Page 32 of 36  
Data Sheet  
AD9635  
Table 17. LVDS-ANSI/LVDS-IEEE Options  
Output  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Mode,  
Bit 6  
Output  
Mode  
Output Driver  
Termination  
Output Driver Current  
0
LVDS-ANSI  
User selectable  
Automatically selected to  
give proper swing  
Device Index (Register 0x05)  
1
LVDS-IEEE  
reduced  
range link  
User selectable  
Automatically selected to  
give proper swing  
There are certain features in the map that can be set indepen-  
dently for each channel, whereas other features apply globally  
to all channels (depending on context), regardless of which is  
selected. Bits[1:0] in Register 0x05 can be used to select which  
individual data channel is affected. The output clock channels  
can be selected in Register 0x05, as well. A smaller subset of the  
independent feature list can be applied to those devices.  
Bits[5:3]—Open  
Bit 2—Output Invert  
Setting this bit inverts the output bit stream.  
Bit 1—Open  
Bit 0—Output Format  
Transfer (Register 0xFF)  
By default, this bit is set to send the data output in twos  
complement format. Clearing this bit to 0 changes the output  
mode to offset binary.  
All registers except Register 0x100 are updated the moment they  
are written. Setting Bit 0 of Register 0xFF high initializes the  
settings in the ADC sample rate override register (Address 0x100).  
Output Adjust (Register 0x15)  
Bits[7:6]—Open  
Power Modes (Register 0x08)  
Bits[7:2]—Open  
Bits[5:4]—Output Driver Termination  
Bits[1:0]—Power Mode  
These bits allow the user to select the internal termination resistor.  
Bits[3:1]—Open  
In normal operation (Bits[1:0] = 00), both ADC channels are  
active.  
In power-down mode (Bits[1:0] = 01), the digital datapath clocks  
are disabled while the digital datapath is reset. Outputs are disabled.  
Bit 0—Output Drive  
Bit 0 of the output adjust register controls the drive strength on  
the LVDS driver of the FCO and DCO outputs only. The default  
values set the drive to 1×, or the drive can be increased to 2× by  
setting the appropriate channel bit in Register 0x05 and then  
setting Bit 0. These features cannot be used with the output  
driver termination select. The termination selection takes  
precedence over the 2× driver strength on FCO and DCO when  
both the output driver termination and output drive are selected.  
In standby mode (Bits[1:0] = 10), the digital datapath clocks  
and the outputs are disabled.  
During a digital reset (Bits[1:0] = 11), all the digital datapath clocks  
and the outputs (where applicable) on the chip are reset, except the  
SPI port. Note that the SPI is always left under control of the user;  
that is, it is never automatically disabled or in reset (except by  
power-on reset).  
Output Phase (Register 0x16)  
Bit 7—Open  
Enhancement Control (Register 0x0C)  
Bits[7:3]—Open  
Bits[6:4]—Input Clock Phase Adjust  
Bit 2—Chop Mode  
When the clock divider (Register 0x0B) is used, the applied  
clock is at a higher frequency than the internal sampling clock.  
Bits[6:4] determine at which phase of the external clock sampling  
occurs. This is only applicable when the clock divider is used.  
Setting Bits[6:4] greater than Register 0x0B, Bits[2:0] is  
prohibited.  
For applications that are sensitive to offset voltages and other  
low frequency noise, such as homodyne or direct conversion  
receivers, chopping in the first stage of the AD9635 is a feature  
that can be enabled by setting Bit 2. In the frequency domain,  
chopping translates offsets and other low frequency noise to  
f
CLK/2, where it can be filtered.  
Table 18. Input Clock Phase Adjust Options  
Bits[1:0]—Open  
Input Clock Phase Adjust,  
Bits[6:4]  
Number of Input Clock Cycles  
of Phase Delay  
Output Mode (Register 0x14)  
Bit 7—Open  
000 (Default)  
001  
0
1
2
3
4
5
6
7
Bit 6—LVDS-ANSI/LVDS-IEEE Option  
010  
Setting this bit selects the LVDS-IEEE (reduced range) option.  
011  
100  
The default setting is LVDS-ANSI. When LVDS-ANSI or the  
LVDS-IEEE reduced range link is selected, the user can select  
the driver termination (see Table 17). The driver current is  
automatically selected to give the proper output swing.  
101  
110  
111  
Rev. B | Page 33 of 36  
 
 
 
AD9635  
Data Sheet  
Resolution/Sample Rate Override (Register 0x100)  
Bits[3:0]—Output Clock Phase Adjust  
This register allows the user to downgrade the resolution and/or  
the maximum sample rate (for lower power) in applications that do  
not require full resolution and/or sample rate. Settings in this  
register are not initialized until Bit 0 of the transfer register  
(Register 0xFF) is written high.  
See Table 19 for details.  
Table 19. Output Clock Phase Adjust Options  
Output Clock (DCO),  
Phase Adjust, Bits[3:0]  
DCO Phase Adjustment (Degrees  
Relative to D0x /D1x Edge)  
0000  
0001  
0010  
0011 (Default)  
0100  
0101  
0110  
0111  
1000  
0
60  
Bits[2:0] do not affect the sample rate; they affect the maximum  
sample rate capability of the ADC.  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
User I/O Control 2 (Register 0x101)  
Bits[7:1]—Open  
Bit 0—SDIO Pull-Down  
Bit 0 can be set to disable the internal 30 kΩ pull-down on the  
SDIO pin, which can be used to limit the loading when many  
devices are connected to the SPI bus.  
1001  
1010  
1011  
User I/O Control 3 (Register 0x102)  
Bits[7:4]—Open  
Bit 3—VCM Power-Down  
Serial Output Data Control (Register 0x21)  
Bit 3 can be set high to power down the internal VCM generator.  
This feature is used when applying an input common mode  
voltage from an external source.  
The serial output data control register is used to program the  
AD9635 in various output data modes, depending on the data  
capture solution. Table 20 describes the various serialization  
options available in the AD9635.  
Bits[2:0]—Open  
Table 20. SPI Register Options  
Serialization Options Selected  
Register 0x21 Serial Output Number  
Contents  
0x32  
0x22  
0x12  
0x02  
0x36  
0x26  
0x16  
0x06  
0x42  
0x33  
0x23  
0x13  
0x03  
0x37  
0x27  
0x17  
0x07  
0x43  
of Bits (SONB)  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
10-bit  
Frame Mode  
Serial Data Mode  
DCO Multiplier  
3 × fS  
3 × fS  
6 × fS  
6 × fS  
3 × fS  
3 × fS  
6 × fS  
6 × fS  
Timing Diagram  
See Figure 2 (default setting)  
See Figure 2  
See Figure 2  
See Figure 2  
See Figure 4  
See Figure 4  
See Figure 4  
See Figure 4  
See Figure 6  
See Figure 3  
See Figure 3  
See Figure 3  
See Figure 3  
See Figure 5  
See Figure 5  
See Figure 5  
See Figure 5  
See Figure 7  
1×  
1×  
1×  
1×  
2×  
2×  
2×  
2×  
1×  
1×  
1×  
1×  
1×  
2×  
2×  
2×  
2×  
1×  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR one-lane wordwise  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR one-lane wordwise  
6 × fS  
2.5 × fS  
2.5 × fS  
5 × fS  
5 × fS  
2.5 × fS  
2.5 × fS  
5 × fS  
5 × fS  
5 × fS  
Rev. B | Page 34 of 36  
 
 
Data Sheet  
AD9635  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
Before starting design and layout of the AD9635 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which describe the special circuit connections and  
layout requirements that are needed for certain pins.  
It is required that the exposed pad on the underside of the ADC  
be connected to analog ground (AGND) to achieve the best  
electrical and thermal performance of the AD9635. An exposed  
continuous copper plane on the PCB should mate to the AD9635  
exposed pad, Pin 0. The copper plane should have several vias  
to achieve the lowest possible resistive thermal path for heat  
dissipation to flow through the bottom of the PCB. These vias  
should be solder-filled or plugged.  
POWER AND GROUND GUIDELINES  
When connecting power to the AD9635, it is recommended that  
two separate 1.8 V supplies be used. Use one supply for analog  
(AVDD); use a separate supply for the digital outputs (DRVDD).  
For both AVDD and DRVDD, several different decoupling  
capacitors should be used to cover both high and low frequencies.  
Place these capacitors close to the point of entry at the PCB level  
and close to the pins of the part, with minimal trace length.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
only guarantees one tie point. See Figure 69 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see the AN-772 Application Note,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP), at www.analog.com.  
If two supplies are used, AVDD must not power up before  
DRVDD. DRVDD must power up before, or simultaneously  
with, AVDD. If this sequence is violated, a soft reset via SPI  
Register 0x00 (Bits[7:0] = 0x3C), followed by a digital reset via SPI  
Register 0x08 (Bits[7:0] = 0x03, then Bits[7:0] = 0x00), restores  
the part to proper operation.  
In non-SPI mode, the supply sequence is mandatory; in this  
case, violating the supply sequence is nonrecoverable.  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
A single PCB ground plane should be sufficient when using the  
AD9635. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
CLOCK STABILITY CONSIDERATIONS  
Figure 69. Typical PCB Layout  
When powered on, the AD9635 enters an initialization phase  
during which an internal state machine sets up the biases and  
the registers for proper operation. During the initialization  
process, the AD9635 needs a stable clock. If the ADC clock  
source is not present or not stable during ADC power-up, it  
disrupts the state machine and causes the ADC to start up in  
an unknown state. To correct this, reinvoke an initialization  
sequence after the ADC clock is stable by issuing a digital reset  
VCM  
The VCM pin should be decoupled to ground with a 0.1 μF  
capacitor.  
REFERENCE DECOUPLING  
The VREF pin should be externally decoupled to ground with  
a low ESR, 1.0 μF capacitor in parallel with a low ESR, 0.1 μF  
ceramic capacitor.  
via Register 0x08. In the default configuration (internal VREF  
,
SPI PORT  
ac-coupled input) where VREF and VCM are supplied by the ADC  
itself, a stable clock during power-up is sufficient. In the case  
where VCM is supplied by an external source, this, too, must be  
stable at power-up; otherwise, a subsequent digital reset via  
Register 0x08 is needed. The pseudo code sequence for a digital  
reset is as follows:  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9635 to prevent these signals from transitioning at the converter  
inputs during critical sampling periods.  
SPI_Write (0x08, 0x03);  
SPI_Write (0x08, 0x00);  
# Digital Reset  
# Normal Operation  
Rev. B | Page 35 of 36  
 
 
 
 
 
 
 
 
 
AD9635  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00 SQ  
4.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
25  
32  
24  
1
0.50  
BSC  
*
3.75  
EXPOSED  
PAD  
3.60 SQ  
3.55  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WHHD-5  
WITH THE EXCEPTION OF THE EXPOSED PAD DIMENSION.  
Figure 70. 32-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
5 mm × 5 mm Body, Very Very Thin Quad  
(CP-32-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
CP-32-12  
CP-32-12  
CP-32-12  
CP-32-12  
AD9635BCPZ-80  
AD9635BCPZRL7-80  
AD9635BCPZ-125  
AD9635BCPZRL7-125  
AD9635-125EBZ  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
32-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2012–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10577-0-10/15(B)  
Rev. B | Page 36 of 36  
 
 

相关型号:

AD9635-125EBZ

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZ-125

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZ-80

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZRL7-125

1.8 V Analog-to-Digital Converter
ADI

AD9635BCPZRL7-80

1.8 V Analog-to-Digital Converter
ADI

AD9635_17

1.8 V Analog-to-Digital Converter
ADI

AD9637

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637-80EBZ

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637BCPZ-40

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637BCPZ-80

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637BCPZRL7-40

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI

AD9637BCPZRL7-80

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
ADI