AD9739ABBCZ [ADI]

11-/14-Bit, 2.5 GSPS; 11-位/ 14位, 2.5 GSPS
AD9739ABBCZ
型号: AD9739ABBCZ
厂家: ADI    ADI
描述:

11-/14-Bit, 2.5 GSPS
11-位/ 14位, 2.5 GSPS

文件: 总64页 (文件大小:2705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
11-/14-Bit, 2.5 GSPS,  
RF Digital-to-Analog Converters  
AD9737A/AD9739A  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Direct RF synthesis at 2.5 GSPS update rate  
DC to 1.25 GHz in baseband mode  
1.25 GHz to 3.0 GHz in mix-mode  
Industry leading single/multicarrier IF or RF synthesis  
Dual-port LVDS data interface  
Up to 1.25 GSPS operation  
Source synchronous DDR clocking  
Pin compatible with the AD9739  
RESET  
IRQ  
AD9737A/AD9739A  
SDIO  
SDO  
CS  
1.2V  
SPI  
DAC BIAS  
SCLK  
VREF  
I120  
Programmable output current: 8.7 mA to 31.7 mA  
Low power: 1.1 W at 2.5 GSPS  
IOUTN  
IOUTP  
TxDAC  
CORE  
APPLICATIONS  
DCI  
Broadband communications systems  
DOCSIS CMTS systems  
Military jammers  
Instrumentation, automatic test equipment  
Radar, avionics  
CLK DISTRIBUTIONꢀ  
DLL  
(DIV-BY-4)  
(MU CONTROLLER)  
DCO  
DACCLK  
Figure 1.  
GENERAL DESCRIPTION  
The AD9737A/AD9739A are 11-bit and 14-bit, 2.5 GSPS high  
performance RF DACs that are capable of synthesizing wideband  
signals from dc up to 3 GHz. The AD9737A/AD9739A are pin  
and functionally compatible with the AD9739 with the  
exception that the AD9737A/AD9739A do not support  
synchronization or RZ mode, and are specified to operate  
between 1.6 GSPS and 2.5 GSPS.  
The AD9737A/AD9739A are manufactured on a 0.18 µm  
CMOS process and operate from 1.8 V and 3.3 V supplies.  
They are supplied in a 160-ball chip scale ball grid array for  
reduced package parasitics.  
PRODUCT HIGHLIGHTS  
1. Ability to synthesize high quality wideband signals with  
bandwidths of up to 1.25 GHz in the first or second  
Nyquist zone.  
2. A proprietary quad-switch DAC architecture provides  
exceptional ac linearity performance while enabling mix-  
mode operation.  
3. A dual-port, double data rate, LVDS interface supports the  
maximum conversion rate of 2500 MSPS.  
4. On-chip controllers manage external and internal clock  
domain skews.  
By elimination of the synchronization circuitry, some nonideal  
artifacts such as images and discrete clock spurs remain stationary  
on the AD9737A/AD9739A between power-up cycles, thus  
allowing for possible system calibration. AC linearity and noise  
performance remain the same between the AD9739 and the  
AD9737A/AD9739A.  
The inclusion of on-chip controllers simplifies system integration.  
A dual-port, source synchronous, LVDS interface simplifies the  
digital interface with existing FGPA/ASIC technology. On-chip  
controllers are used to manage external and internal clock domain  
variations over temperature to ensure reliable data transfer from  
the host to the DAC core. A serial peripheral interface (SPI) is  
used for device configuration as well as readback of status  
registers.  
5. Programmable differential current output with an 8.66 mA  
to 31.66 mA range.  
Rev.C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011-2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SPI Register Map Description .................................................. 40  
SPI Operation ............................................................................. 40  
SPI Register Map ............................................................................ 42  
SPI Port Configuration and Software Reset ........................... 43  
Power-Down LVDS Interface and TxDAC® ........................... 43  
Controller Clock Disable........................................................... 43  
Interrupt Request (IRQ) Enable/Status................................... 44  
TxDAC Full-Scale Current Setting (IOUTFS) and Sleep........... 44  
TxDAC Quad-Switch Mode of Operation.............................. 44  
DCI Phase Alignment Status .................................................... 44  
Data Receiver Controller Configuration................................. 44  
Data Receiver Controller_Data Sample Delay Value ............ 45  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
LVDS Digital Specifications........................................................ 5  
Serial Port Specifications............................................................. 6  
AC Specifications.......................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics—AD9737A ..................... 14  
Static Linearity ............................................................................ 14  
AC (Normal Mode).................................................................... 15  
AC (Mix-Mode).......................................................................... 17  
One-Carrier DOCSIS Performance (Normal Mode)............ 20  
Four-Carrier DOCSIS Performance (Normal Mode) ........... 21  
Eight-Carrier DOCSIS Performance (Normal Mode) .......... 22  
16-Carrier DOCSIS Performance (Normal Mode) ............... 23  
32-Carrier DOCSIS Performance (Normal Mode) ............... 24  
64- and 128-Carrier DOCSIS Performance (Normal Mode)25  
Typical Performance Characteristics—AD9739A ..................... 26  
Static Linearity ............................................................................ 26  
AC (Normal Mode).................................................................... 28  
AC (Mix-Mode).......................................................................... 31  
One-Carrier DOCSIS Performance (Normal Mode)............ 33  
Four-Carrier DOCSIS Performance (Normal Mode) ........... 34  
Eight-Carrier DOCSIS Performance (Normal Mode) .......... 35  
16-Carrier DOCSIS Performance (Normal Mode) ............... 36  
32-Carrier DOCSIS Performance (Normal Mode) ............... 37  
64- and 128-Carrier DOCSIS Performance (Normal Mode)38  
Terminology .................................................................................... 39  
Serial Port Interface (SPI) Register............................................... 40  
Data Receiver Controller_DCI Delay Value/Window and  
Phase Rotation............................................................................ 45  
Data Receiver Controller_Delay Line Status .......................... 45  
Data Receiver Controller Lock/Tracking Status..................... 45  
CLK Input Common Mode ...................................................... 46  
Mu Controller Configuration and Status................................ 46  
Part ID ......................................................................................... 47  
Theory of Operation ...................................................................... 48  
LVDS Data Port Interface.......................................................... 49  
Mu Controller............................................................................. 52  
Interrupt Requests...................................................................... 54  
Analog Interface Considerations.................................................. 55  
Analog Modes of Operation ..................................................... 55  
Clock Input Considerations...................................................... 56  
Voltage Reference ....................................................................... 57  
Analog Outputs .......................................................................... 57  
Output Stage Configuration ..................................................... 59  
Nonideal Spectral Artifacts....................................................... 60  
Lab Evaluation of the AD9737A/AD9739A ........................... 61  
Recommended Start-Up Sequence .......................................... 61  
Outline Dimensions....................................................................... 63  
Ordering Guide .......................................................................... 63  
Rev.C | Page 2 of 64  
Data Sheet  
AD9737A/AD9739A  
REVISION HISTORY  
Added SPI Port Configuration and Software Reset Section,  
Power-Down LVDS Interface and TxDAC Section, Controller  
Clock Disable Section, and Table 11 to Table 13 ........................43  
Added Interrupt Request (IRQ) Enable/Status Section, TxDAC  
Full-Scale Current Setting (IOUTFS) and Sleep Section, TxDAC  
Quad-Switch Mode of Operation Section, DCI Phase  
2/12—Rev. B to Rev. C  
Changes to Figure 5...........................................................................9  
Changes to Table 7 ..........................................................................11  
Changes to Ordering Guide...........................................................63  
2/12—Rev. A to Rev. B  
Alignment Status Section, Data Receiver Controller  
Added AD9737A................................................................ Universal  
Reorganized Layout ........................................................... Universal  
Moved Revision History Section.....................................................3  
Deleted 6% from Table Summary Statement; Changes  
to Table 1 ............................................................................................4  
Deleted 6% from Table Summary Statement, Table 2................5  
Deleted 6% from Table Summary Statement, Table 3................6  
Changes to AC Specifications Section and Table 4.......................7  
Added Figure 5, Renumbered Sequentially ...................................9  
Added Figure 7 and Table 7, Renumbered Sequentially............10  
Deleted Figure 24 ............................................................................13  
Added Typical Performance Characteristics—AD9737A  
Configuration Section, and Table 14 to Table 18........................44  
Added Data Receiver Controller_Data Sample Delay Value  
Section, Data Receiver Controller_DCI Delay Value/Window  
and Phase Rotation Section, Data Receiver Controller_Delay  
Line Status Section, Data Receiver Controller Lock/Tracking  
Status Section, and Table 19 to Table 22 ......................................45  
Added CLK Input Common Mode Section, and Mu  
Controller Configuration and Status Section, and Table 23  
and Table 24 .....................................................................................46  
Added Part ID Section, and Table 25 ...........................................47  
Changes to LVDS Data Port Interface Section............................49  
Changes to Data Receiver Controller Initialization  
Section and Figure 9 to Figure 77 .................................................14  
Deleted Table 9 ................................................................................25  
Added Static Linearity Section and Figure 78 to Figure 88 ............26  
Added Figure 106 ............................................................................30  
Changes to Figure 116, Figure 117, Figure 118, Figure 119,  
Figure 120, and Figure 121.............................................................33  
Changes to Figure 122, Figure 123, Figure 124, Figure 125,  
Figure 126, and Figure 127.............................................................34  
Changes to Figure 128, Figure 129, Figure 130, Figure 131,  
Figure 132, and Figure 133.............................................................35  
Changes to Figure 134, Figure 135, Figure 136, Figure 137,  
Figure 138, and Figure 139.............................................................36  
Changes to Figure 140, Figure 141, Figure 142, Figure 143,  
Figure 144, and Figure 145.............................................................37  
Changes to Figure 146, Figure 147, Figure 148, Figure 149,  
and Figure 150; Added Figure 151................................................38  
Added Table 10 ................................................................................42  
Description Section ........................................................................51  
Changes to Mu Controller Section ...............................................52  
Added Figure 167 and Table 27, Changes to Mu Controller  
Initialization Description Section.................................................53  
Changes to Analog Modes of Operation Section, Figure 171,  
and Figure 172 .................................................................................55  
Updated Outline Dimensions........................................................63  
Changes to Ordering Guide...........................................................63  
7/11—Rev. 0 to Rev. A  
Changed Maximum Update Rate (DACCLK Input) Parameter  
to DAC Clock Rate Parameter in Table 4.......................................6  
Added Adjusted DAC Update Rate Parameter and Endnote 1 in  
Table 4.................................................................................................6  
Updated Outline Dimensions........................................................43  
1/11—Revision 0: Initial Version  
Rev. C | Page 3 of 64  
 
AD9737A/AD9739A  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V, IOUTFS = 20 mA.  
Table 1.  
AD9737A  
Typ  
AD9739A  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
11  
14  
Bits  
ACCURACY  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
ANALOG OUTPUTS  
Gain Error (with Internal Reference)  
Full-Scale Output Current  
Output Compliance Range  
Common-Mode Output Resistance  
Differential Output Resistance  
Output Capacitance  
DAC CLOCK INPUT (DACCLK_P, DACCLK_N)  
Differential Peak-to-Peak Voltage  
Common-Mode Voltage  
Clock Rate  
0.5  
0.5  
2.5  
2.0  
LSB  
LSB  
5.5  
20.2  
5.5  
20.2  
%
8.66  
−1.0  
31.66 8.66  
31.66 mA  
+1.0  
−1.0  
+1.0  
V
MΩ  
10  
70  
1
10  
70  
1
pF  
1.2  
1.6  
1.6  
900  
2.0  
2.5  
1.2  
1.6  
1.6  
900  
2.0  
2.5  
V
mV  
GHz  
TEMPERATURE DRIFT  
Gain  
Reference Voltage  
REFERENCE  
60  
20  
60  
20  
ppm/°C  
ppm/°C  
Internal Reference Voltage  
Output Resistance  
ANALOG SUPPLY VOLTAGES  
VDDA  
1.15  
1.2  
5
1.25  
1.15  
1.2  
5
1.25  
V
kΩ  
3.1  
1.70  
3.3  
1.8  
3.5  
1.90  
3.1  
1.70  
3.3  
1.8  
3.5  
1.90  
V
V
VDDC  
DIGITAL SUPPLY VOLTAGES  
VDD33  
VDD  
3.10  
1.70  
3.3  
1.8  
3.5  
1.90  
3.10  
1.70  
3.3  
1.8  
3.5  
1.90  
V
V
SUPPLY CURRENTS AND POWER DISSIPATION, 2.0 GSPS  
IVDDA  
IVDDC  
IVDD33  
IVDD  
37  
38  
167  
16  
37  
38  
167  
16  
mA  
mA  
mA  
mA  
W
158  
14.5  
173  
0.770  
2.5  
158  
14.5  
173  
0.770  
2.5  
183  
183  
Power Dissipation  
Sleep Mode, IVDDA  
2.75  
2.75  
mA  
Power-Down Mode (All Power-Down Bits Set in Register 0x01 and  
Register 0x02)  
IVDDA  
IVDDC  
IVDD33  
IVDD  
0.02  
6
0.6  
0.1  
0.02  
6
0.6  
0.1  
mA  
mA  
mA  
mA  
SUPPLY CURRENTS AND POWER DISSIPATION, 2.5 GSPS  
IVDDC  
IVDD33  
IVDD  
223  
14.5  
215  
223  
14.5  
215  
mA  
mA  
mA  
mW  
Power Dissipation  
0.960  
0.960  
Rev.C | Page 4 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
LVDS DIGITAL SPECIFICATIONS  
VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V, IOUTFS = 20 mA. LVDS drivers and receivers are compliant to the IEEE Standard 1596.3-  
1996 reduced range link, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
LVDS DATA INPUTS (DB0[13:0], DB1[13:0])1  
Input Common-Mode Voltage Range, VCOM  
Logic High Differential Input Threshold, VIH_DTH  
Logic Low Differential Input Threshold, VIL_DTH  
Receiver Differential Input Impedance, RIN  
Input Capacitance  
825  
175  
−175  
80  
1575  
mV  
mV  
mV  
400  
−400  
120  
1.2  
pF  
LVDS Input Rate  
LVDS Minimum Data Valid Period (tMDE) (See Figure 159)  
LVDS CLOCK INPUT (DCI)2  
1250  
MSPS  
ps  
344  
Input Common-Mode Voltage Range, VCOM  
Logic High Differential Input Threshold, VIH_DTH  
Logic Low Differential Input Threshold, VIL_DTH  
Receiver Differential Input Impedance, RIN  
Input Capacitance  
825  
175  
−175  
80  
1575  
mV  
mV  
mV  
400  
−400  
120  
1.2  
pF  
Maximum Clock Rate  
625  
MHz  
LVDS CLOCK OUTPUT (DCO)3  
Output Voltage High (DCO_P or DCO_N)  
Output Voltage Low (DCO_P or DCO_N)  
1375  
mV  
mV  
mV  
mV  
1025  
150  
1150  
80  
Output Differential Voltage, |VOD  
|
200  
100  
250  
1250  
120  
10  
Output Offset Voltage, VOS  
Output Impedance, Single-Ended, RO  
RO Single-Ended Mismatch  
Maximum Clock Rate  
%
MHz  
625  
1 DB0[x]P, DB0[x]N, DB1[x]P, and DB1[x]N pins.  
2 DCI_P and DCI_N pins.  
3 DCO_P and DCO_N pins with 100 Ω differential termination.  
Rev.C | Page 5 of 64  
 
 
AD9737A/AD9739A  
Data Sheet  
SERIAL PORT SPECIFICATIONS  
VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
WRITE OPERATION (See Figure 154)  
SCLK Clock Rate, fSCLK, 1/tSCLK  
SCLK Clock High, tHIGH  
20  
MHz  
ns  
ns  
ns  
ns  
18  
18  
2
1
3
SCLK Clock Low, tLOW  
SDIO to SCLK Setup Time, tDS  
SCLK to SDIO Hold Time, tDH  
CS to SCLK Setup Time, tS  
SCLK to CS Hold Time, tH  
ns  
2
ns  
READ OPERATION (See Figure 155 and Figure 156)  
SCLK Clock Rate, fSCLK, 1/tSCLK  
SCLK Clock High, tHIGH  
SCLK Clock Low, tLOW  
SDIO to SCLK Setup Time, tDS  
20  
15  
MHz  
ns  
ns  
ns  
ns  
18  
18  
2
1
3
SCLK to SDIO Hold Time, tDH  
CS to SCLK Setup Time, tS  
ns  
SCLK to SDIO (or SDO) Data Valid Time, tDV  
CS to SDIO (or SDO) Output Valid to High-Z, tEZ  
ns  
ns  
2
INPUTS (SDI, SDIO, SCLK, CS)  
Voltage in High, VIH  
Voltage in Low, VIL  
2.0  
3.3  
0
V
V
0.8  
Current in High, IIH  
Current in Low, IIL  
−10  
−10  
+10  
+10  
µA  
µA  
OUTPUT (SDIO)  
Voltage Out High, VOH  
Voltage Out Low, VOL  
Current Out High, IOH  
Current Out Low, IOL  
2.4  
0
3.5  
0.4  
V
V
mA  
mA  
4
4
Rev.C | Page 6 of 64  
 
Data Sheet  
AD9737A/AD9739A  
AC SPECIFICATIONS  
VDDA = VDD33 = 3.3 V, VDDC = VDD = 1.8 V, IOUTFS = 20 mA, fDAC = 2400 MSPS, unless otherwise noted.  
Table 4.  
AD9737A  
Typ  
AD9739A  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
DYNAMIC PERFORMANCE  
DAC Clock Rate  
Adjusted DAC Update Rate1  
Output Settling Time to 0.1%  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fOUT = 100 MHz  
fOUT = 350 MHz  
fOUT = 550 MHz  
fOUT = 950 MHz  
1600  
1600  
2500  
2500  
1600  
1600  
2500  
2500  
MSPS  
MSPS  
ns  
13  
13  
70  
65  
58  
55  
70  
65  
58  
55  
dBc  
dBc  
dBc  
dBc  
TWO-TONE INTERMODULATION DISTORTION (IMD),  
f
OUT2 = fOUT1 + 1.25 MHz  
fOUT = 100 MHz  
fOUT = 350 MHz  
fOUT = 550 MHz  
fOUT = 950 MHz  
94  
78  
72  
68  
94  
78  
72  
68  
dBc  
dBc  
dBc  
dBc  
NOISE SPECTRAL DENSITY (NSD), 0 dBFS SINGLE TONE  
fOUT = 100 MHz  
fOUT = 350 MHz  
fOUT = 550 MHz  
fOUT = 850 MHz  
−162  
−162  
−161  
−161  
−167  
−166  
−164  
−163  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
WCDMA ACLR (SINGLE CARRIER), ADJACENT/ALTERNATE  
ADJACENT CHANNEL  
fDAC = 2457.6 MSPS, fOUT = 350 MHz  
fDAC = 2457.6 MSPS, fOUT = 950 MHz  
fDAC = 2457.6 MSPS, fOUT = 1700 MHz (Mix-Mode)  
fDAC = 2457.6 MSPS, fOUT = 2100 MHz (Mix-Mode)  
80/81  
75/75  
69/71  
66/67  
80/80  
78/79  
74/74  
69/72  
dBc  
dBc  
dBc  
dBc  
1 Adjusted DAC updated rate is calculated as fDAC divided by the minimum required interpolation factor. For the AD9737A/AD9739A, the minimum interpolation factor  
is 1. Thus, with fDAC = 2500 MSPS, fDAC, adjusted, = 2500 MSPS.  
Rev.C | Page 7 of 64  
 
 
AD9737A/AD9739A  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VDDA to VSSA  
−0.3 V to +3.6 V  
VDD33 to VSS  
VDD to VSS  
VDDC to VSSC  
VSSA to VSS  
−0.3 V to +3.6 V  
Table 6. Thermal Resistance  
Package Type  
−0.3 V to +1.98 V  
−0.3 V to +1.98 V  
−0.3 V to +0.3 V  
θJA  
θJC  
Unit  
°C/W1  
160-Ball CSP_BGA  
31.2  
7.0  
1 With no airflow movement.  
VSSA to VSSC  
−0.3 V to +0.3 V  
VSS to VSSC  
DACCLK_P, DACCLK_N to VSSC  
DCI, DCO to VSS  
LVDS Data Inputs to VSS  
IOUTP, IOUTN to VSSA  
I120, VREF to VSSA  
IRQ, CS, SCLK, SDO, SDIO, RESET to VSS  
Junction Temperature  
Storage Temperature Range  
−0.3 V to +0.3 V  
ESD CAUTION  
−0.3 V to VDDC + 0.18 V  
−0.3 V to VDD33 + 0.3 V  
−0.3 V to VDD33 + 0.3 V  
−1.0 V to VDDA + 0.3 V  
−0.3 V to VDDA + 0.3 V  
−0.3 V to VDD33 + 0.3 V  
150°C  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev.C | Page 8 of 64  
 
 
 
 
Data Sheet  
AD9737A/AD9739A  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
AD9737A/AD9739A  
AD9737A/AD9739A  
K
L
K
L
M
N
P
M
N
P
VDDC, 1.8V, CLOCK SUPPLY  
VDDA, 3.3V, ANALOG SUPPLY  
VSSC, CLOCK SUPPLY GROUND  
VSSA, ANALOG SUPPLY GROUND  
VSSA SHIELD, ANALOG SUPPLY GROUND SHIELD  
Figure 4. Digital LVDS Clock Supply Pins (Top View)  
Figure 2. Analog Supply Pins (Top View)  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
A
B
C
D
E
F
DACCLK_N  
DACCLK_P  
G
H
J
AD9737A  
DCO_P/_N  
DCI_P/_N  
G
H
J
AD9737A/AD9739A  
K
L
DB1[0:10]P  
DB1[0:10]N  
DB0[0:10]P  
DB0[0:10]N  
M
N
P
K
L
M
N
P
DIFFERENTIAL INPUT SIGNAL (CLOCK OR DATA)  
Figure 5. AD9737A Digital LVDS Input, Clock I/O (Top View)  
VDD, 1.8V, DIGITAL SUPPLY  
VSS DIGITAL SUPPLY GROUND  
VDD33, 3.3V DIGITAL SUPPLY  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
A
B
C
D
E
F
Figure 3. Digital Supply Pins (Top View)  
DACCLK_N  
DACCLK_P  
G
H
J
AD9739A  
DCO_P/_N  
DCI_P/_N  
K
L
DB1[0:13]P  
DB1[0:13]N  
DB0[0:13]P  
DB0[0:13]N  
M
N
P
DIFFERENTIAL INPUT SIGNAL (CLOCK OR DATA)  
Figure 6. AD9739A Digital LVDS Input, Clock I/O (Top View)  
Rev. C | Page 9 of 64  
 
AD9737A/AD9739A  
Data Sheet  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
I120  
VREF  
IRQ  
CS  
RESET  
SDIO  
SDO  
G
H
J
AD9737A  
SCLK  
K
L
M
N
P
Figure 7. AD9737A Analog I/O and SPI Control Pins (Top View)  
Table 7. AD9737A Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
C1, C2, D1, D2, E1, E2, E3, E4  
A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C4,  
C5, D4, D5  
VDDC  
VSSC  
1.8 V Clock Supply Input.  
Clock Supply Ground.  
A10, A11, B10, B11, C10, C11, D10, D11  
A12, A13, B12, B13, C12, C13, D12, D13,  
VDDA  
VSSA  
3.3 V Analog Supply Input.  
Analog Supply Ground.  
A6, A9, B6, B9, C6, C9, D6, D9, E11, E12,  
E13, E14, F1, F2, F3, F4, F11, F12  
VSSA Shield  
Analog Supply Ground Shield. Tie to VSSA at the DAC.  
A14  
NC  
Do not connect to this pin.  
A7, B7, C7, D7  
A8, B8, C8, D8  
B14  
IOUTN  
IOUTP  
I120  
DAC Negative Current Output Source.  
DAC Positive Current Output Source.  
Nominal 1.2 V Reference. Tie to analog ground via a 10 kΩ  
resistor to generate a 120 µA reference current.  
C14  
VREF  
Voltage Reference Input/Output. Decouple to VSSA with a 1 nF  
capacitor.  
D14  
C3, D3  
F13  
NC  
Factory Test Pin. Do not connect to this pin.  
Negative/Positive DAC Clock Input (DACCLK).  
Interrupt Request Open Drain Output. Active high. Pull up to  
VDD33 with a 10 kΩ resistor.  
DACCLK_N/DACCLK_P  
IRQ  
F14  
G13  
RESET  
CS  
Reset Input. Active high. Tie to VSS if unused.  
Serial Port Enable Input.  
G14  
H13  
H14  
SDIO  
SCLK  
SDO  
Serial Port Data Input/Output.  
Serial Port Clock Input.  
Serial Port Data Output.  
J3, J4, J11, J12  
G1, G2, G3, G4, G11, G12  
H1, H2, H3, H4, H11, H12, K3, K4, K11, K12 VSS  
VDD33  
VDD  
3.3 V Digital Supply Input.  
1.8 V Digital Supply Input.  
Digital Supply Ground.  
J1, J2  
NC  
Differential resistor of 200 Ω exists between J1 and J2. Do not  
connect to this pin.  
K1, K2  
NC  
Differential resistor of 100 Ω exists between K1 and K2. Do not  
connect to this pin.  
J13, J14  
K13, K14  
DCO_P/DCO_N  
DCI_P/DCI_N  
Positive/Negative Data Clock Output (DCO).  
Positive/Negative Data Clock Input (DCI).  
Rev.C | Page 10 of 64  
Data Sheet  
AD9737A/AD9739A  
Pin No.  
L1, M1  
L2, M2  
Mnemonic  
Description  
NC, NC  
NC, NC  
NC, NC  
Do not connect to this pin.  
Do not connect to this pin.  
Do not connect to this pin.  
L3, M3  
L4, M4  
L5, M5  
L6, M6  
L7, M7  
L8, M8  
L9, M9  
L10, M10  
L11, M11  
L12, M12  
L13, M13  
L14, M14  
N1, P1  
DB1[0]P/DB1[0]N  
DB1[1]P/DB1[1]N  
DB1[2]P/DB1[2]N  
DB1[3]P/DB1[3]N  
DB1[4]P/DB1[4]N  
DB1[5]P/DB1[5]N  
DB1[6]P/DB1[6]N  
DB1[7]P/DB1[7]N  
DB1[8]P/DB1[8]N  
DB1[9]P/DB1[9]N  
DB1[10]P/DB1[10]N  
NC, NC  
Port 1 Positive/Negative Data Input Bit 0.  
Port 1 Positive/Negative Data Input Bit 1.  
Port 1 Positive/Negative Data Input Bit 2.  
Port 1 Positive/Negative Data Input Bit 3.  
Port 1 Positive/Negative Data Input Bit 4.  
Port 1 Positive/Negative Data Input Bit 5.  
Port 1 Positive/Negative Data Input Bit 6.  
Port 1 Positive/Negative Data Input Bit 7.  
Port 1 Positive/Negative Data Input Bit 8.  
Port 1 Positive/Negative Data Input Bit 9.  
Port 1 Positive/Negative Data Input Bit 10.  
Do not connect to this pin.  
N2, P2  
NC, NC  
Do not connect to this pin.  
N3, P3  
NC, NC  
Do not connect to this pin.  
N4, P4  
N5, P5  
N6, P6  
N7, P7  
N8, P8  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
DB0[0]P/DB0[0]N  
DB0[1]P/DB0[1]N  
DB0[2]P/DB0[2]N  
DB0[3]P/DB0[3]N  
DB0[4]P/DB0[4]N  
DB0[5]P/DB0[5]N  
DB0[6]P/DB0[6]N  
DB0[7]P/DB0[7]N  
DB0[8]P/DB0[8]N  
DB0[9]P/DB0[9]N  
DB0[10]P/DB0[10]N  
Port 0 Positive/Negative Data Input Bit 0.  
Port 0 Positive/Negative Data Input Bit 1.  
Port 0 Positive/Negative Data Input Bit 2.  
Port 0 Positive/Negative Data Input Bit 3.  
Port 0 Positive/Negative Data Input Bit 4.  
Port 0 Positive/Negative Data Input Bit 5.  
Port 0 Positive/Negative Data Input Bit 6.  
Port 0 Positive/Negative Data Input Bit 7.  
Port 0 Positive/Negative Data Input Bit 8.  
Port 0 Positive/Negative Data Input Bit 9.  
Port 0 Positive/Negative Data Input Bit 10.  
Rev. C | Page 11 of 64  
AD9737A/AD9739A  
Data Sheet  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
A
B
C
D
E
F
I120  
VREF  
IRQ  
CS  
RESET  
SDIO  
SDO  
G
H
J
AD9739A  
SCLK  
K
L
M
N
P
Figure 8. AD9739A Analog I/O and SPI Control Pins (Top View)  
Table 8. AD9739A Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
C1, C2, D1, D2, E1, E2, E3, E4  
A1, A2, A3, A4, A5, B1, B2, B3, B4, B5, C4,  
C5, D4, D5  
VDDC  
VSSC  
1.8 V Clock Supply Input.  
Clock Supply Ground.  
A10, A11, B10, B11, C10, C11, D10, D11  
A12, A13, B12, B13, C12, C13, D12, D13,  
VDDA  
VSSA  
3.3 V Analog Supply Input.  
Analog Supply Ground.  
A6, A9, B6, B9, C6, C9, D6, D9, E11, E12,  
E13, E14, F1, F2, F3, F4, F11, F12  
VSSA Shield  
Analog Supply Ground Shield. Tie to VSSA at the DAC.  
A14  
NC  
Do not connect to this pin.  
A7, B7, C7, D7  
A8, B8, C8, D8  
B14  
IOUTN  
IOUTP  
I120  
DAC Negative Current Output Source.  
DAC Positive Current Output Source.  
Nominal 1.2 V Reference. Tie to analog ground via a 10 kΩ  
resistor to generate a 120 μA reference current.  
C14  
VREF  
Voltage Reference Input/Output. Decouple to VSSA with a 1 nF  
capacitor.  
D14  
C3, D3  
F13  
NC  
Factory Test Pin. Do not connect to this pin.  
Negative/Positive DAC Clock Input (DACCLK).  
Interrupt Request Open Drain Output. Active high. Pull up to  
VDD33 with a 10 kΩ resistor.  
DACCLK_N/DACCLK_P  
IRQ  
F14  
G13  
RESET  
CS  
Reset Input. Active high. Tie to VSS if unused.  
Serial Port Enable Input.  
G14  
H13  
H14  
SDIO  
SCLK  
SDO  
Serial Port Data Input/Output.  
Serial Port Clock Input.  
Serial Port Data Output.  
J3, J4, J11, J12  
G1, G2, G3, G4, G11, G12  
H1, H2, H3, H4, H11, H12, K3, K4, K11, K12 VSS  
VDD33  
VDD  
3.3 V Digital Supply Input.  
1.8 V Digital Supply Input.  
Digital Supply Ground.  
J1, J2  
NC  
Differential resistor of 200 Ω exists between J1 and J2. Do not  
connect to this pin.  
K1, K2  
NC  
Differential resistor of 100 Ω exists between K1 and K2. Do not  
connect to this pin.  
J13, J14  
K13, K14  
DCO_P/DCO_N  
DCI_P/DCI_N  
Positive/Negative Data Clock Output (DCO).  
Positive/Negative Data Clock Input (DCI).  
Rev. C | Page 12 of 64  
Data Sheet  
AD9737A/AD9739A  
Pin No.  
L1, M1  
L2, M2  
L3, M3  
L4, M4  
L5, M5  
L6, M6  
L7, M7  
L8, M8  
Mnemonic  
Description  
DB1[0]P/DB1[0]N  
DB1[1]P/DB1[1]N  
DB1[2]P/DB1[2]N  
DB1[3]P/DB1[3]N  
DB1[4]P/DB1[4]N  
DB1[5]P/DB1[5]N  
DB1[6]P/DB1[6]N  
DB1[7]P/DB1[7]N  
DB1[8]P/DB1[8]N  
DB1[9]P/DB1[9]N  
DB1[10]P/DB1[10]N  
DB1[11]P/DB1[11]N  
DB1[12]P/DB1[12]N  
DB1[13]P/DB1[13]N  
DB0[0]P/DB0[0]N  
DB0[1]P/DB0[1]N  
DB0[2]P/DB0[2]N  
DB0[3]P/DB0[3]N  
DB0[4]P/DB0[4]N  
DB0[5]P/DB0[5]N  
DB0[6]P/DB0[6]N  
DB0[7]P/DB0[7]N  
DB0[8]P/DB0[8]N  
DB0[9]P/DB0[9]N  
DB0[10]P/DB0[10]N  
DB0[11]P/DB0[11]N  
DB0[12]P/DB0[12]N  
DB0[13]P/DB0[13]N  
Port 1 Positive/Negative Data Input Bit 0.  
Port 1 Positive/Negative Data Input Bit 1.  
Port 1 Positive/Negative Data Input Bit 2.  
Port 1 Positive/Negative Data Input Bit 3.  
Port 1 Positive/Negative Data Input Bit 4.  
Port 1 Positive/Negative Data Input Bit 5.  
Port 1 Positive/Negative Data Input Bit 6.  
Port 1 Positive/Negative Data Input Bit 7.  
Port 1 Positive/Negative Data Input Bit 8.  
Port 1 Positive/Negative Data Input Bit 9.  
Port 1 Positive/Negative Data Input Bit 10.  
Port 1 Positive/Negative Data Input Bit 11.  
Port 1 Positive/Negative Data Input Bit 12.  
Port 1 Positive/Negative Data Input Bit 13.  
Port 0 Positive/Negative Data Input Bit 0.  
Port 0 Positive/Negative Data Input Bit 1.  
Port 0 Positive/Negative Data Input Bit 2.  
Port 0 Positive/Negative Data Input Bit 3.  
Port 0 Positive/Negative Data Input Bit 4.  
Port 0 Positive/Negative Data Input Bit 5.  
Port 0 Positive/Negative Data Input Bit 6.  
Port 0 Positive/Negative Data Input Bit 7.  
Port 0 Positive/Negative Data Input Bit 8.  
Port 0 Positive/Negative Data Input Bit 9.  
Port 0 Positive/Negative Data Input Bit 10.  
Port 0 Positive/Negative Data Input Bit 11.  
Port 0 Positive/Negative Data Input Bit 12.  
Port 0 Positive/Negative Data Input Bit 13.  
L9, M9  
L10, M10  
L11, M11  
L12, M12  
L13, M13  
L14, M14  
N1, P1  
N2, P2  
N3, P3  
N4, P4  
N5, P5  
N6, P6  
N7, P7  
N8, P8  
N9, P9  
N10, P10  
N11, P11  
N12, P12  
N13, P13  
N14, P14  
Rev. C | Page 13 of 64  
AD9737A/AD9739A  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS—AD9737A  
STATIC LINEARITY  
IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
0.3  
0.2  
0.25  
0.20  
0.15  
0.10  
0.1  
0.05  
0
0
–0.1  
–0.2  
–0.3  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.4  
0
0
0
256  
512  
768  
1024  
1280  
1536  
1792  
1792  
1792  
2048  
2048  
2048  
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
CODE  
CODE  
Figure 9. Typical INL, 20 mA at 25°C  
Figure 12. Typical DNL, 10 mA at 25°C  
0.4  
0.3  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.2  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.1  
–0.2  
–0.3  
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
256  
512  
768  
1024  
1280  
1536  
CODE  
CODE  
Figure 10. Typical DNL, 20 mA at 25°C  
Figure 13. Typical INL, 30 mA at 25°C  
0.25  
0.2  
0.1  
0.20  
0.15  
0.10  
0.05  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0
256  
512  
768  
1024  
1280  
1536  
1792  
2048  
256  
512  
768  
1024  
1280  
1536  
CODE  
CODE  
Figure 14. Typical DNL, 30 mA at 25°C  
Figure 11. Typical INL, 10 mA at 25°C  
Rev.C | Page 14 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
AC (NORMAL MODE)  
IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
120  
100  
80  
1.2GSPS  
1.6GSPS  
2.0GSPS  
2.4GSPS  
60  
40  
20  
0
0
200  
400  
600  
800  
1000  
1200  
1400  
START 20MHz  
STOP 2.4GHz  
fOUT (MHz)  
VBW 20kHz  
Figure 15. Single Tone Spectrum at fOUT = 91 MHz, fDAC = 2.4 GSPS  
Figure 18. IMD vs. fOUT over fDAC  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
1.2GSPS  
2.4GSPS  
START 20MHz  
STOP 2.4GHz  
0
200  
400  
600  
800  
1000  
1200  
fOUT (MHz)  
VBW 20kHz  
Figure 19. Single-Tone NSD over fOUT  
Figure 16. Single-Tone Spectrum at fOUT = 1091 MHz, fDAC = 2.4 GSPS  
–150  
–152  
90  
80  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
1.2GSPS  
70  
60  
50  
40  
30  
20  
10  
0
2.4GSPS  
1.2GSPS  
1.6GSPS  
2.0GSPS  
2.4GSPS  
0
200  
400  
600  
800  
1000  
1200  
0
200  
400  
600  
fOUT (MHz)  
800  
1000  
1200  
fOUT (MHz)  
Figure 20. Eight-Tone NSD over fOUT  
Figure 17. SFDR vs. fOUT over fDAC  
Rev.C | Page 15 of 64  
 
AD9737A/AD9739A  
Data Sheet  
fDAC = 2 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
90  
85  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–6dBFS  
0dBFS  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
–6dBFS  
–3dBFS  
–3dBFS  
0dBFS  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
0
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 21. SFDR vs. fOUT over Digital Full Scale  
Figure 24. IMD vs. fOUT over Digital Full Scale  
90  
80  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
–6dBFS  
–3dBFS  
30mA FS  
70  
60  
50  
40  
30  
20mA FS  
10mA FS  
0dBFS  
0
200  
400  
600  
800  
1000  
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
fOUT (MHz)  
Figure 22. SFDR for Second Harmonic vs. fOUT over Digital Full Scale  
Figure 25. SFDR vs. fOUT over DAC IOUTFS  
90  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
–6dBFS  
80  
20mA FS  
30mA FS  
70  
–3dBFS  
60  
0dBFS  
10mA FS  
50  
40  
30  
40  
0
200  
400  
600  
800  
1000  
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
fOUT (MHz)  
Figure 23. SFDR for Third Harmonic vs. fOUT over Digital Full Scale  
Figure 26. IMD vs. fOUT over DAC IOUTFS  
Rev.C | Page 16 of 64  
Data Sheet  
AD9737A/AD9739A  
AC (MIX-MODE)  
fDAC = 2.1 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
+85°C  
+25°C  
+85°C  
–40°C  
+25°C  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 30. Eight-Tone NSD vs. fOUT over Temperature  
Figure 27. SFDR vs. fOUT over Temperature  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
–82.2dBc –81.6dBc –81.7dBc –81.1dBc –80.5dBc –13.2dBm –79.7dBc –80.2dBc –80.8dBc –81.4dBc –81.5dBc  
–35  
+85°C  
+25°C  
–45  
–55  
–65  
–40°C  
–75  
–85  
–95  
–105  
–115  
40  
CENTER 350MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54.68MHz  
SWEEP 1.509s  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
CARRIER POWER –13.167dBm/3.84MHz  
ACP-IBW  
UPPER  
LOWER  
OFFSET FREQ INTEG BW  
dBc  
dBm  
dBc dBm FILTER  
5.000MHz  
10.00MHz  
15.00MHz  
20.00MHz  
25.00MHz  
3.840MHz –80.51 –93.67 –79.73 –92.90 ON  
3.840MHz –81.11 –94.27 –80.21 –93.38 ON  
3.840MHz –81.67 –94.84 –80.85 –94.01 ON  
3.840MHz –81.61 –94.77 –81.41 –94.58 ON  
3.840MHz –82.19 –95.35 –81.46 –94.63 ON  
Figure 31. Single-Carrier WCDMA at 350 MHz, fDAC = 2457.6 MSPS  
Figure 28. IMD vs. fOUT over Temperature  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
–50  
–55  
–60  
–65  
–70  
+85°C  
FIRST ADJ CH  
–75  
+25°C  
–80  
–85  
–90  
SECOND ADJ CH  
FIFTH ADJ CH  
0
200  
400  
600  
800  
1000  
1200  
1400  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
fOUT (MHz)  
Figure 32. Single-Carrier WCDMA ACLR vs. fOUT at 2457.6 MSPS  
Figure 29. Single-Tone NSD vs. fOUT over Temperature  
Rev.C | Page 17 of 64  
 
AD9737A/AD9739A  
Data Sheet  
fDAC = 2.1 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
START 20MHz  
#RES BW 20kHz  
STOP 2.4GHz  
SWEEP 7.174s (601pts)  
fOUT (MHz)  
VBW 20kHz  
Figure 33. Single-Tone Spectrum at fOUT = 2.31 GHz, fDAC = 2.4 GSPS  
Figure 36. IMD in Mix-Mode vs. fOUT at 2.4 GSPS  
–71.9dBc –72.3dBc –71.8dBc –69.9dBc –68.8dBc –19.5dBm –69.8dBc –71.1dBc –71.8dBc –72.2dBc –72.7dBc  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–105  
–115  
CENTER 2.108MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54.68MHz  
SWEEP 1.509s  
START 20MHz  
#RES BW 20kHz  
STOP 2.4GHz  
SWEEP 7.174s (601pts)  
CARRIER POWER –19.526dBm/3.84MHz  
ACP-IBW  
UPPER  
VBW 20kHz  
LOWER  
OFFSET FREQ INTEG BW  
dBc  
dBm  
dBc dBm FILTER  
5.000MHz  
10.00MHz  
15.00MHz  
20.00MHz  
25.00MHz  
3.840MHz –69.82 –88.34 –69.84 –89.36 ON  
3.840MHz –69.93 –89.46 –71.15 –90.67 ON  
3.840MHz –71.77 –91.29 –71.75 –91.28 ON  
3.840MHz –72.26 –91.79 –72.19 –91.71 ON  
3.840MHz –71.90 –91.42 –72.70 –92.22 ON  
Figure 37. Typical Single-Carrier WCDMA ACLR Performance at 2.1 GHz,  
Figure 34. Single-Tone Spectrum at fOUT = 1.31 GHz, fDAC = 2.4 GSPS  
fDAC = 2457.6 MSPS (Second Nyquist Zone)  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
–50  
SECOND NYQUIST ZONE  
FIRST ADJ CH  
THIRD NYQUIST ZONE  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
SECOND ADJ CH  
THIRD ADJ CH  
10  
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400  
fOUT (MHz)  
fOUT (MHz)  
Figure 38. Single-Carrier WCDMA ACLR vs. fOUT, fDAC = 2457.6 MSPS  
Figure 35. SFDR in Mix-mode vs. fOUT at 2.4 GSPS  
Rev.C | Page 18 of 64  
Data Sheet  
AD9737A/AD9739A  
fDAC = 2.1 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
–58.0dBc  
–58.0dBc  
–37.4dBm  
–37.1dBm  
–58.2dBc  
–58.3dBc  
–58.2dBc  
–65.8dBc –65.8dBc –65.8dBc –65.7dBc –65.6dBc –29.2dBm –65.6dBc –65.8dBc –66.0dBc –66.1dBc –66.1dBc  
–58.0dBc –57.9dBc  
–58.0dBc  
–37.1dBm  
–36.9dBm  
–58.1dBc  
–58.3dBc  
–45  
–55  
–60  
–70  
–65  
–80  
–75  
–90  
–85  
–100  
–110  
–120  
–130  
–140  
–95  
–105  
–115  
–125  
CENTER 2.808MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54.68MHz  
SWEEP 1.509s  
CENTER 2.808MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 69.68MHz  
SWEEP 1.922s  
CARRIER POWER –26.161dBm/3.84MHz  
ACP-IBW  
UPPER  
LOWER  
CARRIER POWER –31.097dBm/15.36MHz ACP-IBW  
OFFSET FREQ INTEG BW  
dBc  
dBm  
dBc dBm FILTER  
5.000MHz  
10.00MHz  
15.00MHz  
20.00MHz  
25.00MHz  
3.840MHz –65.65 –94.81 –65.56 –94.72 ON  
3.840MHz –65.70 –94.86 –65.82 –94.98 ON  
3.840MHz –65.81 –94.97 –65.98 –95.14 ON  
3.840MHz –65.84 –95.00 –66.06 –95.22 ON  
3.840MHz –65.84 –95.00 –66.14 –95.31 ON  
LOWER UPPER  
OFFSET FREQ INTEG BW  
dBc dBm dBc dBm FILTER  
5.000MHz  
10.00MHz  
15.00MHz  
20.00MHz  
25.00MHz  
3.840MHz –58.05 –95.11 –58.20 –95.26 ON  
3.840MHz –57.95 –95.02 –58.15 –95.21 ON  
3.840MHz –57.95 –95.01 –58.26 –95.32 ON  
3.840MHz –57.97 –95.04 –58.33 –95.39 ON  
3.840MHz –58.05 –95.11 –58.21 –95.27 ON  
Figure 41. Typical Four-Carrier WCDMA ACLR Performance at 2.8 GHz,  
fDAC = 2457.6 MSPS (Third Nyquist Zone)  
Figure 39. Typical Single-Carrier WCDMA ACLR Performance at 2.8 GHz,  
DAC = 2457.6 MSPS (Third Nyquist Zone)  
f
–65.2dBc  
–64.9dBc  
–27.6dBm  
–27.3dBm  
–64.9dBc  
–65.2dBc  
–66.1dBc  
–65.6dBc  
–65.1dBc  
–65.4dBc  
–27.6dBm  
–27.4dBm  
–64.3dBc  
–65.7dBc  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
CENTER 2.108MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 69.68MHz  
SWEEP 1.922s  
CARRIER POWER –21.446dBm/15.36MHz ACP-IBW  
LOWER UPPER  
dBc dBm dBc dBm FILTER  
OFFSET FREQ INTEG BW  
5.000MHz  
10.00MHz  
15.00MHz  
20.00MHz  
25.00MHz  
3.840MHz –65.42 –92.72 –64.93 –92.23 ON  
3.840MHz –64.93 –92.23 –64.26 –91.56 ON  
3.840MHz –65.12 –92.42 –65.21 –92.50 ON  
3.840MHz –65.24 –92.53 –65.74 –93.04 ON  
3.840MHz –65.61 –92.91 –66.13 –93.42 ON  
Figure 40. Typical Four-Carrier WCDMA ACLR Performance at 2.1 GHz,  
DAC = 2457.6 MSPS (Second Nyquist Zone)  
f
Rev.C | Page 19 of 64  
AD9737A/AD9739A  
Data Sheet  
ONE-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–78.4dBc  
–78.6dBc  
–78.4dBc  
–79.3dBc  
–10.2dBm  
–79.9dBc  
–79.0dBc  
–78.7dBc  
–78.7dBc  
–30  
–40  
–30  
–40  
1
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
5Δ1  
–100  
–110  
–100  
–110  
2Δ1  
3Δ1  
4Δ1  
CENTER 200MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 3kHz  
VBW 2kHz  
CARRIER POWER –10.226dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–58.34 –68.57 –57.47 –67.70 OFF  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
200.10MHz  
–10.238dBm BAND POWER 6MHz  
–10.238dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) 199.50MHz (Δ) –74.467dB  
(Δ) 399.95MHz (Δ) –77.224dB  
(Δ) 599.45MHz (Δ) –78.437dB  
(Δ) 413.25MHz (Δ) –67.413dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –74.467dB  
(Δ) –77.224dB  
(Δ) –78.437dB  
(Δ) –67.413dB  
5.250MHz –79.27 –89.50 –79.87 –90.10 OFF  
6.000MHz –78.44 –88.66 –78.96 –89.19 OFF  
6.000MHz –78.59 –88.82 –78.69 –88.92 OFF  
6.000MHz –78.41 –88.63 –78.68 –88.90 OFF  
Figure 42. Low Band Wideband ACLR  
Figure 45. Low Band Narrow-Band ACLR  
–76.0dBc  
–75.0dBc  
–74.5dBc  
–74.0dBc  
–12.1dBm  
–74.1dBc  
–74.7dBc  
–78.9dBc  
–75.3dBc  
–30  
–40  
–30  
–40  
1
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
5Δ1  
–100  
–110  
4Δ1  
3Δ1  
2Δ1  
CENTER 550MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 3kHz  
VBW 2kHz  
CARRIER POWER –12.104dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–59.37 –71.48 –60.92 –73.03 OFF  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
550.65MHz  
–11.538dBm BAND POWER 6MHz  
–11.538dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –487.35MHz (Δ) –74.421dB  
(Δ) 125.40MHz (Δ) –76.294dB  
(Δ) 253.65MHz (Δ) –68.472dB  
(Δ) 62.70MHz (Δ) –66.156dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –74.399dB  
(Δ) –74.344dB  
(Δ) –68.472dB  
(Δ) –66.197dB  
5.250MHz –74.02 –86.12 –74.14 –86.25 OFF  
6.000MHz –74.53 –86.63 –74.68 –86.79 OFF  
6.000MHz –75.00 –87.11 –74.91 –87.01 OFF  
6.000MHz –75.97 –88.08 –75.34 –87.44 OFF  
Figure 46. Mid Band Narrow-Band ACLR  
Figure 43. Mid Band Wideband ACLR  
–71.9dBc  
–70.9dBc  
–70.0dBc  
–69.0dBc  
–13.6dBm  
–69.4dBc  
–70.5dBc  
–71.0dBc  
–71.7dBc  
–30  
–40  
–30  
–40  
1
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1  
–100  
–110  
5Δ1  
3Δ1  
–100  
–110  
6Δ1  
4Δ1  
CENTER 950MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –13.589dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
WIDTH VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
OFFSET FREQ INTEG BW  
dBc dBm  
–57.84 –71.43 –61.30 –74.89 OFF  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
948.70MHz  
–14.418dBm BAND POWER 6MHz  
–14.446dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –393.30MHz  
(Δ) –553.85MHz  
(Δ) –612.75MHz  
(Δ) –335.35MHz  
(Δ) –57.95MHz  
(Δ) –60.856dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –60.856dB  
(Δ) –66.013dB  
(Δ) –68.697dB  
(Δ) –63.533dB  
(Δ) –68.162dB  
5.250MHz –69.02 –82.61 –69.39 –82.98 OFF  
6.000MHz –70.01 –83.60 –70.50 –84.09 OFF  
6.000MHz –70.89 –84.48 –71.02 –84.61 OFF  
6.000MHz –71.94 –85.53 –71.75 –85.34 OFF  
(Δ) –66.000dB  
(Δ) –68.751dB  
(Δ) –63.533dB  
(Δ) –66.162dB  
Figure 47. High Band Narrow-Band ACLR  
Figure 44. High Band Wideband ACLR  
Rev.C | Page 20 of 64  
 
Data Sheet  
AD9737A/AD9739A  
FOUR-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–30  
–40  
–40  
–50  
–17.9dBc  
1
–73.7dBc  
–53.2dBc  
0dBc  
0.1dBc  
–0.6dBc  
–73.3dBc  
–72.9dBc  
–73.5dBc  
–60  
–50  
–70  
–60  
–80  
–70  
–90  
–80  
–100  
–110  
–120  
–90  
5Δ1  
–100  
–110  
2Δ1  
3Δ1  
4Δ1  
CENTER 218MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
VBW 2kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –17.892dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
UPPER  
dBc dBm FILTER  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
200.10MHz  
–18.419dBm BAND POWER 6MHz  
–18.419dBm  
OFFSET FREQ INTEG BW  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) 221.35MHz (Δ) –69.252dB  
(Δ) 431.30MHz (Δ) –71.282dB  
(Δ) 651.70MHz (Δ) –72.100dB  
(Δ) 413.25MHz (Δ) –59.520dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –69.277dB  
(Δ) –71.485dB  
(Δ) –72.343dB  
(Δ) –59.518dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750kHz  
5.25kHz  
6MHz  
–10.82 –28.71 –58.82 –76.71 OFF  
–0.566 –18.46 –73.28 –91.17 OFF  
–0.123 –17.77 –72.92 –90.81 OFF  
–0.028 –17.86 –73.50 –91.39 OFF  
–53.18 –71.07 –73.74 –91.63 OFF  
6MHz  
6MHz  
Figure 48. Low Band Wideband ACLR  
Figure 51. Low Band Narrow-Band ACLR (Worse Side)  
–40  
–50  
–30  
–40  
–19.5dBc  
1
–70.6dBc  
–69.7dBc  
–68.5dBc –68.3dBc  
–0.5dBc  
–0.2dBc  
0dBc  
–54.2dBc  
–60  
–50  
–70  
–60  
–80  
–70  
–90  
–80  
–100  
–110  
–120  
–90  
5Δ1  
–100  
–110  
4Δ1  
3Δ1  
2Δ1  
CENTER 550MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
VBW 2kHz  
STOP 1GHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –17.892dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
549.70MHz  
–19.885dBm BAND POWER 6MHz  
–19.885dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750kHz  
5.25kHz  
6MHz  
–58.29 –77.82 –10.49 –30.02 OFF  
–68.28 –87.81 –0.526 –20.06 OFF  
–68.47 –88.00 –0.160 –19.69 OFF  
–69.72 –89.25 –0.024 –19.56 OFF  
–70.64 –90.17 –54.18 –73.72 OFF  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –486.40MHz (Δ) –70.252dB  
(Δ) 126.35MHz (Δ) –69.535dB  
(Δ) 228.00MHz (Δ) –67.793dB  
(Δ) 63.65MHz (Δ) –58.085dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –70.252dB  
(Δ) –69.581dB  
(Δ) –67.793dB  
(Δ) –58.085dB  
6MHz  
6MHz  
Figure 49. Mid Band Wideband ACLR  
Figure 52. Mid Band Narrow-Band ACLR (Worse Side)  
–40  
–50  
–21.5dBm  
–40  
–50  
1
–66.6dBc  
–65.4dBc  
–64.3dBc  
–63.9dBc  
–0.4dBc  
–0.2dBc  
0.1dBc  
–53.1dBc  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
5Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
2Δ1  
6Δ1  
3Δ1  
4Δ1  
CENTER 950MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
VBW 2kHz  
STOP 1GHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –21.510dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
950.60MHz  
–21.631dBm BAND POWER 6MHz  
–21.676dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750kHz  
5.25kHz  
6MHz  
–59.52 –81.03 –11.04 –32.55 OFF  
–63.90 –85.41 –0.437 –21.95 OFF  
–64.29 –85.80 –0.172 –21.68 OFF  
–65.41 –86.92 –0.098 –21.41 OFF  
–66.57 –88.08 –53.11 –74.62 OFF  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –415.15MHz (Δ) –62.206dB  
(Δ) –529.15MHz (Δ) –65.730dB  
(Δ) –610.85MHz (Δ) –67.064dB  
(Δ) –337.25MHz (Δ) –56.405dB  
(Δ) –59.85MHz (Δ) –65.729dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –62.206dB  
(Δ) –65.730dB  
(Δ) –67.064dB  
(Δ) –56.405dB  
(Δ) –65.729dB  
6MHz  
6MHz  
Figure 53. High Band Narrow-Band ACLR (Worse Side)  
Figure 50. High Band Wideband ACLR  
Rev.C | Page 21 of 64  
 
AD9737A/AD9739A  
Data Sheet  
EIGHT-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–69.1dBc  
–69.2dBc  
–70.3dBc  
–23.3dBc  
–0.6dBc  
–0.3dBc  
–0.2dBc  
–40  
–50  
–40  
–50  
1
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
3Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
2Δ1  
CENTER 200MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 42MHz  
SWEEP 1.159s  
START 50MHz  
#RES BW 20kHz  
VBW 2kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
FUNCTION FUNCTION  
CARRIER POWER –23.288dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
UPPER  
dBc dBm FILTER  
1
2
3
N
Δ1  
Δ1  
1
1
1
f
f
f
200.10MHz  
–22.253dBm BAND POWER 6MHz  
–22.253dBm  
(Δ) –66.457dB  
(Δ) –55.791dB  
OFFSET FREQ INTEG BW  
(Δ) 235.60MHz (Δ) –66.457dB  
(Δ) 431.25MHz (Δ) –55.791dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
750kHz  
5.25MHz  
6MHz  
–55.24 –78.53 –10.96 –34.25 OFF  
–70.28 –93.56 –0.572 –23.86 OFF  
–69.23 –92.52 –0.250 –23.54 OFF  
–69.11 –92.40 –0.186 –23.47 OFF  
6MHz  
Figure 54. Low Band Wideband ACLR  
Figure 57. Low Band Narrow-Band ACLR (Worse Side)  
–40  
–50  
–40  
–50  
–23.7dBc  
1
–66.8dBc  
–66.4dBc  
–66.8dBc  
0.1dBc  
0.3dBc  
–0.1dBc  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
3Δ1  
START 50MHz  
VBW 2kHz  
STOP 1GHz  
CENTER 592MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 42MHz  
SWEEP 1.159s  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
FUNCTION FUNCTION  
CARRIER POWER –23.676dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
1
2
3
N
Δ1  
Δ1  
1
1
1
f
f
f
550.65MHz  
–23.586dBm BAND POWER 6MHz  
–23.585dBm  
(Δ) –54.206dB  
(Δ) –66.628dB  
OFFSET FREQ INTEG BW  
dBc dBm  
(Δ) 62.70MHz (Δ) –54.209dB  
(Δ) 167.20MHz (Δ) –66.696dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
750kHz  
5.25kHz  
6MHz  
–10.79 –34.47 –56.23 –79.91 OFF  
–0.089 –23.76 –66.75 –90.43 OFF  
–0.289 –23.39 –66.45 –90.12 OFF  
–0.145 –23.53 –66.78 –90.46 OFF  
6MHz  
Figure 58. Mid Band Narrow-Band ACLR (Worse Side)  
Figure 55. Mid Band Wideband ACLR  
–40  
–50  
–40  
–50  
–26.4dBm  
1
–63.5dBc  
–62.7dBc  
–62.2dBc  
–62.7dBc  
–0.4dBc  
0.1dBc  
0.1dBc  
0.2dBc  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
5Δ1  
–100  
–110  
–120  
–100  
–110  
–120  
2Δ1  
3Δ1  
4Δ1  
CENTER 950MHz  
#RES BW 30kHz  
VBW 3kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
VBW 2kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
FUNCTION FUNCTION  
CARRIER POWER –26.388dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
UPPER  
dBc dBm FILTER  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
950.60MHz  
–26.330dBm BAND POWER 6MHz  
–26.330dBm  
OFFSET FREQ INTEG BW  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –448.40MHz (Δ) –61.549dB  
(Δ) –582.35MHz (Δ) –63.183dB  
(Δ) –80.75MHz (Δ) –62.616dB  
(Δ) –338.20MHz (Δ) –51.728dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –61.574dB  
(Δ) –63.268dB  
(Δ) –62.616dB  
(Δ) –51.728dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750kHz  
5.25kHz  
6MHz  
–60.71 –87.10 –10.99 –37.38 OFF  
–62.67 –89.06 –0.366 –26.75 OFF  
–62.21 –88.60 –0.073 –26.31 OFF  
–62.68 –89.07 –0.053 –26.33 OFF  
–63.49 –89.88 –0.225 –26.16 OFF  
6MHz  
6MHz  
Figure 56. High Band Wideband ACLR  
Figure 59. High Band Narrow-Band ACLR  
Rev.C | Page 22 of 64  
 
Data Sheet  
AD9737A/AD9739A  
16-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.0dBc  
–0.1dBc  
–0.2dBc  
–0.3dBc  
–26.3dBm  
–65.2dBc  
–63.9dBc  
–64.1dBc  
–64.1dBc  
1
–50  
–60  
–50  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
4Δ1  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
3Δ1  
2Δ1  
CENTER 160MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 3kHz  
VBW 2kHz  
CARRIER POWER –25.250dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.95 –37.20 –61.30 –87.55 OFF  
1
2
3
4
N
1
1
1
1
f
f
f
f
160.20MHz  
–26.390dBm BAND POWER 6MHz  
–26.391dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
(Δ) 80.75MHz (Δ) –64.811dB  
(Δ) 232.75MHz (Δ) –65.150dB  
(Δ) 452.20MHz (Δ) –51.688dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –64.927dB  
(Δ) –65.369dB  
(Δ) –51.688dB  
5.250MHz –0.314 –26.56 –65.24 –91.49 OFF  
6.000MHz –0.166 –26.42 –63.93 –90.18 OFF  
6.000MHz –0.125 –26.38 –64.07 –90.32 OFF  
6.000MHz –0.034 –26.28 –64.08 –90.33 OFF  
Figure 60. Low Band Wideband ACLR  
Figure 63. Low Band Narrow-Band ACLR  
0.3dBc  
0.3dBc  
0.2dBc  
–0.2dBc  
–27.4dBm  
–63.9dBc  
–62.8dBc  
–63.1dBc  
–63.3dBc  
1
–50  
–60  
–45  
–55  
–70  
–65  
–80  
–75  
–90  
–85  
–100  
–110  
–120  
–130  
–95  
3Δ1  
4Δ1  
–105  
–115  
–125  
2Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
CENTER 640MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 2kHz  
VBW 3kHz  
CARRIER POWER –27.386dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
1
2
3
4
N
1
1
1
1
f
f
f
f
549.70MHz  
–27.503dBm BAND POWER 6MHz  
–27.503dBm  
OFFSET FREQ INTEG BW  
dBc dBm  
–11.65 –39.04 –60.24 –87.62 OFF  
Δ1  
Δ1  
Δ1  
(Δ) –486.40MHz (Δ) –63.639dB  
(Δ) 126.35MHz (Δ) –62.748dB  
(Δ) 254.60MHz (Δ) –63.408dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –63.639dB  
(Δ) –62.631dB  
(Δ) –63.408dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –0.239 –27.63 –63.87 –91.26 OFF  
6.000MHz –0.199 –27.19 –62.76 –90.15 OFF  
6.000MHz –0.282 –27.10 –63.08 –90.46 OFF  
6.000MHz –0.288 –27.10 –63.33 –90.72 OFF  
Figure 61. Mid Band Wideband ACLR  
Figure 64. Mid Band Narrow-Band ACLR (Worse Side)  
–62.7dBc  
–62.1dBc  
–61.3dBc  
61.8dBc  
–28.1dBm  
––0.4dBc  
–0.3dBc  
–0.3dBc  
–0.1dBc  
1
–50  
–60  
–45  
–55  
–70  
–65  
–80  
–75  
5Δ1  
–90  
–85  
–100  
–110  
–120  
–130  
–95  
2Δ1  
4Δ1  
3Δ1  
–105  
–115  
–125  
CENTER 900MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 3kHz  
VBW 2kHz  
CARRIER POWER –28.112dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–58.27 –86.38 –11.14 –39.25 OFF  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
899.30MHz  
–28.493dBm BAND POWER 6MHz  
–28.493dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –343.90MHz (Δ) –60.066dB  
(Δ) –504.45MHz (Δ) –61.070dB  
(Δ) –563.35MHz (Δ) –61.014dB  
(Δ) –285.95MHz (Δ) –49.417dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –60.066dB  
(Δ) –61.070dB  
(Δ) –61.014dB  
(Δ) –49.417dB  
5.250MHz –61.84 –89.95 –0.446 –28.56 OFF  
6.000MHz –61.30 –89.42 –0.271 –28.38 OFF  
6.000MHz –62.11 –90.22 –0.318 –28.43 OFF  
6.000MHz –62.66 –90.77 –0.147 –28.26 OFF  
Figure 62. High Band Wideband ACLR  
Figure 65. High Band Narrow-Band ACLR  
Rev.C | Page 23 of 64  
 
AD9737A/AD9739A  
Data Sheet  
32-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.1dBc  
0.1dBc  
0.1dBc  
–0.3dBc  
–28.2dBm  
–65.6dBc  
–64.1dBc  
–64.2dBc  
–64.1dBc  
–50  
1
–50  
–60  
–70  
–80  
–90  
–60  
–70  
–80  
–90  
–100  
4Δ1  
–100  
–110  
–120  
–130  
–110  
–120  
–130  
3Δ1  
2Δ1  
CENTER 256MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CARRIER POWER –28.229dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.80 –39.03 –60.27 –88.50 OFF  
5.250MHz –0.336 –28.56 –65.64 –93.87 OFF  
1
2
3
4
N
1
1
1
1
f
f
f
f
256.15MHz  
–29.852dBm BAND POWER 6MHz  
–29.853dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
(Δ) 94.05MHz (Δ) –61.581dB  
(Δ) 243.20MHz (Δ) –61.313dB  
(Δ) 356.25MHz (Δ) –48.122dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –61.410dB  
(Δ) –61.639dB  
(Δ) –48.122dB  
6.000MHz  
6.000MHz  
6.000MHz  
0.060 –28.17 –64.12 –92.35 OFF  
0.081 –28.15 –64.24 –92.47 OFF  
0.080 –28.15 –64.12 –92.35 OFF  
Figure 66. Low Band Wideband ACLR  
Figure 69. Low Band Narrow-Band ACLR  
–61.8dBc  
–61.7dBc  
–61.4dBc  
–62.3dBc  
–29.5dBm  
––0.6dBc  
–0.2dBc  
–0.4dBc  
–0.1dBc  
1
–50  
–60  
–50  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
2Δ1  
3Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CENTER 550MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
FUNCTION FUNCTION  
CARRIER POWER –29.512dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–58.70 –88.21 –10.88 –40.39 OFF  
UPPER  
1
2
3
N
Δ1  
Δ1  
1
1
1
f
f
f
550MHz  
–29.461dbm BAND POWER 6MHz  
–29.461dBm  
(Δ) –61.621dB  
(Δ) –61.831dB  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
(Δ) –462.65MHz (Δ) –61.621dB  
(Δ) 314.45MHz (Δ) –61.831dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –62.34 –91.85 –0.576 –30.09 OFF  
6.000MHz –61.36 –90.87 –0.222 –29.73 OFF  
6.000MHz –61.70 –91.21 –0.423 –29.93 OFF  
6.000MHz –61.84 –91.36 –0.133 –29.63 OFF  
Figure 67. Mid Band Wideband ACLR  
Figure 70. Mid Band Narrow-Band ACLR (Worse Side)  
–60.0dBc  
–59.6dBc  
–59.9dBc  
–61.4dBc  
–32.2dBm  
––0.2dBc  
0.3dBc  
0.3dBc  
0.2dBc  
–50  
–60  
–50  
–60  
1
–70  
–70  
–80  
–80  
–90  
–90  
4Δ1  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
2Δ1  
3Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CENTER 800MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
FUNCTION FUNCTION  
CARRIER POWER –32.154dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–59.39 –91.54 –10.73 –42.89 OFF  
UPPER  
1
2
3
4
N
1
1
1
1
f
f
f
f
799.55MHz  
–32.396dBm BAND POWER 6MHz  
–32.396dBm  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
Δ1  
Δ1  
Δ1  
(Δ) –138.70MHz (Δ) –57.463dB  
(Δ) –601.35MHz (Δ) –58.079dB  
(Δ) –187.15MHz (Δ) –45.705dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –57.463dB  
(Δ) –58.079dB  
(Δ) –45.705dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –61.40 –93.55 –0.201 –32.35 OFF  
6.000MHz –59.86 –92.01 0.300 –31.85 OFF  
6.000MHz –59.61 –91.77 0.296 –31.86 OFF  
6.000MHz –60.04 –92.20 0.230 –31.92 OFF  
Figure 68. High Band Wideband ACLR  
Figure 71. High Band Narrow-Band ACLR  
Rev.C | Page 24 of 64  
 
Data Sheet  
AD9737A/AD9739A  
64- AND 128-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.1dBc  
0.1dBc  
0.0dBc  
–0.4dBc  
–33.4dBm  
–60.0dBc  
–58.7dBc  
–59.0dBc  
–58.9dBc  
–50  
–60  
–50  
–60  
1
–70  
–70  
–80  
–80  
–90  
–90  
2Δ1  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
3Δ1  
CENTER 448MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –33.368dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm  
–11.02 –44.39 –59.56 –92.93 OFF  
5.250MHz –0.337 –33.74 –60.04 –93.41 OFF  
6.000MHz  
6.000MHz  
6.000MHz  
1
2
3
N
Δ1  
Δ1  
1
1
1
f
f
f
448.05MHz  
–33.679dBm BAND POWER 6MHz  
–33.680dBm  
(Δ) –46.450dB  
(Δ) –56.577dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
(Δ) 165.30MHz (Δ) –46.452dB  
(Δ) 372.40MHz (Δ) –56.577dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
0.050 –33.32 –58.69 –92.06 OFF  
0.064 –33.30 –59.04 –92.40 OFF  
0.099 –33.27 –58.86 –92.23 OFF  
Figure 72. Low Band Wideband ACLR  
Figure 75. 64-Carrier Low Band Narrow-Band ACLR  
–58.0dBc  
–57.8dBc  
–58.4dBc  
–59.3dBc  
–33.8dBm  
––0.4dBc  
0.0dBc  
0.0dBc  
0.0dBc  
–50  
–60  
–50  
–60  
1
3
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
2Δ1  
CENTER 600MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CARRIER POWER –33.849dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
dBc dBm  
–58.63 –92.48 –11.06 –44.91 OFF  
UPPER  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
1
2
3
N
Δ1  
N
1
1
1
f
f
f
599.10MHz  
–34.413dBm BAND POWER 6MHz  
BAND POWER 6MHz  
–36.289dBm BAND POWER 6MHz  
–34.413dBm  
5.250MHz –59.29 –93.14 –0.380 –34.23 OFF  
6.000MHz –58.37 –92.22 –0.004 –33.85 OFF  
6.000MHz –57.84 –91.69 –0.012 –33.86 OFF  
6.000MHz –58.04 –91.89 0.043 –33.81 OFF  
(Δ) –292.60MHz (Δ) –56.033dB  
(Δ) –56.033dB  
978.15MHz  
–36.289dBm  
Figure 73. High Band Wideband ACLR  
Figure 76. 64-Carrier High Band Narrow-Band ACLR  
0.3dBc  
0.3dBc  
0.4dBc  
–0.2dBc  
–38.5dBm  
–54.3dBc  
–53.4dBc  
–53.3dBc  
–53.1dBc  
–50  
–60  
–50  
–60  
1
3
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
2Δ1  
CENTER 832MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –38.456dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm  
–11.07 –49.53 –59.28 –97.73 OFF  
5.250MHz –0.210 –38.67 –54.33 –92.79 OFF  
6.000MHz  
6.000MHz  
6.000MHz  
1
2
3
N
Δ1  
N
1
1
1
f
f
f
69.95MHz  
–34.909dBm BAND POWER 6MHz  
BAND POWER 6MHz  
–38.646dBm BAND POWER 6MHz  
–35.909dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
(Δ) 855.00MHz (Δ) –53.920dB  
(Δ) –53.920dB  
831.85MHz  
–38.646dBm  
0.353 –38.10 –53.36 –91.82 OFF  
0.253 –38.20 –53.35 –91.81 OFF  
0.292 –38.16 –53.07 –91.53 OFF  
Figure 74. 128-Carrier Low Band Wideband ACLR  
Figure 77. 128-Carrier Narrow-Band ACLR  
Rev.C | Page 25 of 64  
 
AD9737A/AD9739A  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS—AD9739A  
STATIC LINEARITY  
3.0  
1.0  
2.5  
0.5  
2.0  
1.5  
0
1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
0
0
2048  
2048  
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 78. Typical INL, 20 mA at 25°C  
Figure 81. Typical DNL, 20 mA at −40°C  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 79. Typical DNL, 20 mA at 25°C  
Figure 82. Typical INL, 20 mA at 85°C  
3.0  
2.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0
0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 80. Typical INL, 20 mA at −40°C  
Figure 83. Typical DNL, 20 mA at 85°C  
Rev.C | Page 26 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
2.0  
1.0  
0.5  
1.5  
1.0  
0
0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
0
0
2048  
2048  
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 84. Typical INL, 10 mA at 25°C  
Figure 87. Typical DNL, 30 mA at 25°C  
1.2  
1.0  
0.5  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TOTAL  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
DVDD18  
CLKVDD  
AVDD  
DVDD33  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
fDAC (MHz)  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 85. Typical DNL, 10 mA at 25°C  
Figure 88. Power Consumption vs. fDAC at 25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
CODE  
Figure 86. Typical INL, 30 mA at 25°C  
Rev.C | Page 27 of 64  
AD9737A/AD9739A  
Data Sheet  
AC (NORMAL MODE)  
IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
START 20MHz  
STOP 2.4GHz  
START 20MHz  
STOP 2.4GHz  
VBW 10kHz  
VBW 10kHz  
Figure 89. Single-Tone Spectrum at fOUT = 91 MHz, fDAC = 2.4 GSPS  
Figure 92. Single-Tone Spectrum at fOUT = 1091 MHz, fDAC = 2.4 GSPS  
80  
100  
1.2GSPS  
1.6GSPS  
75  
95  
1.2GSPS  
90  
70  
65  
2.0GSPS  
85  
80  
75  
60  
1.6GSPS  
70  
2.4GSPS  
55  
65  
2.0GSPS  
2.4GSPS  
60  
50  
45  
40  
35  
30  
55  
50  
45  
40  
35  
30  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200  
fOUT (MHz)  
Figure 90. SFDR vs. fOUT over fDAC  
Figure 93. IMD vs. fOUT over fDAC  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
–160  
–161  
–162  
–163  
–164  
–165  
–166  
–167  
–168  
–169  
–170  
2.4GSPS  
2.4GSPS  
1.2GSPS  
1.2GSPS  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000 1100 1200  
fOUT (MHz)  
Figure 91. Single-Tone NSD vs. fOUT  
Figure 94. Eight-Tone NSD vs. fOUT  
Rev.C | Page 28 of 64  
 
Data Sheet  
AD9737A/AD9739A  
fDAC = 2 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
90  
80  
70  
60  
50  
40  
30  
110  
100  
90  
–6dBFS  
–6dBFS  
–3dBFS  
80  
70  
0dBFS  
–3dBFS  
60  
0dBFS  
50  
40  
30  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 95. SFDR vs. fOUT over Digital Full Scale  
Figure 98. IMD vs. fOUT over Digital Full Scale  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
–6dBFS  
–6dBFS  
–3dBFS  
0dBFS  
–3dBFS  
0dBFS  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 96. SFDR for Second Harmonic over fOUT vs. Digital Full Scale  
Figure 99. SFDR for Third Harmonic over fOUT vs. Digital Full Scale  
90  
110  
100  
80  
20mA FS  
90  
80  
70  
60  
50  
40  
30  
30mA FS  
10mA FS  
70  
60  
50  
40  
30  
10mA FS  
20mA FS  
30mA FS  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 97. SFDR vs. fOUT over DAC IOUTFS  
Figure 100. IMD vs. fOUT over DAC IOUTFS  
Rev.C | Page 29 of 64  
AD9737A/AD9739A  
Data Sheet  
fDAC = 2 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
90  
80  
70  
60  
50  
40  
30  
110  
100  
90  
+85°C  
+85°C  
–40°C  
80  
70  
+25°C  
60  
–40°C  
+25°C  
50  
40  
30  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 101. SFDR vs. fOUT over Temperature  
Figure 104. IMD vs. fOUT over Temperature  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
–40°C  
–40°C  
+85°C  
+25°C  
+85°C  
+25°C  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (MHz)  
Figure 102. Single-Tone NSD vs. fOUT over Temperature  
Figure 105. Eight-Tone NSD vs. fOUT over Temperature  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
FIRST ADJ CH  
SECOND ADJ CH  
FIFTH ADJ CH  
CENTER 350.27MHz  
#RES BW 30kHz  
SPAN 53.84MHz  
SWEEP 174.6ms (601pts)  
VBW 300kHz  
REF  
0
200  
400  
600  
800  
1000  
1200  
1400  
FREQ  
fOUT (MHz)  
RMS RESULTS  
CARRIER POWER  
–14.54dBm/  
OFFSET BW  
LOWER  
UPPER  
(MHz)  
5
(MHz) (dBc) (dBm) (dBc) (dBm)  
3.84 –79.90 –94.44 –79.03 –93.57  
3.84 –80.60 –95.14 –79.36 –94.40  
3.84 –80.90 –95.45 –80.73 –95.27  
3.84 –80.62 –95.16 –80.97 –95.51  
3.84 –80.76 –95.30 –80.95 –95.49  
10  
3.84MHz  
15  
20  
25  
Figure 103. Single-Carrier WCDMA at 350 MHz, fDAC = 2457.6 MSPS  
Figure 106. Single-Carrier WCDMA ACLR vs. fOUT at 2457.6 MSPS  
Rev.C | Page 30 of 64  
Data Sheet  
AD9737A/AD9739A  
AC (MIX-MODE)  
fDAC = 2.4 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
START 20MHz  
#RES BW 10kHz  
STOP 2.4GHz  
SWEEP 28.7s (601pts)  
START 20MHz  
#RES BW 10kHz  
STOP 2.4GHz  
SWEEP 28.7s (601pts)  
VBW 10kHz  
VBW 10kHz  
Figure 110. Single-Tone Spectrum in Mix-Mode at fOUT = 1.31 GHz,  
DAC = 2.4 GSPS  
Figure 107. Single-Tone Spectrum at fOUT = 2.31 GHz, fDAC = 2.4 GSPS  
f
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400  
1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400  
fOUT (MHz)  
fOUT (MHz)  
Figure 111. IMD in Mix-Mode vs. fOUT at 2.4 GSPS  
Figure 108. SFDR in Mix-Mode vs. fOUT at 2.4 GSPS  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
SECOND NYQUIST ZONE  
THIRD NYQUIST ZONE  
FIRST ADJ CH  
FIFTH ADJ CH  
SECOND ADJ CH  
1229 1475 1720 1966 2212 2458 2703 2949 3195 3441 3686  
CENTER 2.10706MHz  
#RES VW 30kHz  
SPAN 53.84MHz  
SWEEP 174.6ms (601pts)  
VBW 300kHz  
REF  
fOUT (MHz)  
FREQ  
RMS RESULTS  
CARRIER POWER  
–21.43dBm/  
OFFSET BW  
LOWER  
UPPER  
(MHz)  
5
(MHz) (dBc) (dBm) (dBc) (dBm)  
3.84 –68.99 –90.43 –63.94 –90.37  
3.84 –72.09 –93.52 –71.07 –92.50  
3.84 –72.86 –94.30 –71.34 –92.77  
3.84 –74.34 –95.77 –72.60 –94.03  
3.84 –74.77 –96.20 –73.26 –94.70  
10  
3.84MHz  
15  
20  
25  
Figure 109. Typical Single-Carrier WCDMA ACLR Performance at 2.1 GHz,  
fDAC = 2457.6 MSPS (Second Nyquist Zone)  
Figure 112. Single-Carrier WCDMA ACLR vs. fOUT at 2457.6 MSPS  
Rev.C | Page 31 of 64  
 
AD9737A/AD9739A  
Data Sheet  
fDAC = 2.4 GSPS, IOUTFS = 20 mA, nominal supplies, TA = 25°C, unless otherwise noted.  
CENTER 2.807GHz  
#RES BW 30kHz  
SPAN 53.84MHz  
CENTER 2.81271GHz  
#RES BW 30kHz  
SPAN 63.84MHz  
SWEEP 174.6ms (601pts)  
SWEEP 207ms (601pts)  
VBW 300kHz  
REF  
VBW 300kHz  
REF  
FREQ  
FREQ  
RMS RESULTS  
RMS RESULTS  
CARRIER POWER  
–24.4dBm/  
UPPER  
OFFSET BW  
LOWER  
UPPER  
OFFSET BW  
LOWER  
(MHz)  
5
(MHz) (dBc) (dBm) (dBc) (dBm)  
3.84 –0.42 –28.40 –0.10 –28.07  
3.84 –64.32 –92.30 –0.08 –28.06  
3.84 –66.03 –94.01 –65.37 –93.34  
3.84 –66.27 –94.24 –66.06 –94.03  
3.84 –66.82 –94.79 –63.36 –93.34  
3.84 –67.16 –95.13 –66.54 –94.51  
(MHz)  
5
(MHz) (dBc) (dBm) (dBc) (dBm)  
3.84 –64.90 –89.30 –63.82 –88.22  
3.84 –66.27 –90.67 –65.70 –90.10  
3.84 –68.44 –92.84 –66.55 –90.95  
3.84 –70.20 –94.60 –68.95 –93.35  
3.84 –70.85 –95.25 –70.45 –94.85  
CARRIER POWER  
–27.98dBm/  
3.84MHz  
10  
10  
3.84MHz  
15  
15  
20  
20  
25  
25  
30  
Figure 113. Typical Single-Carrier WCDMA ACLR Performance at 2.8 GHz,  
DAC = 2457.6 MSPS (Third Nyquist Zone)  
Figure 115. Typical Four-Carrier WCDMA ACLR Performance at 2.8 GHz,  
fDAC = 2457.6 MSPS (Third Nyquist Zone)  
f
CENTER 2.09758GHz  
#RES BW 30kHz  
SPAN 63.84MHz  
SWEEP 207ms (601pts)  
VBW 300kHz  
REF  
FREQ  
RMS RESULTS  
CARRIER POWER  
–25.53dBm/  
OFFSET BW  
LOWER  
UPPER  
(MHz)  
5
(MHz) (dBc) (dBm) (dBc) (dBm)  
3.84  
0.22 –25.31  
3.84 –66.68 –92.21  
0.24 –25.29  
0.14 –25.38  
10  
3.84MHz  
15  
3.84 –68.01 –93.53 –66.82 –92.35  
3.84 –68.61 –94.14 –67.83 –93.36  
3.84 –68.87 –94.40 –67.64 –93.17  
3.84 –69.21 –94.74 –68.50 –94.03  
20  
25  
30  
Figure 114. Typical Four-Carrier WCDMA ACLR Performance at 2.1 GHz,  
fDAC = 2457.6 MSPS (Second Nyquist Zone)  
Rev.C | Page 32 of 64  
Data Sheet  
AD9737A/AD9739A  
ONE-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
fOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–80.7dBc  
–80.7dBc  
–80.7dBc  
–81.2dBc  
–10.2dBm  
–81.3Bc  
–80.7dBc  
–80.7dBc  
–80.8dBc  
–31  
–42  
–35  
–45  
1
–53  
–55  
–64  
–65  
–75  
–75  
–86  
–85  
–97  
–95  
5Δ1  
–108  
–119  
4Δ1  
–105  
–115  
2Δ1  
3Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
CENTER 200MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 2kHz  
VBW 3kHz  
CARRIER POWER –10.190dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–59.38 –69.57 –60.16 –70.35 OFF  
UPPER  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
200.00MHz  
–11.476dBm BAND POWER 6MHz  
–11.475dBm  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) 199.60MHz (Δ) –77.042dB  
(Δ) 400.05MHz (Δ) –76.238dB  
(Δ) 597.65MHz (Δ) –74.526dB  
(Δ) 413.35MHz (Δ) –75.919dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –77.042dB  
(Δ) –76.238dB  
(Δ) –74.526dB  
(Δ) –75.919dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –81.23 –91.42 –81.26 –91.45 OFF  
6.000MHz –80.71 –90.90 –80.72 –90.91 OFF  
6.000MHz –80.72 –90.91 –80.76 –90.95 OFF  
6.000MHz –80.73 –90.92 –80.78 –90.97 OFF  
Figure 116. Low Band Wideband ACLR  
Figure 119. Low Band Narrow-Band ACLR  
–78.5dBc  
–77.6dBc  
–76.3dBc  
–75.1Bc  
–10.4dBm  
–74.4Bc  
–75.6dBc  
–76.7dBc  
–77.7dBc  
1
–31  
–42  
–35  
–45  
–53  
–55  
–64  
–65  
–75  
–75  
–86  
–85  
–97  
–95  
4Δ1  
5Δ1  
2Δ1  
3Δ1  
–108  
–119  
6Δ1  
–105  
–115  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
CENTER 550MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
FUNCTION FUNCTION  
CARRIER POWER –10.368dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
549.60MHz  
–10.231dBm BAND POWER 6MHz  
–10.231dBm  
OFFSET FREQ INTEG BW  
dBc dBm  
–57.91 –68.28 –58.53 –68.90 OFF  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –485.35MHz (Δ) –76.444dB  
(Δ) 127.40MHz (Δ) –75.649dB  
(Δ) 254.70MHz (Δ) –70.658dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –76.425dB  
(Δ) –75.626dB  
(Δ) –70.658dB  
(Δ) –75.824dB  
(Δ) –78.118dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –75.09 –85.46 –74.41 –84.78 OFF  
6.000MHz –76.29 –86.65 –75.55 –85.92 OFF  
6.000MHz –77.63 –88.00 –76.69 –87.06 OFF  
6.000MHz –78.51 –88.88 –77.67 –88.03 OFF  
(Δ)  
63.75MHz (Δ) –75.836dB  
(Δ) 293.65MHz (Δ) –78.054dB  
Figure 120. Mid Band Narrow-Band ACLR  
Figure 117. Mid Band Wideband ACLR  
–76.7dBc  
–75.9dBc  
–75.3dBc  
–72.2Bc  
–13.8dBm  
–72.1Bc  
–73.4dBc  
–75.0dBc  
–76.3dBc  
–30  
–40  
–31  
–42  
1
–50  
–53  
–60  
–64  
–70  
–75  
–80  
–86  
–90  
–97  
2Δ1  
3Δ1  
5Δ1  
4Δ1  
–100  
–110  
–108  
–119  
CENTER 980MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –13.798dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–57.81 –71.61 –61.44 –75.24 OFF  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
979.00MHz  
–13.703dBm BAND POWER 6MHz  
–13.658dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –484.40MHz (Δ) –65.548dB  
(Δ) –118.65MHz (Δ) –66.990dB  
(Δ) –613.60MHz (Δ) –69.044dB  
(Δ) –365.65MHz (Δ) –72.789dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –66.548dB  
(Δ) –66.990dB  
(Δ) –69.049dB  
(Δ) –72.789dB  
5.250MHz –72.17 –85.97 –72.10 –85.90 OFF  
6.000MHz –75.28 –89.08 –73.42 –87.22 OFF  
6.000MHz –75.91 –89.71 –75.03 –88.83 OFF  
6.000MHz –76.71 –90.50 –76.31 –90.11 OFF  
Figure 118. High Band Wideband ACLR  
Figure 121. High Band Narrow-Band ACLR  
Rev.C | Page 33 of 64  
 
AD9737A/AD9739A  
Data Sheet  
FOUR-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
–53.4dBc  
–0.1dBc  
–0.1dBc  
–0.5dBc  
–17.6dBm  
–73.6dBc  
–75.4dBc  
–78.1dBc  
–79.1dBc  
1
–37  
–47  
–40  
–50  
–57  
–60  
–67  
–70  
–77  
–80  
–87  
–90  
–97  
–100  
–110  
–120  
–107  
–117  
5Δ1  
4Δ1  
3Δ1  
2Δ1  
CENTER 210MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –17.556dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm  
–11.15 –28.70 –58.78 –76.34 OFF  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
200MHz  
–18.593dBm BAND POWER 6MHz  
–18.594dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) 216.60MHz (Δ) –73.198dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –73.170dB  
(Δ) –73.621dB  
(Δ) –71.289dB  
(Δ) –68.946dB  
5.250MHz –0.454 –18.01 –73.56 –91.12 OFF  
6.000MHz –0.065 –17.62 –75.42 –92.98 OFF  
6.000MHz –0.091 –17.65 –78.08 –95.64 OFF  
6.000MHz –53.44 –70.99 –79.06 –96.62 OFF  
(Δ) 400MHz  
(Δ) –73.654dB  
(Δ) 621.30MHz (Δ) –71.306dB  
(Δ) 413.25MHz (Δ) –68.955dB  
Figure 122. Low Band Wideband ACLR  
Figure 125. Low Band Narrow-Band ACLR (Worse Side)  
–76.6dBc  
–76.4dBc  
–75.0dBc  
–72.9dBc  
–19.5dBm  
–0.3dBc  
–0.1dBc  
–0.1dBc  
–50.2dBc  
–38  
–48  
–37  
–47  
1
–58  
–57  
–68  
–67  
–78  
–77  
–88  
–87  
–98  
–97  
–108  
–118  
–107  
–117  
2Δ1  
6Δ1  
4Δ1  
3Δ1  
5Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CENTER 650MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
FUNCTION FUNCTION  
CARRIER POWER –19.503dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–61.84 –81.35 –11.18 –30.68 OFF  
UPPER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
667.80MHz  
–18.760dBm BAND POWER 6MHz  
–18.760dBm  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –192.20MHz (Δ) –69.536dB  
(Δ) –98.15MHz (Δ) –71.601dB  
(Δ) –614.00MHz (Δ) –72.824dB  
(Δ) –567.45MHz (Δ) –75.786dB  
(Δ) –55.40MHz (Δ) –71.997dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –69.536dB  
(Δ) –71.601dB  
(Δ) –72.833dB  
(Δ) –75.320dB  
(Δ) –71.997dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –72.95 –92.45 –0.294 –19.80 OFF  
6.000MHz –74.99 –94.49 –0.075 –19.58 OFF  
6.000MHz –76.38 –95.89 –0.145 –19.65 OFF  
6.000MHz –76.59 –96.10 –50.21 –69.71 OFF  
Figure 123. Mid Band Wideband ACLR  
Figure 126. Mid Band Narrow-Band ACLR (Worse Side)  
–74.2dBc  
–73.0dBc  
–70.7dBc  
–68.7Bc  
–20.7dBm  
–0.5dBc  
–0.1dBc  
–0.5dBc  
–52.3dBc  
–38  
–48  
–37  
–47  
1
–58  
–57  
–68  
–67  
–78  
–77  
–88  
–87  
–98  
–97  
2Δ1  
5Δ1  
–108  
–118  
–107  
–117  
3Δ1  
6Δ1  
4Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
CENTER 970MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 2kHz  
VBW 3kHz  
CARRIER POWER –20.666dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
987.95MHz  
–20.040dBm BAND POWER 6MHz  
–21.029dBm  
OFFSET FREQ INTEG BW  
dBc dBm  
–60.65 –81.32 –10.77 –31.44 OFF  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –490.50MHz (Δ) –60.683dB  
(Δ) –624.45MHz (Δ) –69.390dB  
(Δ) –738.45MHz (Δ) –71.954dB  
(Δ) –130.45MHz (Δ) –66.954dB  
(Δ) –374.60MHz (Δ) –68.889dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –60.683dB  
(Δ) –69.390dB  
(Δ) –71.847dB  
(Δ) –66.954dB  
(Δ) –68.889dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –68.68 –89.34 –0.522 –21.19 OFF  
6.000MHz –70.67 –91.33 –0.140 –20.81 OFF  
6.000MHz –72.96 –93.63 –0.511 –21.18 OFF  
6.000MHz –74.22 –94.89 –52.31 –72.98 OFF  
Figure 124. High Band Wideband ACLR  
Figure 127. High Band Narrow-Band ACLR  
Rev.C | Page 34 of 64  
 
Data Sheet  
AD9737A/AD9739A  
EIGHT-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.0dBc  
0.0dBc  
0.1dBc  
–0.3dBc  
–21.9dBm  
–70.0Bc  
–69.9dBc  
–69.7dBc  
–70.1dBc  
1
–40  
–50  
–37  
–47  
–60  
–57  
–67  
–70  
–77  
–80  
–87  
–90  
–97  
–100  
–110  
–120  
5Δ1  
4Δ1  
–107  
–117  
3Δ1  
2Δ1  
CENTER 222MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –21.874dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.98 –32.85 –59.41 –81.28 OFF  
5.250MHz –0.334 –22.21 –69.96 –91.83 OFF  
6.000MHz 0.087 –21.79 –69.91 –91.78 OFF  
6.000MHz –0.034 –21.91 –69.74 –91.62 OFF  
6.000MHz 0.031 –21.84 –70.08 –91.95 OFF  
1
2
3
4
5
N
1
1
1
1
1
f
f
f
f
f
200MHz  
–22.043dBm BAND POWER 6MHz  
–22.044dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) 216.60MHz (Δ) –71.545dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –71.492dB  
(Δ) –70.555dB  
(Δ) –68.566dB  
(Δ) –65.237dB  
(Δ)  
400MHz (Δ) –70.510dB  
(Δ) 621.30MHz (Δ) –68.566dB  
(Δ) 413.25MHz (Δ) –65.219dB  
Figure 128. Low Band Wideband ACLR  
Figure 131. Low Band Narrow-Band ACLR (Worse Side)  
–71.6dBc  
–71.5dBc  
–71.2dBc  
–71.3dBc  
–22.6dBm  
–0.5Bc  
–0.1dBc  
–0.2dBc  
–0.2dBc  
–38  
–48  
–37  
–47  
1
–58  
–57  
–68  
–67  
–78  
–77  
–88  
–87  
–98  
–97  
6Δ1  
–108  
–118  
–107  
–117  
3Δ1  
2Δ1  
4Δ1  
5Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CENTER 580MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
FUNCTION FUNCTION  
CARRIER POWER –22.556dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–60.21 –82.77 –11.25 –33.80 OFF  
UPPER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
667.80MHz  
–23.977dBm BAND POWER 6MHz  
–23.977dBm  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –171.30MHz (Δ) –69.185dB  
(Δ) –98.15MHz (Δ) –68.551dB  
(Δ) –614.00MHz (Δ) –69.923dB  
(Δ) –567.45MHz (Δ) –72.145dB  
(Δ) –55.40MHz (Δ) –65.009dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –69.185dB  
(Δ) –68.551dB  
(Δ) –69.938dB  
(Δ) –72.083dB  
(Δ) –65.009dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –71.35 –93.90 –0.459 –23.01 OFF  
6.000MHz –71.20 –93.75 –0.137 –22.69 OFF  
6.000MHz –71.51 –94.06 –0.181 –22.74 OFF  
6.000MHz –71.60 –94.16 –0.221 –22.78 OFF  
Figure 132. Mid Band Narrow-Band ACLR (Worse Side)  
Figure 129. Mid Band Wideband ACLR  
–67.7dBc  
–67.7dBc  
–67.3dBc  
–67.4dBc  
–25.3dBm  
–0.5Bc  
–0.2dBc  
0.0dBc  
0.0dBc  
–38  
–48  
–37  
–47  
1
–58  
–57  
–68  
–67  
–78  
–77  
–88  
–87  
–98  
–97  
2Δ1  
6Δ1  
–108  
–118  
5Δ1  
–107  
–117  
3Δ1  
4Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
CENTER 950MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 2kHz  
VBW 3kHz  
CARRIER POWER –25.344dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–60.39 –85.73 –10.93 –36.27 OFF  
UPPER  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
990.80MHz  
–25.435dBm BAND POWER 6MHz  
–25.435dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –481.00MHz (Δ) –61.947dB  
(Δ) –633.95MHz (Δ) –67.517dB  
(Δ) –734.65MHz (Δ) –69.583dB  
(Δ) –128.55MHz (Δ) –65.237dB  
(Δ) –378.40MHz (Δ) –64.615dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –61.947dB  
(Δ) –67.532dB  
(Δ) –69.602dB  
(Δ) –65.237dB  
(Δ) –64.615dB  
5.250MHz –67.44 –92.78 –0.487 –25.83 OFF  
6.000MHz –67.29 –92.63 –0.205 –25.55 OFF  
6.000MHz –67.65 –93.00 –0.047 –25.39 OFF  
6.000MHz –67.65 –93.00 –0.016 –25.33 OFF  
Figure 130. High Band Wideband ACLR  
Figure 133. High Band Narrow-Band ACLR  
Rev.C | Page 35 of 64  
 
AD9737A/AD9739A  
Data Sheet  
16-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.0dBc  
–0.2dBc  
–0.1dBc  
–0.5dBc  
–24.8dBm  
–70.4dBc  
–69.7dBc  
–69.7dBc  
–69.8dBc  
–38  
–48  
–44  
–54  
1
–58  
–64  
–68  
–74  
–78  
–84  
–88  
–94  
–98  
–104  
–114  
–124  
–108  
–118  
6Δ1  
4Δ1  
5Δ1  
2Δ1  
3Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
CENTER 290MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 2kHz  
VBW 3kHz  
CARRIER POWER –24.824dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
289.70MHz  
–25.335dBm BAND POWER 6MHz  
–25.335dBm  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.83 –35.76 –59.93 –84.76 OFF  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) 202.05MHz (Δ) –66.838dB  
(Δ) –183.65MHz (Δ) –70.421dB  
(Δ) 697.95MHz (Δ) –65.880dB  
(Δ) 18.70MHz (Δ) –67.033dB  
(Δ) 322.70MHz (Δ) –64.481dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –66.838dB  
(Δ) –70.312dB  
(Δ) –65.928dB  
(Δ) –66.973dB  
(Δ) –64.451dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –0.545 –25.37 –70.37 –95.20 OFF  
6.000MHz –0.099 –24.92 –69.75 –94.57 OFF  
6.000MHz –0.155 –24.98 –69.75 –94.57 OFF  
6.000MHz –0.041 –24.87 –69.79 –94.62 OFF  
Figure 134. Low Band Wideband ACLR  
Figure 137. Low Band Narrow-Band ACLR  
0.4dBc  
0.2dBc  
0.0dBc  
–0.5dBc  
–26.8dBm  
–67.5dBc  
–66.8dBc  
–66.8Bc  
–66.8dBc  
–38  
–48  
–44  
–54  
1
–58  
–64  
–68  
–74  
–78  
–84  
–88  
–94  
–98  
–104  
–114  
–124  
–108  
–118  
4Δ1  
2Δ1  
3Δ1  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CENTER 690MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
FUNCTION FUNCTION  
CARRIER POWER –26.792dBm/6MHz  
ACP-IBW  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
1
2
3
4
N
1
1
1
1
f
f
f
f
690.60MHz  
–28.317dBm BAND POWER 6MHz  
–28.317dBm  
OFFSET FREQ INTEG BW  
dBc dBm  
–11.17 –37.97 –58.12 –84.92 OFF  
Δ1  
Δ1  
Δ1  
(Δ) –141.85MHz (Δ) –64.672dB  
(Δ) –623.50MHz (Δ) –65.202dB  
(Δ) 152.65MHz (Δ) –64.574dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –64.672dB  
(Δ) –65.207dB  
(Δ) –64.574dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
5.250MHz –0.460 –27.25 –67.47 –94.26 OFF  
6.000MHz –0.049 –26.74 –66.83 –93.62 OFF  
6.000MHz –0.196 –26.60 –66.80 –93.59 OFF  
6.000MHz –0.366 –26.43 –66.79 –93.58 OFF  
Figure 135. Mid Band Wideband ACLR  
Figure 138. Mid Band Narrow-Band ACLR (Worse Side)  
–64.9dBc  
–64.8dBc  
–64.6dBc  
–65.0dBc  
–28.4dBm  
–0.5dBc  
–0.1dBc  
0.0dBc  
0.2dBc  
–38  
–48  
–44  
–54  
1
–58  
–64  
–68  
–74  
–78  
–84  
–88  
–94  
–104  
–114  
–124  
–98  
–108  
–118  
6Δ1  
2Δ1  
5Δ1  
3Δ1  
4Δ1  
CENTER 900MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –28.435dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
dBc dBm  
–57.24 –85.68 –11.30 –39.73 OFF  
UPPER  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
1
2
3
4
5
6
N
1
1
1
1
1
1
f
f
f
f
f
f
989.85MHz  
–27.971dBm BAND POWER 6MHz  
–27.960dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
Δ1  
Δ1  
(Δ) –422.10MHz (Δ) –61.110dB  
(Δ) –922.75MHz (Δ) –63.327dB  
(Δ) –668.15MHz (Δ) –65.509dB  
(Δ) –137.10MHz (Δ) –62.779dB  
(Δ) –377.45MHz (Δ) –59.858dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –61.110dB  
(Δ) –63.332dB  
(Δ) –65.483dB  
(Δ) –62.779dB  
(Δ) –59.828dB  
5.250MHz –65.03 –93.46 –0.490 –28.92 OFF  
6.000MHz –64.64 –93.08 –0.119 –28.55 OFF  
6.000MHz –64.80 –93.24 –0.016 –28.45 OFF  
6.000MHz –64.86 –93.29 0.153 –28.28 OFF  
Figure 136. High Band Wideband ACLR  
Figure 139. High Band Narrow-Band ACLR  
Rev.C | Page 36 of 64  
 
Data Sheet  
AD9737A/AD9739A  
32-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.1dBc  
0.0dBc  
–0.1dBc  
–0.4dBc  
–29.9dBm  
–65.4dBc  
–64.8dBc  
–64.5dBc  
–64.4dBc  
1
–52  
–62  
–44  
–54  
–64  
–72  
–74  
–82  
–84  
–92  
–94  
–102  
–112  
–122  
–132  
3Δ1  
–104  
–114  
–124  
4Δ1  
2Δ1  
CENTER 386MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –29.920dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.67 –40.59 –61.86 –91.78 OFF  
1
2
3
4
N
1
1
1
1
f
f
f
f
384.70MHz  
–29.646dBm BAND POWER 6MHz  
–29.645dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
(Δ) –283.40MHz (Δ) –64.175dB  
(Δ) 227.70MHz (Δ) –59.429dB  
(Δ) 325.55MHz (Δ) –62.750dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –64.167dB  
(Δ) –59.423dB  
(Δ) –62.750dB  
5.250MHz –0.431 –30.35 –65.40 –95.32 OFF  
6.000MHz –0.070 –29.99 –64.76 –94.68 OFF  
6.000MHz –0.011 –29.93 –64.50 –94.42 OFF  
6.000MHz  
0.116 –29.80 –64.40 –94.32 OFF  
Figure 143. Low Band Narrow-Band ACLR  
Figure 140. Low Band Wideband ACLR  
–63.5dBc  
–63.2dBc  
–63.1dBc  
–63.3dBc  
–29.3dBm  
–0.5dBc  
–0.2dBc  
–0.2dBc  
–0.1dBc  
1
–44  
–54  
–52  
–62  
–64  
–72  
–74  
–82  
–84  
–92  
–94  
–102  
–112  
–122  
–132  
–104  
–114  
–124  
4Δ1  
3Δ1  
2Δ1  
CENTER 200MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CARRIER POWER –29.311dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
dBc dBm  
–58.76 –88.07 –10.78 –40.09 OFF  
UPPER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
1
2
3
4
N
1
1
1
1
f
f
f
f
685.5MHz  
–30.335dBm BAND POWER 6MHz  
–30.335dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
Δ1  
Δ1  
Δ1  
(Δ) –611.15MHz (Δ) –63.136dB  
(Δ) –243.50MHz (Δ) –63.860dB  
(Δ) 162.15MHz (Δ) –62.151dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –63.112dB  
(Δ) –63.860dB  
(Δ) –62.151dB  
5.250MHz –63.30 –92.61 –0.487 –29.80 OFF  
6.000MHz –63.05 –92.36 –0.175 –29.49 OFF  
6.000MHz –63.21 –92.52 –0.151 –29.46 OFF  
6.000MHz –64.46 –92.78 –0.061 –29.37 OFF  
Figure 144. Mid Band Narrow-Band ACLR (Worse Side)  
Figure 141. Mid Band Wideband ACLR  
–62.8dBc  
–62.7dBc  
–62.8dBc  
–63.2dBc  
–30.7dBm  
–0.4dBc  
–0.4dBc  
–0.5dBc  
–0.4dBc  
1
–44  
–54  
–52  
–62  
–64  
–72  
–74  
–82  
–84  
–92  
–94  
–102  
–112  
–122  
–132  
4Δ1  
2Δ1  
–104  
–114  
–124  
3Δ1  
CENTER 800MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 2kHz  
CARRIER POWER –30.746dBm/6MHz  
ACP-IBW  
LOWER  
dBc dBm  
–60.75 –91.49 –10.84 –41.59 OFF  
UPPER  
FUNCTION FUNCTION  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
1
2
3
4
N
1
1
1
1
f
f
f
f
985.10MHz  
–31.516dBm BAND POWER 6MHz  
–31.516dBm  
5.250MHz –63.18 –93.92 –0.437 –31.18 OFF  
6.000MHz –62.76 –93.50 –0.354 –31.10 OFF  
6.000MHz –62.74 –93.48 –0.455 –31.20 OFF  
6.000MHz –62.84 –93.59 –0.410 –31.16 OFF  
Δ1  
Δ1  
Δ1  
(Δ) –334.70MHz (Δ) –59.997dB  
(Δ) –909.45MHz (Δ) –60.458dB  
(Δ) –373.65MHz (Δ) –57.761dB  
BAND POWER 6MHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
(Δ) –59.997dB  
(Δ) –60.535dB  
(Δ) –57.763dB  
Figure 142. High Band Wideband ACLR  
Figure 145. High Band Narrow-Band ACLR  
Rev.C | Page 37 of 64  
 
AD9737A/AD9739A  
Data Sheet  
64- AND 128-CARRIER DOCSIS PERFORMANCE (NORMAL MODE)  
IOUTFS = 20 mA, fDAC = 2.4576 GSPS, nominal supplies, TA = 25°C, unless otherwise noted.  
0.3dBc  
0.2dBc  
0.1dBc  
–0.3dBc  
–32.4dBm  
–62.3dBc  
–61.5dBc  
–61.5dBc  
–61.4dBc  
–52  
–62  
–51  
–61  
1
–72  
–71  
–82  
–81  
–92  
–91  
–102  
–112  
–122  
–132  
–101  
–111  
–121  
–131  
3Δ1  
2Δ1  
CENTER 478MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
START 50MHz  
#RES BW 20kHz  
STOP 1GHz  
SWEEP 24.1s (1001pts)  
VBW 3kHz  
VBW 2kHz  
CARRIER POWER –32.409dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
LOWER  
UPPER  
dBc dBm FILTER  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.83 –43.24 –60.80 –93.21 OFF  
5.250MHz –0.267 –32.68 –62.25 –94.66 OFF  
1
2
3
N
Δ1  
Δ1  
1
1
1
f
f
f
478.75MHz  
(Δ) 372.10MHz (Δ) –58.746dB  
(Δ) 132.70MHz (Δ) –55.165dB  
–33.210dBm BAND POWER 6MHz  
–33.209dBm  
(Δ) –58.804dB  
(Δ) –55.165dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
BAND POWER 6MHz  
BAND POWER 6MHz  
6.000MHz  
6.000MHz  
6.000MHz  
0.139 –32.27 –61.47 –93.88 OFF  
0.201 –32.21 –61.54 –93.95 OFF  
0.308 –32.10 –61.40 –93.81 OFF  
Figure 146. 64-Carrier Low Band Wideband ACLR  
Figure 149. 64-Carrier Low Band Narrow-Band ACLR  
–60.6dBc  
–60.6dBc  
–60.6dBc  
–61.1dBc  
–33.6dBm  
–0.3dBc  
–0.1dBc  
0.2dBc  
0.1dBc  
–51  
–61  
–52  
–62  
1
–71  
–72  
–81  
–82  
–91  
–92  
–101  
–111  
–121  
–131  
–102  
–112  
–122  
–132  
2Δ1  
3Δ1  
CENTER 600MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –33.558dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
dBc dBm  
–60.02 –93.58 –11.48 –45.04 OFF  
UPPER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm FILTER  
1
2
3
N
Δ1  
Δ1  
1
1
1
f
f
f
978.45MHz  
–35.872dBm BAND POWER 6MHz  
–35.873dBm  
(Δ) –58.625dB  
(Δ) –59.286dB  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
(Δ) –901.85MHz (Δ) –58.5816dB BAND POWER 6MHz  
5.250MHz –61.11 –94.66 –0.284 –33.84 OFF  
6.000MHz –60.57 –94.13 0.099 –33.46 OFF  
6.000MHz –60.64 –94.20 0.221 –33.34 OFF  
6.000MHz –60.58 –94.14 0.060 –33.50 OFF  
(Δ) –561.75MHz (Δ) –59.214dB  
BAND POWER 6MHz  
Figure 147. 64-Carrier High Band Wideband ACLR  
Figure 150. 64-Carrier High Band Narrow-Band ACLR  
0.3dBc  
0.3dBc  
0.3dBc  
–0.3dBc  
–37.3dBm  
–57.7dBc  
–56.6dBc  
–56.5dBc  
–56.4dBc  
–50  
–60  
–50  
–60  
1
3
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
2Δ1  
CENTER 832MHz  
#RES BW 30kHz  
SPAN 54MHz  
SWEEP 1.49s  
VBW 3kHz  
START 50MHz  
STOP 1GHz  
VBW 2kHz  
#RES BW 20kHz  
SWEEP 24.1s (1001pts)  
CARRIER POWER –37.33dBm/6MHz  
ACP-IBW  
FUNCTION FUNCTION  
LOWER  
UPPER  
dBc dBm FILTER  
MKR MODE TRC SCL  
X
Y
FUNCTION  
WIDTH  
VALUE  
OFFSET FREQ INTEG BW  
dBc dBm  
–10.77 –48.10 –59.34 –96.67 OFF  
5.250MHz –0.277 –37.61 –57.70 –95.03 OFF  
6.000MHz  
6.000MHz  
6.000MHz  
1
2
3
N
Δ1  
1
1
1
1
f
f
f
69.00MHz  
–35.495dBm BAND POWER 6MHz  
BAND POWER 6MHz  
–37.544dBm BAND POWER 6MHz  
–35.495dBm  
3.375MHz  
6.375MHz  
12.00MHz  
18.00MHz  
24.00MHz  
750.0kHz  
(Δ) 855.95MHz (Δ) –55.328dB  
(Δ) –55.328dB  
831.85MHz  
–37.545dBm  
0.318 –37.01 –56.56 –93.89 OFF  
0.328 –37.00 –56.49 –93.82 OFF  
0.337 –37.00 –56.35 –93.69 OFF  
Figure 148. 128-Carrier Wideband ACLR  
Figure 151. 128-Carrier Narrow-Band ACLR  
Rev.C | Page 38 of 64  
 
Data Sheet  
AD9737A/AD9739A  
TERMINOLOGY  
Linearity Error (Integral Nonlinearity or INL)  
The maximum deviation of the actual analog output from the  
ideal output, determined by a straight line drawn from 0 to full  
scale.  
Power Supply Rejection  
The maximum change in the full-scale output as the supplies  
are varied from nominal to minimum and maximum specified  
voltages.  
Differential Nonlinearity (DNL)  
Spurious-Free Dynamic Range  
The measure of the variation in analog value, normalized to full  
scale, associated with a 1 LSB change in digital input code.  
The difference, in decibels (dB), between the rms amplitude of  
the output signal and the peak spurious signal over the specified  
bandwidth.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first six harmonic components  
to the rms value of the measured input signal. It is expressed as  
a percentage or in decibels (dB).  
Offset Error  
The deviation of the output current from the ideal of 0 is called  
the offset error. For IOUTP, 0 mA output is expected when the  
inputs are all 0s. For IOUTN, 0 mA output is expected when all  
inputs are set to 1.  
Noise Spectral Density (NSD)  
NSD is the converter noise power per unit of bandwidth. This is  
usually specified in dBm/Hz in the presence of a 0 dBm full-  
scale signal.  
Gain Error  
The difference between the actual and ideal output span. The  
actual span is determined by the output when all inputs are set  
to 1 minus the output when all inputs are set to 0.  
Adjacent Channel Leakage Ratio (ACLR)  
The adjacent channel leakage (power) ratio is a ratio, in dBc, of  
the measured power within a channel relative to its adjacent  
channels.  
Output Compliance Range  
The range of allowable voltage at the output of a current output  
DAC. Operation beyond the maximum compliance limits may  
cause either output stage saturation or breakdown, resulting in  
nonlinear performance.  
Modulation Error Ratio (MER)  
Modulated signals create a discrete set of output values referred  
to as a constellation. Each symbol creates an output signal  
corresponding to one point on the constellation. MER is a measure  
of the discrepancy between the average output symbol magnitude  
and the rms error magnitude of the individual symbol.  
Temperature Drift  
Specified as the maximum change from the ambient (25°C)  
value to the value at either TMIN or TMAX. For offset and gain  
drift, the drift is reported in ppm of full-scale range (FSR)  
per °C. For reference drift, the drift is reported in ppm per °C.  
Intermodulation Distortion (IMD)  
IMD is the result of two or more signals at different frequencies  
mixing together. Many products are created according to the  
formula, aF1 bF2, where a and b are integer values.  
Rev.C | Page 39 of 64  
 
AD9737A/AD9739A  
Data Sheet  
SERIAL PORT INTERFACE (SPI) REGISTER  
SPI REGISTER MAP DESCRIPTION  
SPI OPERATION  
The serial port of the AD9737A/AD9739A, shown in Figure 152,  
has a 3- or 4-wire SPI capability, allowing read/write access  
to all registers that configure the devices internal parameters.  
It provides a flexible, synchronous serial communications  
port, allowing easy interface to many industry-standard  
microcontrollers and microprocessors. The 3.3 V serial I/O is  
compatible with most synchronous transfer formats, including  
the Motorola® SPI and the Intel® SSR protocols.  
The AD9737A/AD9739A contain a set of programmable registers,  
described in Table 10, that are used to configure and monitor  
various internal parameters. Note the following points when  
programming the AD9737A/AD9739A SPI registers:  
Registers pertaining to similar functions are grouped together  
and assigned adjacent addresses.  
Bits that are undefined within a register should be assigned  
a 0 when writing to that register.  
Registers that are undefined should not be written to.  
A hardware or software reset is recommended on power-  
up to place SPI registers in a known state.  
SDO (PIN H14)  
SDIO (PIN G14)  
AD9737A/AD9739A  
SPI PORT  
SCLK (PIN H13)  
A SPI initialization routine is required as part of the boot  
process. See Table 29 for an example procedure.  
CS (PIN G13)  
Figure 152. AD9737A/AD9739A SPI Port  
Reset  
The default 4-wire SPI interface consists of a clock (SCLK),  
Issuing a hardware or software reset places the AD9737A/  
AD9739A SPI registers in a known state. All SPI registers  
(excluding 0x00) are set to their default states, as described in  
Table 10, upon issuing a reset. After issuing a reset, the SPI  
initialization process needs only to write to registers that are  
required for the boot process as well as any other register  
settings that must be modified, depending on the target  
application.  
CS  
serial port enable ( ), serial data input (SDIO), and serial data  
CS  
output (SDO). The inputs to SCLK, , and SDIO contain a  
Schmitt trigger with a nominal hysteresis of 0.4 V centered about  
VDD33/2. The maximum frequency for SCLK is 20 MHz. The  
SDO pin is active only during the transmission of data and  
remains three-stated at any other time.  
A 3-wire SPI interface can be enabled by setting the SDIO_DIR  
bit (Register 0x00, Bit 7). This causes the SDIO pin to become  
bidirectional such that output data appears on only the SDIO  
pin during a read operation. The SDO pin remains three-stated  
in a 3-wire SPI interface.  
Although the AD9737A/AD9739A do feature an internal  
power-on reset (POR), it is still recommended that a software  
or hardware reset be implemented shortly after power-up. The  
internal reset signal is derived from a logical OR operation from  
the internal POR signal, the RESET pin, and the software reset  
state. A software reset can be issued via the reset bit (Register 0x00,  
Bit 5) by toggling the bit high, then low. Note that, because the  
MSB/LSB format may still be unknown upon initial power-up  
(that is, internal POR is unsuccessful), it is also recommended  
that the bit settings for Bits[7:5] be mirrored onto Bits[2:0] for  
the instruction cycle that issues a software reset. A hardware  
reset can be issued from a host or external supervisory IC by  
applying a high pulse with a minimum width of 40 ns to the RESET  
pin (that is, Pin F14). RESET should be tied to VSS if unused.  
Instruction Header Information  
MSB  
LSB  
11  
17  
16  
A6  
15  
A5  
14  
A4  
13  
A3  
12  
A2  
10  
A0  
R/W  
A1  
An 8-bit instruction header must accompany each read and write  
W
operation. The MSB is a R/ indicator bit with logic high  
indicating a read operation. The remaining seven bits specify  
the address bits to be accessed during the data transfer portion.  
The eight data bits immediately follow the instruction header  
for both read and write operations. For write operations, registers  
change immediately upon writing to the last bit of each transfer  
Table 9. SPI Registers Pertaining to SPI Options  
Address (Hex)  
Bit  
Description  
CS  
byte.  
the last byte) to stall the bus. The serial transfer resumes  
CS  
can be raised after each sequence of eight bits (except  
0x00  
7
Enable 3-wire SPI  
Enable SPI LSB first  
Software reset  
6
when is lowered. Stalling on nonbyte boundaries resets the SPI.  
5
Rev.C | Page 40 of 64  
 
 
 
 
Data Sheet  
AD9737A/AD9739A  
The AD9737A/AD9739A serial port can support both most  
significant bit (MSB) first and least significant bit (LSB) first  
data formats. Figure 153 illustrates how the serial port words  
are formed for the MSB first and LSB first modes. The bit order  
is controlled by the LSB/MSB bit (Register 0x00, Bit 6). The  
default value of Bit 6 is 0, MSB first. When the LSB/MSB bit is  
set high, the serial port interprets both instruction and data bytes  
LSB first.  
Figure 154 illustrates the timing requirements for a write  
CS  
operation to the SPI port. After the serial port enable (  
)
signal goes low, data (SDIO) pertaining to the instruction  
header is read on the rising edges of the clock (SCLK). To  
initiate a write operation, the read/not-write bit is set low. After  
the instruction header is read, the eight data bits pertaining to  
the specified register are shifted into the SDIO pin on the rising  
edge of the next eight clock cycles.  
Figure 155 illustrates the timing for a 3-wire read operation to  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
CS  
the SPI port. After  
goes low, data (SDIO) pertaining to the  
SCLK  
instruction header is read on the rising edges of SCLK. A read  
operation occurs if the read/not-write indicator is set high. After  
the address bits of the instruction header are read, the eight data  
bits pertaining to the specified register are shifted out of the  
SDIO pin on the falling edges of the next eight clock cycles.  
R/W N1 N2 A4 A3 A2 A1 A0 D71 D61  
D1N D0N  
SDATA  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CS  
SCLK  
Figure 156 illustrates the timing for a 4-wire read operation to  
the SPI port. The timing is similar to the 3-wire read operation  
with the exception that data appears at the SDO pin only, whereas  
the SDIO pin remains at high impedance throughout the  
operation. The SDO pin is an active output only during the data  
transfer phase and remains three-stated at all other times.  
SDATA  
A0 A1 A2 A3 A4 N2 N1 R/W D01 D11  
D6N D7N  
Figure 153. SPI Timing, MSB First (Upper) and LSB First (Lower)  
tS  
1/fSCLK  
tH  
CS  
tLOW  
tHI  
SCLK  
tDS  
tDS  
tDS  
tDH  
R/W  
N1  
N0  
A0  
D7  
D6 D1  
D0  
SDIO  
Figure 154. SPI Write Operation Timing  
tS  
1/fSCLK  
CS  
tLOW  
tHI  
SCLK  
tDV  
tDH  
R/W  
tEZ  
A1  
A0  
D6 D1 D0  
N1  
D7  
A2  
SDIO  
Figure 155. SPI 3-Wire Read Operation Timing  
tS  
1/fSCLK  
CS  
tLOW  
tHI  
SCLK  
tDH  
tEZ  
tEZ  
A1  
A0  
N1  
A2  
SDIO  
SDO  
R/W  
tDV  
D6 D1 D0  
D7  
Figure 156. SPI 4-Wire Read Operation Timing  
Rev.C | Page 41 of 64  
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
SPI REGISTER MAP  
Table 10. Full Register Map (N/A = Not Applicable)  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
N/A  
N/A  
Bit 2  
N/A  
N/A  
Bit 1  
Bit 0  
Default  
0x00  
Mode  
0x00  
SDIO_DIR  
N/A  
LSB/MSB  
N/A  
Reset  
N/A  
N/A  
N/A  
Power-  
Down  
0x01  
LVDS_  
LVDS_  
RCVR_PD  
CLK_RCVR_  
PD  
DAC_BIAS_  
PD  
0x00  
DRVR_PD  
CNT_CLK_  
DIS  
0x02  
N/A  
N/A  
N/A  
N/A  
CLKGEN_PD  
N/A  
REC_CNT_  
CLK  
MU_CNT_  
CLK  
0x03  
IRQ_EN  
0x03  
0x04  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
MU_LST_EN  
MU_LST_IRQ  
MU_LCK_EN  
RCV_LST_EN RCV_LCK_EN  
0x00  
0x00  
IRQ_REQ  
MU_LCK_IRQ RCV_LST_  
IRQ  
RCV_LCK_  
IRQ  
RSVD  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
N/A  
N/A  
FSC[6]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
FSC[3]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
FSC[2]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
FSC_1  
FSC[7]  
Sleep  
N/A  
FSC[5]  
N/A  
FSC[4]  
N/A  
FSC[1]  
FSC[9]  
DAC_DEC[1]  
N/A  
FSC[0]  
FSC[8]  
DAC_DEC[0]  
N/A  
0x00  
0x02  
0x00  
N/A  
FSC_2  
DEC_CNT  
RSVD  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_CNT  
DIG_STAT  
LVDS_STAT1  
N/A  
N/A  
N/A  
N/A  
N/A  
0x00  
RNDM  
RNDM  
N/A  
N/A  
N/A  
N/A  
N/A  
SUP/HLD_  
Edge1  
DCI_PHS3  
DCI_PHS1  
DCI_PRE_  
PH2  
DCI_PRE_  
PH0  
DCI_PST_  
PH2  
DCI_PST_  
PH0  
LVDS_STAT2  
RSVD  
0x0D  
0x0E  
0x0F  
0x10  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
RNDM/0  
N/A  
RSVD  
N/A  
LVDS_  
REC_CNT1  
RCVR_FLG_  
RST  
RCVR_  
LOOP_ON  
RCVR_CNT_  
ENA  
0x42  
LVDS_  
REC_CNT2  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
SMP_DEL[1]  
SMP_DEL[9]  
DCI_DEL[3]  
N/A  
SMP_DEL[0]  
SMP_DEL[8]  
DCI_DEL[2]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0xDD  
0x29  
0x71  
0x0A  
0x42  
0x00  
0x00  
0x00  
0xC7  
0x29  
0xC0  
0x29  
0x86  
0x00  
0x00  
0x00  
0x00  
0x00  
LVDS_  
REC_CNT3  
SMP_DEL[7] SMP_DEL[6]  
SMP_DEL[5]  
SMP_DEL[4]  
SMP_DEL[3]  
SMP_DEL[2]  
LVDS_  
REC_CNT4  
DCI_DEL[1]  
DCI_DEL[9]  
N/A  
DCI_DEL[0]  
DCI_DEL[8]  
N/A  
FINE_DEL_  
SKW[3]  
FINE_DEL_  
SKW[2]  
FINE_DEL_  
SKW[1]  
FINE_DEL_  
SKW[0]  
LVDS_  
REC_CNT5  
DCI_DEL[7]  
DCI_DEL[6]  
DCI_DEL[5]  
DCI_DEL[4]  
LVDS_  
REC_CNT6  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_CNT7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_CNT8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_CNT9  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_STAT1  
SMP_DEL[1]  
SMP_DEL[9]  
DCI_DEL[1]  
DCI_DEL[9]  
N/A  
SMP_DEL[0]  
SMP_DEL[8]  
DCI_DEL[0]  
DCI_DEL[8]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_STAT2  
SMP_DEL[7] SMP_DEL[6]  
SMP_DEL[5]  
N/A  
SMP_DEL[4]  
N/A  
SMP_DEL[3]  
N/A  
SMP_DEL[2]  
N/A  
LVDS_  
REC_STAT3  
N/A  
N/A  
LVDS_  
REC_STAT4  
DCI_DEL[7]  
N/A  
DCI_DEL[6]  
N/A  
DCI_DEL[5]  
N/A  
DCI_DEL[4]  
N/A  
DCI_DEL[3]  
N/A  
DCI_DEL[2]  
N/A  
LVDS_  
REC_STAT5  
LVDS_  
REC_STAT6  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_STAT7  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_STAT8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
LVDS_  
REC_STAT9  
N/A  
N/A  
N/A  
N/A  
RCVR_TRK_  
ON  
RCVR_FE_  
ON  
RCVR_LST  
RCVR_LCK  
CROSS_  
CNT1  
N/A  
N/A  
N/A  
DIR_P  
CLKP_  
OFFSET[3]  
CLKP_  
OFFSET[2]  
CLKP_  
OFFSET[1]  
CLKP_  
OFFSET[0]  
Rev.C | Page 42 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
CROSS_  
CNT2  
0x23  
0x24  
0x25  
N/A  
N/A  
N/A  
DIR_N  
CLKN_  
OFFSET[3]  
CLKN_  
OFFSET[2]  
CLKN_  
OFFSET[1]  
CLKN_  
OFFSET[0]  
0x00  
PHS_DET  
N/A  
N/A  
CMP_BST  
ADJ[5]  
PHS_DET  
AUTO_EN  
N/A  
N/A  
N/A  
N/A  
0x00  
0x00  
MU_DUTY  
MU_  
POS/NEG  
ADJ[4]  
N/A  
N/A  
N/A  
N/A  
DUTYAUTO_  
EN  
MU_CNT1  
MU_CNT2  
0x26  
0x27  
N/A  
Slope  
Mode[1]  
Mode[0]  
Read  
Gain[1]  
Gain[0]  
Enable  
0x42  
0x40  
MUDEL[0]  
SRCH_  
SRCH_  
SET_PHS[4]  
SET_PHS[3]  
SET_PHS[2]  
SET_PHS[1]  
SET_PHS[0]  
MODE[1]  
MODE[0]  
MU_CNT3  
MU_CNT4  
MU_STAT1  
RSVD  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x32  
0x33  
0x34  
0x35  
MUDEL[8]  
MUDEL[7]  
MUDEL[6]  
CONTRST  
N/A  
MUDEL[5]  
Guard[4]  
N/A  
MUDEL[4]  
Guard[3]  
N/A  
MUDEL[3]  
Guard[2]  
N/A  
MUDEL[2]  
Guard[1]  
MU_LOST  
N/A  
MUDEL[1]  
Guard[0]  
MU_LKD  
N/A  
0x00  
0x0B  
0x00  
N/A  
SEARCH_TOL Retry  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ID[7]  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ID[6]  
N/A  
N/A  
N/A  
N/A  
RSVD  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
ANA_CNT1  
ANA_CNT2  
RSVD  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0xCA  
0x03  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
PART_ID  
ID[5]  
ID[4]  
ID[3]  
ID[2]  
ID[1]  
ID[0]  
0x40  
SPI PORT CONFIGURATION AND SOFTWARE RESET  
Table 11. SPI Port Configuration and Software Reset Register (Mode)  
Default  
Setting  
Address  
(Hex)  
Bit Name  
SDIO_DIR  
LSB/MSB  
Reset  
Bits  
7
R/W  
R/W  
R/W  
R/W  
Description  
0x00  
0x0  
0x0  
0x0  
0 = 4-wire SPI, 1 = 3-wire SPI.  
0 = MSB first, 1 = LSB first.  
6
5
Software reset is recommended before modification of other SPI registers  
from the default setting.  
0 = inactive state; allows the user to modify registers from the default setting.  
1 = causes all registers (except 0x00) to be set to the default setting.  
POWER-DOWN LVDS INTERFACE AND TxDAC®  
Table 12. Power-Down LVDS Interface and TxDAC Register (Power-Down)  
Default  
Setting  
0x0  
Address  
(Hex)  
Bit Name  
Bits  
5
R/W  
R/W  
R/W  
R/W  
R/W  
Description  
0x01  
LVDS_DRVR_PD  
LVDS_RCVR_PD  
CLK_RCVR_PD  
DAC_BIAS_PD  
Power-down of the LVDS drivers/receivers and TxDAC.  
0 = enable, 1 = disable.  
4
0x0  
1
0x0  
0
0x0  
CONTROLLER CLOCK DISABLE  
Table 13. Controller Clock Disable Register (CNT_CLK_DIS)  
Default  
Setting  
Address  
(Hex)  
Bit Name  
Bits  
3
R/W  
R/W  
R/W  
Description  
0x02  
CLKGEN_PD  
REC_CNT_CLK  
0x0  
0x1  
Internal CLK distribution enable: 0 = enable, 1 = disable.  
1
LVDS receiver and Mu controller clock disable.  
0 = disable, 1 = enable.  
MU_CNT_CLK  
0
R/W  
0x1  
Rev.C | Page 43 of 64  
 
 
 
AD9737A/AD9739A  
Data Sheet  
INTERRUPT REQUEST (IRQ) ENABLE/STATUS  
Table 14. Interrupt Request (IRQ) Enable (IRQ_EN)/Status (IRQ_REQ) Register  
Default  
Setting  
0x0  
Address  
(Hex)  
Bit Name  
Bits  
3
R/W  
W
Description  
0x03  
0x04  
MU_LST_EN  
MU_LCK_EN  
RCV_LST_EN  
RCV_LCK_EN  
MU_LST_IRQ  
This register enables the Mu and LVDS Rx controllers to update their  
corresponding IRQ status bits in Register 0x04, which defines whether the  
controller is locked (LCK) or unlocked (LST).  
2
W
0x0  
0x0  
0x0  
0x0  
1
W
0 = disable (resets the status bit), 1 = enable.  
0
W
3
R
This register indicates the status of the controllers.  
For LCK_IRQ bits: 0 = lock lost, 1 = locked.  
For LST_IRQ bits: 0 = lock not lost, 1 = unlocked.  
Note that, if the controller IRQ is serviced, the relevant bits in Register 0x03  
should be reset by writing 0, followed by another write of 1 to enable.  
MU_LCK_IRQ  
RCV_LST_IRQ  
RCV_LCK_IRQ  
2
1
0
R
R
R
0x0  
0x0  
0x0  
TxDAC FULL-SCALE CURRENT SETTING (IOUTFS) AND SLEEP  
Table 15. TxDAC Full-Scale Current Setting (IOUTFS) and Sleep Register (FSC_1 and FSC_2)  
Default  
Setting  
Address  
(Hex)  
Bit Name  
FSC[7:0]  
FSC[9:8]  
Sleep  
Bits  
[7:0]  
[1:0]  
7
R/W  
R/W  
R/W  
R/W  
Description  
0x06  
0x07  
0x00  
0x02  
Sets the TxDAC IOUTFS current between 8 mA and 31 mA (default = 20 mA).  
IOUTFS = 0.0226 × FSC[9:0] + 8.58, where FSC = 0 to 1023.  
0 = enable DAC output, 1 = disable DAC output (sleep).  
TxDAC QUAD-SWITCH MODE OF OPERATION  
Table 16. TxDAC Quad-Switch Mode of Operation Register (DEC_CNT)  
Default  
Setting  
Address  
(Hex)  
Bit Name  
Bits  
R/W  
Description  
0x08  
DAC_DEC  
[1:0]  
R/W  
0x00  
0x00 = normal baseband mode.  
0x02 = mix-mode.  
DCI PHASE ALIGNMENT STATUS  
Table 17. DCI Phase Alignment Status Register (LVDS_STAT1)  
Default  
Setting  
0x0  
Address  
(Hex)  
Bit Name  
Bits  
R/W  
Description  
0x0C  
DCI_PRE_PH0  
2
R
0 = DCI rising edge is after the PRE delayed version of the Phase 0 sampling  
edge.  
1 = DCI rising edge is before the PRE delayed version of the Phase 0 sampling  
edge.  
DCI_PST_PH0  
0
R
0x0  
0 = DCI rising edge is after the POST delayed version of the Phase 0 sampling  
edge.  
1 = DCI rising edge is before the POST delayed version of the Phase 0 sampling  
edge.  
DATA RECEIVER CONTROLLER CONFIGURATION  
Table 18. Data Receiver Controller Configuration Register (LVDS_REC_CNT1)  
Default  
Setting  
0x0  
Address  
(Hex)  
Bit Name  
Bits  
2
R/W  
W
Description  
0x10  
RCVR_FLG_RST  
RCVR_LOOP_ON  
Data receiver controller flag reset. Write 1 followed by 0 to reset flags.  
1
R/W  
0x1  
0 = disable, 1 = enable.  
When this bit is enabled, the data receiver controller generates an IRQ; it  
falls out of lock and automatically begins a search/track routine.  
RCVR_CNT_ENA  
0
R/W  
0x0  
Data receiver controller enable. 0 = disable, 1 = enable.  
Rev.C | Page 44 of 64  
 
 
 
 
 
Data Sheet  
AD9737A/AD9739A  
DATA RECEIVER CONTROLLER_DATA SAMPLE DELAY VALUE  
Table 19. Data Receiver Controller_Data Sample Delay Value Register (LVDS_REC_CNT2 and LVDS_REC_CNT3)  
Default  
Setting  
0x11  
Address  
(Hex)  
Bit Name  
Bits  
[7:6]  
[7:0]  
R/W  
R/W  
R/W  
Description  
0x11  
0x12  
SMP_DEL[1:0]  
SMP_DEL[9:2]  
Controller enabled: the 10-bit value (with a maximum of 384) represents  
the start value for the delay line used by the state machine to sample data.  
Leave at the default setting of 167, which is near the midpoint of the delay line.  
Controller disabled: the value sets the actual value of the delay line.  
0x25  
DATA RECEIVER CONTROLLER_DCI DELAY VALUE/WINDOW AND PHASE ROTATION  
Table 20. Data Receiver Controller_DCI Delay Value (LVDS_REC_CNT4)/Window and Phase Rotation Register (LVDS_REC_CNT5)  
Default  
Setting  
0x0111  
Address  
(Hex)  
Bit Name  
Bits  
[7:4]  
[3:0]  
R/W  
R/W  
R/W  
Description  
0x13  
0x14  
DCI_DEL[3:0]  
Refer to the DCI_DEL description in Register 0x14.  
FINE_DEL_  
SKW[3:0]  
0x0001  
A 4-bit value sets the difference (that is, window) for the DCI PRE and POST  
sampling clocks. Leave at the default value of 1 for a narrow window.  
DCI_DEL[9:4]  
[5:0]  
R/W  
0x001010 Controller enabled: the 10-bit value (with a maximum of 384) represents  
the start value for the delay line used by the state machine to sample the  
DCI input. Leave at the default setting of 167, which is near the midpoint  
of the delay line.  
Controller disabled: the value sets the actual value of the delay line.  
DATA RECEIVER CONTROLLER_DELAY LINE STATUS  
Table 21. Data Receiver Controller_Delay Line Status Register (LVDS_REC_STAT[1:4])  
Default  
Setting  
0x00  
Address  
(Hex)  
Bit Name  
Bits  
[7:6]  
[7:0]  
[7:6]  
[7:0]  
R/W  
R
Description  
0x19  
0x1A  
0x1B  
0x1C  
SMP_DEL[1:0]  
SMP_DEL[9:2]  
DCI_DEL[1:0]  
DCI_DEL[9:2]  
The actual value of the DCI and data delay lines are determined by the  
data receiver controller (when enabled) after the state machine completes  
its search and enters track mode. Note that these values should be equal.  
R
0x00  
0x00  
0x00  
R
R
DATA RECEIVER CONTROLLER LOCK/TRACKING STATUS  
Table 22. Data Receiver Controller Lock/Tracking Status Register (LVDS_REC_STAT9)  
Default  
Setting  
0x0  
Address  
(Hex)  
Bit Name  
Bits  
3
R/W  
R
Description  
0x21  
RCVR_TRK_ON  
RCVR_FE_ON  
0 = tracking not established, 1 = tracking established.  
2
R
0x0  
0 = find edge state machine is not active, 1 = find edge state machine is  
active.  
RCVR_LST  
RCVR_LCK  
1
0
R
R
0x0  
0x0  
0 = controller has not lost lock, 1 = controller has lost lock.  
0 = controller is not locked, 1 = controller is locked.  
Rev.C | Page 45 of 64  
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
CLK INPUT COMMON MODE  
Table 23. CLK Input Common Mode Register (CROSS_CNT1 and CROSS_CNT2)  
Default  
Setting  
0x0  
Address  
(Hex)  
Bit Name  
Bits  
R/W  
R/W  
R/W  
Description  
0x22  
DIR_P  
4
DIR_P and DIR_N.  
0 = VCM at the DACCLK_P input decreases with the offset value.  
1 = VCM at the DACCLK_P input increases with the offset value.  
CLKx_OFFSET sets the magnitude of the offset for the DACCLK_P and  
DACCLK_N inputs. For optimum performance, set to 1111.  
CLKP_OFFSET[3:0] [3:0]  
DIR_N  
CLKN_OFFSET[3:0] [3:0]  
0x0000  
0x23  
4
R/W  
R/W  
0x0  
0x0000  
MU CONTROLLER CONFIGURATION AND STATUS  
Table 24. Mu Controller Configuration and Status Register (PHS_DET, MU_DUTY, MU_CNT[1:4], and MU_STAT1)  
Default  
Setting  
Address  
(Hex)  
Bit Name  
Bits  
5
R/W  
R/W  
R/W  
Description  
0x24  
CMP_BST  
0x0  
0x0  
Phase detector enable and boost bias bits.  
Note that both bits should always be set to 1 to enable these functions.  
PHS_DET  
AUTO_EN  
4
0x25  
0x26  
MU_  
DUTYAUTO_EN  
7
R/W  
R/W  
R/W  
0x0  
Mu controller duty cycle enable.  
Note that this bit should always be set to 1 to enable.  
Slope  
6
0x1  
Mu controller phase slope lock. 0 = negative slope, 1 = positive slope. Note  
that a setting of 0 is recommended for best ac performance.  
Mode[1:0]  
[5:4]  
0x00  
Sets the Mu controller mode of operation.  
00 = search and track (recommended).  
01 = search only.  
10 = track.  
Read  
3
R/W  
R/W  
0x0  
Set to 1 to read the current value of the Mu delay line in.  
Gain[1:0]  
[2:1]  
0x01  
Sets the Mu controller tracking gain.  
Recommended to leave at the default 01 setting.  
Enable  
0
R/W  
0x0  
0 = enable the Mu controller.  
1 = disable the Mu controller.  
0x27  
MUDEL[0]  
7
R/W  
R/W  
0x0  
0x0  
The LSB of the 9-bit MUDEL setting.  
SRCH_MODE[1:0]  
[6:5]  
Sets the direction in which the Mu controller searches (from its initial MUDEL  
setting) for the optimum Mu delay line setting that corresponds to the desired  
phase/slope setting (that is, SET_PHS and slope ).  
00 = down.  
01 = up.  
10 = down/up (recommended).  
SET_PHS[4:0]  
MUDEL[8:1]  
[4:0]  
[7:0]  
R/W  
W
0x0  
Sets the target phase that the Mu controller locks to with a maximum setting  
of 16.  
A setting of 4 (that is, 00100) is recommended for optimum ac performance.  
0x28  
0x29  
0x00  
With enable (Bit 0, Register 0x26) set to 0, this 9-bit value represents the  
value that the Mu delay is set to. Note that the maximum value is 432.  
With enable set to 1, this value represents the Mu delay value at which the  
controller begins its search. Setting this value to the delay line midpoint of  
216 is recommended.  
R
0x00  
When read (Bit 3, Register 0x26) is set to 1, the value read back is equal to  
the value written into the register when enable = 0 or the value that the  
Mu controller locks to when enable = 1.  
SEARCH_TOL  
Retry  
7
6
5
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0 = not exact (can find a phase within two values of the desired phase).  
1 = finds the exact phase that is targeted (optimal setting).  
0 = stop the search if the correct value is not found,  
1 = retry the search if the correct value is not found.  
CONTRST  
Controls whether the controller resets or continues when it does not find  
the desired phase.  
0 = continue (optimal setting), 1 = reset.  
Rev.C | Page 46 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
Default  
Setting  
Address  
(Hex)  
Bit Name  
Bits  
R/W  
Description  
Guard[4:0]  
[4:0]  
R/W  
0x01011  
Sets a guard band from the beginning and end of the Mu delay line, which  
the Mu controller does not enter into unless it does not find a valid phase  
outside the guard band (optimal value is Decimal 11 or 0x0B).  
0x2A  
MU_LOST  
MU_LKD  
1
0
R
R
0x0  
0x0  
0 = Mu controller has not lost lock.  
1 = Mu controller has lost lock.  
0 = Mu controller is not locked.  
1= Mu controller is locked.  
PART ID  
Table 25. Part ID Register (PART_ID)  
Default  
Setting  
Address  
(Hex)  
Bit Name  
Bits  
R/W  
Description  
0x35  
ID[7:0]  
[7:0]  
R
0x24  
0x24AD9739A  
0x27  
0x27AD9737A  
Rev.C | Page 47 of 64  
 
AD9737A/AD9739A  
Data Sheet  
THEORY OF OPERATION  
The AD9739A and the AD9737A are 14- and 11-bit TxDACs  
with a specified update rate of 1.6 GSPS to 2.5 GSPS. Figure 157  
shows a top-level functional diagram of the AD9737A/AD9739A.  
A high performance TxDAC core delivers a signal dependent,  
differential current (nominal 10 mA) to a balanced load  
referenced to ground. The frequency of the clock signal appearing  
at the AD9737A/AD9739A differential clock receiver, DACCLK,  
sets the TxDAC’s update rate. This clock signal, which serves as  
the master clock, is routed directly to the TxDAC as well as to a  
clock distribution block that generates all critical internal and  
external clocks.  
The AD9737A/AD9739A includes a delay lock loop (DLL)  
circuit controlled via a Mu controller to optimize the timing  
hand-off between the AD9737A/AD9739A digital clock domain  
and TxDAC core. Besides ensuring proper data reconstruction,  
the TxDAC’s ac performance is also dependent on this critical  
hand-off between these clock domains with speeds of up to  
2.5 GSPS. Once properly initialized and configured for track  
mode, the DLL maintains optimum timing alignment over  
temperature, time, and power supply variation.  
A SPI interface is used to configure the various functional blocks  
as well as monitor their status for debug purposes. Proper  
operation of the AD9737A/AD9739A requires that controller  
blocks be initialized upon power-up. A simple SPI initialization  
routine is used to configure the controller blocks (see Table 28).  
An IRQ output signal is available to alert the host should any of  
the controllers fall out of lock during normal operation.  
The AD9737A/AD9739A include two LVDS data ports (DB0  
and DB1) to reduce the data interface rate to ½ the TxDAC  
update rate. The host processor drives deinterleaved data with  
offset binary format onto the DB0 and DB1 ports, along with  
an embedded DCI clock that is synchronous with the data.  
Because the interface is double data rate (DDR), the DCI clock  
is essentially an alternating 0-1 bit pattern with a frequency that  
is equal to ¼ the TxDAC update rate (fDAC). To simplify synch-  
ronization with the host processor, the AD9737A/AD9739A  
passes an LVDS clock output (DCO) that is also equal to the  
DCI frequency.  
The following sections discuss the various functional blocks  
in more detail as well as their implications when interfacing  
to external ICs and circuitry. Although a detailed description of  
the various controllers (and associated SPI registers used to  
configure and monitor) is also included for completeness, the  
recommended SPI boot procedure can be used to ensure  
reliable operation.  
The AD9737A/AD9739A data receiver controller generates an  
internal sampling clock for the DDR receiver such that the data  
instance sampling is optimized. When enabled and configured  
properly for track mode, it ensures proper data recovery between  
the host and the AD9737A/AD9739A clock domains. The data  
receiver controller has the ability to track several hundreds of  
picoseconds of drift between these clock domains, typically caused  
by supply and temperature variation.  
RESET  
IRQ  
AD9737A/AD9739A  
SDIO  
SDO  
CS  
1.2V  
SPI  
DAC BIAS  
SCLK  
VREF  
I120  
As mentioned, the host processor provides the AD9737A/  
AD9739A with a deinterleaved data stream such that the DB0  
and DB1 data ports receive alternating samples (that is, odd/even  
data streams). The AD9737A/AD9739A data assembler is used  
to reassemble (that is, multiplex) the odd/even data streams  
into their original order before delivery into the TxDAC for  
signal reconstruction. The pipeline delay from a sample being  
latched into the data port to when it appears at the DAC output  
is on the order of 78 ( ) DACCLK cycles.  
IOUTN  
IOUTP  
TxDAC  
CORE  
DCI  
CLK DISTRIBUTIONꢀ  
DLL  
(DIV-BY-4)  
(MU CONTROLLER)  
DCO  
DACCLK  
Figure 157. Functional Block Diagram of the AD9737A/AD9739A  
Rev.C | Page 48 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
The maximum allowable skew and jitter out of the host  
processor with respect to the DCI clock edge on each LVDS  
port is calculated as follows:  
LVDS DATA PORT INTERFACE  
The AD9737A/AD9739A supports input data rates from 1.6 GSPS  
to 2.5 GSPS using dual LVDS data ports. The interface is source  
synchronous and double data rate (DDR) where the host provides  
an embedded data clock input (DCI) at fDAC/4 with its rising  
and falling edges aligned with the data transitions. The data  
format is offset binary; however, twos complement format can  
be realized by reversing the polarity of the MSB differential  
trace. As shown in Figure 158, the host feeds the AD9737A/  
AD9739A with deinterleaved input data into two 11-bit LVDS  
data ports (DB0 and DB1) at ½ the DAC clock rate (that is,  
MaxSkew + Jitter = Period(ps) − ValidWindow(ps) − Guard  
= 800 ps − 344 ps − 100 ps  
= 356 ps  
where ValidWindow(ps) is represented by tVALID and Guard is  
represented by tGUARD in Figure 159.  
The minimum specified LVDS valid window is 344 ps, and a  
guard band of 100 ps is recommended. Therefore, at the maxi-  
mum operating frequency of 2.5 GSPS, the maximum allowable  
FPGA and PCB bit skew plus jitter is equal to 356 ps.  
f
DAC/2). The AD9737A/AD9739A internal data receiver controller  
then generates a phase shifted version of DCI to register the  
input data on both the rising and falling edges.  
HOST  
For synchronous operation, the AD9737A/AD9739A provides  
a data clock output, DCO, to the host at the same rate as DCI  
(that is, fDAC/4) to maintain the lowest skew variation between  
these clock domains. The host processor has a worst case skew  
between DCO and DCI that is both implementation and  
process dependent. This worst case skew can also vary an  
additional 30% over temperature and supply corners. The delay  
line within the data receiver controller can track a 1.5 ns skew  
variation after initial lock. While it is possible for the host to  
have an internal PLL that generates a synchronous fDAC/4 from  
which the DCI signal is derived, digital implementations that  
result in the shortest propagation delays result in the lowest  
skew variation.  
AD9737A/AD9739A  
PROCESSOR  
EVEN DATA  
SAMPLES  
14 × 2  
fDATA  
= fDAC/2  
ODD DATA  
SAMPLES  
14 × 2  
1 × 2  
DCI  
fDCI  
=
fDAC/4  
1 × 2  
fDCO fDAC/4  
DCO  
fDAC  
DIV-BY-4  
The data receiver controller is used to ensure proper data hand-  
off between the host and AD9737A/AD9739A internal digital  
clock domains. The circuit shown in Figure 160 functions as a  
delay lock loop in which a 90° phase shifted version of the DCI  
clock input is used to sample the input data into the DDR receiver  
registers. This ensures that the sampling instance occurs in the  
middle of the data pattern eyes (assuming matched DCI and  
DBx[13:0] delays). Note that, because the DCI delay and sample  
delay clocks are derived from the DIV-BY-4 circuitry, this 90°  
phase relationship holds as long as the delay settings (that is,  
DCI_DEL in Register 0x13 and Register 0x14, and SMP_DEL in  
Register 0x11 and Register 0x12) are also matched.  
=
Figure 158. Recommended Digital Interface Between the AD9737A/AD9739A  
and Host Processor  
As shown in Figure 159, the DCI clock edges must be coincident  
with the data bit transitions with minimum skew, jitter, and  
intersymbol interference. To ensure coincident transitions with  
the data bits, the DCI signal should be implemented as an  
additional data line with an alternating (010101…) bit sequence  
from the same output drivers used for the data. Maximizing the  
opening of the eye in both the DCI and data signals improves  
the reliability of the data port interface. Differential controlled  
impedance traces of equal length (that is, delay) should also be  
used between the host processor and AD9737A/AD9739A  
input to limit bit-to-bit skew.  
2 × 1/f  
DAC  
DCI  
tVALID  
+ tGUARD  
max skew  
+ jitter  
tVALID  
DB0[13:0]  
AND DB1[13:0]  
Figure 159. LVDS Data Port Timing Requirements  
Rev.C | Page 49 of 64  
 
 
 
AD9737A/AD9739A  
Data Sheet  
DATA RECEIVER CONTROLLER  
DCI WINDOW PRE  
DDR  
FF  
DCI  
FINE  
DELAY  
DELAY  
DELAY  
DCI  
DELAY  
PATH  
PRE  
DCI DELAY  
DDR DCI WINDOW POST  
FF  
0
90  
180  
270  
STATE MACHINE/  
TRACKING LOOP  
FINE  
DELAY  
DIV-BY-4  
F
DAC  
POST  
SAMPLE  
DELAY  
DCI WINDOW SAMPLE  
DDR  
FF  
SAMPLE  
DELAY  
PATH  
FINE  
DELAY  
DELAY  
DELAY  
SAMPLE  
DATA TO  
CORE  
DDR  
FF  
DDR  
FF  
DDR  
FF  
DDR  
FF  
DBx[13:1]  
ELASTIC FIFO  
DCO  
Figure 160. Top Level Diagram of the Data Receiver Controller  
The DIV-BY-4 circuit generates four clock phases that serve as  
inputs to the data receiver controller. All DDR registers in the  
data and DCI paths operate on both clock edges; however, for  
clarity purposes, only the phases (that is, 0° and 90°) corresponding  
to the positive edge of each path are shown. One of the DIV-BY-  
4 phases is used to generate the DCO signal; therefore, the phase  
relationship between DCO and clocks fed into the controller  
remains fixed. Note that it is this attribute that allows possible  
factory calibration of images and clock spurs that are attributed  
to fDAC/4 modulation of the critical DAC clock.  
The skew or window width (FINE_DEL_SKEW) is set via  
Register 0x13, Bits[3:0], with a maximum skew of approximately  
300 ps and resolution of 12 ps. It is recommended that the skew  
be set to 36 ps (that is, Register 0x13 = 0x72) during initialization.  
Note that the skew setting also affects the speed of the controller  
loop, with tighter skew settings corresponding to longer  
response time.  
Data Receiver Controller Initialization Description  
The data controller should be initialized and placed into track  
mode as the second step in the SPI boot sequence. The following  
steps are recommended for the initialization of the data receiver  
controller:  
After this data has been successively sampled into the first set of  
registers, an elastic FIFO is used to transfer the data into the  
AD9737A/AD9739A clock domain. To track any phase variation  
continuously between the two clock domains, the data receiver  
controller should always be enabled and placed into track mode  
(Register 0x10, Bit 1 and Bit 0). Tracking mode operates cont-  
inuously in the background to track delay variations between  
the host and AD9737A/AD9739A clock domains. It does so by  
ensuring that the DCI signal is sampled within a very narrow  
window defined by two internally generated clocks (that is, PRE  
and PST), as shown in Figure 161. Note that proper sampling of  
the DCI signal can also be confirmed by monitoring the status  
of DCI_PRE_PH0 (Register 0x0C, Bit 2) and DCI_PST_PH0  
(Register 0x0C, Bit 0). If the delay settings are correct, the state  
of DCI_ PRE_PH0 should be 0, and the state of DCI_PST_PH0  
should be 1.  
1. Set FINE_DEL_SKEW to 2 for a larger DCI sampling window  
(Register 0x13 = 0x72). Note that the default DCI_DEL and  
SMP_DEL settings of 167 are optimum.  
2. Disable the controller before enabling (that is, Register 0x10  
= 0x00).  
3. Enable the Rx controller in two steps: Register 0x10 = 0x02  
followed by Register 0x10 = 0x03.  
4. Wait 135 k clock cycles.  
5. Read back Register 0x21 and confirm that it is equal to  
0x05 to ensure that the DLL loop is locked and tracking.  
6. Read back the DCI_DEL value to determine whether the  
value falls within a user defined tracking guard band. If it  
does not, go back to Step 2.  
DCI  
FINE DELAY  
PST  
FINE DELAY  
PRE  
FINE_DEL_SKEW  
Figure 161. Pre- and Post-Delay Sampling Diagram  
Rev.C | Page 50 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
After the controller is enabled during the initial SPI boot process  
(see Table 29), the controller enters a search mode where it  
seeks to find the closest rising edge of the DCI clock (relative to  
a delayed version of an internal fDAC/4 clock) by simultaneously  
adjusting the delays in the clocks used to register the DCI and  
data inputs. A state machine searches above and below the  
initial DCI_DEL value. The state machine first searches for the  
first rising edge above the DCI_DEL and then searches for the  
first rising edge below the DCI_DEL value. The state machine  
selects the closest rising edge and then enters track mode. It is  
recommended that the default midpoint delay setting (that is,  
Decimal 167) for the DCI_DEL and SMP_DEL bits be kept to  
ensure that the selected edge remains closest to the delay line  
midpoint, thus providing the greatest range for tracking timing  
variations and preventing the controller from falling out of lock.  
The data receiver controller can also be configured to generate  
an interrupt request (IRQ) upon losing lock. Losing lock can be  
caused by disruption of the main DAC clock input or loss of a  
power supply rail. To service the interrupt, the host can poll the  
RCVR_LCK bit (Bit 0, Recister 0x21) to determine the current  
state of the controller. If this bit is cleared, the search/track  
procedure can be restarted by setting the RCVR_LOOP_ON bit  
(Bit 1) in Register 0x10. After waiting the required lock time, the  
host can poll the RCVR_LCK bit to see if it has been set. Before  
leaving the interrupt routine, the RCVR_FLG_RST bit (Bit 2,  
Register 0x10) should be reset by writing a high followed by a  
low.  
LVDS Driver and Receiver Input  
The AD9737A/AD9739A feature an LVDS-compatible driver  
and receivers. The LVDS driver output used for the DCO signal  
includes an equivalent 200 Ω source resistor that limits its nominal  
output voltage swing to 200 mV when driving a 100 Ω load.  
The DCO output driver can be powered down via Register 0x01,  
Bit 5. An equivalent circuit is shown in Figure 162.  
VDD33  
The adjustable delay span for these internal clocks (that is, DCI and  
sample delay) is nominally 4 ns. The 10-bit delay value is user  
programmable from the decimal equivalent code (0 to 384)  
with approximately 12 ps/LSB resolution via the DCI_DEL  
(Register 0x13 and Register 0x14)and SMP_DEL registers  
(Register 0x11 and Register 0x12). When the controller is enabled,  
it overwrites these registers with the delay value it converges  
upon. The minimum difference between this delay value and  
the minimum/maximum values (that is, 0 and 384) represents  
the guard band for tracking. Therefore, if the controller initially  
converges upon a DCI_DEL and SMP_DEL value between 80  
and 3044, the controller has a guard band of at least 80 code  
(approximately 1 ns) to track phase variations between the  
clock domains.  
V+  
ESD  
V–  
V–  
ESD  
V+  
100100Ω  
DCO_P  
DCO_N  
VCM  
VSS  
Figure 162. Equivalent LVDS Output  
On initialization of the AD9737A/AD9739A, a certain period of  
time is required for the data receiver controller to establish a lock  
of the DCI clock signal. Note that, due to its dependency on the  
Mu controller, the data receiver controller should be enabled  
only after the Mu controllers have been enabled and established  
lock. All of the internal controllers operate at a submultiple of  
the DAC update rate. The number of fDAC clock cycles required  
to lock onto the DCI clock is typically 70 k clock cycles but can  
be up to 135 k clock cycles. During the SPI initialization process,  
the user has the option of polling Register 0x21 (Bit 0, Bit 1, and  
Bit 3) to determine if the data receiver controller is locked, has  
lost lock, or has entered into track mode before completing the  
boot sequence. Alternatively, the appropriate IRQ bit (Register 0x03  
and Register 0x04) can be enabled such that an IRQ output signal  
is generated upon the controller establishing lock.  
VDD33  
100Ω  
DCI_P  
DBx[13:0]P  
DCI_N  
DBx[13:0]N  
ESD  
ESD  
VSS  
Figure 163. AD9739A Equivalent LVDS Input  
Rev.C | Page 51 of 64  
 
 
AD9737A/AD9739A  
Data Sheet  
14-BIT  
DATA  
14-BIT  
DATA  
The LVDS receivers include 100 Ω termination resistors, as shown  
in Figure 163. These receivers meet the IEEE-1596.3-1996  
reduced swing specification (with the exception of input hysteresis,  
which cannot be guaranteed over all process corners). Figure 164  
and Table 26 show an example of nominal LVDS voltage levels  
seen at the input of the differential receiver with resulting  
common-mode voltage and equivalent logic level. Note that  
the AD9737A/AD9739A LVDS inputs do not include fail-safe  
capability; hence, any unused input should be biased with an  
external circuit or static driver. The LVDS receivers can be  
powered-down via Register 0x01, Bit 4.  
IOUTP  
DIGITAL  
ANALOG  
CIRCUITRY  
CIRCUITRY  
IOUTN  
MU  
DELAY  
PHASE  
DETECTOR  
MU  
DELAY  
DAC  
CLOCK  
CONTROLLER  
Figure 165. AD97339A Mu Delay Controller Block Diagram  
The Mu controller adjusts the timing relationship between the  
digital and analog domains via a tapped digital delay line having  
a nominal total delay of 864 ps. The delay value is programmable  
to a 9-bit resolution (that is, 0 to 432 decimal) via the MUDEL  
bits (Register 0x27 and 0x28), resulting in a nominal resolution  
of 2 ps/LSB. Because a time delay maps to a phase offset for a  
fixed clock frequency, the control loop essentially compares the  
phase relationship between the two clock domains and adjusts  
the phase (that is, via a tapped delay line) of the digital clock such  
that it is at the desired fixed phase offset (SET_PHS) from the  
critical analog clock.  
LVDS INPUTS  
(NO FAIL-SAFE)  
V
LVDS  
RECEIVER  
V
COM  
= (V + V )/2  
100Ω  
P,N  
P
N
V
V
P
N
GND  
Example  
V
V
1.4V  
P
1.0V  
0.4V  
18  
N
V
P
N
16  
GUARD  
BAND  
0V  
GUARD  
BAND  
14  
12  
10  
8
V
–0.4V  
LOGIC 1  
LOGIC BIT  
EQUIVALENT  
DESIRED  
PHASE  
LOGIC 0  
Figure 164. LVDS Data Input Levels  
6
Table 26. Example of LVDS Input Levels  
Resulting  
Common-  
Differential Mode  
4
SEARCH STARTING  
LOCATION  
Resulting  
2
Logic Bit  
Binary  
Equivalent  
0
Applied Voltages  
Voltage  
Voltage  
0
40  
80 120 160 200 240 280 320 360 400 440  
MU DELAY  
VP  
VN  
VP, N  
VCOM  
1.4 V  
1.0 V  
1.0 V  
0.8 V  
1.0 V  
1.4 V  
0.8 V  
1.0 V  
+0.4 V  
1.2 V  
1
0
1
0
Figure 166. Typical Mu Phase Characteristic Plot at 2.4 GSPS  
−0.4 V  
1.2 V  
Figure 166 maps the typical Mu phase characteristic at 2.4 GSPS vs.  
the 9-bit digital delay setting (MUDEL). The Mu phase scaling  
is such that a value of 16 corresponds to 180 degrees. The critical  
keep-out window between the digital and analog domains occurs  
at a value of 0 (but can extend out to 2 depending on the clock  
rate). The target Mu phase (and slope) is selected to provide  
optimum ac performance while ensuring that the Mu controller  
for any device can establish and maintain lock. For example,  
although a slope and phase setting of −6 is considered optimum  
for operation between 1.6 GSPS and 2.5 GSPS, other values are  
required below 1.6 GSPS.  
+200 mV  
−200 mV  
900 mV  
900 mV  
MU CONTROLLER  
A delay lock loop (DLL) is used to optimize the timing between  
the internal digital and analog domains of the AD9737A/AD9739A  
such that data is successfully transferred into the TxDAC core at  
rates of up to 2.5 GSPS. As shown in Figure 165, the DAC clock  
is split into an analog and a digital path with the critical analog  
path leading to the DAC core (for minimum jitter degradation)  
and the digital path leading to a programmable delay line. Note that  
the output of this delay line serves as the master internal digital  
clock from which all other internal and external digital clocks  
are derived. The amount of delay added to this path is under the  
control of the Mu controller, which optimizes the timing between  
these two clock domains and continuously tracks any variation  
(once in track mode) to ensure proper data hand-off.  
Rev.C | Page 52 of 64  
 
 
 
 
 
Data Sheet  
AD9737A/AD9739A  
18  
band setting of 11 (that is, Register 0x29 = 0xCB) corresponds  
to 88 LSBs, thus providing sufficient margin.  
NOM_P1  
SLOW_P1  
FAST_P1  
16  
14  
12  
10  
8
Mu Controller Initialization Description  
The Mu controller must be initialized and placed into track mode  
as a first step in the SPI boot sequence. The following steps are  
required for initialization of the Mu controller. Note that the  
AD9737A/AD9739A data sheet specifications and characterization  
data are based on the following Mu controller settings:  
6
4
1. Turn on the phase detector with boost (Register 0x24 = 0x30).  
2. Enable the Mu delay controller duty-cycle correction  
circuitry and specify the recommended slope for phase.  
(that is, Register 0x25 = 0x80 corresponds to a negative slope).  
3. Specify search/track mode with a recommended target  
phase, SET_PHS, of 6 (for example) and an initial  
MUDEL[8:0] setting of 216 (Register 0x27 = 0x46 and  
Register 0x28 = 0x6C).  
4. Set search tolerance to exact, and retry if the search fails its  
initial attempt. Also, set the guard band to the recommended  
setting of 11 (Register 0x29 = 0xCB).  
5. Set the Mu controller tracking gain to the recommended  
setting and enable the Mu controller state machine  
(Register 0x26 = 0x03).  
2
0
0
40  
80 120 160 200 240 280 320 360 400 440  
DELAY LINE TAP  
Figure 167. Mu Phase Characteristics of Three Devices from Different Process  
Lots at 1.2 GSPS  
The Mu phase characteristics can vary significantly among devices  
due to gm variations in the digital delay line that are sensitive to  
process skews, along with temperature and supply. As a result,  
careful selection of the target phase location is required such that  
the Mu controller can converge upon this phase location for all  
devices.  
Figure 167 shows the Mu phase characteristics of three devices  
at 25°C from slow, nominal, and fast skew lots at 1.2 GSPS. Note  
that a −6 Mu phase setting does not map to any delay line tap  
setting for the fast process skew case; therefore, another target Mu  
phase is recommended at this clock rate.  
On completion of the last step, the Mu controller begins a search  
algorithm that starts with an initial delay setting specified by the  
MUDEL bits (that is, 216, which corresponds to the midpoint of  
the delay line). The initial search algorithm works by sweeping  
through different Mu delay values in an alternating manner until  
the desired phase (that is, a SET_PHS of 4) is exactly measured.  
When the desired phase is measured, the slope of the phase  
measurement is then calculated and compared against the  
specified slope (slope = negative).  
Table 27 provides a list of recommended Mu phase/slope settings  
over the specified clock range of the AD9737A/AD9739A based  
on the considerations previously described. These values should  
be used to ensure robust operation of the Mu controller.  
Table 27. Recommended Target Mu Phase Settings vs. Clock Rate  
Clock Rate (GSPS)  
If everything matches, the search algorithm is finished. If not, the  
search continues in both directions until an exact match is found  
or a programmable guard band is reached in one of the directions.  
When the guard band is reached, the search still continues but  
only in the opposite direction. If the desired phase is not found  
before the guard band is reached in the second direction, the search  
changes back to the alternating mode and continues looking  
within the guard band. The typical locking time for the Mu  
controller is approximately 180 k DAC cycles (at 2 GSPS ~ 75 µs).  
Slope  
Mu Phase  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
+
+
+
6
4
5
8
12  
12  
10  
8
The search fails if the Mu delay controller reaches the endpoints.  
The Mu controller can be configured to retry (Register 0x29,  
Bit 6) the search or stop. For applications that have a micro-  
controller, the preferred approach is to poll the MU_LKD status  
bit (Register 0x2A, Bit 0) after the typical locking time has expired.  
This method lets the system controller check the status of other  
system parameters (that is, power supplies and clock source)  
before reattempting the search (by writing 0x03 to Register 0x26).  
1.6 to 2.5  
6
After the Mu controller completes its search and establishes lock  
on the target Mu phase, it attempts to maintain a constant timing  
relationship between the two clock domains over the specified  
temperature and supply range. If the Mu controller requests a Mu  
delay setting that exceeds the tapped delay line range (that is, <0  
or >432), the Mu controller can lose lock, causing possible system  
disruption (that is, can generate an IRQ or restart the search). To  
avoid this scenario, symmetrical guard bands are recommended at  
each end of the Mu delay range. The guard band scaling is such  
that one LSB of Guard[4:0] (Register 0x29) corresponds to eight  
LSBs of MUDEL[8:0] (Register 0x28). The recommended guard  
Rev.C | Page 53 of 64  
 
 
AD9737A/AD9739A  
Data Sheet  
For applications that do not have polling capabilities, the Mu  
controller state machine should be reconfigured to restart the  
search, such that lock can be re-attempted with system conditions  
that may have changed and be different, and thus may enable  
the controller to lock.  
should validate the present status of the suspect controller by  
reading back its current status bits, which are available in  
Register 0x21 and/or Register 0x2A. Based on the status of these  
bits, the host can take appropriate action, if required, to  
reestablish lock. To clear an IRQ after servicing, it is necessary  
to reset relevant bits in Register 0x03 by writing 0 followed by  
another write of 1 to reenable. A detailed diagram of the  
interrupt circuitry is shown in Figure 168.  
After the Mu delay value is found that exactly matches the desired  
Mu phase setting and slope (for example, 6 with a negative slope),  
the Mu controller goes into track mode. In this mode, the Mu  
controller makes slight adjustments to the delay value to track any  
variations between the two clock paths due to temperature, time,  
and supply variations. Two status bits, MU_LKD (Register 0x2A,  
Bit 0) and MU_LST (Register 0x2A, Bit 1) are available to the  
user to signal the existing status control loop. If the current  
phase is more than four steps away from the desired phase, the  
MU_LKD bit is cleared, and if the lock acquired was previously  
set, the MU_LST bit is set. Should the phase deviation return to  
within three steps, the MU_LKD bit is set again while the MU_LST  
is cleared. Note that this sort of event may occur if the main  
clock input (that is, DACCLK) is disrupted or the Mu controller  
exceeds the tapped delay line range (that is, <0 or >432).  
(PIN F13)  
SPI ISR  
INT  
D
INT(n)  
SOURCE  
SPI  
DATA  
Q
READ DATA  
INT  
SOURCE  
SPI WRITE  
SCLK  
SPI ADDRESS  
IMR  
DATA = 1  
Figure 168. Interrupt Request Circuitry  
It is also possible to use the IRQ during the AD9737A/AD9739A  
initialization phase after power-up to determine when the Mu  
and data receiver controllers have achieved lock. For example,  
before enabling the Mu controller, the MU_LCK_EN bit can be set  
and the IRQ output signal monitored to determine when lock has  
been established before continuing in a similar manner with the  
data receiver controllers. Note that the relevant LCK bit should  
be cleared before continuing to the next controller. After all  
controllers are locked, the lost lock enable bits (that is,  
x_LST_EN) should be set.  
If lock is lost, the Mu controller has the option of remaining in  
the tracking loop or resetting and starting the search again via  
the CONTRST bit (Register 0x29, Bit 5). Continued tracking is  
the preferred state because it is the least disruptive to a system  
in which the AD9737A/AD9739A temporarily loses lock. The  
user can poll the Mu delay and phase value by first setting the  
read bit high (Register 0x26, Bit 3). After the read bit is set, the  
MUDEL[8:0] bits and the SET_PHS[4:0] bits (Register 0x27  
and Register 0x28) that the controller is currently using can be  
read.  
Table 28. Interrupt Request Registers  
Address (Hex)  
Bit  
Description  
MU_LST_EN  
MU_LCK_EN  
RCV_LST_EN  
RCV_LCK_EN  
MU_LST_IRQ  
MU_LCK_IRQ  
RCV_LST_IRQ  
RCV_LCK_IRQ  
RCVR_TRK_ON  
RCVR_LST  
0x03  
3
INTERRUPT REQUESTS  
2
The AD9737A/AD9739A can provide the host processor with  
an interrupt request output signal (IRQ) that indicates that one  
or more of the AD9737A/AD9739A internal controllers have  
achieved lock or lost lock. These controllers include the Mu, data  
receiver, and synchronization controllers. The host can then  
poll the IRQ status register (Register 0x04) to determine which  
controller has lost lock. The IRQ output signal is an active high  
output signal available on Pin F13. If used, its output should be  
connected via a 10 kΩ pull-up resistor to VDD33.  
1
0
0x04  
3
2
1
0
0x21  
0x2A  
3
1
0
RCVR_LCK  
Each IRQ is enabled by setting the enable bits in Register 0x03,  
which purposely has the same bit mapping as the IRQ status bits in  
Register 0x04. Note that these IRQ status bits are set only when  
the controller transitions from a false to true state. Hence, it is  
possible for the x_LCK_IRQ and x_LST_IRQ status bits to be set  
when a controller temporarily loses lock but is able to reestablish  
lock before the IRQ is serviced by the host. In this case, the host  
1
MU_LST  
0
MU_LKD  
Rev.C | Page 54 of 64  
 
 
 
Data Sheet  
AD9737A/AD9739A  
ANALOG INTERFACE CONSIDERATIONS  
ANALOG MODES OF OPERATION  
INPUT  
DATA  
D
D
D
D
D
D
D
D
D
D
10  
1
2
3
4
5
6
7
8
9
DACCLK_x  
The AD9737A/AD9739A use the quad-switch architecture  
shown in Figure 169. The quad-switch architecture masks the  
code-dependent glitches that occur in a conventional two-switch  
DAC. Figure 170 compares the waveforms for a conventional  
DAC and the quad-switch DAC. In the two-switch architecture,  
a code-dependent glitch occurs each time the DAC switches to  
a different state (that is, D1 to D2). This code-dependent glitching  
causes an increased amount of distortion in the DAC. In quad-  
switch architecture (no matter what the codes are), there are  
always two switches transitioning at each half clock cycle, thus  
eliminating the code-dependent glitches. However, a constant  
glitch occurs at 2 × DACCLK_x because half the internal switches  
change state on the rising DACCLK_x edge whereas the other  
half change state on the falling DACCLK_x edge.  
D
–D  
8
3
D
D
–D  
–D  
9
2
4
7
D
D
–D  
–D  
10  
1
5
6
FOUR-SWITCH  
DAC OUTPUT  
t
(
fS MIX MODE)  
D
–D  
5
D
10  
–D  
6
1
–D  
–D  
D
D
9
2
4
7
–D  
D
8
3
Figure 171. Mix-Mode DAC Waveforms  
Figure 171 shows the DAC waveforms for mix-mode. This ability  
to change modes provides the user the flexibility to place a  
carrier anywhere in the first two Nyquist zones, depending  
on the operating mode selected. Switching between the analog  
modes reshapes the sinc roll-off that is inherent at the DAC output.  
The maximum amplitude in both Nyquist zones is impacted by  
this sinc roll-off, depending on where the carrier is placed (see  
Figure 172). As a practical matter, the usable bandwidth in the  
third Nyquist zone becomes limited at higher DAC clock rates  
(that is, >2 GSPS) when the output bandwidth of the DAC core  
and the interface network (that is, balun) contributes to  
additional roll-off.  
VDD  
DACCLK_x  
CLK  
V
V
V
V
1
2
3
4
G
G
G
V
1
V
2
V
3
V 4  
G
LATCHES  
G
G
G
DBx[13:0]  
G
FIRST  
NYQUIST ZONE  
SECOND  
NYQUIST ZONE  
THIRD  
NYQUIST ZONE  
IOUTP  
IOUTN  
0
–5  
Figure 169. AD9739A Quad-Switch Architecture  
MIX MODE  
INPUT  
D
D
D
D
D
D
D
D
D
D
D
D
1
2
3
4
5
6
7
8
9
10  
DATA  
–10  
–15  
–20  
–25  
–30  
–35  
DACCLK_x  
NORMAL  
MODE  
D
D
D
3
D
D
t
t
1
2
4
5
TWO-SWITCH  
DAC OUTPUT  
D
D
D
6
7
8
9
10  
FOUR-SWITCH  
DAC OUTPUT  
(NORMAL MODE)  
D
D
D
D
D
10  
6
7
8
9
D
D
D
D
D
5
1
2
3
4
0FS  
0.25FS  
0.50FS  
0.75FS  
1.00FS  
1.25FS  
1.50FS  
Figure 170. Two-Switch and Quad-Switch DAC Waveforms  
FREQUENCY (Hz)  
Another attribute of the quad-switch architecture is that it also  
enables the DAC core to operate in one of the following two  
modes: normal mode and mix-mode. The mode is selected via  
SPI Register 0x08, Bits[1:0], with normal mode being the default  
value. In the mix-mode, the output is effectively chopped at the  
DAC sample rate. This has the effect of reducing the power of  
the fundamental signal while increasing the power of the images  
centered around the DAC sample rate, thus improving the  
output power of these images.  
Figure 172. Sinc Roll-Off for Each Analog Operating Mode  
Rev.C | Page 55 of 64  
 
 
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
CLOCK INPUT CONSIDERATIONS  
AD9737A/AD9739A  
V
V
V
CC  
REF  
ADCLK914  
T
50Ω 50Ω  
50Ω  
50Ω  
10nF  
10nF  
100Ω  
10nF  
D
D
50Ω  
Q
Q
DACCLK_P  
DACCLK_N  
10nF  
50Ω  
V
EE  
Figure 173. ADCLK914 Interface to the AD9737A/AD9739A CLK Input  
AD9737A/AD9739A  
3.9nH  
V
VCO  
ADF4350  
1nF  
RF  
RF  
A+  
A–  
OUT  
DACCLK_P  
N
DIV-BY-2  
N = 0 – 4  
PLL  
100Ω  
1.8V p-p  
VCO  
1nF  
DACCLK_N  
FREF  
OUT  
RF  
RF  
A+  
A–  
OUT  
OUT  
Figure 174. ADF4350 Interface to the AD9737A/AD9739A CLK Input  
The quality of the clock source and its drive strength are important  
considerations in maintaining the specified ac performance.  
The phase noise and spur characteristics of the clock source  
should be selected to meet the target application requirements.  
Phase noise and spurs at a given frequency offset on the clock  
source are directly translated to the output signal. It can be shown  
that the phase noise characteristics of a reconstructed output  
Figure 174 shows a clock source based on the ADF4350 low phase  
noise/jitter PLL. The ADF4350 can provide output frequencies  
from 140 MHz up to 4.4 GHz with jitter as low as 0.5 ps rms.  
Each single-ended output can provide a squared-up output  
level that can be varied from −4 dBm to +5 dBm, allowing for  
>2 V p-p output differential swings. The ADF4350 also includes  
an additional CML buffer that can be used to drive another  
AD9737A/AD9739A device.  
sine wave are related to the clock source by 20 × log10(fOUT/fCLK  
when the DAC clock path contribution, along with thermal and  
quantization effects, are negligible.  
)
VDDC  
4-BIT PMOS  
IOUT ARRAY  
The AD9737A/AD9739A clock receiver provides optimum jitter  
performance when driven by a fast slew rate originating from  
the LVPECL or CML output drivers. For a low jitter sinusoidal  
clock source, the ADCLK914 can be used to square-up the signal  
and provide a CML input signal for the AD9737A/AD9739A  
clock receiver. Note that all specifications and characterization  
presented in the data sheet are with the ADCLK914 driven by a  
high quality RF signal generator with the clock receiver biased at  
an 800 mV level.  
CLKx_OFFSET  
DIR_x = 0  
DACCLK_P  
ESD  
DACCLK_N  
CLKx_OFFSET  
DIR_x = 0  
4-BIT NMOS  
IOUT ARRAY  
VSSC  
Figure 175. Clock Input and Common-Mode Control  
Rev.C | Page 56 of 64  
 
 
 
Data Sheet  
AD9737A/AD9739A  
The AD9737A/AD9739A clock receiver features the ability to  
independently adjust the common-mode level of its inputs over  
a span of 100 mV centered about its mid-supply point (that is,  
VDDC/2), as well as an offset for hysteresis purposes. Figure 175  
shows the equivalent input circuit of one of the inputs. ESD  
diodes are not shown for clarity purposes. It has been found  
through characterization that the optimum setting is for both  
inputs to be biased at approximately 0.8 V. This can be achieved  
by writing a 0x0F (corresponding to a −15) setting to both cross  
controller registers (that is, Register 0x22 and Register 0x23).  
An external reference can be used to overdrive the internal  
reference by connecting it to the VREF pin.  
I
OUTFS can be adjusted digitally over 8.7 mA to 31.7 mA by using  
FSC[9:0] (Register 0x06 and Register 0x07).  
The following equation relates IOUTFS to the FSC[9:0] bits, which  
can be set from 0 to 1023.  
I
OUTFS = 22.6 × FSC[9:0]/1000 + 8.7  
(1)  
Note that a default value of 0x200 generates 20 mA full scale, which  
is used for most of the characterization presented in this data  
sheet (unless noted otherwise).  
1.10  
CLKP  
CLKN  
1.05  
ANALOG OUTPUTS  
Equivalent DAC Output and Transfer Function  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
The AD9737A/AD9739A provide complementary current  
outputs, IOUTP and IOUTN, that source current into an external  
ground reference load. Figure 178 shows an equivalent output  
circuit for the DAC. Note that, compared to most current output  
DACs of this type, the AD9737A/AD9739A outputs exhibit a  
slight offset current (that is, IOUTFS/16), and the peak differential  
ac current is slightly below IOUTFS/2 (that is, 15/32 × IOUTFS).  
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9 11 13 15  
OFFSET CODE  
I
= 8.6 – 31.2mA  
OUTFS  
Figure 176. Common-Mode Voltage with Respect to  
CLKP_OFFSET/CLKN_OFFSET and DIR_P/DIR_N  
17/32 × I  
OUTFS  
VOLTAGE REFERENCE  
I =  
PEAK  
15/32 × I  
OUTFS  
AC  
2.2pF  
70Ω  
The AD9737A/AD9739A output current is set by a combination  
of digital control bits and the I120 reference current, as shown  
in Figure 177.  
17/32 × I  
OUTFS  
AD9737A/AD9739A  
Figure 178. Equivalent DAC Output Circuit  
FSC[9:0]  
V
BG  
DAC  
1.2V  
As shown in Figure 178, the DAC output can be modeled as a  
pair of dc current sources that source a current of 17/32 × IOUTFS to  
each output. A differential ac current source, IPEAK, is used to  
model the signal-dependent nature of the DAC output. The  
polarity and signal dependency of this ac current source are  
related to the digital code by the following equation:  
VREF  
I120  
+
CURRENT  
SCALING  
1nF  
IFULL-SCALE  
10kΩ  
I120  
VSSA  
F(Code) = (DACCODE − 8192)/8192  
−1 < F(Code) < 1  
(2)  
(3)  
Figure 177. Voltage Reference Circuit  
The reference current is obtained by forcing the band gap voltage  
across an external 10 kΩ resistor from I120 (Pin B14) to ground.  
The 1.2 V nominal band gap voltage (VREF) generates a 120 µA  
reference current in the 10 kΩ resistor. Note the following  
constraints when configuring the voltage reference circuit:  
where DACCODE = 0 to 16,383 (decimal).  
Because IPEAK can swing (15/32) × IOUTFS, the output currents  
measured at IOUTP and IOUTN can span from IOUTFS/16 to IOUTFS  
However, because the ac signal-dependent current component  
is complementary, the sum of the two outputs is always constant  
(that is, IOUTP + IOUTN = (34/32) × IOUTFS).  
.
Both the 10 kΩ resistor and 1 nF bypass capacitor are required  
for proper operation.  
Digitally adjust the DACs output full-scale current, IOUTFS  
from its default setting of 20 mA.  
,
The AD9737A/AD9739A are not a multiplying DAC.  
Modulating the reference current, I120, with an ac signal is  
not supported.  
The band gap voltage appearing at the VREF pin (Pin C14)  
must be buffered for use with an external circuitry because  
its output impedance is approximately 5 kΩ.  
Rev.C | Page 57 of 64  
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
The code-dependent current measured at the IOUTP and  
IOUTN outputs is as follows:  
If the AD9737A/AD9739A are programmed for IOUTFS = 20 mA,  
the peak ac current is 9.375 mA and the peak power delivered to  
the equivalent load is 2.2 mW (that is, P = I2R). Because the source  
and load resistance seen by the 1:1 balun are equal, this power is  
shared equally; therefore, the output load receives 1.1 mW or  
0.4 dBm.  
IOUTP = 17/32 × IOUTFS + 15/32 × IOUTFS × F(Code)  
IOUTN = 17/32 × IOUTFS − 15/32 × IOUTFS × F(Code)  
(4)  
(5)  
Figure 179 shows the IOUTP vs. DACCODE transfer function  
when IOUTFS is set to 19.65 mA.  
To calculate the rms power delivered to the load, the following  
must be considered:  
20  
18  
16  
14  
12  
10  
8
Peak-to-rms of the digital waveform  
Any digital backoff from digital full scale  
The DAC’s sinc response and nonideal losses in external  
network  
For example, a reconstructed sine wave with no digital backoff  
ideally measures −2.6 dBm because it has a peak-to-rms ratio of  
3 dB. If a typical balun loss of 0.4 dBm is included, −3 dBm of  
actual power can be expected in the region where the sinc response  
of the DAC has negligible influence. Increasing the output  
power is best accomplished by increasing IOUTFS, although any  
degradation in linearity performance must be considered  
acceptable for the target application.  
6
4
2
0
0
4096  
8192  
12,288  
16,384  
DAC CODE  
Figure 179. Gain Curve for FSC[9:0] = 512, DAC OFFSET = 1.228 mA  
Peak DAC Output Power Capability  
The maximum peak power capability of a differential current  
output DAC is dependent on its peak differential ac current, IPEAK  
and the equivalent load resistance it sees. Because the AD9737A/  
,
AD9739A include a differential 70 Ω resistance, it is best to use  
a doubly terminated external output network similar to what is  
shown in Figure 181. In this case, the equivalent load seen by  
the ac current source of the DAC is 25 Ω.  
R
SOURCE  
= 50Ω  
I
= 8.6 – 31.2mA  
OUTFS  
=
LOSSLESS  
BALUN  
1:1  
I
R
PEAK  
15/32 × I  
LOAD  
= 50Ω  
AC  
70Ω  
180Ω  
OUTFS  
Figure 180. Equivalent Circuit for Determining Maximum Peak Power  
to a 50 Ω Load  
Rev.C | Page 58 of 64  
 
Data Sheet  
AD9737A/AD9739A  
Figure 183 shows an interface that can be considered when  
interfacing the DAC output to a self-biased differential gain  
block. The inductors shown serve as RF chokes (L) that provide  
the dc bias path to analog ground. The value of the inductor, along  
with the dc blocking capacitors (C), determines the lower cutoff  
frequency of the composite pass-band response. An RF balun  
should also be considered before the RF differential gain stage and  
any filtering to ensure symmetrical common-mode impedance  
seen by the DAC output while suppressing any common mode  
noise, harmonics, and clock spurs prior to amplification.  
OPTIONAL BALUN AND FILTER  
OUTPUT STAGE CONFIGURATION  
The AD9737A/AD9739A are intended to serve high dynamic  
range applications that require wide signal reconstruction  
bandwidth (that is, DOCSIS CMTS) and/or high IF/RF signal  
generation. Optimum ac performance can be realized only if  
the DAC output is configured for differential (that is, balanced)  
operation with its output common-mode voltage biased to  
analog ground. The output network used to interface to the  
DAC should provide a near 0 Ω dc bias path to analog ground.  
Any imbalance in the output impedance between the IOUTP  
and IOUTN pins results in asymmetrical signal swings that  
degrade the distortion performance (mostly even order) and noise  
performance. Component selection and layout are critical in  
realizing the performance potential of the AD9737A/AD9739A.  
IOUTP  
C
90Ω  
L
RF DIFF  
AMP  
C
70Ω  
LPF  
90Ω  
L
IOUTN  
®
MINI-CIRCUITS  
TC1-33-75G+  
IOUTP  
Figure 183. Interfacing the DAC Output to the Self-Biased Differential  
Gain Stage  
90Ω  
70Ω  
For applications operating the AD9737A/AD9739A in mix-mode  
with output frequencies extending beyond 2.2 GHz, the circuits  
shown in Figure 184 should be considered. The circuit in  
Figure 184 uses a wideband balun with a configuration similar  
to the one shown in Figure 183 to provide a dc bias path for the  
DAC outputs. The circuit in Figure 185 takes advantage of ceramic  
chip baluns to provide a dc bias path for the DAC outputs while  
providing excellent amplitude/phase balance over a narrower  
RF band. These low cost, low insertion loss baluns are available  
for different popular RF bands and provide excellent amplitude/  
phase balance over their specified frequency range.  
IOUTN  
90Ω  
Figure 181. Recommended Balun for Wideband Applications with Upper  
Bandwidths of up to 2.2 GHz  
Most applications requiring balanced-to-unbalanced conversion  
can take advantage of the Ruthroff 1:1 balun configuration  
shown in Figure 181. This configuration provides excellent  
amplitude/phase balance over a wide frequency range while  
providing a 0 Ω dc bias path to each DAC output. Also, its design  
provides exceptional bandwidth and can be considered for  
applications requiring signal reconstruction of up to 2.2 GHz.  
The characterization plots shown in this data sheet are based  
on the AD9737A/AD9739A evaluation board, which uses this  
configuration. Figure 182 compares the measured frequency  
response for normal and mix-mode using the AD9737A/AD9739A  
evaluation board vs. the ideal frequency response.  
MINI-CIRCUITS  
TC1-1-462M  
C
IOUTP  
90Ω  
90Ω  
L
L
70Ω  
IOUTN  
C
Figure 184. Recommended Mix-Mode Configuration Offering Extended RF  
Bandwidth Using a TC1-1-43A+ Balun  
0
IDEAL BASEBAND MODE  
–3  
MURATA  
JOHANSON TECHNOLOGY  
CHIP BALUNS  
BASEBAND  
TC1-33-75G  
–6  
–9  
IOUTP  
MIX MODE  
TC1-33-75G  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
70Ω  
180Ω  
IDEAL MIX MODE  
IOUTN  
Figure 185. Lowest Cost and Size Configuration for Narrow RF Band  
Operation  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
FREQUENCY (MHz)  
Figure 182. Measured vs. Ideal Frequency Response for Normal (Baseband)  
and Mix-Mode Operation Using a TC1-33-75G Transformer on  
the AD9737A/AD9739A EVB  
Rev.C | Page 59 of 64  
 
 
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
3. Images appear as replicas of the original signal, hence, can  
be easier to identify. In the case of the AD9737A/AD9739A,  
internal modulation of the sampling clock at intervals  
NONIDEAL SPECTRAL ARTIFACTS  
The AD9737A/AD9739A output spectrum contains spectral  
artifacts that are not part of the original digital input waveform.  
These nonideal artifacts include harmonics (including alias  
harmonics), images, and clock spurs. Figure 186 shows a spectral  
plot of the AD9737A/AD9739A within the first Nyquist zone  
(that is, dc to fDAC/2) reconstructing a 650 MHz, 0 dBFS sine wave  
at 2.4 GSPS. Besides the desired fundamental tone at the −7.8 dBm  
level, the spectrum also reveals these nonideal artifacts that also  
appear as spurs above the measurement noise floor. Because  
these nonideal artifacts are also evident in the second and third  
Nyquist zones during mix-mode operation, the effects of these  
artifacts should also be considered when selecting the DAC  
clock rate for a target RF band.  
related to fDAC/4 generate image pairs at ¼ × fDAC, ½ × fDAC  
and ¾ × fDAC. Both upper and lower sideband images  
,
associated with ¼ × fDAC fall within the first Nyquist zone,  
whereas only the lower image of ½ × fDAC and ¾ × fDAC fall  
back. Note that the lower images appear frequency inverted.  
The ratio between the fundamental and various images (that  
is, dBc) remains mostly signal independent because the  
mechanism causing these images is related to corruption of  
the sampling clock.  
4. The magnitude of these images for a given device depends  
on several factors, including DAC clock rate, output  
frequency, and Mu controller phase setting. Because the  
image magnitude is repeatable between power-up cycles  
(assuming the same conditions), a one-time factory  
calibration procedure can be used to improve suppression.  
Calibration consists of additional dedicated DSP resources in  
the host that can generate a replica of the image with proper  
amplitude, phase, and frequency scaling to cancel the image  
from the DAC. Because the image magnitude can vary  
among devices, each device must be calibrated.  
5. A clock spur appears at fDAC/4 and integer multiples of it.  
Similar to images, the spur magnitude also depends on the  
same factors that cause variations in image levels. However,  
unlike images and harmonics, clock spurs always appear  
as discrete spurs, albeit their magnitude shows a slight  
dependency on the digital waveform and output frequency.  
The calibration method is similar to image calibration;  
however, only a digital tone of equal amplitude and  
opposite phase at fDAC/4 need be generated.  
0
FUND AT  
–7.6dBm  
–10  
–20  
–30  
–40  
fDAC/2 –  
3/4 × fDAC/4 –  
fOUT  
fDAC/4  
fOUT  
–50  
–60  
HD3  
fDAC/4 –  
fOUT  
HD2  
HD5  
HD6  
–70  
HD9  
HD4  
–80  
–90  
–100  
0
200  
400  
600  
800  
1000  
1200  
FREQUENCY (MHz)  
Figure 186. Spectral Plot  
Note the following important observations pertaining to these  
nonideal spectral artifacts:  
6. A large clock spur also appears at 2 × fDAC in either normal  
or mix-mode operation. This clock spur is due to the quad  
switch DAC architecture causing switching events to occur  
1. A full-scale sine wave (that is, single-tone) typically represents  
the worst case condition because it is has a peak-to-rms  
ratio of 3 dB and is unmodulated. Harmonics and aliased  
harmonics of a sine wave are easy to identify because they  
also appear as discrete spurs. Significant characterization of  
a high speed DAC is performed using single (or multitone)  
signals for this reason.  
on both edges of fDAC  
.
2. Modulated signals (that is, AM, PM, or FM) do not appear  
as spurs but rather as signals whose power spectral density  
is spread over a defined bandwidth determined by the  
modulation parameters of the signals. Any harmonics from  
the DAC spread over a wider bandwidth determined by the  
order of the harmonic and bandwidth of the modulated signal.  
For this reason, harmonics often appear as slight bumps in  
the measurement noise floor and can be difficult to discern.  
Rev.C | Page 60 of 64  
 
 
Data Sheet  
AD9737A/AD9739A  
LAB EVALUATION OF THE AD9737A/AD9739A  
RECOMMENDED START-UP SEQUENCE  
Figure 187 shows a recommended lab setup that was used to  
characterize the performance of the AD9737A/AD9739A. The  
DPG2 is a dual port LVDS/CMOS data pattern generator that is  
available from Analog Devices, Inc., with an up to 1.25 GSPS  
data rate. The DPG2 directly interfaces to the AD9737A/AD9739A  
evaluation board via Tyco Z-PACK HM-Zd connectors. A low  
phase noise/jitter RF source such as an R&S SMA100A signal  
generator is used for the DAC clock. A +5 V power supply is  
used to power up the AD9737A/AD9739A evaluation board,  
and SMA cabling is used to interface to the supply, clock source,  
and spectrum analyzer. A USB 2.0 interface to a host PC is used  
to communicate to both the AD9737A/AD9739A evaluation  
board and the DPG2.  
On power-up of the AD9737A/AD9739A, a host processor is  
required to initialize and configure the AD9737A/AD9739A  
via its SPI port. Figure 188 shows a flowchart of the sequential  
steps required. Table 29 provides more detail on the SPI register  
write/read operations required to implement the flowchart  
steps. Note the following:  
A software reset is optional because the AD9737A/AD9739A  
have both an internal POR circuit and a RESET pin.  
The Mu controller must be first enabled (and in track mode)  
before the data receiver controller is enabled because the DCO  
output signal is derived from this circuitry.  
A wait period is related to fDATA periods.  
Limit the number of attempts to lock the controllers to three;  
locks typically occur on the first attempt.  
A high dynamic range spectrum analyzer is required to evaluate  
the ac performance of the AD9737A/AD9739A reconstructed  
waveform. This is especially the case when measuring ACLR  
performance for high dynamic range applications such as  
multicarrier DOCSIS CMTS applications. Harmonic, SFDR,  
and IMD measurements pertaining to unmodulated carriers  
can benefit by using a sufficiently high RF attenuation setting  
because these artifacts are easy to identify above the spectrum  
analyzer noise floor. However, reconstructed waveforms having  
modulated carrier(s) often benefit from the use of a high dynamic  
range RF amplifier and/or passive filters to measure close-in  
and wideband ACLR performance when using spectrum  
analyzers of limited dynamic range.  
Hardware or software interrupts can be used to monitor the  
status of the controllers.  
CONFIGURE  
SPI PORT  
NO  
NO  
CONFIGURE  
MU CONT.  
CONFIGURE  
RX DATA  
CONT.  
RECONFIGURE  
TXDAC FROM  
DEFAULT SETTING  
SOFTWARE  
RESET  
WAIT A  
FEW 100µs  
WAIT A  
FEW 100µs  
SET CLK  
INPUT CMV  
OPTIONAL  
RX DATA  
CONT.  
LOCKED?  
MU CONT.  
LOCKED?  
USB 2.0  
YES  
YES  
LAB  
PC  
ADI PATTERN GENERATOR  
DPG2  
Figure 188. Flowchart for Initialization and Configuration of the  
AD9737A/AD9739A  
LVDS  
DATA  
AND DCI  
DCO  
GPIB  
1.6GHz TO  
2.5GHz  
3dBm  
POWER  
SUPPLY  
+5V  
AD9739  
EVAL. BOARD  
RHODE AND  
SCHWARTZ  
SMA 100A  
10 MHz  
REFIN  
AGILENT PSA  
E4440A  
10 MHz  
REOUT  
Figure 187. Lab Test Setup Used to Characterize the AD9737A/AD9739A  
Rev.C | Page 61 of 64  
 
 
 
 
AD9737A/AD9739A  
Data Sheet  
Table 29. Recommended SPI Initialization  
Step  
Address (Hex)  
Write Value  
Comments  
1
0x00  
0x00  
Configure for the 4-wire SPI mode with MSB. Note that Bits[7:5] must be mirrored onto  
Bits[2:0] because the MSB/LSB format can be unknown at power-up.  
2
0x00  
0x00  
0x22  
0x23  
0x24  
0x25  
0x27  
0x28  
0x29  
0x26  
0x26  
0x20  
0x00  
0x0F  
0x0F  
0x30  
0x80  
0x44  
0x6C  
0xCB  
0x02  
0x03  
Software reset to default SPI values.  
3
Clear the reset bit.  
4
Set the common-mode voltage of DACCLK_P and DACCLK_N inputs  
5
6
Configure the Mu controller.  
7
8
9
10  
11  
12  
13  
14  
Enable the Mu controller search and track mode.  
Wait for 160 k × 1/fDATA cycles.  
0x2A  
Read back Register 0x2A and confirm that it is equal to 0x01 to ensure that the DLL loop  
is locked. If it is not locked, return to Step 10 and repeat. Limit attempts to three before  
breaking out of the loop and reporting a Mu lock failure.  
15  
16  
17  
18  
19  
20  
21  
Ensure that the AD9737A/AD9739A are fed with DCI clock input from the data source.  
Set FINE_DEL_SKEW to 2.  
0x13  
0x10  
0x10  
0x10  
0x72  
0x00  
0x02  
0x03  
Disable the data Rx controller before enabling it.  
Enable the data Rx controller for loop and IRQ.  
Enable the data Rx controller for search and track mode.  
Wait for 135 k × 1/fDATA cycles.  
0x21  
Read back Register 0x21 and confirm that it is equal to 0x09 to ensure that the DLL loop  
is locked and tracking. If it is not locked and tracking, return to Step 16 and repeat. Limit  
attempts to three before breaking out of the loop and reporting an Rx data lock failure.  
22  
23  
0x06  
0x07  
0x00  
0x02  
Optional: modify the TxDAC IOUTFS setting (the default is 20 mA).  
0x08  
0x00  
Optional: modify the TxDAC operation mode (the default is normal mode).  
Rev.C | Page 62 of 64  
 
Data Sheet  
AD9737A/AD9739A  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
13 11  
14 12 10  
9
7
5
3
1
8
6
4
2
A
B
C
D
E
F
10.40  
BSC SQ  
G
H
J
K
L
0.80  
BSC  
M
N
P
BOTTOM VIEW  
DETAIL A  
TOP VIEW  
1.00 MAX  
0.85 MIN  
DETAIL A  
0.43 MAX  
1.40 MAX  
0.25 MIN  
0.55  
0.50  
0.45  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT WITH JEDEC STANDARDS MO-275-GGAA-1.  
Figure 189. 160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-160-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
BC-160-1  
BC-160-1  
AD9737ABBCZ  
AD9737ABBCZRL  
AD9737A-EBZ  
AD9739ABBCZ  
AD9739ABBCZRL  
AD9739A-EBZ  
AD9739A-FMC-EBZ  
−40°C to +85°C  
−40°C to +85°C  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board for Normal, CMTS, and Mix-Mode Evaluation  
160-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
160- Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board for Normal, CMTS, and Mix-Mode Evaluation  
−40°C to +85°C  
−40°C to +85°C  
BC-160-1  
BC-160-1  
Evaluation Board with FMC connector for Xilinx based FPGA  
development platforms  
1 Z = RoHS Compliant Part.  
Rev. C | Page 63 of 64  
 
 
 
AD9737A/AD9739A  
NOTES  
Data Sheet  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09616-0-2/12(C)  
Rev. C | Page 64 of 64  

相关型号:

AD9739ABBCZRL

11-/14-Bit, 2.5 GSPS
ADI

AD9739BBC

14-Bit, 2.5 GSPS, RF Digital-to-Analog Converter
ADI

AD9739BBCRL

14-Bit, 2.5 GSPS, RF Digital-to-Analog Converter
ADI

AD9739BBCZ

14-Bit, 2.5 GSPS, RF Digital-to-Analog Converter
ADI

AD9739BBCZRL

14-Bit, 2.5 GSPS, RF Digital-to-Analog Converter
ADI

AD974

4-Channel, 16-Bit, 200 kSPS Data Acquisition System
ADI

AD9740

10-Bit, 165 MSPS TxDAC D/A Converter
ADI

AD9740-EB

10-Bit, 165 MSPS TxDAC D/A Converter
ADI

AD9740ACP

10-Bit, 210 MSPS TxDAC D/A Converter
ADI

AD9740ACP-PCB

10-Bit, 210 MSPS TxDAC D/A Converter
ADI

AD9740ACPRL7

10-Bit, 210 MSPS TxDAC D/A Converter
ADI

AD9740ACPRL7

PARALLEL, WORD INPUT LOADING, 0.011 us SETTLING TIME, 10-BIT DAC, QCC32, 5 X 5 MM, MO-220VHHD-2, LFCSP-32
ROCHESTER