AD9637BCPZ-40 [ADI]

Octal, 12-Bit, 40/80 MSPS, Serial LVDS; 八通道,12位, 40/80 MSPS ,串行LVDS
AD9637BCPZ-40
型号: AD9637BCPZ-40
厂家: ADI    ADI
描述:

Octal, 12-Bit, 40/80 MSPS, Serial LVDS
八通道,12位, 40/80 MSPS ,串行LVDS

转换器 模数转换器 PC
文件: 总40页 (文件大小:1081K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-Bit, 40/80 MSPS, Serial LVDS,  
1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9637  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
DRVDD  
Low power: 60 mW per channel at 80 MSPS with scalable  
power options  
SNR = 71.5 dBFS (to Nyquist)  
SFDR = 92 dBc (to Nyquist)  
DNL = 0.4 LSB (typical), INL = 0.5 LSB (typical)  
Serial LVDS (ANSI-644, default)  
Low power, reduced signal option (similar to IEEE 1596.3)  
Data and frame clock outputs  
650 MHz full power analog bandwidth  
2 V p-p differential input voltage range  
1.8 V supply operation  
Serial port control  
Full chip and individual channel power-down modes  
Flexible bit orientation  
AD9637  
12  
12  
12  
12  
12  
12  
12  
12  
D+ A  
D– A  
VIN+ A  
VIN– A  
SERIAL  
LVDS  
D+ B  
D– B  
VIN+ B  
VIN– B  
SERIAL  
LVDS  
D+ C  
D– C  
VIN+ C  
VIN– C  
SERIAL  
LVDS  
D+ D  
D– D  
VIN+ D  
VIN– D  
SERIAL  
LVDS  
D+ E  
D– E  
VIN+ E  
VIN– E  
SERIAL  
LVDS  
D+ F  
D– F  
VIN+ F  
VIN– F  
SERIAL  
LVDS  
Built-in and custom digital test pattern generation  
Programmable clock and data alignment  
Programmable output resolution  
Standby mode  
D+ G  
D– G  
VIN+ G  
VIN– G  
SERIAL  
LVDS  
D+ H  
D– H  
VIN+ H  
VIN– H  
SERIAL  
LVDS  
APPLICATIONS  
VREF  
FCO+  
FCO–  
SENSE  
1.0V  
Medical imaging and nondestructive ultrasound  
Portable ultrasound and digital beam-forming systems  
Quadrature radio receivers  
DATA  
RATE  
MULTIPLIER  
VCM  
REF  
SELECT  
SERIAL PORT  
INTERFACE  
DCO+  
DCO–  
SYNC  
Diversity radio receivers  
RBIAS  
AGND  
CSB SDIO/ SCLK/  
CLK+ CLK–  
Optical networking  
DFS  
DTP  
Test equipment  
Figure 1.  
GENERAL DESCRIPTION  
clock and data alignment and programmable digital test pattern  
generation. The available digital test patterns include built-in  
deterministic and pseudorandom patterns, along with custom user-  
defined test patterns entered via the serial port interface (SPI).  
The AD9637 is an octal, 12-bit, 40/80 MSPS analog-to-digital  
converter (ADC) with an on-chip sample-and-hold circuit  
designed for low cost, low power, small size, and ease of use.  
The product operates at a conversion rate of up to 80 MSPS and  
is optimized for outstanding dynamic performance and low  
power in applications where a small package size is critical.  
The AD9637 is available in a RoHS-compliant, 64-lead LFCSP. It is  
specified over the industrial temperature range of −40°C to +85°C.  
This product is protected by a U.S. patent.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Eight ADCs are contained in a small,  
space-saving package.  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock output (DCO) for  
capturing data on the output and a frame clock output (FCO) for  
signaling a new output byte are provided. Individual channel  
power-down is supported and typically consumes less than 2 mW  
when all channels are disabled.  
2. Low Power of 60 mW/Channel at 80 MSPS with Scalable  
Power Options.  
3. Ease of Use. A data clock output (DCO) is provided that  
operates at frequencies of up to 480 MHz and supports  
double data rate (DDR) operation.  
4. User Flexibility. The SPI control offers a wide range of  
flexible features to meet specific system requirements.  
5. Pin Compatible with the AD9257 (14-Bit Octal ADC).  
The ADC contains several features designed to maximize  
flexibility and minimize system cost, such as programmable  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD9637  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Input Considerations...................................................... 20  
Power Dissipation and Power-Down Mode ........................... 22  
Digital Outputs and Timing ..................................................... 23  
Built-In Output Test Modes.......................................................... 27  
Output Test Modes..................................................................... 27  
Serial Port Interface (SPI).............................................................. 28  
Configuration Using the SPI..................................................... 28  
Hardware Interface..................................................................... 29  
Configuration Without the SPI ................................................ 29  
SPI Accessible Features.............................................................. 29  
Memory Map .................................................................................. 30  
Reading the Memory Map Register Table............................... 30  
Memory Map Register Table..................................................... 31  
Memory Map Register Descriptions........................................ 34  
Applications Information.............................................................. 36  
Design Guidelines ...................................................................... 36  
Power and Ground Recommendations................................... 36  
Exposed Pad Thermal Heat Slug Recommendations............ 36  
VCM............................................................................................. 36  
Reference Decoupling................................................................ 36  
SPI Port........................................................................................ 36  
Outline Dimensions....................................................................... 37  
Ordering Guide .......................................................................... 37  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Table of Contents.............................................................................. 2  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 8  
Thermal Characteristics .............................................................. 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
AD9637-80 .................................................................................. 11  
AD9637-40 .................................................................................. 14  
Equivalent Circuits......................................................................... 17  
Theory of Operation ...................................................................... 18  
Analog Input Considerations.................................................... 18  
Voltage Reference ....................................................................... 19  
REVISION HISTORY  
10/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
Data Sheet  
AD9637  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 1.  
AD9637-40  
AD9637-80  
Parameter1  
Temp  
Min  
Typ  
Max  
Min  
Typ  
Max Unit  
RESOLUTION  
14  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Guaranteed  
Guaranteed  
−0.6  
0.0  
−8.0  
−1.0  
−0.8  
−1.0  
−0.3 +0.1  
0.2 0.6  
−2.1 +2.0  
+1.7 +5.0  
0.3 +0.8  
0.4 +1.0  
−0.7  
0.0  
−7.0  
−1.0  
−0.8  
−1.2  
−0.3 +0.1  
% FSR  
% FSR  
% FSR  
% FSR  
LSB  
0.2  
0.6  
−3.2 +1.0  
+2.3 +6.0  
0.4 +0.8  
0.5 +1.2  
Gain Matching  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
TEMPERATURE DRIFT  
LSB  
Offset Error  
Full  
2
2
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation at 1.0 mA (VREF = 1 V)  
Input Resistance  
Full  
Full  
Full  
0.98  
0.99  
2
7.5  
1.01  
0.98  
0.99  
2
7.5  
1.01  
V
mV  
kΩ  
INPUT REFERRED NOISE  
VREF = 1.0 V  
25°C  
0.36  
0.49  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage (VREF = 1 V)  
Common-Mode Voltage  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
Full  
Full  
2
2
V p-p  
V
kΩ  
pF  
0.9  
5.2  
3.5  
0.9  
5.2  
3.5  
Full  
AVDD  
DRVDD  
IAVDD (Eight Channels)  
IDRVDD (Eight Channels, ANSI-644 Mode)  
IDRVDD (Eight Channels, Reduced Range Mode)  
TOTAL POWER CONSUMPTION  
Total Power Dissipation (Eight Channels, ANSI-644 Mode)  
Total Power Dissipation (Eight Channels, Reduced Range Mode)  
Power-Down Dissipation  
Standby Dissipation2  
Full  
Full  
Full  
Full  
25°C  
1.7  
1.7  
1.8  
1.8  
142  
51  
1.9  
1.9  
151  
79  
1.7  
1.7  
1.8  
1.8  
221  
58  
1.9  
1.9  
234  
85  
V
V
mA  
mA  
mA  
36  
43  
Full  
347  
320  
1
414  
502  
475  
1
574  
mW  
mW  
mW  
mW  
25°C  
25°C  
25°C  
72  
98  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Can be controlled via the SPI.  
Rev. 0 | Page 3 of 40  
 
 
AD9637  
Data Sheet  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 2.  
AD9637-40  
Typ  
AD9637-80  
Typ  
Parameter1  
Temp  
Unit  
Min  
Max  
Min  
Max  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 19.7 MHz  
fIN = 30.5 MHz  
fIN = 63.5 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
72.0  
72.0  
72.0  
71.5  
71.5  
71.5  
71.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
70.0  
71.0  
fIN = 69.5 MHz  
fIN = 123.5 MHz  
71.5  
70.5  
SIGNAL-TO-NOISE AND DISTORTION RATIO (SINAD)  
fIN = 9.7 MHz  
fIN = 19.7 MHz  
fIN = 30.5 MHz  
fIN = 63.5 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
71.0  
71.0  
71.0  
70.5  
70.5  
70.5  
70.5  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
69.0  
11.2  
78  
70.0  
11.3  
78  
fIN = 69.5 MHz  
fIN = 123.5 MHz  
70.5  
69.5  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 19.7 MHz  
fIN = 30.5 MHz  
fIN = 63.5 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
11.5  
11.5  
11.5  
11.4  
11.4  
11.4  
11.4  
Bits  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 69.5 MHz  
fIN = 123.5 MHz  
11.4  
11.3  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 19.7 MHz  
fIN = 30.5 MHz  
fIN = 63.5 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
96  
95  
96  
93  
92  
92  
93  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
fIN = 69.5 MHz  
fIN = 123.5 MHz  
89  
88  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 19.7 MHz  
fIN = 30.5 MHz  
fIN = 63.5 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
−99  
−96  
−98  
−96  
−92  
−92  
−95  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
−78  
−86  
−78  
−86  
fIN = 69.5 MHz  
fIN = 123.5 MHz  
−89  
−89  
WORST OTHER (EXCLUDING SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 19.7 MHz  
fIN = 30.5 MHz  
fIN = 63.5 MHz  
25°C  
Full  
25°C  
25°C  
25°C  
25°C  
−98  
−98  
−98  
−97  
−97  
−97  
−97  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 69.5 MHz  
fIN = 123.5 MHz  
−97  
−92  
TWO-TONE INTERMODULATION DISTORTION (IMD)—  
AIN1 AND AIN2 = −7.0 dBFS  
fIN1 = 8 MHz, fIN2 = 10 MHz  
fIN1 = 30 MHz, fIN2 = 32 MHz  
25°C  
25°C  
93  
dBc  
dBc  
85  
Rev. 0 | Page 4 of 40  
 
Data Sheet  
AD9637  
AD9637-40  
−98  
−89  
AD9637-80  
−96  
−89  
CROSSTALK  
25°C  
25°C  
25°C  
dB  
dB  
Crosstalk (Overrange Condition)2  
ANALOG INPUT BANDWIDTH, FULL POWER  
650  
650  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Overrange condition is specified with 3 dB of the full-scale input range.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 3.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Voltage Range  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
25°C  
25°C  
0.2  
AGND − 0.2  
3.6  
AVDD + 0.2  
V p-p  
V
V
kΩ  
pF  
0.9  
15  
4
LOGIC INPUTS (PDWN, SYNC, SCLK)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
2
kΩ  
pF  
LOGIC INPUT (SDIO)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
5
kΩ  
pF  
LOGIC OUTPUT (SDIO)3  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
DIGITAL OUTPUTS (D ꢀ), ANSI-644  
Logic Compliance  
Full  
Full  
1.79  
V
V
0.05  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
247  
1.13  
350  
1.21  
454  
1.38  
mV  
V
Twos complement  
DIGITAL OUTPUTS (D ꢀ), LOW POWER,  
REDUCED SIGNAL OPTION  
Logic Compliance  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
150  
1.13  
200  
1.21  
250  
1.38  
mV  
V
Twos complement  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
3 This is specified for 13 SDIO/DFS pins sharing the same connection.  
Rev. 0 | Page 5 of 40  
 
 
 
AD9637  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 4.  
Parameter1, 2  
CLOCK3  
Temp  
Min  
Typ  
Max  
Unit  
Input Clock Rate  
Conversion Rate  
Full  
Full  
Full  
Full  
10  
10  
640  
40/80  
MHz  
MSPS  
ns  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
OUTPUT PARAMETERS3  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
FCO Propagation Delay (tFCO  
DCO Propagation Delay (tCPD  
DCO to Data Delay (tDATA  
DCO to FCO Delay (tFRAME  
Data to Data Skew  
12.5/6.25  
12.5/6.25  
ns  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
2.3  
300  
300  
2.3  
ns  
ps  
ps  
ns  
ns  
ps  
ps  
ps  
)
)
1.5  
3.1  
4
tFCO + (tSAMPLE/24)  
(tSAMPLE/24)  
(tSAMPLE/24)  
50  
4
)
(tSAMPLE/24) − 300  
(tSAMPLE/24) − 300  
(tSAMPLE/24) + 300  
(tSAMPLE/24) + 300  
200  
4
)
(tDATA-MAX − tDATA-MIN  
)
Wake-Up Time (Standby)  
Wake-Up Time (Power-Down)5  
Pipeline Latency  
25°C  
25°C  
Full  
35  
375  
16  
μs  
μs  
Clock  
cycles  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter)  
Out-of-Range Recovery Time  
25°C  
25°C  
25°C  
1
0.1  
1
ns  
ps rms  
Clock  
cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured on standard FR-4 material.  
3 Can be adjusted via the SPI.  
4 tSAMPLE/24 is based on the number of bits divided by 2 because the delays are based on half duty cycles. tSAMPLE = 1/fS.  
5 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Description  
Limit  
Unit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
See Figure 61  
0.24  
0.40  
ns typ  
ns typ  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to  
the SCLK falling edge (not shown in Figure 61)  
2
2
40  
2
2
10  
10  
10  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to  
the SCLK rising edge (not shown in Figure 61)  
10  
ns min  
Rev. 0 | Page 6 of 40  
 
 
 
 
 
Data Sheet  
AD9637  
Timing Diagrams  
N – 1  
tA  
VIN± x  
N
tEH  
tEL  
CLK–  
CLK+  
DCO–  
DCO+  
tCPD  
tFRAME  
tFCO  
FCO–  
FCO+  
D– x  
tPD  
tDATA  
D6  
MSB  
D10  
D9  
D8  
D7  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D10  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16  
D+ x  
Figure 2. Word-Wise DDR, 1× Frame, 12-Bit Output Mode (Default)  
N – 1  
VIN± x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
DCO–  
tCPD  
DCO+  
FCO–  
tFRAME  
tFCO  
FCO+  
D– x  
tPD  
tDATA  
D4  
MSB  
D8  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
MSB  
D8  
D7  
D6  
D5  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16  
D+ x  
Figure 3. Word-Wise DDR, 1× Frame, 10-Bit Output Mode  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 4. SYNC Input Timing Requirements  
Rev. 0 | Page 7 of 40  
 
 
 
AD9637  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
THERMAL CHARACTERISTICS  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the printed  
circuit board (PCB) increases the reliability of the solder joints  
and maximizes the thermal capability of the package.  
Parameter  
Rating  
Electrical  
AVDD to AGND  
DRVDD to AGND  
Digital Outputs  
(D ꢀx DꢁO+x DꢁO−x FꢁO+x FꢁO−) to  
AGND  
ꢁLK+x ꢁLK− to AGND  
VIN+ ꢀx VIN− ꢀ to AGND  
SꢁLK/DTPx SDIO/DFSx ꢁSB to AGND  
SYNꢁx PDWN to AGND  
RBIAS to AGND  
VREFx SENSE to AGND  
Environmental  
Operating Temperature Range (Ambient) −40°ꢁ to +85°ꢁ  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
Package  
Type  
1, 2  
1, 3  
1, 4  
1, 2  
θJA  
θJC  
θJB  
JT  
0.1  
0.2  
0.2  
Unit  
°ꢁ/W  
°ꢁ/W  
°ꢁ/W  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
64-Lead  
0
22.3  
19.5  
17.5  
1.4  
N/A  
11.8  
LFꢁSP  
9 mm × 9 mm  
(ꢁP-64-4)  
1.0  
2.5  
N/A  
N/A  
N/A  
1 Per JEDEꢁ 51-7x plus JEDEꢁ 25-5 2S2P test board.  
2 Per JEDEꢁ JESD51-2 (still air) or JEDEꢁ JESD51-6 (moving air).  
3 Per MIL-Std 883x Method 1012.1.  
4 Per JEDEꢁ JESD51-8 (still air).  
Maꢀimum Junction Temperature  
Lead Temperature (Solderingx 10 sec)  
Storage Temperature Range (Ambient)  
150°ꢁ  
300°ꢁ  
−65°ꢁ to +150°ꢁ  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes reduces θJA.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. 0 | Page 8 of 40  
 
 
 
 
Data Sheet  
AD9637  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
AVDD  
VIN+ G  
VIN– G  
AVDD  
VIN– H  
VIN+ H  
AVDD  
AVDD  
CLK–  
CLK+ 10  
AVDD 11  
AVDD 12  
DNC 13  
1
2
3
4
5
6
7
8
9
48 AVDD  
47 VIN+ B  
46 VIN– B  
45 AVDD  
44 VIN– A  
43 VIN+ A  
42 AVDD  
41 PDWN  
40 CSB  
39 SDIO/DFS  
38 SCLK/DTP  
37 AVDD  
36 DNC  
AD9637  
TOP VIEW  
(Not to Scale)  
DRVDD 14  
D– H 15  
35 DRVDD  
34 D+ A  
D+ H 16  
33 D– A  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. THE EXPOSED PAD MUST BE CONNECTED TO ANALOG GROUND.  
Figure 5. Pin Configuration, Top View  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0, EP  
AGND,  
Eꢀposed Pad  
Analog Ground, Eꢀposed Pad. The eꢀposed thermal pad on the bottom of the package provides the  
analog ground for the part. This eꢀposed pad must be connected to analog ground for proper operation.  
1, 4, 7, 8, 11,  
12, 37, 42, 45,  
48, 51, 59, 62  
AVDD  
1.8 V Analog Supply.  
13, 36  
14, 35  
2, 3  
DNC  
DRVDD  
Do Not Connect. Do not connect to this pin.  
1.8 V Digital Output Driver Supply.  
VIN+ G, VIN− G ADC G Analog Input True, ADC G Analog Input Complement.  
VIN− H, VIN+ H ADC H Analog Input Complement, ADC H Analog Input True.  
5, 6  
9, 10  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25, 26  
27, 28  
29, 30  
31, 32  
33, 34  
38  
CLK−, CLK+  
D− H, D+ H  
D− G, D+ G  
D− F, D+ F  
D− E, D+ E  
DCO−, DCO+  
FCO−, FCO+  
D− D, D+ D  
D− C, D+ C  
D− B, D+ B  
D− A, D+ A  
SCLK/DTP  
SDIO/DFS  
CSB  
Input Clock Complement, Input Clock True.  
ADC H Digital Output Complement, ADC H Digital Output True.  
ADC G Digital Output Complement, ADC G Digital Output True.  
ADC F Digital Output Complement, ADC F Digital Output True.  
ADC E Digital Output Complement, ADC E Digital Output True.  
Data Clock Digital Output Complement, Data Clock Digital Output True.  
Frame Clock Digital Output Complement, Frame Clock Digital Output True.  
ADC D Digital Output Complement, ADC D Digital Output True.  
ADC C Digital Output Complement, ADC C Digital Output True.  
ADC B Digital Output Complement, ADC B Digital Output True.  
ADC A Digital Output Complement, ADC A Digital Output True.  
Serial Clock (SCLK)/Digital Test Pattern (DTP).  
39  
40  
Serial Data Input/Output (SDIO)/Data Format Select (DFS).  
Chip Select Bar.  
41  
PDWN  
Power-Down.  
43, 44  
46, 47  
49, 50  
VIN+ A, VIN− A ADC A Analog Input True, ADC A Analog Input Complement.  
VIN− B, VIN+ B ADC B Analog Input Complement, ADC B Analog Input True.  
VIN+ C, VIN− C ADC C Analog Input True, ADC C Analog Input Complement.  
Rev. 0 | Page 9 of 40  
 
AD9637  
Data Sheet  
Pin No.  
52, 53  
54  
Mnemonic  
Description  
VIN− D, VIN+ D ADC D Analog Input Complement, ADC D Analog Input True.  
RBIAS  
SENSE  
Sets analog current bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
Reference Mode Selection.  
55  
56  
VREF  
Voltage Reference Input/Output.  
57  
58  
60, 61  
63, 64  
VCM  
SYNC  
VIN+ E, VIN− E  
VIN− F, VIN+ F  
Analog Output Voltage at Midsupply. Sets common mode of the analog inputs.  
Digital Input. SYNC input to clock divider. 30 kΩ internal pull-down.  
ADC E Analog Input True, ADC E Analog Input Complement.  
ADC F Analog Input Complement, ADC F Analog Input True.  
Rev. 0 | Page 10 of 40  
Data Sheet  
AD9637  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9637-80  
0
0
–15  
80MSPS  
80MSPS  
9.7MHz AT –1dBFS  
SNR = 70.8dB (71.8dBFS)  
SFDR = 92.7dBc  
19.7MHz AT –1dBFS  
SNR = 70.7dB (71.7dBFS)  
SFDR = 90.1dBc  
–15  
–30  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
–90  
–90  
–105  
–120  
–135  
–105  
–120  
–135  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Figure 9. Single-Tone 16k FFT with fIN = 19.7 MHz, fSAMPLE = 80 MSPS  
0
0
80MSPS  
80MSPS  
63.5MHz AT –1dBFS  
SNR = 70.5dB (71.5dBFS)  
SFDR = 93.2dBc  
30.5MHz AT –1dBFS  
SNR = 70.7dB (71.7dBFS)  
SFDR = 90.7dBc  
–15  
–30  
–15  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
–90  
–90  
–105  
–120  
–135  
–105  
–120  
–135  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Single-Tone 16k FFT with fIN = 30.5 MHz, fSAMPLE = 80 MSPS  
Figure 7. Single-Tone 16k FFT with fIN = 63.5 MHz, fSAMPLE = 80 MSPS  
0
0
–15  
–30  
–45  
–60  
–75  
80MSPS  
123.5MHz AT –1dBFS  
SNR = 69.6dB (70.6dBFS)  
SFDR = 90.3dBc  
–15  
–30  
–45  
–60  
–75  
–90  
–90  
F1 + F2  
+
F2 – F1  
2F1 + F2  
2F2 + F1  
2F2 – F1  
2F1 – F2  
–105  
–120  
–135  
–105  
–120  
–135  
4
8
12  
16  
20  
24  
28  
32  
36  
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Two-Tone 16k FFT with fIN1 = 30 MHz and fIN2 = 32 MHz,  
fSAMPLE = 80 MSPS  
Figure 11. Single-Tone 16k FFT with fIN = 123.5 MHz, fSAMPLE = 80 MSPS  
Rev. 0 | Page 11 of 40  
 
AD9637  
Data Sheet  
0
105  
100  
95  
SFDR (dBc)  
–20  
SFDR (dBc)  
–40  
–60  
IMD3 (dBc)  
90  
85  
–80  
SFDR (dBFS)  
80  
–100  
75  
SNR (dBFS)  
–15  
IMD3 (dBFS)  
–120  
–90  
70  
–40  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
10  
35  
60  
85  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 12. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 30 MHz and fIN2 = 32 MHz, fSAMPLE = 80 MSPS  
Figure 15. SNR/SFDR vs. Temperature, fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
120  
110  
100  
SFDR (dBc)  
100  
90  
SFDRFS  
80  
SNR (dBFS)  
80  
70  
60  
50  
40  
30  
20  
10  
0
SNRFS  
60  
SFDR  
40  
20  
0
SNR  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
50  
100  
150  
200  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 13. SNR/SFDR vs. Analog Input Level, fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Figure 16. SNR/SFDR vs. fIN, fSAMPLE = 80 MSPS  
105  
105  
100  
95  
90  
85  
80  
75  
70  
65  
SFDR  
100  
SFDR  
95  
90  
85  
80  
SNRFS  
75  
SNRFS  
70  
20  
30  
40  
50  
60  
70  
80  
20  
30  
40  
50  
60  
70  
80  
SAMPLE FREQUENCY (MSPS)  
SAMPLE FREQUENCY (MSPS)  
Figure 14. SNR/SFDR vs. Encode, fIN = 19.7 MHz  
Figure 17. SNR/SFDR vs. Encode, fIN = 30.5 MHz  
Rev. 0 | Page 12 of 40  
Data Sheet  
AD9637  
700,000  
600,000  
500,000  
400,000  
300,000  
200,000  
100,000  
0
1.0  
0.8  
0.491 LSB RMS  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
OUTPUT CODE  
OUTPUT CODE  
Figure 18. Input Referred Noise Histogram, fSAMPLE = 80 MSPS  
Figure 20. DNL, fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
2.0  
1.6  
1.2  
0.8  
0.4  
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
OUTPUT CODE  
Figure 19. INL, fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Rev. 0 | Page 13 of 40  
AD9637  
Data Sheet  
AD9637-40  
0
0
–15  
40MSPS  
40MSPS  
19.7MHz AT –1dBFS  
SNR = 70.9dB (71.9dBFS)  
SFDR = 91.0dBc  
–15  
–30  
9.7MHz AT –1dBFS  
SNR = 71.0dB (72.0dBFS)  
SFDR = 96.9dBc  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
–90  
–90  
–105  
–120  
–135  
–105  
–120  
–135  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 40 MSPS  
Figure 24. Single-Tone 16k FFT with fIN = 19.7 MHz, fSAMPLE = 40 MSPS  
0
0
40MSPS  
40MSPS  
69.5MHz AT –1dBFS  
SNR = 70.5dB (71.5dBFS)  
SFDR = 88.6dBc  
30.5MHz AT –1dBFS  
SNR = 70.9dB (7.19dBFS)  
SFDR = 95.87dBc  
–15  
–30  
–15  
–30  
–45  
–45  
–60  
–60  
–75  
–75  
–90  
–90  
–105  
–120  
–135  
–105  
–120  
–135  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. Single-Tone 16k FFT with fIN = 30.5 MHz, fSAMPLE = 40 MSPS  
Figure 25. Single-Tone 16k FFT with fIN = 69.5 MHz, fSAMPLE = 40 MSPS  
0
0
–15  
–30  
–45  
–60  
–75  
–20  
SFDR (dBc)  
–40  
IMD3 (dBc)  
–60  
–80  
–90  
2F1 + F2  
SFDR (dBFS)  
+
2F2 – F1  
F2 – F1  
F1 + F2  
2F2 + F1  
2F1 – F2  
–105  
–120  
–135  
–100  
IMD3 (dBFS)  
–120  
2
4
6
8
10  
12  
14  
16  
18  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 23. Two-Tone 16k FFT with fIN1 = 8 MHz and fIN2 = 10 MHz,  
SAMPLE = 40 MSPS  
Figure 26. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 30 MHz and fIN2 = 32 MHz, fSAMPLE = 40 MSPS  
f
Rev. 0 | Page 14 of 40  
 
Data Sheet  
AD9637  
120  
100  
80  
60  
40  
20  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDR (dBc)  
SNR (dBFS)  
SFDRFS  
SNRFS  
SFDR  
SNR  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 27. SNR/SFDR vs. Analog Input Level, fIN = 9.7 MHz, fSAMPLE = 40 MSPS  
Figure 30. SNR/SFDR vs. fIN, fSAMPLE = 40 MSPS  
105  
100  
105  
100  
95  
90  
85  
80  
75  
70  
65  
SFDR  
SFDR  
95  
90  
85  
80  
75  
SNRFS  
SNRFS  
70  
65  
20  
20  
25  
30  
35  
40  
25  
30  
35  
40  
SAMPLE FREQUENCY (MSPS)  
SAMPLE FREQUENCY (MSPS)  
Figure 31. SNR/SFDR vs. Encode, fIN = 30.5 MHz  
Figure 28. SNR/SFDR vs. Encode, fIN = 19.7 MHz  
1,000,000  
900,000  
800,000  
700,000  
600,000  
500,000  
400,000  
300,000  
200,000  
100,000  
0
105  
100  
95  
0.356 LSB RMS  
SFDR (dBc)  
90  
85  
80  
75  
SNR (dBFS)  
70  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OUTPUT CODE  
Figure 32. Input-Referred Noise Histogram, fSAMPLE = 40 MSPS  
Figure 29. SNR/SFDR vs. Temperature, fIN = 9.7 MHz, fSAMPLE = 40 MSPS  
Rev. 0 | Page 15 of 40  
AD9637  
Data Sheet  
2.0  
1.6  
1.0  
0.8  
1.2  
0.6  
0.8  
0.4  
0.4  
0.2  
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–0.2  
–0.4  
–0.6  
–0.8  
–2.0  
–1.0  
OUTPUT CODE  
OUTPUT CODE  
Figure 33. INL, fIN = 9.7 MHz, fSAMPLE = 40 MSPS  
Figure 34. DNL, fIN = 9.7 MHz, fSAMPLE = 40 MSPS  
Rev. 0 | Page 16 of 40  
Data Sheet  
AD9637  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
350  
SCLK/DTP, SYNC,  
AND PDWN  
VIN± x  
30kΩ  
Figure 39. Equivalent SCLK/DTP, SYNC, and PDWN Input Circuit  
Figure 35. Equivalent Analog Input Circuit  
AVDD  
5  
CLK+  
AVDD  
15kΩ  
15kΩ  
0.9V  
AVDD  
375  
RBIAS  
AND VCM  
5Ω  
CLK–  
Figure 36. Equivalent Clock Input Circuit  
Figure 40. Equivalent RBIAS, VCM Circuit  
AVDD  
AVDD  
30k  
350Ω  
SDIO/DFS  
30k  
350Ω  
30kΩ  
CSB  
Figure 37. Equivalent SDIO/DFS Input Circuit  
Figure 41. Equivalent CSB Input Circuit  
DRVDD  
AVDD  
V
V
D– x  
D+ x  
V
V
375  
VREF  
7.5kΩ  
DRGND  
Figure 38. Equivalent Digital Output Circuit  
Figure 42. Equivalent VREF Circuit  
Rev. 0 | Page 17 of 40  
 
 
 
AD9637  
Data Sheet  
THEORY OF OPERATION  
input can help reduce the peak transient current injected from  
the output stage of the driving source. In addition, low Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
high differential capacitance at the analog inputs and, therefore,  
achieve the maximum bandwidth of the ADC. Such use of low  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a differential capacitor or  
two single-ended capacitors can be placed on the inputs to provide  
a matching passive network. This ultimately creates a low-pass  
filter at the input to limit unwanted broadband noise. See the  
AN-742 Application Note, the AN-827 Application Note, and the  
Analog Dialogue article “Transformer-Coupled Front-End for  
Wideband A/D Converters” (Volume 39, April 2005) for more  
information. In general, the precise values depend on the  
application.  
The AD9637 is a multistage, pipelined ADC. Each stage  
provides sufficient overlap to correct for flash errors in the  
preceding stage. The quantized outputs from each stage are  
combined into a final 12-bit result in the digital correction  
logic. The serializer transmits this converted data in a 12-bit  
output. The pipelined architecture permits the first stage to  
operate with a new input sample, while the remaining stages  
operate with preceding samples. Sampling occurs on the rising  
edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9637 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 44.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
ANALOG INPUT CONSIDERATIONS  
100  
The analog input to the AD9637 is a differential, switched  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
SFDR  
90  
80  
SNRFS  
70  
60  
50  
40  
30  
20  
H
CPAR  
H
VIN+ x  
CSAMPLE  
S
S
S
S
0.5  
0.7  
0.9  
(V)  
1.1  
1.3  
CSAMPLE  
V
CM  
VIN– x  
H
Figure 44. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
CPAR  
H
An on-board, common-mode voltage reference is included in  
the design and is available from the VCM pin. The VCM pin  
must be decoupled to ground by a 0.1 μF capacitor, as described  
in the Applications Information section.  
Figure 43. Switched-Capacitor Input Circuit  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 43). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9637, the largest input span available is 2 V p-p.  
Rev. 0 | Page 18 of 40  
 
 
 
Data Sheet  
AD9637  
Differential Input Configurations  
Internal Reference Connection  
There are several ways to drive the AD9637 either actively or  
passively. However, optimum performance is achieved by driving  
the analog input differentially. Using a differential double balun  
configuration to drive the AD9637 provides excellent performance  
and a flexible interface to the ADC (see Figure 46) for baseband  
applications.  
A comparator within the AD9637 detects the potential at the  
SENSE pin and configures the reference into two possible modes,  
which are summarized in Table 9. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 45), setting VREF to 1.0 V.  
Table 9. Reference Configuration Summary  
For applications where SNR is a key parameter, differential trans-  
former coupling is the recommended input configuration (see  
Figure 47), because the noise performance of most amplifiers is  
not adequate to achieve the true performance of the AD9637.  
Resulting  
Differential  
Span (V p-p)  
SENSE  
Resulting  
VREF (V)  
Selected Mode Voltage (V)  
Fiꢀed Internal  
Reference  
Fiꢀed Eꢀternal  
Reference  
AGND to 0.2  
1.0 internal  
2.0  
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
AVDD  
1.0 applied  
to eꢀternal  
VREF pin  
2.0  
It is not recommended to drive the AD9637 input single-ended.  
VIN+ x  
VIN– x  
VOLTAGE REFERENCE  
A stable and accurate 1.0 V voltage reference is built into the  
AD9637. VREF can be configured using either the internal 1.0 V  
reference or an externally applied 1.0 V reference voltage. The  
various reference modes are summarized in the sections that  
follow. The VREF pin should be externally decoupled to ground  
with a low ESR, 1.0 ꢀF capacitor in parallel with a low ESR,  
0.1 ꢀF ceramic capacitor.  
ADC  
CORE  
VREF  
0.1µF  
1.0µF  
SELECT  
LOGIC  
SENSE  
0.5V  
ADC  
Figure 45. Internal Reference Configuration  
0.1µF  
R
*C1  
5pF  
0.1µF  
VIN+ x  
33  
33Ω  
33Ω  
C
2V p-p  
C
ADC  
0.1µF  
C
R
VCM  
VIN– x  
33Ω  
ET1-1-I3  
*C1  
R
200Ω  
*C1 IS OPTIONAL  
0.1µF  
C
0.1µF  
Figure 46. Differential Double Balun Input Configuration for Baseband Applications  
ADT1-1WT  
1:1 Z RATIO  
*C1  
R
VIN+ x  
VIN– x  
33ꢀ  
2Vp-p  
49.9ꢀ  
ADC  
C
5pF  
*C1  
R
VCM  
33ꢀ  
200ꢀ  
0.1µF  
0.1μF  
*C1 IS OPTIONAL  
Figure 47. Differential Transformer-Coupled Configuration for Baseband Applications  
Rev. 0 | Page 19 of 40  
 
 
 
 
 
AD9637  
Data Sheet  
If the internal reference of the AD9637 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 48 shows  
how the internal reference voltage is affected by loading.  
0
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9637 sample clock inputs,  
CLK+ and CLK−, with a differential signal. The signal is typically  
ac-coupled into the CLK+ and CLK− pins via a transformer or  
capacitors. These pins are biased internally (see Figure 36) and  
require no external bias.  
–0.5  
–1.0  
Clock Input Options  
INTERNAL V  
REF  
= 1V  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
The AD9637 has a very flexible clock input structure. The clock  
input can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of the utmost concern, as described in the Jitter Considerations  
section.  
Figure 50 and Figure 51 show two preferred methods for clocking  
the AD9637 (at clock rates of up to 640 MHz prior to the internal  
CLK divider). A low jitter clock source is converted from a single-  
ended signal to a differential signal using either an RF transformer  
or an RF balun.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (mA)  
Figure 48. VREF Error vs. Load Current  
The RF balun configuration is recommended for clock frequencies  
between 80 MHz and 640 MHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary winding limit clock excursions into the AD9637 to  
approximately 0.8 V p-p differential.  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 49 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
4
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9637 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance. However, the diode capacitance comes  
into play at frequencies above 500 MHz. Care must be taken in  
choosing the appropriate signal limiting diode.  
2
0
–2  
–4  
–6  
–8  
®
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
CLK+  
100  
50ꢀ  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
0.1µF  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Figure 50. Transformer Coupled Differential Clock (Up to 200 MHz)  
Figure 49. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 42). The internal buffer generates the  
positive and negative full-scale references for the ADC core.  
Therefore, the external reference must be limited to a maximum  
of 1.0 V. It is not recommended to leave the SENSE pin floating.  
0.1µF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
50  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 51. Balun Coupled Differential Clock (80 MHz to 640 MHz)  
Rev. 0 | Page 20 of 40  
 
 
 
 
 
Data Sheet  
AD9637  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 52. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer  
excellent jitter performance.  
causes the clock divider to reset to its initial state. This  
synchronization feature allows multiple parts to have their clock  
dividers aligned to guarantee simultaneous input sampling.  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate a variety  
of internal timing signals and, as a result, may be sensitive to  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 53. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517  
clock drivers offer excellent jitter performance.  
The AD9637 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows the user to provide  
a wide range of clock input duty cycles without affecting the  
performance of the AD9637. Noise and distortion performance  
are nearly flat for a wide range of duty cycles with the DCS  
turned on.  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
bypass the CLK− pin to ground with a 0.1 ꢀF capacitor (see  
Figure 54).  
Input Clock Divider  
The AD9637 contains an input clock divider with the ability  
to divide the input clock by integer values between 1 and 8.  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz, nominally. The loop has a time constant associated  
with it that must be considered in applications in which the  
clock rate can change dynamically. A wait time of 1.5 μs to 5 μs  
is required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal.  
The AD9637 clock divider can be synchronized using the external  
SYNC input. Bit 0 and Bit 1 of Register 0x109 allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
0.1µF  
0.1µF  
CLK+  
CLOCK  
INPUT  
AD951x  
PECL DRIVER  
100ꢀ  
ADC  
0.1µF  
0.1µF  
CLK–  
CLOCK  
INPUT  
240ꢀ  
240ꢀ  
50kꢀ  
50kꢀ  
Figure 52. Differential PECL Sample Clock (Up to 640 MHz)  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100ꢀ  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kꢀ  
50kꢀ  
Figure 53. Differential LVDS Sample Clock (Up to 640 MHz)  
V
CC  
OPTIONAL  
100ꢀ  
0.1µF  
1
0.1µF  
1kꢀ  
1kꢀ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
50ꢀ  
ADC  
CLK–  
0.1µF  
1
50RESISTOR IS OPTIONAL.  
Figure 54. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Rev. 0 | Page 21 of 40  
 
 
 
AD9637  
Data Sheet  
Jitter Considerations  
POWER DISSIPATION AND POWER-DOWN MODE  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
As shown in Figure 56, the power dissipated by the AD9637 is  
proportional to its sample rate. The digital power dissipation  
does not vary significantly because it is determined primarily by  
the DRVDD supply and bias current of the LVDS output drivers.  
400  
1
SNR Degradation = 20 log10  
2π × fA × tJ  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 55).  
350  
80MSPS  
300  
65MSPS  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9637.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
250  
200  
150  
50MSPS  
40MSPS  
20MSPS  
30  
10  
20  
40  
50  
60  
70  
80  
SAMPLE RATE (MSPS)  
Figure 56. Analog Core Power vs. fSAMPLE for fIN = 9.7 MHz  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
The AD9637 is placed in power-down mode either by the SPI  
port or by asserting the PDWN pin high. In this state, the ADC  
typically dissipates 1 mW. During power-down, the output drivers  
are placed in a high impedance state. Asserting the PDWN pin  
low returns the AD9637 to its normal operating mode. Note  
that PDWN is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
14 BITS  
12 BITS  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and then must be recharged when returning  
to normal operation. As a result, wake-up time is related to the  
time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times. When  
using the SPI port interface, the user can place the ADC in  
power-down mode or standby mode. Standby mode allows the  
user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details on using these features.  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 55. Ideal SNR vs. Input Frequency and Jitter  
Rev. 0 | Page 22 of 40  
 
 
 
 
Data Sheet  
AD9637  
DIGITAL OUTPUTS AND TIMING  
The AD9637 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This can be changed to a low power,  
reduced signal option (similar to the IEEE 1596.3 standard) via the  
SPI. The LVDS driver current is derived on chip and sets the  
output current at each output equal to a nominal 3.5 mA. A 100 Ω  
differential termination resistor placed at the LVDS receiver  
inputs results in a nominal 350 mV swing (or 700 mV p-p  
differential) at the receiver.  
When operating in reduced range mode, the output current is  
reduced to 2 mA. This results in a 200 mV swing (or 400 mV p-p  
differential) across a 100 Ω termination at the receiver.  
FCO 500mV/DIV  
DCO 500mV/DIV  
DATA 500mV/DIV  
5ns/DIV  
The AD9637 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
placed as close to the receiver as possible. If there is no far-end  
receiver termination or there is poor differential trace routing,  
timing errors may result. To avoid such timing errors, it is  
recommended that the trace length be less than 24 inches and  
that the differential output traces be close together and at equal  
lengths. An example of the FCO and data stream with proper  
trace length and position is shown in Figure 57. An example of  
LVDS output timing in reduced range mode is shown in Figure 58.  
Figure 57. LVDS Output Timing Example in ANSI-644 Mode (Default)  
FCO 500mV/DIV  
DCO 500mV/DIV  
DATA 500mV/DIV  
5ns/DIV  
Figure 58. LVDS Output Timing Example in Reduced Range Mode  
Rev. 0 | Page 23 of 40  
 
 
 
AD9637  
Data Sheet  
Figure 59 shows an example of the LVDS output using the  
ANSI-644 standard (default) data eye and a time interval error  
(TIE) jitter histogram with trace lengths of less than 24 inches  
on standard FR-4 material.  
to drive longer trace lengths, which can be achieved by program-  
ming Register 0x15. Even though this option produces sharper  
rise and fall times on the data edges and is less prone to bit errors,  
it also increases the power dissipation of the DRVDD supply.  
300  
300  
EYE: ALL BITS  
ULS: 8000:448000  
EYE: ALL BITS  
ULS: 7000:448000  
200  
100  
200  
100  
0
0
–100  
–200  
–300  
–100  
–200  
–300  
3.0k  
2.5k  
2.0k  
1.5k  
1.0k  
0.5k  
0
3.0k  
2.5k  
2.0k  
1.5k  
1.0k  
0.5k  
0
Figure 59. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
of Less Than 24 Inches on Standard FR-4, External 100 Ω Far-End  
Termination Only  
Figure 60. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater Than 24 Inches on Standard FR-4, External 100 Ω Far Termination Only  
The default format of the output data is twos complement. Table 10  
shows an example of the output coding format. To change the  
output data format to offset binary, see the Memory Map section.  
Figure 60 shows an example of trace lengths exceeding 24 inches  
on standard FR-4 material. Note that the TIE jitter histogram  
reflects the decrease of the data eye opening as the edge deviates  
from the ideal position.  
Data from each ADC is serialized and provided on a separate  
channel in DDR mode. The data rate for each serial stream is equal  
to 12 bits times the sample clock rate, quantity divided by 2,  
with a maximum of 480 Mbps (12 bits × 80 MSPS)/2 = 480 Mbps.  
The lowest typical conversion rate is 10 MSPS. See the Memory  
Map section for details on enabling this feature.  
It is the responsibility of the user to determine if the waveforms  
meet the timing budget of the design when the trace lengths exceed  
24 inches. Additional SPI options allow the user to further increase  
the internal termination (increasing the current) of all eight outputs  
Table 10. Digital Output Coding  
Input (V)  
Condition (V)  
< −VREF − 0.5 LSB  
= −VREF  
Offset Binary Output Mode  
Twos Complement Mode  
1000 0000 0000  
1000 0000 0000  
0000 0000 0000  
0111 1111 1111  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
0000 0000 0000  
0000 0000 0000  
1000 0000 0000  
1111 1111 1111  
1111 1111 1111  
= 0  
= +VREF − 1.0 LSB  
> +VREF − 0.5 LSB  
0111 1111 1111  
Rev. 0 | Page 24 of 40  
 
 
Data Sheet  
AD9637  
Two output clocks are provided to assist in capturing data from  
the AD9637. The DCO is used to clock the output data and is equal  
to 6× the sample clock (CLK) rate for the default mode of opera-  
tion. Data is clocked out of the AD9637 and must be captured  
on the rising and falling edges of the DCO that supports double  
data rate (DDR) capturing. The FCO is used to signal the start of  
a new output byte and is equal to the sample clock rate (see the  
Timing Diagrams section).  
resolution systems. When changing the resolution to a 10-bit  
serial stream, the data stream is shortened. See Figure 3 for the  
10-bit example.  
In default mode, as shown in Figure 2, the MSB is first in the data  
output serial stream. This can be inverted so that the LSB is first  
in the data output serial stream by using the SPI.  
There are 12 digital output test pattern options available that can  
be initiated through the SPI. This is a useful feature when validating  
receiver capture and timing (see Table 11 for the output bit  
sequencing options that are available). Some test patterns have  
two serial sequential words and can be alternated in various ways,  
depending on the test pattern chosen. Note that some patterns  
do not adhere to the data format select option. In addition,  
custom user-defined test patterns can be assigned in the 0x19,  
0x1A, 0x1B, and 0x1C register addresses.  
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins, if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 90° relative to the  
output data edge.  
A 10-bit serial stream can also be initiated from the SPI. This  
allows the user to implement and test compatibility to lower  
Table 11. Flexible Output Test Modes  
Subject  
to Data  
Format  
Output Test  
Mode Bit  
Sequence  
Pattern Name  
Off (default)  
Digital Output Word 1  
N/A  
Digital Output Word 2  
Select  
N/A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Notes  
0000  
N/A  
0001  
Midscale short  
1000 0000 0000 (12-bit)  
10 0000 0000 (10-bit)  
1111 1111 1111 (12-bit)  
11 1111 1111 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 (10-bit)  
1010 1010 1010 (12-bit)  
10 1010 1010 (10-bit)  
N/A  
N/A  
N/A  
Offset binary code shown  
Offset binary code shown  
Offset binary code shown  
Offset binary code shown  
Offset binary code shown  
Offset binary code shown  
0010  
0011  
0100  
0101  
+Full-scale short  
−Full-scale short  
Checkerboard  
N/A  
N/A  
N/A  
N/A  
0101 0101 0101 (12-bit)  
01 0101 0101 (10-bit)  
N/A  
No  
PN sequence long1  
Yes  
PN23  
ITU 0.150  
X23 + X18 + 1  
0110  
0111  
PN sequence short1  
N/A  
N/A  
Yes  
PN9  
ITU O.150  
X9 + X5 + 1  
One-/zero-word toggle 1111 1111 1111 (12-bit)  
11 1111 1111 (10-bit)  
0000 0000 0000 (12-bit)  
00 0000 0000 (10-bit)  
No  
No  
No  
No  
No  
No  
No  
No  
1000  
1001  
User input  
Reg. 0ꢀ19 to Reg. 0ꢀ1A  
1010 1010 1010 (12-bit)  
10 1010 1010 (10-bit)  
0000 0011 1111 (12-bit)  
00 0001 1111 (10-bit)  
1000 0000 0000 (12-bit)  
Reg. 0ꢀ1B to Reg. 0ꢀ1C  
1-/0-bit toggle  
N/A  
N/A  
N/A  
N/A  
N/A  
1010  
1011  
1× sync  
One bit high  
Pattern associated with  
the eꢀternal pin  
10 0000 0000 (10-bit)  
N/A  
No  
Pattern associated with  
the eꢀternal pin  
1100  
Miꢀed frequency  
1010 0011 0011 (12-bit)  
10 0110 0011 (10-bit)  
N/A  
N/A  
No  
No  
1 All test mode options eꢀcept PN sequence short and PN sequence long can support 10-bit to 12-bit word lengths to verify data capture to the receiver.  
Rev. 0 | Page 25 of 40  
 
 
 
AD9637  
Data Sheet  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A description  
of the PN sequence and how it is generated can be found in  
Section 5.1 of the ITU-T 0.150 (05/96) standard. The seed value  
is all 1s (see Table 12 for the initial values). The output is a parallel  
representation of the serial PN9 sequence in MSB first format.  
The first output word is the first 12 bits of the PN9 sequence in  
MSB aligned format.  
SCLK/DTP Pin  
The SCLK/DTP pin is for use in applications that do not require  
SPI mode operation. This pin can enable a single digital test  
pattern if it and the CSB pin are both held high during device  
power-up. When SCLK/DTP is tied to AVDD, the ADC channel  
outputs shift out the following pattern: 1000 0000 0000. The  
FCO and DCO function normally while all channels shift out the  
repeatable test pattern. This pattern allows the user to perform  
timing alignment adjustments among the FCO, DCO, and output  
data. This pin has an internal 30 kΩ resistor to GND. It can be  
left unconnected for normal operation.  
Table 12. PN Sequence  
Initial  
Value  
First Three Output Samples  
(MSB First) Twos Complement  
Sequence  
PN Sequence Short  
PN Sequence Long 0ꢀ1FFF 0ꢀ1FE0, 0ꢀ2001, 0ꢀ1C00  
0ꢀ1FE0 0ꢀ1DF1, 0ꢀ3CC8, 0ꢀ294E  
Table 14. Digital Test Pattern Pin Settings  
Selected DTP  
Normal Operation  
DTP  
DTP Voltage  
No connect  
AVDD  
Resulting D x  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.6 of the ITU-T 0.150 (05/96) standard. The  
seed value is all 1s (see Table 12 for the initial values) and the  
AD9637 inverts the bit stream with relation to the ITU standard.  
The output is a parallel representation of the serial PN23 sequence  
in MSB first format. The first output word is the first 12 bits of the  
PN23 sequence in MSB aligned format.  
Normal operation  
1000 0000 0000  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map section  
for information about the options available.  
CSB Pin  
The CSB pin should be tied to AVDD for applications that do  
not require SPI mode operation. Tying CSB high causes all  
SCLK and SDIO information to be ignored.  
See the Memory Map section for information on how to change  
these additional digital output timing features through the SPI.  
RBIAS Pin  
To set the internal core bias current of the ADC, place  
SDIO/DFS Pin  
a 10.0 kΩ, 1% tolerance resistor to ground at the RBIAS pin.  
For applications that do not require SPI mode operation, the  
CSB pin is tied to AVDD, and the SDIO/DFS pin controls the  
output data format select operation according to Table 13.  
Table 13. Output Data Format Select Pin Settings  
DFS Pin Voltage  
Output Mode  
Twos complement  
Offset binary  
AVDD  
GND (Default)  
Rev. 0 | Page 26 of 40  
 
 
Data Sheet  
AD9637  
BUILT-IN OUTPUT TEST MODES  
ADC is disconnected from the digital back-end blocks and the  
test pattern is run through the output formatting block. Some of  
the test patterns are subject to output formatting, and some are  
not. The PN generators from the PN sequence tests can be reset  
by setting Bit 4 or Bit 5 of Register 0x0D. These tests can be  
performed with or without an analog signal (if present, the  
analog signal is ignored), but they do require an encode clock.  
For more information, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
The AD9637 includes a built-in test feature designed to enable  
verification of the integrity of each data output channel, as well  
as to facilitate board level debugging. Various output test options  
are provided to place predictable values on the outputs of the  
AD9637.  
OUTPUT TEST MODES  
The output test options are described in Table 17 at Address 0x0D.  
When an output test mode is enabled, the analog section of the  
Rev. 0 | Page 27 of 40  
 
AD9637  
Data Sheet  
SERIAL PORT INTERFACE (SPI)  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 61  
and Table 5.  
The AD9637 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
gives the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK/DTP pin, the  
SDIO/DFS pin, and the CSB pin (see Table 15). The SCLK  
(a serial clock) is used to synchronize the read and write data  
presented from and to the ADC. The SDIO (serial data input/  
output) is a dual-purpose pin that allows data to be sent to and  
read from the internal ADC memory map registers. The CSB  
(chip select bar) is an active low control that enables or disables  
the read and write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
Table 15. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB  
first mode or in LSB first mode. MSB first is the default on  
power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
tHIGH  
tLOW  
tCLK  
tH  
tDS  
tS  
tDH  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 61. Serial Port Interface Timing Diagram  
Rev. 0 | Page 28 of 40  
 
 
 
Data Sheet  
AD9637  
pins as static control lines for the output data format, output  
HARDWARE INTERFACE  
digital test pattern, and power-down feature control. In this  
mode, CSB should be connected to AVDD, which disables the  
serial port interface.  
The pins described in Table 15 comprise the physical interface  
between the user programming device and the serial port of the  
AD9637. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
When the device is in SPI mode, the PDWN pin (if enabled)  
remains active. For SPI control of power-down, the PDWN pin  
should be set to its default state.  
SPI ACCESSIBLE FEATURES  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9637 part-specific features are described in detail  
in the Memory Map Register Descriptions section following  
Table 17, the external memory map register table.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9637 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Table 16. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Allows the user to set either power-down  
mode or standby mode  
Clock  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase,  
and enable the sync  
Some pins serve a dual function when the SPI interface is not  
being used. When the pins are strapped to DRVDD or ground  
during device power-on, they are associated with a specific  
function. Table 16 describes the strappable functions supported  
on the AD9637.  
Offset  
Allows the user to digitally adjust the  
converter offset  
Test I/O  
Allows the user to set test modes to have  
known data on output bits  
Output Mode  
Output Phase  
ADC Resolution  
Allows the user to set the output mode  
Allows the user to set the output clock polarity  
Scalable power consumption options based  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SDIO/DFS pin, the SCLK/DTP pin, and the PDWN pin  
serve as standalone CMOS-compatible control pins. When the  
device is powered up, it is assumed that the user intends to use the  
and Speed Grade on resolution and speed grade selection  
Rev. 0 | Page 29 of 40  
 
 
AD9637  
Data Sheet  
MEMORY MAP  
Default Values  
READING THE MEMORY MAP REGISTER TABLE  
After the AD9637 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
Table 17, the memory map register table.  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into three sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
device index and transfer registers (Address 0x05 and Address  
0xFF) and the global ADC functions registers, including setup,  
control, and test (Address 0x08 to Address 0x109).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table (see Table 17) lists the default  
hexadecimal value for each hexadecimal address shown. The  
column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x05, the device  
index register, has a hexadecimal default value of 0x3F. This  
means that in Address 0x05, Bits[7:6] = 0, and the remaining  
Bits[5:0] = 1. This setting is the default channel index setting.  
The default value results in both ADC channels receiving the  
next write command. For more information on this function  
and others, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI. This application note details the  
functions controlled by Register 0x00 to Register 0xFF. The  
remaining registers are documented in the Memory Map  
Register Descriptions section.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Channel-Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed differently for each channel. In  
these cases, channel address locations are internally duplicated  
for each channel. These registers and bits are designated in  
Table 17 as local. These local registers and bits can be accessed  
by setting the appropriate data channel bits (A, B, C, or D) and  
the clock channel DCO/FCO bits (Bits[5:4]) in Register 0x05. If  
all the bits are set, the subsequent write affects the registers of  
all channels and the DCO/FCO clock channels. In a read cycle,  
only one of the channels, A, B, C, or D, should be set to read  
one of the four registers. If all the bits are set during a SPI read  
cycle, the part returns the value for Channel A. Registers and  
bits designated as global in Table 17 affect the entire part or the  
channel features for which independent settings are not allowed  
between channels. The settings in Register 0x05 do not affect  
the global registers and bits.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x05). If the entire address location  
is open or not listed in Table 17 (for example, Address 0x13) this  
address location should not be written.  
Rev. 0 | Page 30 of 40  
 
 
Data Sheet  
AD9637  
MEMORY MAP REGISTER TABLE  
The AD9637 uses a 3-wire interface and 16-bit addressing and,  
therefore, Bit 0 and Bit 7 in Register 0x00 are set to 0, and Bit 3  
and Bit 4 are set to 1. When Register 0x00, Bit 5 is set high, the  
SPI enters a soft reset, where all of the user registers revert to  
their default values and Bit 2 is automatically cleared.  
Table 17. Memory Map Register Table  
Reg.  
Addr.  
(Hex)  
Default  
Value  
(Hex)  
Parameter  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Comments  
Chip Configuration Registers  
0ꢀ00  
SPI port  
configuration  
0 = SDO  
active  
LSB first  
Soft reset 1 =  
16-bit  
address  
1 =  
16-bit  
address  
Soft reset  
LSB first  
0 = SDO  
active  
0ꢀ18  
The nibbles  
are mirrored  
so that LSB or  
MSB first  
mode registers  
correctly. The  
default for  
the ADCs is  
16-bit mode.  
0ꢀ01  
0ꢀ02  
Chip ID (global)  
8-bit chip ID, Bits[7:0]  
AD9637 0ꢀ93 = octal 12-bit 40 MSPS/80 MSPS serial LVDS  
Read  
only  
0ꢀ93  
Unique chip ID  
that is used to  
differentiate  
devices; read  
only.  
Chip grade  
(global)  
Open  
Speed grade ID, Bits[6:4]  
Open  
Open  
Open  
Open  
Read  
only  
Unique speed  
grade ID that  
is used to  
differentiate  
graded  
001 = 40 MSPS  
100 = 80 MSPS  
devices; read  
only.  
Device Indeꢀ and Transfer Registers  
Open  
0ꢀ04  
0ꢀ05  
0ꢀFF  
Device Indeꢀ 2  
Device Indeꢀ 1  
Transfer  
Open  
Open  
Open  
Data  
Channel H  
Data  
Channel G  
Data  
Channel F  
Data  
Channel E  
0ꢀF  
Bits are set to  
determine  
which device  
on chip  
receives the  
neꢀt write  
command.  
The default is  
all devices on  
chip.  
Open  
Open  
Clock  
Channel  
DCO  
Clock  
Channel  
FCO  
Data  
Data  
Data  
Channel B  
Data  
Channel A  
0ꢀ3F  
Bits are set  
to determine  
which device  
on chip  
receives the  
neꢀt write  
command.  
The default is  
all devices on  
chip.  
Channel D Channel C  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Initiate  
override  
0ꢀ00  
0ꢀ00  
Set  
resolution/  
sample rate  
override.  
Global ADC Functions  
0ꢀ08  
Power modes  
(global)  
Eꢀternal  
power-  
down  
Open  
Internal power-down  
mode  
00 = chip run  
01 = full power-down  
10 = standby  
11 = reset  
Determines  
various  
generic  
modes of chip  
operation.  
pin  
function  
0 = full  
power-  
down  
1 =  
standby  
0ꢀ09  
Clock (global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
0 = off  
0ꢀ01  
Turns duty  
cycle  
stabilizer on  
or off.  
1 = on  
Rev. 0 | Page 31 of 40  
 
 
AD9637  
Data Sheet  
Reg.  
Addr.  
(Hex)  
Default  
Value  
(Hex)  
Parameter  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Comments  
0x0B  
Clock divide  
(global)  
Open  
Open  
Open  
Open  
Open  
Clock divide ratio, Bits[2:0]  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
0x00  
The divide  
ratio is the  
value plus 1.  
0x0C  
0x0D  
Enhancement  
control  
Open  
Open  
Open  
Open  
Reset  
Open  
Chop  
Open  
Open  
0x00  
0x00  
Enables/  
disables chop  
mode.  
mode  
0 = off  
1 = on  
Test mode (local  
except for PN  
sequence resets)  
User input test mode  
00 = single  
Reset PN  
Output test mode, Bits[3:0] (local)  
0000 = off (default)  
When set,  
the test data  
is placed on  
the output  
pins in place  
of normal  
data.  
long gen PN  
short  
gen  
01 = alternate  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
10 = single once  
11 = alternate once  
(affects user input test  
mode only,  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = one/zero word toggle  
1000 = user input  
Bits[3:0] = 1000)  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x10  
0x14  
Offset adjust  
(local)  
8-bit device offset adjustment, Bits[7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x01  
Device offset  
trim.  
Output mode  
Open  
LVDS-ANSI/  
LVDS-IEEE  
option  
0 = LVDS-  
ANSI  
Open  
Open  
Open  
Output  
invert  
(local)  
Open  
Output  
format  
0 = offset  
binary  
1 = twos  
comple-  
ment  
Configures  
the outputs  
and the  
format of the  
data.  
1 = LVDS-  
IEEE reduced  
range link  
(global)  
(global)  
(see Table 18)  
0x15  
0x16  
Output adjust  
Output phase  
Open  
Open  
Open  
Output driver  
termination, Bits[1:0]  
Open  
Open  
Open  
Output  
drive  
0 = 1× drive  
1 = 2× drive  
0x00  
0x03  
Determines  
LVDS or other  
output  
00 = none  
01 = 200 Ω  
10 = 100 Ω  
11 = 100 Ω  
properties.  
Input clock phase adjust, Bits[6:4]  
(value is number of input clock  
cycles of phase delay)  
Output clock phase adjust, Bits[3:0]  
(setting = 0000 through 1011)  
(see Table 20)  
On devices  
that use  
global clock  
divide,  
(see Table 19)  
determines  
which phase  
of the divider  
output is  
used to  
supply the  
output clock.  
Internal  
latching is  
unaffected.  
0x18  
VREF  
Open  
Open  
Open  
Open  
Open  
Internal VREF adjustment  
digital scheme, Bits[2:0]  
000 = 1.0 V p-p  
0x04  
Selects  
and/or  
adjusts the  
VREF  
.
001 = 1.14 V p-p  
010 = 1.33 V p-p  
011 = 1.6 V p-p  
100 = 2.0 V p-p  
Rev. 0 | Page 32 of 40  
Data Sheet  
AD9637  
Reg.  
Addr.  
(Hex)  
Default  
Value  
(Hex)  
Parameter  
Name  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Comments  
0ꢀ19  
USER_PATT1_LSB  
(global)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0ꢀ00  
User Defined  
Pattern 1 LSB.  
0ꢀ1A  
USER_PATT1_MS  
B (global)  
B15  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
0ꢀ00  
User Defined  
Pattern 1  
MSB.  
0ꢀ1B  
0ꢀ1C  
USER_PATT2_LSB  
(global)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B0  
B8  
0ꢀ00  
0ꢀ00  
User Defined  
Pattern 2 LSB.  
USER_PATT2_MS  
B (global)  
B15  
B14  
B13  
B12  
B11  
B10  
User Defined  
Pattern 2  
MSB.  
0ꢀ21  
Serial control  
(global)  
LVDS  
output LSB  
first  
Word-wise DDR 1-lane, Bits[6:4]  
100 = DDR 1-lane  
Open  
Open  
Open  
Serial output number  
of bits  
0ꢀ42  
Serial stream  
control.  
Default  
causes MSB  
first and the  
native bit  
stream.  
10 = 12 bits  
11 = 10 bits  
0ꢀ22  
Serial channel  
status (local)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Channel  
output  
reset  
Channel  
power-  
down  
0ꢀ00  
0ꢀ00  
Used to  
power down  
individual  
sections of  
a converter.  
0ꢀ100 Resolution/  
sample rate  
Resolution/  
sample rate  
override  
Resolution  
10 = 12 bits  
11 = 10 bits  
Sample rate  
000 = 20 MSPS  
001 = 40 MSPS  
010 = 50 MSPS  
011 = 65 MSPS  
100 = 80 MSPS  
Resolution/  
sample rate  
override  
(requires  
transfer bit,  
0ꢀFF).  
override  
enable  
0ꢀ101 User I/O Control 2  
0ꢀ102 User I/O Control 3  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
SDIO  
pull-down  
0ꢀ00  
0ꢀ00  
Disables SDIO  
pull-down.  
Open  
Open  
VCM  
power-  
down  
Open  
VCM control.  
0ꢀ109 Sync  
Open  
Open  
Open  
Open  
Open  
Sync neꢀt  
only  
Enable  
sync  
0ꢀ00  
Rev. 0 | Page 33 of 40  
AD9637  
Data Sheet  
Output Mode (Register 0x14)  
Bit 7—Open  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Bit 6—LVDS-ANSI/LVDS-IEEE Option  
Setting this bit chooses the LVDS-IEEE (reduced range) option.  
The default setting is LVDS-ANSI. As described in Table 18,  
when LVDS-ANSI or LVDS-IEEE reduced range link is selected,  
the user can select the driver termination. The driver current  
is automatically selected to give the proper output swing.  
Device Index (Register 0x04 and Register 0x05)  
There are certain features in the map that can be set independently  
for each channel, whereas other features apply globally to all  
channels (depending on context), regardless of which are selected.  
The first four bits in Register 0x04 and Register 0x05 can be  
used to select which individual data channels are affected. The  
output clock channels can be selected in Register 0x05, as well.  
A smaller subset of the independent feature list can be applied  
to those devices.  
Table 18. LVDS-ANSI/LVDS-IEEE Options  
Output  
Mode,  
Bit[6]  
Output  
Mode  
Output Driver  
Termination  
Output Driver  
Current  
0
LVDS-ANSI  
User selectable  
Automatically  
selected to give  
proper swing  
Automatically  
selected to give  
proper swing  
Transfer (Register 0xFF)  
All registers except Register 0x100 are updated the moment  
they are written. Setting Bit 0 of this transfer register high  
initializes the settings in the ADC sample rate override register  
(Address 0x100).  
1
LVDS-IEEE  
reduced  
User selectable  
range link  
Bits[5:3]—Open  
Power Modes (Register 0x08)  
Bit 2—Output Invert  
Bits[7:6]—Open  
Setting this bit inverts the output bit stream.  
Bit 1—Open  
Bit 5—External Power-Down Pin Function  
If set, the external PDWN pin initiates standby mode. If cleared,  
the external PDWN pin initiates power-down mode.  
Bit 0—Output Format  
By default, this bit is set to send the data output in twos  
complement format. Resetting this bit changes the output mode  
to offset binary.  
Bits[4:2]—Open  
Bits[1:0]—Internal Power-Down Mode  
In normal operation (Bits[1:0] = 00), all ADC channels are active.  
Output Adjust (Register 0x15)  
Bits[7:6]—Open  
In power-down mode (Bits[1:0] = 01), the digital data path clocks  
are disabled while the digital data path is reset. Outputs are  
disabled.  
Bits[5:4]—Output Driver Termination  
These bits allow the user to select the internal termination  
resistor.  
In standby mode (Bits[1:0] = 10), the digital data path clocks  
and the outputs are disabled.  
Bits[3:1]—Open  
During a digital reset (Bits[1:0] = 11), all the digital data path  
clocks and the outputs (where applicable) on the chip are reset,  
except the SPI port. Note that the SPI is always left under  
control of the user, that is, it is never automatically disabled or  
in reset (except by power-on reset).  
Bit 0—Output Drive  
Bit 0 of the output adjust register controls the drive strength on  
the LVDS driver of the FCO and DCO outputs only. The default  
values set the drive to 1×. The drive can be increased to 2× by  
setting the appropriate channel bit in Register 0x05 and then  
setting Bit 0. These features cannot be used with the output driver  
termination select. The termination selection takes precedence  
over the 2× driver strength on FCO and DCO when both the  
output driver termination and output drive are selected.  
Enhancement Control (Register 0x0C)  
Bits[7:3]—Open  
Bit 2—Chop Mode  
For applications that are sensitive to offset voltages and other  
low frequency noise, such as homodyne or direct conversion  
receivers, chopping in the first stage of the AD9637 is a feature  
that can be enabled by setting Bit 2. In the frequency domain,  
chopping translates offsets and other low frequency noise to  
f
CLK/2, where they can be filtered.  
Bits[1:0]—Open  
Rev. 0 | Page 34 of 40  
 
 
 
Data Sheet  
AD9637  
Output Phase (Register 0x16)  
Bit 7—Open  
Resolution/Sample Rate Override (Register 0x100)  
This register is designed to allow the user to downgrade the device.  
Any attempt to upgrade the default speed grade results in a chip  
power-down. Settings in this register are not initialized until Bit 0  
of the transfer register (Register 0xFF) is written high.  
Bits[6:4]—Input Clock Phase Adjust  
Table 19. Input Clock Phase Adjust Options  
Input Clock Phase  
Adjust, Bits[6:4]  
Number of Input Clock Cycles of  
Phase Delay  
User I/O Control 2 (Register 0x101)  
Bits[7:1]—Open  
000 (Default)  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Bit 0—SDIO Pull-Down  
Bit 0 can be set to disable the internal 30 kꢁ pull-down on the  
SDIO pin, which can be used to limit loading when many  
devices are connected to the SPI bus.  
User I/O Control 3 (Register 0x102)  
Bits[7:4]—Open  
Bit 3—VCM Power-Down  
Bits[3:0]—Output Clock Phase Adjust  
Bit 3 can be set high to power down the internal VCM generator.  
This feature is used when applying an external reference.  
Table 20. Output Clock Phase Adjust Options  
Output Clock (DCO), DCO Phase Adjustment  
Phase Adjust, Bits[3:0] (Degrees Relative to D x Edge)  
Bits[2:0]—Open  
0000  
0
0001  
60  
0010  
0011 (Default)  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
1011  
Rev. 0 | Page 35 of 40  
 
AD9637  
Data Sheet  
APPLICATIONS INFORMATION  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a silk-  
screen on the PCB into several uniform sections. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
guarantees only one tie point. For detailed information on  
packaging and the PCB layout of chip scale packages, see the  
AN-772 Application Note, A Design and Manufacturing Guide  
for the Lead Frame Chip Scale Package (LFCSP), at  
DESIGN GUIDELINES  
Before starting the design and layout of the AD9637 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which describes the special circuit connections and  
layout requirements that are needed for certain pins.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD9637, it is recommended  
that two separate 1.8 V supplies be used. Use one supply for  
analog (AVDD); use a separate supply for the digital outputs  
(DRVDD). For both AVDD and DRVDD, several different  
decoupling capacitors should be used to cover both high and  
low frequencies. Place these capacitors close to the point of  
entry at the PCB level and close to the pins of the part, with  
minimal trace length.  
www.analog.com.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 ꢀF  
capacitor.  
REFERENCE DECOUPLING  
The VREF pin should be externally decoupled to ground with  
a low ESR, 1.0 ꢀF capacitor in parallel with a low ESR, 0.1 ꢀF  
ceramic capacitor.  
A single PCB ground plane should be sufficient when using the  
AD9637. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
SPI PORT  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9637 to keep these signals from transitioning at the con-  
verter inputs during critical sampling periods.  
It is required that the exposed pad on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance of the AD9637. An  
exposed continuous copper plane on the PCB should mate to  
the AD9637 exposed pad, Pin 0. The copper plane should have  
several vias to achieve the lowest possible resistive thermal path  
for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
Rev. 0 | Page 36 of 40  
 
 
Data Sheet  
AD9637  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
6.35  
6.20 SQ  
6.05  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 62. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
CP-64-4  
CP-64-4  
CP-64-4  
CP-64-4  
AD9637BCPZ-40  
AD9637BCPZRL7-40  
AD9637BCPZ-80  
AD9637BCPZRL7-80  
AD9637-80EBZ  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 37 of 40  
 
 
AD9637  
NOTES  
Data Sheet  
Rev. 0 | Page 38 of 40  
Data Sheet  
NOTES  
AD9637  
Rev. 0 | Page 39 of 40  
AD9637  
NOTES  
Data Sheet  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10215-0-10/11(0)  
Rev. 0 | Page 40 of 40  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY