AD9741-EBZ [ADI]

Dual 8-/10-/12-/14-/16-Bit 250 MSPS Digital-to-Analog Converters; 双8位/ 10位/ 12位/ 14位/ 16位250 MSPS数字 - 模拟转换器
AD9741-EBZ
型号: AD9741-EBZ
厂家: ADI    ADI
描述:

Dual 8-/10-/12-/14-/16-Bit 250 MSPS Digital-to-Analog Converters
双8位/ 10位/ 12位/ 14位/ 16位250 MSPS数字 - 模拟转换器

转换器
文件: 总28页 (文件大小:649K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 8-/10-/12-/14-/16-Bit  
250 MSPS Digital-to-Analog Converters  
AD9741/AD9743/AD9745/AD9746/AD9747  
FEATURES  
GENERAL DESCRIPTION  
High dynamic range, dual DACs  
Low noise and intermodulation distortion  
The AD9741/AD9743/AD9745/AD9746/AD9747 are pin-  
compatible, high dynamic range, dual digital-to-analog  
Single carrier WCDMA ACLR = 80 dBc @ 61.44 MHz IF  
Innovative switching output stage permits useable outputs  
beyond Nyquist frequency  
LVCMOS inputs with dual-port or optional interleaved  
single-port operation  
Differential analog current outputs are programmable from  
8.6 mA to 31.7 mA full scale  
Auxiliary 10-bit current DACs with source/sink capability for  
external offset nulling  
converters (DACs) with 8-/10-/12-/ 14-/16-bit resolutions  
and sample rates of up to 250 MSPS. The devices include  
specific features for direct conversion transmit applications,  
including gain and offset compensation, and they interface  
seamlessly with analog quadrature modulators, such as the  
ADL5370.  
A proprietary, dynamic output architecture permits synthesis  
of analog outputs even above Nyquist by shifting energy away  
from the fundamental and into the image frequency.  
Internal 1.2 V precision reference voltage source  
Operates from 1.8 V and 3.3 V supplies  
315 mW power dissipation  
Full programmability is provided through a serial peripheral  
interface (SPI) port. In addition, some pin-programmable  
features are offered for those applications without a controller.  
Small footprint, Pb-free, 72-Lead LFCSP  
PRODUCT HIGHLIGHTS  
APPLICATIONS  
1. Low noise and intermodulation distortion (IMD) enables  
high quality synthesis of wideband signals.  
Wireless infrastructure:  
WCDMA, CDMA2000, TD-SCDMA, WiMAX  
Wideband communications:  
LMDS/MMDS, point-to-point  
Instrumentation:  
2. Proprietary switching output for enhanced dynamic  
performance.  
3. Programmable current outputs and dual auxiliary DACs  
provide flexibility and system enhancements.  
RF signal generators, arbitrary waveform generators  
FUNCTIONAL BLOCK DIAGRAM  
CLKP  
CLKN  
IOUT1P  
16-BIT  
DAC1  
IOUT1N  
INTERFACE LOGIC  
10  
IOUT2P  
16-BIT  
PID<15:0>  
DAC2  
IOUT2N  
GAIN  
DAC  
CMOS  
INTERFACE  
GAIN  
DAC  
AUX1P  
OFFSET  
INTERNAL  
REFERENCE  
AND  
P2D<15:0>  
DAC  
AUX1N  
SERIAL  
PERIPHERAL  
INTERFACE  
AUX2P  
OFFSET  
DAC  
BIAS  
AUX2N  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Instruction Byte.......................................................................... 18  
MSB/LSB Transfers .................................................................... 19  
Serial Interface Port Pin Descriptions ..................................... 19  
SPI Register Map ............................................................................ 20  
SPI Register Descriptions.............................................................. 21  
Digital Inputs and Outputs ........................................................... 22  
Input Data Timing ..................................................................... 22  
Dual-Port Mode Timing ........................................................... 22  
Single-Port Mode Timing ......................................................... 22  
SPI Port, Reset, and Pin Mode.................................................. 22  
Driving the DAC Clock Input .................................................. 23  
Full-Scale Current Generation ................................................. 23  
DAC Transfer Function............................................................. 24  
Analog Modes of Operation ..................................................... 24  
Auxiliary DACS.......................................................................... 25  
Power Dissipation....................................................................... 25  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 5  
Digital and Timing Specifications.............................................. 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configurations and Function Descriptions ........................... 9  
Typical Performance Characteristics ........................................... 14  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
Serial Peripheral Interface......................................................... 18  
General Operation of the Serial Interface............................... 18  
REVISION HISTORY  
5/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, full-scale digital input, maximum  
sample rate, unless otherwise noted.  
Table 1. AD9741, AD9743, and AD9745  
AD9741  
Min Typ  
AD9743  
Max Min Typ  
10  
AD9745  
Max Min Typ  
12  
Parameter  
Unit  
Max  
RESOLUTION  
8
Bits  
ACCURACY  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
MAIN DAC OUTPUTS  
Offset Error  
0.03  
0.0ꢀ  
0.0ꢀ  
0.10  
0.13  
0.2ꢀ  
LSB  
LSB  
0.001  
0.001  
0.001  
%FSR  
Offset Error Temperature Coefficient  
Gain Error  
1.0  
2.0  
100  
1.0  
1.0  
1.0  
ppm/°C  
%FSR  
ppm/°C  
%FSR  
2.0  
100  
1.0  
2.0  
100  
1.0  
Gain Error Temperature Coefficient  
Gain Matching (DAC1 to DAC2)  
Full-Scale Output Current  
Output Compliance Voltage  
Output Resistance  
8.6  
−1.0  
31.7 8.6  
+1.0 −1.0  
31.7 8.6  
+1.0 −1.0  
31.7 mA  
+1.0  
V
MΩ  
10  
10  
10  
10  
10  
10  
AUXILIARY DAC OUTPUTS  
Resolution  
Bits  
Full-Scale Output Current  
Output Compliance Voltage Range—Sink Current  
Output Compliance Voltage Range—Source Current  
Output Resistance  
−2.0  
0.8  
0
+2.0 −2.0  
+2.0 −2.0  
+2.0 mA  
1.6  
1.6  
0.8  
0
1.6  
1.6  
0.8  
0
1.6  
1.6  
V
V
1
1
1
MΩ  
Bits  
Monotonicity  
10  
10  
10  
REFERENCE INPUT/OUTPUT  
Output Voltage  
1.2  
10  
1.2  
10  
1.2  
10  
V
Output Voltage Temperature Coefficient  
External Input Voltage Range  
Input or Output Resistance  
POWER SUPPLY VOLTAGES  
AVDD33, DVDD33  
ppm/°C  
V
kΩ  
1.1ꢀ  
1.3  
1.1ꢀ  
1.3  
1.1ꢀ  
1.3  
3.13  
1.70  
3.47 3.13  
1.90 1.70  
3.47 3.13  
1.90 1.70  
3.47  
1.90  
V
V
CVDD18, DVDD18  
POWER SUPPLY CURRENTS  
IAVDD33  
IDVDD33  
ICVDD18  
IDVDD18  
ꢀ6  
10  
18  
28  
60  
14  
22  
32  
ꢀ6  
10  
18  
29  
60  
14  
22  
33  
ꢀ6  
11  
18  
30  
60  
1ꢀ  
22  
34  
mA  
mA  
mA  
mA  
POWER DISSIPATION  
fDAC = 2ꢀ0 MSPS, fOUT = 20 MHz  
DAC Outputs Disabled  
Full Device Power-Down  
OPERATING TEMPERATURE  
300  
11ꢀ  
3
34ꢀ  
300  
11ꢀ  
3
34ꢀ  
30ꢀ  
120  
3
3ꢀ0  
mW  
mW  
mW  
−40  
+8ꢀ −40  
+8ꢀ −40  
+8ꢀ °C  
Rev. 0 | Page 3 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, full-scale digital input, maximum  
sample rate, unless otherwise noted. The AD9745 is repeated in Table 2 so the user can compare it with all other parts.  
Table 2. AD9745, AD9746, and AD9747  
AD9745  
Min Typ  
12  
AD9746  
Max Min Typ  
14  
AD9747  
Max Min Typ  
16  
Parameter  
Unit  
Max  
RESOLUTION  
Bits  
ACCURACY  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
MAIN DAC OUTPUTS  
Offset Error  
0.13  
0.2ꢀ  
0.ꢀ  
1.0  
2.0  
4.0  
LSB  
LSB  
0.001  
0.001  
0.001  
%FSR  
Offset Error Temperature Coefficient  
Gain Error  
0.1  
0.1  
0.1  
ppm/°C  
%FSR  
ppm/°C  
%FSR  
2.0  
100  
1.0  
2.0  
100  
1.0  
2.0  
100  
1.0  
Gain Error Temperature Coefficient  
Gain Matching (DAC1 to DAC2)  
Full-Scale Output Current  
Output Compliance Voltage  
Output Resistance  
8.6  
−1.0  
31.7 8.6  
+1.0 −1.0  
31.7 8.6  
+1.0 −1.0  
31.7 mA  
+1.0  
V
MΩ  
10  
10  
10  
10  
10  
10  
AUXILIARY DAC OUTPUTS  
Resolution  
Bits  
Full-Scale Output Current  
Output Compliance Voltage Range—Sink Current  
Output Compliance Voltage Range—Source Current  
Output Resistance  
−2.0  
0.8  
0
+2.0 −2.0  
+2.0 −2.0  
+2.0 mA  
1.6  
1.6  
0.8  
0
1.6  
1.6  
0.8  
0
1.6  
1.6  
V
V
1
1
1
MΩ  
Bits  
Monotonicity  
10  
10  
10  
REFERENCE INPUT/OUTPUT  
Output Voltage  
1.2  
10  
1.2  
10  
1.2  
10  
V
Output Voltage Temperature Coefficient  
External Input Voltage Range  
Input or Output Resistance  
POWER SUPPLY VOLTAGES  
AVDD33, DVDD33  
ppm/°C  
V
kΩ  
1.1ꢀ  
1.3  
1.1ꢀ  
1.3  
1.1ꢀ  
1.3  
3.13  
1.70  
3.47 3.13  
1.90 1.70  
3.47 3.13  
1.90 1.70  
3.47  
1.90  
V
V
CVDD18, DVDD18  
POWER SUPPLY CURRENTS  
IAVDD33  
IDVDD33  
ICVDD18  
IDVDD18  
ꢀ6  
11  
18  
30  
60  
1ꢀ  
22  
34  
ꢀ6  
12  
18  
31  
60  
16  
22  
3ꢀ  
ꢀ6  
12  
18  
32  
60  
16  
22  
36  
mA  
mA  
mA  
mA  
POWER DISSIPATION  
fDAC = 2ꢀ0 MSPS, fOUT = 20 MHz  
DAC Outputs Disabled  
Full Device Power-Down  
OPERATING TEMPERATURE  
30ꢀ  
120  
3
3ꢀ0  
310  
12ꢀ  
3
3ꢀꢀ  
310  
12ꢀ  
3
3ꢀꢀ  
+8ꢀ  
mW  
mW  
mW  
°C  
−40  
+8ꢀ  
−40  
+8ꢀ  
−40  
Rev. 0 | Page 4 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, full-scale digital input, maximum  
sample rate, unless otherwise noted.  
Table 3. AD9741, AD9743, and AD9745  
AD9741  
Min Typ  
AD9743  
Max Min Typ  
AD9745  
Max Min Typ  
Parameter  
Unit  
Max  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = 2ꢀ0 MSPS, fOUT = 20 MHz  
fDAC = 2ꢀ0 MSPS, fOUT = 70 MHz  
fDAC = 2ꢀ0 MSPS, fOUT = 180 MHz1  
INTERMODULATION DISTORTION (IMD)  
fDAC = 2ꢀ0 MSPS, fOUT = 20 MHz  
fDAC = 2ꢀ0 MSPS, fOUT = 70 MHz  
fDAC = 2ꢀ0 MSPS, fOUT = 180 MHz1  
CROSSTALK  
70  
70  
64  
80  
70  
64  
82  
70  
66  
dBc  
dBc  
dBc  
80  
80  
72  
80  
80  
72  
86  
80  
74  
dBc  
dBc  
dBc  
fDAC = 2ꢀ0 MSPS, fOUT = 20 MHz  
fDAC = 2ꢀ0 MSPS, fOUT = 70 MHz  
fDAC = 2ꢀ0 MSPS, fOUT = 180 MHz1  
80  
80  
80  
80  
80  
80  
80  
80  
80  
dBc  
dBc  
dBc  
ADJACENT CHANNEL LEAKAGE RATIO (ACLR) SINGLE  
CARRIER WCDMA  
fDAC = 24ꢀ.76 MSPS, fOUT = 1ꢀ.36 MHz  
fDAC = 24ꢀ.76 MSPS, fOUT = 61.44 MHz  
fDAC = 24ꢀ.76 MSPS, fOUT = 184.32 MHz1  
NOISE SPECTRAL DENSITY (NSD)  
ꢀ4  
ꢀ4  
ꢀ4  
66  
66  
64  
76  
76  
72  
dBc  
dBc  
dBc  
fDAC = 24ꢀ.76 MSPS, fOUT = 1ꢀ.36 MHz  
fDAC = 24ꢀ.76 MSPS, fOUT = 61.44 MHz  
fDAC = 24ꢀ.76 MSPS, fOUT = 184.32 MHz1  
−132  
−132  
−13ꢀ  
−144  
−144  
−147  
−1ꢀꢀ  
−1ꢀꢀ  
−1ꢀꢀ  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1 Mix Mode.  
Rev. 0 | Page ꢀ of 28  
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, full-scale digital input, maximum  
sample rate, unless otherwise noted. The AD9745 is repeated in Table 4 so the user can compare it with all other parts.  
Table 4. AD9745, AD9746, and AD9747  
AD9745  
Min Typ  
AD9746  
Max Min Typ  
AD9747  
Max Min Typ  
Parameter  
Unit  
Max  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = 250 MSPS, fOUT = 20 MHz  
fDAC = 250 MSPS, fOUT = 70 MHz  
fDAC = 250 MSPS, fOUT = 180 MHz1  
INTERMODULATION DISTORTION (IMD)  
fDAC = 250 MSPS, fOUT = 20 MHz  
fDAC = 250 MSPS, fOUT = 70 MHz  
fDAC = 250 MSPS, fOUT = 180 MHz1  
CROSSTALK  
82  
70  
66  
82  
70  
66  
82  
70  
66  
dBc  
dBc  
dBc  
86  
80  
74  
86  
80  
74  
86  
80  
74  
dBc  
dBc  
dBc  
fDAC = 250 MSPS, fOUT = 20 MHz  
fDAC = 250 MSPS, fOUT = 70 MHz  
fDAC = 250 MSPS, fOUT = 180 MHz1  
80  
80  
80  
80  
80  
80  
80  
80  
80  
dBc  
dBc  
dBc  
ADJACENT CHANNEL LEAKAGE RATIO (ACLR) SINGLE  
CARRIER WCDMA  
fDAC = 245.76 MSPS, fOUT = 15.36 MHz  
fDAC = 245.76 MSPS, fOUT = 61.44 MHz  
fDAC = 245.76 MSPS, fOUT = 184.32 MHz1  
NOISE SPECTRAL DENSITY (NSD)  
76  
76  
72  
78  
78  
74  
82  
80  
74  
dBc  
dBc  
dBc  
fDAC = 245.76 MSPS, fOUT = 15.36 MHz  
fDAC = 245.76 MSPS, fOUT = 61.44 MHz  
fDAC = 245.76 MSPS, fOUT = 184.32 MHz1  
−155  
−155  
−155  
−163  
−160  
−158  
−165  
−162  
−160  
dBm/Hz  
dBm/Hz  
dBm/Hz  
1 Mix Mode.  
Rev. 0 | Page 6 of 28  
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
DIGITAL AND TIMING SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IFS = 20 mA, full-scale digital input, maximum  
sample rate, unless otherwise noted.  
Table 5. AD9741/AD9743/AD9745/AD9746/AD9747  
Parameter  
Min  
400  
300  
Typ  
800  
400  
Max  
Unit  
DAC CLOCK INPUTS (CLKP, CLKN)  
Differential Peak-to-Peak Voltage  
Single-Ended Peak-to-Peak Voltage  
Common-Mode Voltage  
Input Current  
1600  
800  
ꢀ00  
1
mV  
mV  
mV  
μA  
Input Frequency  
2ꢀ0  
MHz  
DATA CLOCK OUTPUT (DCO)  
Output Voltage High  
Output Voltage Low  
Output Current  
DAC Clock to Data Clock Output Delay (tDCO  
2.4  
V
V
mA  
ns  
0.4  
10  
2.8  
)
2.0  
2.0  
2.2  
DATA PORT INPUTS  
Input Voltage High  
V
Input Voltage Low  
Input Current  
Data to DAC Clock Setup Time (tDBS Dual-Port Mode)  
Data to DAC Clock Hold Time (tDBH Dual-Port Mode)  
0.8  
1
V
μA  
ps  
400  
1200  
ps  
DAC Clock to Analog Output Data Latency (Dual-Port Mode)  
Data or IQSEL Input to DAC Clock Setup Time (tDBS Single-Port Mode)  
Data or IQSEL Input to DAC Clock Hold Time (tDBH Single-Port Mode)  
DAC Clock to Analog Output Data Latency (Single-Port Mode)  
SERIAL PERIPHERAL INTERFACE  
7
Cycles  
ps  
ps  
400  
1200  
8
Cycles  
SCLK Frequency (fSCLK  
SCLK Pulse Width High (tPWH  
SCLK Pulse Width Low (tPWL  
CSB to SCLK Setup Time (tS)  
CSB to SCLK Hold Time (tH)  
)
40  
MHz  
ns  
ns  
ns  
ns  
)
10  
10  
1
)
0
SDIO to SCLK Setup Time (tDS)  
1
ns  
SDIO to SCLK Hold Time (tDH)  
0
ns  
SCLK to SDIO/SDO Data Valid Time (tDV)  
RESET Pulse Width High  
1
ns  
ns  
10  
WAKE-UP TIME AND OUTPUT LATENCY  
From DAC Outputs Disabled  
From Full Device Power-Down  
DAC Clock to Analog Output Latency (Dual-Port Mode)  
DAC Clock to Analog Output Latency (Single-Port Mode)  
200  
1200  
7
μs  
μs  
Cycles  
Cycles  
8
Rev. 0 | Page 7 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 6.  
Thermal resistance tested using JEDEC standard 4-layer  
thermal test board with no airflow.  
With  
Respect to  
Parameter  
Rating  
AVDD33, DVDD33  
AVSS DVSS  
CVSS  
−0.3 V to +3.6 V  
Table 7.  
DVDD18, CVDD18  
AVSS DVSS  
CVSS  
−0.3 V to +1.98 V  
Package Type  
θJA  
Unit  
CP-72-1 (Exposed Pad Soldered to PCB)  
2ꢀ  
°C/W  
AVSS  
DVSS  
CVSS  
REFIO  
DVSS CVSS  
AVSS CVSS  
AVSS DVSS  
AVSS  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
−0.3 V to +0.3 V  
−0.3 V to AVDD33 + 0.3 V  
−1.0 V to AVDD33 + 0.3 V  
IOUT1P, IOUT1N, IOUT2P,  
IOUT2P, AUX1P, AUX1N,  
AUX2P, AUX2N  
AVSS  
P1D1ꢀ to P1D0,  
P2D1ꢀ to P2D0  
DVSS  
−0.3 V to DVDD33 + 0.3 V  
CLKP, CLKN  
CVSS  
DVSS  
−0.3 V to CVDD18 + 0.3 V  
–0.3 V to DVDD33 + 0.3 V  
12ꢀ°C  
RESET, CSB, SCLK, SDIO, SDO  
Junction Temperature  
Storage Temperature  
ESD CAUTION  
−6ꢀ°C to +1ꢀ0°C  
Rev. 0 | Page 8 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
P1D7  
1
2
3
4
5
6
7
8
9
54 FSADJ  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
PIN 1  
INDICATOR  
AD9741  
(TOP VIEW)  
P1D6 10  
P1D5 11  
P1D4 12  
P1D3 13  
P1D2 14  
P1D1 15  
P1D0 16  
NC 17  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 P2D0  
37 P2D1  
NC 18  
NC = NO CONNECT  
Figure 2. AD9741 Pin Configuration  
Table 8. AD 9741 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 6  
2, ꢀ  
3
CVDD18  
CVSS  
CLKP  
Clock Supply Voltage (1.8 V).  
Clock Supply Common (0 V).  
Differential DAC Clock Input.  
4
CLKN  
DVSS  
Complementary Differential DAC Clock Input.  
Digital Supply Common (0 V).  
7, 28, 48  
8, 47  
9 to 16  
17 to 24, 26, 30, 39 to 46  
DVDD18  
P1D<7:0>  
NC  
Digital Core Supply Voltage (1.8 V).  
Port 1 Data Bit Inputs.  
No Connect.  
2ꢀ  
27  
29  
31 to 38  
DCO  
DVDD33  
IQSEL  
P2D<7:0>  
SDO  
Data Clock Output. Use to clock data source.  
Digital I/O Supply Voltage (3.3 V).  
I/Q Framing Signal for Single-Port Mode Operation.  
Port 2 Data Bit Inputs.  
49  
Serial Peripheral Interface Data Output.  
ꢀ0  
ꢀ1  
SDIO  
SCLK  
Serial Peripheral Interface Data Input and Optional Data Output.  
Serial Peripheral Interface Clock Input.  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
CSB  
Serial Peripheral Interface Chip Select Input. Active low.  
Hardware Reset. Active high.  
Full-Scale Current Output Adjust. Connect a 10 kΩ resistor to AVSS.  
Reference Input/Output. Connect a 0.1 μF capacitor to AVSS.  
Analog Supply Voltage (3.3 V).  
RESET  
FSADJ  
REFIO  
AVDD33  
AVSS  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 70  
Analog Supply Common (0 V).  
ꢀ9  
60  
62  
63  
6ꢀ  
66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P  
AUX2N  
AUX1N  
AUX1P  
IOUT1N  
IOUT1P  
AVSS  
DAC2 Current Output True. Sources full-scale current when input data bits are all 1.  
DAC2 Current Output Complement. Sources full-scale current when data bits are all 0.  
Auxiliary DAC2 Default Current Output Pin.  
Auxiliary DAC2 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Default Current Output Pin.  
Complementary DAC1 Current Output. Sources full-scale current when data bits are all 0.  
DAC1 Current Output. Sources full-scale current when data bits are all 1.  
Exposed Thermal Pad. Must be soldered to copper pour on top surface of PCB for mechanical  
stability and must be electrically tied to low impedance GND plane for low noise performance.  
EPAD  
Rev. 0 | Page 9 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
P1D9  
1
2
3
4
5
6
7
8
9
54 FSADJ  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
PIN 1  
INDICATOR  
AD9743  
(TOP VIEW)  
P1D8 10  
P1D7 11  
P1D6 12  
P1D5 13  
P1D4 14  
P1D3 15  
P1D2 16  
P1D1 17  
P1D0 18  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 P2D0  
39 P2D1  
38 P2D2  
37 P2D3  
NC = NO CONNECT  
Figure 3. AD9743 Pin Configuration  
Table 9. AD 9743 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1, 6  
2, ꢀ  
3
4
CVDD18  
CVSS  
CLKP  
CLKN  
DVSS  
DVDD18  
P1D<9:0>  
NC  
Clock Supply Voltage (1.8 V).  
Clock Supply Common (0 V).  
Differential DAC Clock Input.  
Complementary Differential DAC Clock Input.  
Digital Supply Common (0 V).  
Digital Core Supply Voltage (1.8 V).  
Port 1 Data Bit Inputs.  
7, 28, 48  
8, 47  
9 to 18  
19 to 24, 26, 30, 41 to 46  
No Connect.  
2ꢀ  
27  
29  
31 to 40  
DCO  
DVDD33  
IQSEL  
P2D<9:0>  
SDO  
Data Clock Output. Use to clock data source.  
Digital I/O Supply Voltage (3.3 V).  
I/Q Framing Signal for Single-Port Mode Operation.  
Port 2 Data Bit Inputs.  
49  
Serial Peripheral Interface Data Output.  
ꢀ0  
ꢀ1  
SDIO  
SCLK  
Serial Peripheral Interface Data Input and Optional Data Output.  
Serial Peripheral Interface Clock Input.  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
CSB  
Serial Peripheral Interface Chip Select Input. Active low.  
Hardware Reset. Active high.  
Full-Scale Current Output Adjust. Connect a 10 kΩ resistor to AVSS.  
Reference Input/Output. Connect a 0.1 μF capacitor to AVSS.  
Analog Supply Voltage (3.3 V).  
RESET  
FSADJ  
REFIO  
AVDD33  
AVSS  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 70  
Analog Supply Common (0 V).  
ꢀ9  
60  
62  
63  
6ꢀ  
66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P  
AUX2N  
AUX1N  
AUX1P  
IOUT1N  
IOUT1P  
AVSS  
DAC2 Current Output True. Sources full-scale current when input data bits are all 1.  
DAC2 Current Output Complement. Sources full-scale current when data bits are all 0.  
Auxiliary DAC2 Default Current Output Pin.  
Auxiliary DAC2 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Default Current Output Pin.  
Complementary DAC1 Current Output. Sources full-scale current when data bits are all 0.  
DAC1 Current Output. Sources full-scale current when data bits are all 1.  
Exposed Thermal Pad. Must be soldered to copper pour on top surface of PCB for mechanical  
stability and must be electrically tied to low impedance GND plane for low noise performance.  
EPAD  
Rev. 0 | Page 10 of 28  
AD9741/AD9743/AD9745/AD9746/AD9747  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
P1D11  
1
2
3
4
5
6
7
8
9
54 FSADJ  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
PIN 1  
INDICATOR  
AD9745  
(TOP VIEW)  
P1D10 10  
P1D9 11  
P1D8 12  
P1D7 13  
P1D6 14  
P1D5 15  
P1D4 16  
P1D3 17  
P1D2 18  
45 NC  
44 NC  
43 NC  
42 P2D0  
41 P2D1  
40 P2D2  
39 P2D3  
38 P2D4  
37 P2D5  
NC = NO CONNECT  
Figure 4. AD9745 Pin Configuration  
Table 10. AD9745 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
CLKP  
CLKN  
DVSS  
DVDD18  
P1D<11:0>  
Description  
1, 6  
2, ꢀ  
3
4
7, 28, 48  
8, 47  
9 to 20  
Clock Supply Voltage (1.8 V).  
Clock Supply Common (0 V).  
Differential DAC Clock Input.  
Complementary Differential DAC Clock Input.  
Digital Supply Common (0 V).  
Digital Core Supply Voltage (1.8 V).  
Port 1 Data Bit Inputs.  
21 to 24, 26, 30, 43 to 46 NC  
No Connect.  
2ꢀ  
27  
29  
31 to 42  
DCO  
DVDD33  
IQSEL  
P2D<11:0>  
SDO  
Data Clock Output. Use to clock data source.  
Digital I/O Supply Voltage (3.3 V).  
I/Q Framing Signal for Single-Port Mode Operation.  
Port 2 Data Bit Inputs.  
49  
Serial Peripheral Interface Data Output.  
ꢀ0  
ꢀ1  
SDIO  
SCLK  
Serial Peripheral Interface Data Input and Optional Data Output.  
Serial Peripheral Interface Clock Input.  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
CSB  
Serial Peripheral Interface Chip Select Input. Active low.  
Hardware Reset. Active high.  
Full-Scale Current Output Adjust. Connect 10 kΩ resistor to AVSS.  
Reference Input/Output. Connect a 0.1 μF capacitor to AVSS.  
Analog Supply Voltage (3.3 V).  
RESET  
FSADJ  
REFIO  
AVDD33  
AVSS  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 70  
Analog Supply Common (0 V).  
ꢀ9  
60  
62  
63  
6ꢀ  
66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P  
AUX2N  
AUX1N  
AUX1P  
IOUT1N  
IOUT1P  
AVSS  
DAC2 Current Output True. Sources full-scale current when input data bits are all 1.  
DAC2 Current Output Complement. Sources full-scale current when data bits are all 0.  
Auxiliary DAC2 Default Current Output Pin.  
Auxiliary DAC2 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Default Current Output Pin.  
Complementary DAC1 Current Output. Sources full-scale current when data bits are all 0.  
DAC1 Current Output. Sources full-scale current when data bits are all 1.  
Exposed Thermal Pad. Must be soldered to copper pour on top surface of PCB for mechanical  
stability and must be electrically tied to low impedance GND plane for low noise performance.  
EPAD  
Rev. 0 | Page 11 of 28  
AD9741/AD9743/AD9745/AD9746/AD9747  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
P1D13  
1
2
3
4
5
6
7
8
9
54 FSADJ  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
PIN 1  
INDICATOR  
AD9746  
(TOP VIEW)  
P1D12 10  
P1D11 11  
P1D10 12  
P1D9 13  
P1D8 14  
P1D7 15  
P1D6 16  
P1D5 17  
P1D4 18  
45 NC  
44 P2D0  
43 P2D1  
42 P2D2  
41 P2D3  
40 P2D4  
39 P2D5  
38 P2D6  
37 P2D7  
NC = NO CONNECT  
Figure 5. AD9746 Pin Configuration  
Table 11. AD9746 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
Description  
1, 6  
2, ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Common (0 V).  
3
CLKP  
Differential DAC Clock Input.  
4
CLKN  
DVSS  
DVDD18  
P1D<13:0>  
Complementary Differential DAC Clock Input.  
Digital Supply Common (0 V).  
Digital Core Supply Voltage (1.8 V).  
Port 1 Data Bit Inputs.  
7, 28, 48  
8, 47  
9 to 22  
23, 24, 26, 30, 4ꢀ, 46 NC  
No Connect.  
2ꢀ  
27  
29  
31 to 44  
DCO  
DVDD33  
IQSEL  
P2D<13:0>  
SDO  
Data Clock Output. Use to clock data source.  
Digital I/O Supply Voltage (3.3 V).  
I/Q Framing Signal for Single-Port Mode Operation.  
Port 2 Data Bit Inputs.  
49  
Serial Peripheral Interface Data Output.  
ꢀ0  
ꢀ1  
SDIO  
SCLK  
Serial Peripheral Interface Data Input and Optional Data Output.  
Serial Peripheral Interface Clock Input.  
ꢀ2  
ꢀ3  
ꢀ4  
ꢀꢀ  
CSB  
Serial Peripheral Interface Chip Select Input. Active low.  
Hardware Reset. Active high.  
Full-Scale Current Output Adjust. Connect a 10 kΩ resistor to AVSS.  
Reference Input/Output. Connect a 0.1 μF capacitor to AVSS.  
Analog Supply Voltage (3.3 V).  
RESET  
FSADJ  
REFIO  
AVDD33  
AVSS  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 70  
Analog Supply Common (0 V).  
ꢀ9  
60  
62  
63  
6ꢀ  
66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P  
AUX2N  
AUX1N  
AUX1P  
IOUT1N  
IOUT1P  
AVSS  
DAC2 Current Output True. Sources full-scale current when input data bits are all 1.  
DAC2 Current Output Complement. Sources full-scale current when data bits are all 0.  
Auxiliary DAC2 Default Current Output Pin.  
Auxiliary DAC2 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Default Current Output Pin.  
Complementary DAC1 Current Output. Sources full-scale current when data bits are all 0.  
DAC1 Current Output. Sources full-scale current when data bits are all 1.  
Exposed Thermal Pad. Must be soldered to copper pour on top surface of PCB for mechanical stability  
and must be electrically tied to low impedance GND plane for low noise performance.  
EPAD  
Rev. 0 | Page 12 of 28  
AD9741/AD9743/AD9745/AD9746/AD9747  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
1
2
3
4
5
6
7
8
9
54 FSADJ  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
PIN 1  
INDICATOR  
CVDD18  
DVSS  
DVDD18  
P1D15  
P1D14 10  
P1D13 11  
P1D12 12  
P1D11 13  
P1D10 14  
P1D9 15  
P1D8 16  
P1D7 17  
P1D6 18  
48 DVSS  
AD9747  
(TOP VIEW)  
47 DVDD18  
46 P2D0  
45 P2D1  
44 P2D2  
43 P2D3  
42 P2D4  
41 P2D5  
40 P2D6  
39 P2D7  
38 P2D8  
37 P2D9  
NC = NO CONNECT  
Figure 6. AD9747 Pin Configuration  
Table 12. AD9747 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
CLKP  
CLKN  
Description  
1, 6  
2, ꢀ  
3
4
7, 28, 48  
8, 47  
9 to 24  
2ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Common (0 V).  
Differential DAC Clock Input.  
Complementary Differential DAC Clock Input.  
Digital Supply Common (0 V).  
Digital Core Supply Voltage (1.8 V).  
Port 1 Data Bit Inputs.  
DVSS  
DVDD18  
P1D<1ꢀ:0>  
DCO  
Data Clock Output. Use to clock data source.  
No Connect.  
26, 30  
NC  
27  
29  
31 to 46  
49  
DVDD33  
IQSEL  
P2D<1ꢀ:0>  
SDO  
Digital I/O Supply Voltage (3.3 V).  
I/Q Framing Signal for Single-Port Mode Operation.  
Port 2 Data Bit Inputs.  
Serial Peripheral Interface Data Output.  
ꢀ0  
ꢀ1  
SDIO  
SCLK  
Serial Peripheral Interface Data Input and Optional Data Output.  
Serial Peripheral Interface Clock Input.  
ꢀ2  
ꢀ3  
CSB  
RESET  
Serial Peripheral Interface Chip Select Input. Active low.  
Hardware Reset. Active high.  
ꢀ4  
ꢀꢀ  
FSADJ  
REFIO  
AVDD33  
AVSS  
Full-Scale Current Output Adjust. Connect a 10 kΩ resistor to AVSS.  
Reference Input/Output. Connect a 0.1 μF capacitor to AVSS.  
Analog Supply Voltage (3.3 V).  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 70  
Analog Supply Common (0 V).  
ꢀ9  
60  
62  
63  
6ꢀ  
66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P  
AUX2N  
AUX1N  
AUX1P  
IOUT1N  
IOUT1P  
AVSS  
DAC2 Current Output. Sources full-scale current when input data bits are all 1.  
Complementary DAC2 Current Output. Sources full-scale current when data bits are all 0.  
Auxiliary DAC2 Default Current Output Pin.  
Auxiliary DAC2 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Optional Output Pin. Enable through SPI.  
Auxiliary DAC1 Default Current Output Pin.  
Complementary DAC1 Current Output. Sources full-scale current when data bits are all 0.  
DAC1 Current Output. Sources full-scale current when data bits are all 1.  
Exposed Thermal Pad. Must be soldered to copper pour on top surface of PCB for mechanical  
stability and must be electrically tied to low impedance GND plane for low noise performance.  
EPAD  
Rev. 0 | Page 13 of 28  
AD9741/AD9743/AD9745/AD9746/AD9747  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
90  
80  
70  
60  
50  
40  
90  
250MSPS  
125MSPS  
80  
125MSPS  
250MSPS  
70  
60  
50  
40  
0
20  
40  
60  
80  
100  
120  
250  
250  
0
20  
40  
60  
80  
100  
120  
250  
250  
fOUT (MHz)  
fOUT (MHz)  
Figure 7. AD9747 SFDR vs. fOUT, Normal Mode  
Figure 10. AD9747 IMD vs. fOUT, Normal Mode  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
125  
150  
175  
200  
225  
125  
150  
175  
200  
225  
fOUT (MHz)  
fOUT (MHz)  
Figure 8. AD9747 SFDR vs. fOUT, Mix Mode, 250 MSPS  
Figure 11. AD9747 IMD vs. fOUT, Mix Mode, 250 MSPS  
90  
85  
80  
75  
70  
65  
60  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
NORMAL MODE  
MIX MODE  
MIX MODE  
NORMAL MODE  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
fOUT (MHz)  
fOUT (MHz)  
Figure 9. AD9747 ACLR vs. fOUT, Single Carrier WCDMA, 245.76 MSPS  
Figure 12. AD9747 NSD vs. fOUT, Single Carrier WCDMA, 245.76 MSPS  
Rev. 0 | Page 14 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
100  
90  
80  
70  
60  
50  
40  
100  
90  
10mAFS  
20mAFS  
80  
20mAFS  
30mAFS  
70  
10mAFS  
30mAFS  
60  
50  
40  
0
20  
40  
60  
fOUT (MHz)  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
fOUT (MHz)  
Figure 13. AD9747 SFDR vs. Analog Output, 250 MSPS  
Figure 16. AD9747 IMD vs. Analog Output, 250 MSPS  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
0dBFS  
0dBFS  
–3dBFS  
–6dBFS  
–3dBFS  
–6dBFS  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
fIN (MHz)  
fIN (MHz)  
Figure 14. AD9747 SFDR vs. Digital Input, 250 MSPS  
Figure 17. AD9747 IMD vs. Digital Input, 250 MSPS  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
60  
RANGE OF POSSIBLE SFDR  
PERFORMANCE IS DEPENDENT ON  
INPUT DATA TIMING RELATIVE TO  
THE DAC CLOCK. SEE INPUT DATA  
TIMING SECTION.  
RANGE OF IMD PERFORMANCE IS  
ESSENTIALLY INDEPENDENT OF  
INPUT DATA TIMING RELATIVE TO  
THE DAC CLOCK. SEE INPUT DATA  
TIMING SECTION.  
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
10  
20  
30  
40  
50  
60  
70  
80  
90 100 110  
fOUT (MHz)  
fOUT (MHz)  
Figure 15. AD9747 SFDR vs. fOUT Over Input Data Timing  
Figure 18. AD9747 IMD vs. fOUT Over Input Data Timing  
Rev. 0 | Page 1ꢀ of 28  
AD9741/AD9743/AD9745/AD9746/AD9747  
1
–130  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
0
–1  
NORMAL MODE  
–2  
MIX MODE  
–3  
–4  
–5  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
AD9741  
AD9743  
AD9745  
AD9746  
AD9747  
Figure 19. Nominal Power in the Fundamental, IFS = 20 mA  
Figure 21. NSD vs. Bit Resolution, Single Carrier WCDMA, 245.76 MSPS, fCARRIER  
fCARRIER = 61.44 MHz  
85  
80  
75  
70  
65  
60  
55  
50  
AD9741  
AD9743  
AD9745  
AD9746  
AD9747  
Figure 20. ACLR vs. Bit Resolution, Single Carrier WCDMA, 245.76 MSPS,  
fCARRIER = 61.44 MHz  
Rev. 0 | Page 16 of 28  
AD9741/AD9743/AD9745/AD9746/AD9747  
TERMINOLOGY  
Temperature Drift  
Integral Nonlinearity (INL)  
Temperature drift is specified as the maximum change in a  
parameter from ambient temperature (25°C) to either TMIN  
or TMAX and is typically reported as ppm/°C.  
The maximum deviation of the actual analog output from the  
ideal output, as determined by a straight line drawn from zero  
scale to full scale.  
Spurious-Free Dynamic Range (SFDR)  
Differential Nonlinearity (DNL)  
The difference in decibels between the peak amplitude of a test  
tone and the peak amplitude of the largest spurious signal over  
the specified bandwidth.  
A measure of the maximum deviation in analog output associated  
with any single value change in the digital input code relative to  
an ideal LSB.  
Intermodulation Distortion (IMD)  
Monotonicity  
The difference in decibels between the maximum peak ampli-  
tude of two test tones and the maximum peak amplitude of  
the distortion products created from the sum or difference of  
integer multiples of the test tones.  
A DAC is monotonic if the analog output increases or remains  
constant in response to an increase in the digital input.  
Offset Error  
The deviation of the output current from the ideal zero-scale  
current. For differential outputs, 0 mA is expected at IOUTP when  
all inputs are low, and 0 mA is expected at IOUTN when all inputs  
are high.  
Adjacent Channel Leakage Ratio (ACLR)  
The ratio between the measured power of a wideband signal  
within a channel relative to the measured power in an empty  
adjacent channel.  
Gain Error  
Noise Spectral Density (NSD)  
The measured noise power over a 1 Hz bandwidth seen at the  
analog output.  
The deviation of the output current from the ideal full-scale  
current. Actual full-scale output current is determined by  
subtracting the output (when all inputs are low) from the  
output (when all inputs are high).  
Output Compliance Range  
The range of allowable voltage seen by the analog output of a  
current output DAC. Operation beyond the compliance limits  
may cause output stage saturation and/or a breakdown resulting  
in nonlinear performance.  
Rev. 0 | Page 17 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
THEORY OF OPERATION  
transfer, and a reference register address for the first byte of the  
data transfer. A logic high on the CSB pin followed by a logic  
low resets the SPI port to its initial state and defines the start  
of the instruction cycle. From this point, the next eight rising  
SCLK edges define the eight bits of the instruction byte for the  
current communication cycle.  
The AD9741/AD9743/AD9745/AD9746/AD9747 combine  
many features to make them very attractive for wired and  
wireless communications systems. The dual DAC architecture  
facilitates easy interfacing to common quadrature modulators  
when designing single sideband transmitters. In addition, the  
speed and performance of the devices allow wider bandwidths  
and more carriers to be synthesized than in previously available  
products.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle, which is the data transfer between the serial port control-  
ler and the system controller. Phase 2 can be a transfer of 1, 2, 3,  
or 4 data bytes as determined by the instruction byte. Using  
multibyte transfers is usually preferred although single-byte  
data transfers are useful to reduce CPU overhead or when only  
a single register access is required.  
All features and options are software programmable through  
the SPI port.  
SERIAL PERIPHERAL INTERFACE  
SDO  
AD9747  
All serial port data is transferred to and from the device in syn-  
chronization with the SCLK pin. Input data is always latched  
on the rising edge of SCLK whereas output data is always valid  
after the falling edge of SCLK. Register contents change imme-  
diately upon writing to the last bit of each transfer byte.  
SDIO  
SPI  
SCLK  
CSB  
PORT  
Figure 22. SPI Port  
The SPI port is a flexible, synchronous serial communications  
port allowing easy interfacing to many industry-standard  
microcontrollers and microprocessors. The port is compatible  
with most synchronous transfer formats including both the  
Motorola SPI and Intel® SSR protocols.  
When synchronization is lost, the device has the ability to  
asynchronously terminate an I/O operation whenever the CSB  
pin is taken to logic high. Any unwritten register content data is  
lost if the I/O operation is aborted. Taking CSB low then resets the  
serial port controller and restarts the communication cycle.  
INSTRUCTION BYTE  
The interface allows read and write access to all registers that  
configure the AD9741/AD9743/AD9745/AD9746/AD9747.  
Single or multiple byte transfers are supported as well as MSB-  
first or LSB-first transfer formats. Serial data input/output can  
be accomplished through a single bidirectional pin (SDIO) or  
through two unidirectional pins (SDIO/SDO).  
The instruction byte contains the information shown in the  
following bit map.  
MSB  
B7  
LSB  
B0  
B6  
B5  
B4  
B3  
B2  
B1  
R/W  
N1  
N0  
A4  
A3  
A2  
A1  
A0  
The serial port configuration is controlled by Register 0x00,  
Bits<7:6>. It is important to note that any change made to the  
serial port configuration occurs immediately upon writing to  
the last bit of this byte. Therefore, it is possible with a multibyte  
transfer to write to this register and change the configuration in  
the middle of a communication cycle. Care must be taken to  
compensate for the new configuration within the remaining  
bytes of the current communication cycle.  
Bit 7, R/W, determines whether a read or a write data transfer  
occurs after the instruction byte write. Logic high indicates a  
read operation. Logic 0 indicates a write operation.  
Bits<6:5>, N1 and N0, determine the number of bytes to be  
transferred during the data transfer cycle. The bits decode as  
shown in Table 13.  
Table 13. Byte Transfer Count  
Use of a single-byte transfer when changing the serial port  
configuration is recommended to prevent unexpected device  
behavior.  
N1  
N0  
Description  
0
0
1
1
0
1
0
1
Transfer one byte  
Transfer two bytes  
Transfer three bytes  
Transfer four bytes  
GENERAL OPERATION OF THE SERIAL INTERFACE  
There are two phases to any communication cycle with the  
AD9741/AD9743/AD9745/AD9746/AD9747: Phase 1 and  
Phase 2. Phase 1 is the instruction cycle, which writes an  
instruction byte into the device. This byte provides the serial  
port controller with information regarding Phase 2 of the  
communication cycle: the data transfer cycle.  
Bits<4:0>, A4, A3, A2, A1, and A0, determine which register is  
accessed during the data transfer of the communications cycle.  
For multibyte transfers, this address is a starting or ending  
address depending on the current data transfer mode. For MSB-  
first format, the specified address is an ending address or the  
most significant address in the current cycle. Remaining  
register addresses for multiple byte data transfers are generated  
The Phase 1 instruction byte defines whether the upcoming  
data transfer is read or write, the number of bytes in the data  
Rev. 0 | Page 18 of 28  
 
 
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
internally by the serial port controller by decrementing from  
the specified address. For LSB-first format, the specified address  
is a beginning address or the least significant address in the  
current cycle. Remaining register addresses for multiple byte  
data transfers are generated internally by the serial port  
controller by incrementing from the specified address.  
The configuration of this pin is controlled by Register 0x00,  
Bit 7. The default is Logic 0, which configures the SDIO pin  
as unidirectional.  
Serial Data Out (SDO)  
Data is read from this pin for protocols that use separate lines  
for transmitting and receiving data. The configuration of this  
pin is controlled by Register 0x00, Bit 7. If this bit is set to a  
Logic 1, the SDO pin does not output data and is set to a high  
impedance state.  
MSB/LSB TRANSFERS  
The serial port can support both MSB-first and LSB-first data  
formats. This functionality is controlled by Register 0x00, Bit 6.  
The default is Logic 0, which is MSB-first format.  
When using MSB-first format (LSBFIRST = 0), the instruction  
and data bit must be written from MSB to LSB. Multibyte data  
transfers in MSB-first format start with an instruction byte that  
includes the register address of the most significant data byte.  
Subsequent data bytes are loaded into sequentially lower  
address locations. In MSB-first mode, the serial port internal  
address generator decrements for each byte of the multibyte  
data transfer.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
0
0
D7 D6 D5  
D3 D2 D1 D0  
0 0 0  
N
N
Figure 23. Serial Register Interface—MSB First  
When using LSB-first format (LSBFIRST = 1), the instruction  
and data bit must be written from LSB to MSB. Multibyte data  
transfers in LSB-first format start with an instruction byte that  
includes the register address of the least significant data byte.  
Subsequent data bytes are loaded into sequentially higher  
address locations. In LSB-first mode, the serial port internal  
address generator increments for each byte of the multibyte  
data transfer.  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
A0 A1 A2 A3 A4 N0 N1 R/W D00 D10 D20  
D4N D5N D6N D7N  
D4N D5N D6N D7N  
Use of a single-byte transfer when changing the serial port data  
format is recommended to prevent unexpected device behavior.  
D00 D10 D20  
Figure 24. Serial Register Interface Timing—LSB First  
SERIAL INTERFACE PORT PIN DESCRIPTIONS  
Chip Select Bar (CSB)  
–1  
tS  
fSCLK  
Active low input starts and gates a communication cycle. It  
allows more than one device to be used on the same serial  
communication lines. CSB must stay low during the entire  
communication cycle. Incomplete data transfers are aborted  
anytime the CSB pin goes high. SDO and SDIO pins go to a  
high impedance state when this input is high.  
CSB  
tPWH  
tPWL  
SCLK  
tDS  
tDH  
INSTRUCTION BIT 7  
INSTRUCTION BIT 6  
SDIO  
Serial Clock (SCLK)  
Figure 25. Timing Diagram for SPI Register Write  
The serial clock pin is used to synchronize data to and from the  
device and to run the internal state machines. The maximum  
frequency of SCLK is 40 MHz. All data input is registered on  
the rising edge of SCLK. All data is driven out on the falling  
edge of SCLK.  
CSB  
SCLK  
tDV  
Serial Data I/O (SDIO)  
SDIO  
SDO  
DATA BIT N  
DATA BIT N – 1  
Data is always written into the device on this pin. However,  
SDIO can also function as a bidirectional data output line.  
Figure 26. Timing Diagram for SPI Register Read  
Rev. 0 | Page 19 of 28  
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
SPI REGISTER MAP  
Reading any register returns previously written values for all defined register bits, unless otherwise noted. Change serial port configu-  
ration or execute software reset in single byte instruction only to avoid unexpected device behavior.  
Table 14.  
Register Name  
Address Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI Control  
0x00  
0x02  
0x03  
0x00  
0x00  
0x00  
0x00  
0xF9  
0x01  
0x00  
0x00  
0xF9  
0x01  
0x00  
0x00  
SDIODIR  
DATTYPE  
PD_DCO  
LSBFIRST  
ONEPORT  
SWRESET  
Data Control  
Power Down  
INVDCO  
PD_AUX2 PD_AUX1 PD_BIAS PC_CLK PD_DAC2 PD_DAC1  
DAC Mode Select 0x0A  
DAC1MOD<1:0>  
DAC1FSC<7:0>  
DAC2MOD<1:0>  
DAC1FSC<9:8>  
AUXDAC1<9:8>  
DAC2FSC<9:8>  
AUXDAC2<9:8>  
DAC1 Gain LSB  
DAC1 Gain MSB  
AUX DAC1 LSB  
AUX DAC1 MSB  
DAC2 Gain LSB  
DAC2 Gain MSB  
AUX DAC2 LSB  
AUX DAC2 MSB  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
AUXDAC1<7:0>  
DAC2FSC<7:0>  
AUXDAC2<7:0>  
AUX1PIN  
AUX2PIN  
AUX1DIR  
AUX2DIR  
Rev. 0 | Page 20 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
SPI REGISTER DESCRIPTIONS  
Table 15.  
Register  
Address Bit Name  
Description  
SPI Control  
0x00  
7
6
7
6
SDIODIR  
LSBFIRST  
SWRESET  
DATTYPE  
ONEPORT  
0, operate SPI in 4-wire mode, SDIO pin operates as an input only  
1, operate SPI in 3-wire mode, SDIO pin operates as a bidirectional I/O line  
0, LSBFIRST off, SPI serial data mode is MSB to LSB  
1, LSBFIRST on, SPI serial data mode is LSB to MSB  
0, resume normal operation following software RESET  
1, software RESET; loads default values to all registers (except Register 0x00)  
0, DAC input data is twos complement binary format  
1, DAC input data is unsigned binary format  
0, normal two port input mode  
Data Control  
Power Down  
0x02  
0x03  
1, optional single port input mode, interleaved data received on Port 1 only  
1, inverts data clock output signal  
4
7
4
3
2
1
0
INVDCO  
PD_DCO  
PD_AUX2  
PD_AUX1  
PD_BIAS  
PD_CLK  
1, power down data clock output  
1, power down AUX2 DAC  
1, power down AUX1 DAC  
1, power down reference voltage bias circuit  
1, power down DAC clock input circuit  
PD_DAC2  
PD_DAC1  
1, power down DAC2 analog output  
1, power down DAC1 analog output  
DAC Mode Select 0x0A  
3:2 DAC1MOD<1:0> 00, selects normal mode, DAC1  
01, selects mix mode, DAC1  
10, selects return-to-zero mode, DAC1  
1:0 DAC2MOD<1:0> 00, selects normal mode, DAC2  
01, selects mix mode, DAC2  
10, selects return-to-zero mode, DAC2  
DAC1 Gain  
AUX DAC1  
0x0B  
0x0C  
7:0 DAC1FSC<7:0>  
1:0 DAC1FSC<9:8>  
DAC1 full-scale 10-bit adjustment word  
0x03FF, sets full-scale current to the maximum value of 31.66 mA  
0x01F9, sets full-scale current to the nominal value of 20.0 mA  
0x0000, sets full-scale current to the minimum value of 8.64 mA  
Auxiliary DAC1 10-bit output current adjustment word  
0x03FF, sets output current magnitude to 2.0 mA  
0x0200, sets output current magnitude to 1.0 mA  
0x0000, sets output current magnitude to 0.0 mA  
0, AUX1P output pin is active  
0x0D  
0x0E  
7:0 AUXDAC1<7:0>  
1:0 AUXDAC1<9:8>  
7
6
AUX1PIN  
AUX1DIR  
1, AUX1N output pin is active  
0, configures AUX1 DAC output to source current  
1, configures AUX1 DAC output to sink current  
DAC2 full-scale 10-bit adjustment word  
DAC2 Gain  
AUX DAC2  
0x0F  
0x10  
7:0 DAC2FSC<7:0>  
1:0 DAC2FSC<9:8>  
0x03FF, sets full-scale current to the maximum value of 31.66 mA  
0x01F9, sets full-scale current to the nominal value of 20.0 mA  
0x0000, sets full-scale current to the minimum value of 8.64 mA  
Auxiliary DAC2 10-bit output current adjustment word  
0x03FF, sets output current magnitude to 2.0 mA  
0x0200, sets output current to 1.0 mA  
0x11  
0x12  
7:0 AUXDAC2<7:0>  
1:0 AUXDAC2<9:8>  
0x0000, sets output current to 0.0 mA  
7
6
AUX2PIN  
AUX2DIR  
0, AUX2P output pin is active  
1, AUX2N output pin is active  
0, configures AUX2 DAC output to source current  
1, configures AUX2 DAC output to sink current  
Rev. 0 | Page 21 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
DIGITAL INPUTS AND OUTPUTS  
In Figure 27, data samples for DAC1 are labeled Ix and data  
samples for DAC2 are labeled Qx. Note that the differential  
DAC clock input is shown in a logical sense (CLKP/CLKN).  
The data clock output is labeled DCO.  
The AD9741/AD9743/AD9745/AD9746/AD9747 can operate  
in two data input modes: dual-port mode and single-port mode.  
For the default dual-port mode (ONEPORT = 0), each DAC  
receives data from a dedicated input port. In single-port mode  
(ONEPORT = 1), however, both DACs receive data from Port 1.  
In single-port mode, DAC1 and DAC2 data is interleaved and  
the IQSEL input is used to steer data to the correct DAC.  
Setup and hold times are referenced to the positive transition of  
the DAC clock. Data should arrive at the input pins such that  
the minimum setup and hold times are met. Note that the data  
clock output has a fixed time delay from the DAC clock and  
may be a more convenient signal to use to confirm timing.  
In single-port mode, when the IQSEL input is high, Port 1  
data is delivered to DAC1 and when IQSEL is low, Port 1 data  
is delivered to DAC2. The IQSEL input should always coincide  
and be time-aligned with the other data bus signals. In single-  
port mode, minimum setup and hold times apply to the IQSEL  
input as well as to the input data signals. In dual-port mode, the  
IQSEL input is ignored.  
SINGLE-PORT MODE TIMING  
The single-port mode timing diagram is shown in Figure 28.  
CLKP/CLKN  
tDCO  
DCO  
tDBH  
I1  
In dual-port mode, the data must be delivered at the sample rate  
(up to 250 MSPS). In single-port mode, data must be delivered  
at twice the sample rate. Because the data inputs function only  
up to 250 MSPS, it is only practical to operate the DAC clock at  
up to 125 MHz in single-port mode.  
tDBS  
P1D<15:0>  
IQSEL  
Q1  
I2  
Q2  
Figure 28. Data Interface Timing, Single-Port Mode  
In single-port mode, data for both DACs is received on the  
In both dual-port and single-port modes, a data clock output  
(DCO) signal is available as a fixed time base with which to  
stimulate data from an FPGA. This output signal always  
operates at the sample rate. It may be inverted by asserting  
the INVDCO bit.  
Port 1 input bus. Ix and Qx data samples are interleaved and  
arrive twice as fast as in dual-port mode. Accompanying the  
data is the IQSEL input signal, which steers incoming data to its  
respective DAC. When IQSEL is high, data is steered to DAC1  
and when IQSEL is low, data is steered to DAC2. IQSEL should  
coincide as well as be time-aligned with incoming data.  
INPUT DATA TIMING  
With most DACs, signal-to-noise ratio (SNR) is a function of  
the relationship between the position of the clock edges and the  
point in time at which the input data changes. The AD9741/  
AD9743/AD9745/AD9746/AD9747 are rising edge triggered  
and thus exhibit greater SNR sensitivity when the data tran-  
sition is close to this edge.  
SPI PORT, RESET, AND PIN MODE  
In general, when the AD9741/AD9743/AD9745/AD9746/  
AD9747 are powered up, an active high pulse applied to the  
RESET pin should follow. This insures the default state of all  
control register bits. In addition, once the RESET pin goes low,  
the SPI port can be activated, so CSB should be held high.  
The specified minimum setup and hold times define a window  
of time, within each data period, where the data is sampled  
correctly. Generally, users should position data to arrive  
relative to the DAC clock and well beyond the minimum  
setup and minimum hold times. This becomes increasingly  
more important at increasingly higher sample rates.  
For applications without a controller, the AD9741/AD9743/  
AD9745/AD9746/AD9747 also support pin mode operation,  
which allows some functional options to be pin, selected with-  
out the use of the SPI port. Pin mode is enabled anytime the  
RESET pin is held high. In pin mode, the four SPI port pins  
take on secondary functions, as shown in Table 16.  
DUAL-PORT MODE TIMING  
Table 16. SPI Pin Functions (Pin Mode)  
The timing diagram for the dual-port mode is shown in  
Figure 27.  
Pin Name  
Pin Mode Description  
SCLK  
ONEPORT (Register 0x02, Bit 6), bit value (1/0)  
equals pin state (high/low)  
CLKP/CLKN  
tDCO  
SDIO  
CSB  
DATTYPE (Register 0x02, Bit 7), bit value (1/0)  
equals pin state (high/low)  
Enable Mix Mode, if CSB is high, Register 0x0A  
is set to 0x05 putting both DAC1 and DAC2 into  
mix mode  
DCO  
tDBS tDBH  
P1D<15:0>  
P2D<15:0>  
I1  
I2  
I3  
I4  
Q1  
Q2  
Q3  
Q4  
Figure 27. Data Interface Timing, Dual-Port Mode  
SDO  
Enable full power-down, if SDO is high, Register  
0x03 is set to 0xFF  
Rev. 0 | Page 22 of 28  
 
 
 
 
 
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
It is important to use CVDD18 and CVSS for any clock bias  
circuit as noise that is coupled onto the clock from another  
power supply is multiplied by the DAC input signal and  
degrades performance.  
In pin mode, all register bits are reset to their default values  
with the exception of those that are controlled by the SPI pins.  
Note also that the RESET pin should be allowed to float and  
must be pulled low. Connect an external 10 kΩ resistor to  
DVSS. This avoids unexpected behavior in noisy environments.  
FULL-SCALE CURRENT GENERATION  
The full-scale currents on DAC1 and DAC2 are functions of  
the current drawn through an external resistor connected to  
the FSADJ pin (Pin 54). The required value for this resistor is  
10 kΩ. An internal amplifier sets the current through the  
resistor to force a voltage equal to the band gap voltage of 1.2 V.  
This develops a reference current in the resistor of 120 μA.  
DRIVING THE DAC CLOCK INPUT  
The DAC clock input requires a low jitter drive signal. It is a  
PMOS differential pair powered from the CVDD18 supply.  
Each pin can safely swing up to 800 mV p-p at a common-  
mode voltage of about 400 mV. Though these levels are not  
directly LVDS-compatible, CLKP and CLKN can be driven by  
an ac-coupled, dc-offset LVDS signal, as shown in Figure 29.  
0.1µF  
AD9747  
DAC1 GAIN  
1.2V BANDGAP  
DAC1  
LVDS_P_IN  
CLKP  
REFIO  
50  
50Ω  
DAC FULL SCALE  
REFERENCE CURRENT  
CURRENT  
SCALING  
0.1µF  
FSADJ  
V
= 400mV  
CM  
DAC2  
10k  
DAC2 GAIN  
LVDS_N_IN  
CLKN  
0.1µF  
Figure 33. Reference Circuitry  
Figure 29. LVDS DAC Clock Drive Circuit  
REFIO (Pin 55) should be bypassed to ground with a 0.1 μF  
capacitor. The band gap voltage is present on this pin and can  
be buffered for use in external circuitry. The typical output  
impedance is near 5 kΩ. If desired, an external reference can  
be connected to REFIO to overdrive the internal reference.  
Using a CMOS or TTL clock is also acceptable for lower sample  
rates. It can be routed through an LVDS translator and then  
ac-coupled as described previously, or alternatively, it can be  
transformer-coupled and clamped, as shown in Figure 30.  
0.1µF  
50  
TTL OR CMOS  
CLK INPUT  
CLKP  
Internal current mirrors provide a means for adjusting the  
DAC full-scale currents. The gain for DAC1 and DAC2 can be  
adjusted independently by writing to the DAC1FSC<9:0> and  
DAC2FSC<9:0> register bits. The default value of 0x01F9 for  
the DAC gain registers gives an IFS of 20 mA, where IFS equals  
CLKN  
50Ω  
BAV99ZXCT  
HIGH SPEED  
DUAL DIODE  
V
= 400mV  
CM  
1.2 V  
10,000  
3
16  
IFS =  
× 72 +  
×DAC n FSC  
Figure 30. TTL or CMOS DAC Clock Drive Circuit  
If a sine wave signal is available, it can be transformer-coupled  
directly to the DAC clock inputs, as shown in Figure 31.  
The full-scale output current range is 8.6 mA to 31.7 mA for  
register values 0x000 to 0x3FF.  
SINE WAVE  
CLKP  
35  
INPUT  
50  
30  
25  
20  
15  
10  
5
CLKN  
V
= 400mV  
CM  
Figure 31. Sine Wave DAC Clock Drive Circuit  
The 400 mV common-mode bias voltage can be derived from  
the CVDD18 supply through a simple divider network, as  
shown in Figure 32.  
V
= 400mV  
CM  
CVDD18  
1k  
0
256  
512  
768  
1024  
DAC GAIN CODE  
0.1µF  
1nF  
287Ω  
Figure 34. IFS vs. DAC Gain Code  
CVSS  
Figure 32. DAC Clock VCM Circuit  
Rev. 0 | Page 23 of 28  
 
 
 
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
systems and other applications requiring good frequency  
domain performance, this is seldom problematic.  
DAC TRANSFER FUNCTION  
Each DAC output of the AD9741/AD9743/AD9745/AD9746/  
The quad-switch architecture also supports two additional  
modes of operation; mix mode and return-to-zero (RZ) mode.  
The waveforms of these two modes are shown in Figure 35. In  
mix mode, the output is inverted every other half clock cycle.  
This effectively chops the DAC output at the sample rate. This  
chopping has the effect of frequency shifting the sinc roll-off  
from dc to fDAC. Additionally, there is a second subtle effect on  
the output spectrum. The shifted spectrum is shaped by a second  
sinc function with a first null at 2 × fDAC. The reason for this  
shaping is that the data is not continuously varying at twice the  
clock rate, but is simply repeated.  
AD9747 drives complementary current outputs IOUTP and IOUTN  
.
I
OUTP provides a near full-scale current output (IFS) when all bits  
are high. For example,  
DAC CODE = 2N − 1  
where:  
N = 8-/10-/12-/14-/16-bits (for AD9741/AD9743/AD9745/  
AD9746/AD9747 respectively), and IOUTN provides no current.  
The current output appearing at IOUTP and IOUTN is a function of  
both the input code and IFS and can be expressed as  
I
I
OUTP = (DAC DATA/2N) × IFS  
OUTN = ((2N − 1) − DAC DATA)/2N × IFS  
(1)  
(2)  
In RZ mode, the output is set to midscale on every other half  
clock cycle. The output is similar to the DAC output in normal  
mode except that the output pulses are half the width and half  
the area. Because the output pulses have half the width, the  
sinc function is scaled in frequency by 2 and has a first null at  
2 × fDAC. Because the area of the pulses is half that of the pulses  
in normal mode, the output power is half the normal mode  
output power.  
where DAC DATA = 0 to 2N − 1 (decimal representation).  
The two current outputs typically drive a resistive load directly  
or via a transformer. If dc coupling is required, IOUTP and IOUTN  
should be connected to matching resistive loads (RLOAD) that are  
tied to analog common (AVSS). The single-ended voltage  
output appearing at the IOUTP and IOUTN pins is  
V
V
OUTP = IOUTP × RLOAD  
OUTN = IOUTN × RLOAD  
(3)  
(4)  
D
D
D
D
D
D
D
D
D
D
10  
INPUT DATA  
DAC CLK  
1
2
3
4
5
6
7
8
9
Note that to achieve the maximum output compliance of 1 V at  
the nominal 20 mA output current, RLOAD must be set to 50 Ω.  
Also note that the full-scale value of VOUTP and VOUTN should  
not exceed the specified output compliance range to maintain  
specified distortion and linearity performance.  
4-SWITCH  
DAC OUTPUT  
t
t
(
fS MIX MODE)  
There are two distinct advantages to operating the AD9741/  
AD9743/AD9745/AD9746/AD9747 differentially. First, differ-  
ential operation helps cancel common-mode error sources  
associated with IOUTP and IOUTN, such as noise, distortion, and  
dc offsets. Second, the differential code dependent current  
and subsequent output voltage (VDIFF) is twice the value of the  
single-ended voltage output (VOUTP or VOUTN), providing 2×  
signal power to the load.  
4-SWITCH  
DAC OUTPUT  
(RETURN TO  
ZERO MODE)  
Figure 35. Mix Mode and RZ Mode DAC Waveforms  
The functions that shape the output spectrums for normal mode,  
mix mode, and RZ mode, are shown in Figure 36. Switching  
between the modes reshapes the sinc roll off inherent at the  
DAC output. This ability to change modes in the AD9741/  
AD9743/AD9745/D9746/AD9747 makes the parts suitable for  
direct IF applications. The user can place a carrier anywhere in  
the first three Nyquist zones depending on the operating mode  
selected. The performance and maximum amplitude in all three  
zones are impacted by this sinc roll off depending on where the  
carrier is placed, as shown in Figure 36.  
V
DIFF = (IOUTP IOUTN) × RLOAD  
(5)  
ANALOG MODES OF OPERATION  
The AD9741/AD9743/AD9745/AD9746/AD9747 utilize a  
proprietary quad-switch architecture that lowers the distortion  
of the DAC output by eliminating a code dependent glitch that  
occurs with conventional dual-switch architectures. But whereas  
this architecture eliminates the code dependent glitches, it creates  
a constant glitch at a rate of 2 × fDAC. For communications  
Rev. 0 | Page 24 of 28  
 
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
QUADRATURE  
MODULATOR V+  
0
–10  
–20  
–30  
–40  
MIX  
RZ  
AD9747  
AUX  
DAC1 OR  
DAC2  
QUAD MOD  
I OR Q INPUTS  
NORMAL  
OPTIONAL  
PASSIVE  
FILTERING  
AD9747  
DAC1 OR  
DAC2  
25TO 50Ω  
25TO 50Ω  
0.5  
1.5  
2
Figure 38. DAC DC Coupled to Quadrature Modulator with Passive DC Shift  
F
S
POWER DISSIPATION  
Figure 36. Transfer Function for Each Analog Operating Mode  
Figure 39 shows the power dissipation and current draw of the  
AD9741/AD9743/AD9745/AD9746/AD9747. It shows that the  
devices have a quiescent power dissipation of about 190 mW.  
Most of this comes from the AVDD33 supply. Total power  
dissipation increases about 50% as the clock rate is increased  
to the maximum clock rate of 250 MHz.  
AUXILIARY DACS  
Two auxiliary DACs are provided on the AD9741/AD9743/  
AD9745/AD9746/AD9747. A functional diagram is shown  
in Figure 37. The auxiliary DACs are current output devices  
with two output pins, AUXP and AUXN. The active pin can  
be programmed to either source or sink current. When either  
sinking or sourcing, the full-scale current magnitude is 2 mA.  
The available compliance range at the auxiliary DAC outputs  
depends on whether the output is configured to a sink or source  
current. When sourcing current, the compliance voltage is 0 V  
to 1.6 V, but when sinking current, the output compliance  
voltage reduces to 0.8 V to 1.6 V. Either output can be used, but  
only one output of the auxiliary DAC (P or N) is active at any  
time. The inactive pin is always in a high impedance state  
(>100 kΩ).  
350  
310  
fOUT = NYQUIST  
270  
fOUT = DC  
230  
190  
150  
0mA  
TO  
2mA  
AUXP  
V
BIAS  
0
25  
50  
75  
100 125 150 175 200 225 250  
fDAC (MHz)  
AUXN  
0mA  
SINK  
OR  
SOURCE  
POSITIVE  
OR  
NEGATIVE  
TO  
Figure 39. AD9747 Power Dissipation vs. fDAC  
2mA  
15  
12  
9
Figure 37. Auxiliary DAC Functional Diagram  
In a single side band transmitter application, the combination of  
the input referred dc offset voltage of the quadrature modulator  
and the DAC output offset voltage can result in local oscillator  
(LO) feedthrough at the modulator output, which degrades  
system performance. The auxiliary DACs can be used to remove  
the dc offset and the resulting LO feedthrough. The circuit  
configuration for using the auxiliary DACs for performing  
dc offset correction depends on the details of the DAC and  
modulator interface. An example of a dc-coupled configuration  
with low-pass filtering is outlined in the Power Dissipation  
section.  
AD9747  
6
AD9741  
3
0
0
25  
50  
75  
100 125 150 175 200 225 250  
fDAC (MHz)  
Figure 40. DVDD33 Current vs. fDAC  
Rev. 0 | Page 2ꢀ of 28  
 
 
 
 
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
30  
Figure 43 shows the power consumption for each power supply  
domain as well as the total power consumption. Individual bars  
within each group display the power in full active mode (blue)  
vs. power for five increasing levels of power-down.  
350  
24  
AD9747  
18  
12  
6
FULL ACTIVE  
DCO OFF  
AUX OFF  
DAC OFF  
CLK OFF  
300  
BIAS OFF  
250  
AD9741  
200  
150  
100  
50  
0
0
25  
50  
75  
100 125 150 175 200 225 250  
fDAC (MHz)  
Figure 41. DVDD18 Current vs. fDAC  
15  
13  
11  
9
0
AVDD33  
DVDD18  
CVDD18  
DVDD33  
TOT PWR  
Figure 43. Power Dissipation vs. Power-Down Mode  
The overall power consumption is dominated by AVDD33 and  
significant power savings can be achieved simply by disabling  
the DAC outputs. Also, disabling the DAC outputs is a signifi-  
cant way to conserve power and still maintain a fast wake-up  
time. Full power-down disables all circuitry for minimum  
power consumption. Note, however, that even in full power-  
down, there is a small power draw (25 mW) due to incoming  
data activity. To lower power consumption to near zero, all  
incoming data activity must be halted.  
7
5
0
25  
50  
75  
100 125 150 175 200 225 250  
fDAC (MHz)  
Figure 42. CVDD18 Current vs. fDAC  
Rev. 0 | Page 26 of 28  
 
AD9741/AD9743/AD9745/AD9746/AD9747  
OUTLINE DIMENSIONS  
0.30  
0.23  
0.18  
0.60 MAX  
10.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
55  
54  
72  
1
PIN 1  
INDICATOR  
0.50  
BSC  
9.75  
BSC SQ  
4.70  
BSC SQ  
TOP VIEW  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.80 MAX  
0.65 TYP  
9.00 REF  
1.00  
0.85  
0.80  
12° MAX  
EXPOSED PAD MUST BE  
SOLDERED TO PCB AND  
CONNECTED TO AVSS.  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-3  
Figure 44. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm, Very Thin Quad  
(CP-72-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
Package Description  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Package Option  
AD9741BCPZ1  
AD9741BCPZRL1  
AD9743BCPZ1  
AD9743BCPZRL1  
AD9745BCPZ1  
AD9745BCPZRL1  
AD9746BCPZ1  
AD9746BCPZRL1  
AD9747BCPZ1  
AD9747BCPZRL1  
AD9741-EBZ1  
AD9743-EBZ1  
AD9745-EBZ1  
AD9746-EBZ1  
AD9747-EBZ1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 27 of 28  
 
 
 
AD9741/AD9743/AD9745/AD9746/AD9747  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06569-0-5/07(0)  
Rev. 0 | Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY