AD9780BCPZRL [ADI]

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs; 双12位/ 14位/ 16位, LVDS接口, 500 MSPS数模转换器
AD9780BCPZRL
型号: AD9780BCPZRL
厂家: ADI    ADI
描述:

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
双12位/ 14位/ 16位, LVDS接口, 500 MSPS数模转换器

转换器 数模转换器
文件: 总36页 (文件大小:1275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 12-/14-/16-Bit,  
LVDS Interface, 500 MSPS DACs  
AD9780/AD9781/AD9783  
GENERAL DESCRIPTION  
FEATURES  
High dynamic range, dual DAC parts  
The AD9780/AD9781/AD9783 include pin-compatible, high  
dynamic range, dual digital-to-analog converters (DACs) with  
12-/14-/16-bit resolutions, and sample rates of up to 500 MSPS.  
The devices include specific features for direct conversion transmit  
applications, including gain and offset compensation, and they  
interface seamlessly with analog quadrature modulators such as  
the ADL5370.  
Low noise and intermodulation distortion  
Single carrier W-CDMA ACLR = 80 dBc @ 61.44 MHz IF  
Innovative switching output stage permits usable outputs  
beyond Nyquist frequency  
LVDS inputs with dual-port or optional interleaved single-  
port operation  
Differential analog current outputs are programmable from  
8.6 mA to 31.7 mA full scale  
Auxiliary 10-bit current DACs with source/sink capability for  
external offset nulling  
A proprietary, dynamic output architecture permits synthesis  
of analog outputs even above Nyquist by shifting energy away  
from the fundamental and into the image frequency.  
Full programmability is provided through a serial peripheral  
interface (SPI) port. Some pin-programmable features are also  
offered for those applications without a controller.  
Internal 1.2 V precision reference voltage source  
Operates from 1.8 V and 3.3 V supplies  
315 mW power dissipation  
Small footprint, RoHS compliant, 72-lead LFCSP  
PRODUCT HIGHLIGHTS  
APPLICATIONS  
1. Low noise and intermodulation distortion (IMD) enable  
high quality synthesis of wideband signals.  
2. Proprietary switching output for enhanced dynamic  
performance.  
Wireless infrastructure  
W-CDMA, CDMA2000, TD-SCDMA, WiMAX  
Wideband communications  
3. Programmable current outputs and dual auxiliary DACs  
provide flexibility and system enhancements.  
LMDS/MMDS, point-to-point  
RF signal generators, arbitrary waveform generators  
FUNCTIONAL BLOCK DIAGRAM  
CLKP  
CLKN  
AD9783 DUAL LVDS DAC  
IOUT1P  
IOUT1N  
16-BIT  
I DAC  
INTERFACE LOGIC  
IOUT2P  
IOUT2N  
16-BIT  
Q DAC  
LVDS  
INTERFACE  
D[15:0]  
GAIN  
DAC  
V
, V  
IA IB  
GAIN  
DAC  
AUX1P  
AUX1N  
OFFSET  
DAC  
INTERNAL  
REFERENCE  
AND  
SERIAL  
PERIPHERAL  
INTERFACE  
AUX2P  
AUX2N  
OFFSET  
DAC  
BIAS  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2007–2008 Analog Devices, Inc. All rights reserved.  
 
AD9780/AD9781/AD9783  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
General Operation of the Serial Interface............................... 18  
Instruction Byte.......................................................................... 18  
MSB/LSB Transfers .................................................................... 19  
Serial Interface Port Pin Descriptions ..................................... 19  
SPI Register Map ............................................................................ 20  
SPI Register Descriptions.............................................................. 21  
SPI Port, RESET, and Pin Mode............................................... 23  
Parallel Data Port Interface ........................................................... 24  
Optimizing the Parallel Port Timing....................................... 24  
Driving the CLK Input .............................................................. 26  
Full-Scale Current Generation ................................................. 26  
DAC Transfer Function............................................................. 27  
Analog Modes of Operation ..................................................... 27  
Power Dissipation....................................................................... 29  
Evaluation Board Schematics........................................................ 30  
Outline Dimensions....................................................................... 35  
Ordering Guide .......................................................................... 35  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
Digital Specifications ................................................................... 4  
AC Specifications.......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
Serial Peripheral Interface......................................................... 18  
REVISION HISTORY  
6/08—Rev. 0 to Rev. A  
Changed Maximum Sample Rate to 500 MHz Throughout....... 1  
Changes to Table 3............................................................................ 4  
Changes to Building the Array Section ....................................... 25  
Changes to Determining the SMP Value Section....................... 25  
Added Evaluation Board Schematics Section............................. 30  
Updated Outline Dimensions....................................................... 35  
11/07—Revision 0: Initial Version  
Rev. A | Page 2 of 36  
 
AD9780/AD9781/AD9783  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA maximum sample rate, unless  
otherwise noted.  
Table 1.  
AD9780  
Typ  
AD9781  
Typ  
AD9783  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
RESOLUTION  
12  
14  
16  
Bits  
ACCURACY  
Differential Nonlinearity (DNL)  
Integral Nonlinearity (INL)  
MAIN DAC OUTPUTS  
Offset Error  
Gain Error (with Internal Reference)  
Full-Scale Output Current1  
Output Compliance Range  
Output Resistance  
Main DAC Monotonicity Guaranteed  
MAIN DAC TEMPERATURE DRIFT  
Offset  
±±.13  
±±.2ꢀ  
±±.ꢀ  
±1  
±2  
±4  
LSB  
LSB  
–±.±±1  
±
±2  
2±.2  
+±.±±1  
–±.±±1  
±
±2  
2±.2  
+±.±±1  
–±.±±1  
±
±2  
+±.±±1  
% FSR  
% FSR  
mA  
V
MΩ  
8.66  
–1.±  
31.66  
+1.±  
8.66  
–1.±  
31.66  
+1.±  
8.66  
–1.±  
2±.2 31.66  
+1.±  
1±  
1±  
1±  
±.±4  
1±±  
3±  
±.±4  
1±±  
3±  
±.±4  
1±±  
3±  
ppm/°C  
ppm/°C  
ppm/°C  
Gain  
Reference Voltage  
AUX DAC OUTPUTS  
Resolution  
Full-Scale Output Current  
Output Compliance Range (Source)  
Output Compliance Range (Sink)  
Output Resistance  
AUX DAC Monotonicity Guaranteed  
REFERENCE  
1±  
1±  
1±  
+2  
1.6  
1.6  
1
Bits  
mA  
V
V
MΩ  
–2  
±
±.8  
+2  
1.6  
1.6  
–2  
±
±.8  
+2  
1.6  
1.6  
–2  
±
±.8  
1
1
Internal Reference Voltage  
Output Resistance  
ANALOG SUPPLY VOLTAGES  
AVDD33  
1.2  
1.2  
1.2  
V
kΩ  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
V
V
CVDD18  
DIGITAL SUPPLY VOLTAGES  
DVDD33  
DVDD18  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
3.13  
1.7±  
3.3  
1.8  
3.47  
1.9±  
V
V
POWER CONSUMPTION  
fDAC = ꢀ±± MSPS, IF = 2± MHz  
fDAC = ꢀ±± MSPS, IF = 1± MHz  
Power-Down Mode  
SUPPLY CURRENTS2  
AVDD33  
CVDD18  
DVDD33  
DVDD18  
V × I  
44±  
3
V × I  
V × I V × I  
44±  
V × I V × I  
44±  
mW  
mW  
mW  
3
3
3ꢀ  
ꢀꢀ  
34  
13  
68  
ꢀ8  
38  
1ꢀ  
8ꢀ  
ꢀꢀ  
34  
13  
68  
ꢀ8  
38  
1ꢀ  
8ꢀ  
ꢀꢀ  
34  
13  
68  
ꢀ8  
38  
1ꢀ  
8ꢀ  
mA  
mA  
mA  
mA  
1 Based on a 1± kΩ external resistor.  
2 fDAC = ꢀ±± MSPS, fOUT = 2± MHz.  
Rev. A | Page 3 of 36  
 
AD9780/AD9781/AD9783  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA maximum sample rate, unless  
otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
DAC CLOCK INPUT (CLKP, CLKN)  
Peak-to-Peak Voltage at CLKP and CLKN  
Common-Mode Voltage  
4±±  
3±±  
ꢀ±±  
8±±  
4±±  
16±±  
ꢀ±±  
mV  
mV  
MSPS  
Maximum Clock Rate  
SERIAL PERIPHERAL INTERFACE (CMOS INTERFACE)  
Maximum Clock Rate (SCLK)  
Minimum Pulse Width High  
4±  
12.ꢀ  
12.ꢀ  
MHz  
ns  
ns  
Minimum Pulse Width Low  
DIGITAL INPUT DATA (LVDS INTERFACE)  
Input Voltage Range, VIA or VIB  
Input Differential Threshold, VIDTH  
Input Differential Hysteresis, VIDTHH to VIDTHL  
Input Differential Input Impedance, RIN  
Maximum LVDS Input Rate (per DAC)  
8±±  
−1±±  
16±±  
+1±±  
mV  
mV  
mV  
Ω
2±  
8±  
ꢀ±±  
12±  
MSPS  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD33 = 3.3 V, DVDD18 = 1.8 V, CVDD18 = 1.8 V, IOUTFS = 20 mA, maximum sample rate, unless  
otherwise noted.  
Table 3.  
AD9780  
Min Typ  
AD9781  
Max Min Typ  
AD9783  
Max Min Typ  
Parameter  
Max Unit  
SPURIOUS FREE DYNAMIC RANGE (SFDR)  
fDAC = ꢀ±± MSPS, fOUT = 2± MHz  
fDAC = ꢀ±± MSPS, fOUT = 12± MHz  
fDAC = ꢀ±± MSPS, fOUT = 38± MHz (Mix Mode)  
fDAC = ꢀ±± MSPS, fOUT = 48± MHz (Mix Mode)  
TWO-TONE INTERMODULATION DISTORTION (IMD)  
fDAC = ꢀ±± MSPS, fOUT = 2± MHz  
79  
67  
ꢀꢀ  
ꢀ8  
78  
66  
ꢀ8  
62  
8±  
68  
62  
ꢀ9  
dBc  
dBc  
dBc  
dBc  
91  
8±  
69  
6±.ꢀ  
93  
7ꢀ  
7±  
61.ꢀ  
86  
79  
64  
66  
dBc  
dBc  
dBc  
dBc  
fDAC = ꢀ±± MSPS, fOUT = 12± MHz  
fDAC = ꢀ±± MSPS, fOUT = 38± MHz (Mix Mode)  
fDAC = ꢀ±± MSPS, fOUT = 48± MHz (Mix Mode)  
ONE-TONE NOISE SPECTRAL DENSITY (NSD)  
fDAC = ꢀ±± MSPS, fOUT = 4± MHz  
fDAC = ꢀ±± MSPS, fOUT = 12± MHz  
fDAC = ꢀ±± MSPS, fOUT = 38± MHz (Mix Mode)  
fDAC = ꢀ±± MSPS, fOUT = 48± MHz (Mix Mode)  
−1ꢀ7  
−1ꢀ4.ꢀ  
−1ꢀ3  
−1ꢀ2  
−162  
−1ꢀ6.ꢀ  
−1ꢀ3  
−1ꢀ2  
−16ꢀ  
−1ꢀ7  
−1ꢀ4  
−1ꢀ3  
dBc  
dBc  
dBc  
dBc  
W-CDMA ADJACENT CHANNEL LEAKAGE RATIO (ACLR),  
SINGLE CARRIER  
fDAC = 491.ꢀ2 MSPS, fOUT = 2± MHz  
fDAC = 491.ꢀ2 MSPS, fOUT = 8± MHz  
fDAC = 491.ꢀ2 MSPS, fOUT = 411.ꢀ2 MHz  
fDAC = 491.ꢀ2 MSPS, fOUT = 471.ꢀ2 MHz  
−81  
−8±  
−71  
−69  
−82.ꢀ  
−82.ꢀ  
−68  
−82  
−81  
−69  
−7±  
dBc  
dBc  
dBc  
dBc  
−69  
Rev. A | Page 4 of 36  
 
AD9780/AD9781/AD9783  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
THERMAL RESISTANCE  
Thermal resistance is tested using a JEDEC standard 4-layer  
thermal test board with no airflow.  
With  
Respect to  
Parameter  
AVDD33, DVDD33  
DVDD18, CVDD18  
AGND  
DGND  
CGND  
Rating  
AGND, DGND, CGND −±.3 V to +3.6 V  
AGND, DGND, CGND −±.3 V to +1.98 V  
DGND, CGND  
AGND, CGND  
AGND, DGND  
AGND  
Table 5.  
Package Type  
θJA  
Unit  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
−±.3 V to +±.3 V  
−±.3 V to  
AVDD33 + ±.3 V  
CP-72-1 (Exposed Pad Soldered to PCB)  
2ꢀ  
°C/W  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
REFIO  
IOUT1P, IOUT1N,  
IOUT2P, IOUT2N,  
AUX1P, AUX1N,  
AUX2P, AUX2N  
AGND  
−1.± V to  
AVDD33 + ±.3 V  
D1ꢀ to D±  
DGND  
CGND  
−±.3 V to  
DVDD33 + ±.3 V  
−±.3 V to  
ESD CAUTION  
CLKP, CLKN  
CVDD18 + ±.3 V  
CSB, SCLK, SDIO, SDO DGND  
–±.3 V to  
DVDD33 + ±.3 V  
Junction Temperature  
Storage Temperature  
+12ꢀ°C  
−6ꢀ°C to +1ꢀ±°C  
Rev. A | Page ꢀ of 36  
 
AD9780/AD9781/AD9783  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
D11P  
1
2
3
4
5
6
7
8
9
54 FS ADJ  
53 RESET  
52 CSB  
51 SCLK  
50 SDIO  
49 SDO  
48 DVSS  
47 DVDD18  
46 NC  
PIN 1  
INDICATOR  
AD9780  
(TOP VIEW)  
D11N 10  
D10P 11  
D10N 12  
D9P 13  
D9N 14  
D8P 15  
D8N 16  
D7P 17  
D7N 18  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 D0N  
37 D0P  
NOTES  
1. NC = NO CONNECT  
2. EXPOSED PAD MUST BE  
SOLDERED TO PCB AND  
CONNECTED TO AVSS.  
Figure 2. AD9780 Pin Configuration  
Table 6. AD9780 Pin Function Descriptions  
Pin No.  
1, 6  
2, ꢀ  
Mnemonic  
CVDD18  
CVSS  
Description  
Clock Supply Voltage (1.8 V).  
Clock Supply Return.  
3, 4  
7, 28, 48  
CLKP, CLKN  
DVSS  
Differential DAC Sampling Clock Input.  
Digital Common.  
8, 47  
9 to 24, 31 to 38  
2ꢀ, 26  
27  
29, 3±  
39 to 46  
DVDD18  
D11P, D11N to D±P, D±N  
DCOP, DCON  
DVDD33  
DCIP, DCIN  
NC  
Digital Supply Voltage (1.8 V).  
LVDS Data Inputs. D11 is the MSB, D± is the LSB.  
Differential Data Clock Output. LVDS clock at the DAC sample rate.  
Digital Input and Output Pad Ring Supply Voltage (3.3 V).  
Differential Data Clock Input. LVDS clock aligned with input data.  
No Connection. Leave these pins floating.  
49  
SDO  
Serial Port Data Output.  
ꢀ±  
ꢀ1  
SDIO  
SCLK  
Serial Port Data Input (4-Wire Mode) or Bidirectional Serial Data Line (3-Wire Mode).  
Serial Port Clock Input.  
ꢀ2  
CSB  
Serial Port Chip Select (Active Low).  
ꢀ3  
RESET  
Chip Reset (Active High).  
ꢀ4  
FS ADJ  
Full-Scale Current Output Adjust.  
ꢀꢀ  
REFIO  
AVDD33  
AVSS  
Analog Reference Input/Output (1.2 V Nominal).  
Analog Supply Voltage (3.3 V).  
Analog Common.  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 7±  
ꢀ9  
6±  
62, 63  
6ꢀ, 66  
68  
69  
IOUT2P  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
Differential Auxiliary DAC Current Output (Channel 2).  
Differential Auxiliary DAC Current Output (Channel 1).  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
IOUT2N  
AUX2P, AUX2N  
AUX1N, AUX1P  
IOUT1N  
IOUT1P  
Heat Sink Pad  
N/A  
The heat sink pad on the bottom of the package should be soldered to the PCB plane that  
carries AVSS.  
Rev. A | Page 6 of 36  
 
AD9780/AD9781/AD9783  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
D13P  
1
2
3
4
5
6
7
8
9
54 FS ADJ  
RESET  
52 CSB  
PIN 1  
INDICATOR  
53  
51 SCLK  
50  
SDIO  
49 SDO  
48 DVSS  
AD9781  
(TOP VIEW)  
47  
DVDD18  
46 NC  
D13N 10  
D12P 11  
D12N 12  
D11P 13  
D11N 14  
D10P 15  
D10N 16  
D9P 17  
NC  
NC  
43 NC  
D0N  
41 D0P  
40 D1N  
45  
44  
42  
39  
38 D2N  
D2P  
D1P  
D9N 18  
37  
NOTES  
1. NC = NO CONNECT  
2. EXPOSED PAD MUST BE  
SOLDERED TO PCB AND  
CONNECTED TO AVSS.  
Figure 3. AD9781 Pin Configuration  
Table 7. AD9781 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
Description  
1, 6  
2, ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Return.  
3, 4  
7, 28, 48  
CLKP, CLKN  
DVSS  
Differential DAC Sampling Clock Input.  
Digital Common.  
8, 47  
DVDD18  
Digital Supply Voltage (1.8 V).  
9 to 24, 31 to 42  
D13P, D13N to D±P, D±N LVDS Data Inputs. D13 is the MSB, D± is the LSB.  
2ꢀ, 26  
27  
29, 3±  
43 to 46  
DCOP, DCON  
DVDD33  
DCIP, DCIN  
NC  
Differential Data Clock Output. LVDS clock at the DAC sample rate.  
Digital Input and Output Pad Ring Supply Voltage (3.3 V).  
Differential Data Clock Input. LVDS clock aligned with input data.  
No Connection. Leave these pins floating.  
49  
SDO  
Serial Port Data Output.  
ꢀ±  
ꢀ1  
SDIO  
SCLK  
Serial Port Data Input (4-Wire Mode) or Bidirectional Serial Data Line (3-Wire Mode).  
Serial Port Clock Input.  
ꢀ2  
CSB  
Serial Port Chip Select (Active Low).  
ꢀ3  
RESET  
Chip Reset (Active High).  
ꢀ4  
ꢀꢀ  
FS ADJ  
REFIO  
AVDD33  
AVSS  
Full-Scale Current Output Adjust.  
Analog Reference Input/Output (1.2 V Nominal).  
Analog Supply Voltage (3.3 V).  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 7±  
Analog Common.  
ꢀ9  
6±  
62, 63  
6ꢀ, 66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P, AUX2N  
AUX1N, AUX1P  
IOUT1N  
IOUT1P  
N/A  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
Differential Auxiliary DAC Current Output (Channel 2).  
Differential Auxiliary DAC Current Output (Channel 1).  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Heat Sink Pad  
The heat sink pad on the bottom of the package should be soldered to the PCB plane that  
carries AVSS.  
Rev. A | Page 7 of 36  
AD9780/AD9781/AD9783  
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
1
2
3
4
5
6
7
8
9
54 FS ADJ  
RESET  
52 CSB  
PIN 1  
INDICATOR  
53  
51 SCLK  
50  
SDIO  
CVDD18  
DVSS  
DVDD18  
D15P  
D15N 10  
D14P 11  
D14N 12  
D13P 13  
D13N 14  
D12P 15  
D12N 16  
D11P 17  
D11N 18  
49 SDO  
48 DVSS  
AD9783  
(TOP VIEW)  
47  
DVDD18  
46 D0N  
45  
D0P  
44 D1N  
43 D1P  
42  
D2N  
41 D2P  
40 D3N  
39  
38 D4N  
D4P  
D3P  
37  
NOTES  
1. EXPOSED PAD MUST BE  
SOLDERED TO PCB AND  
CONNECTED TO AVSS.  
Figure 4. AD9783 Pin Configuration  
Table 8. AD9783 Pin Function Descriptions  
Pin No.  
Mnemonic  
CVDD18  
CVSS  
Description  
1, 6  
2, ꢀ  
Clock Supply Voltage (1.8 V).  
Clock Supply Return.  
3, 4  
7, 28, 48  
CLKP, CLKN  
DVSS  
Differential DAC Sampling Clock Input.  
Digital Common.  
8, 47  
DVDD18  
Digital Supply Voltage (1.8 V).  
9 to 24, 31 to 46  
D1ꢀP, D1ꢀN to D±P, D±N LVDS Data Inputs. D1ꢀ is the MSB, D± is the LSB.  
2ꢀ, 26  
27  
29, 3±  
49  
DCOP, DCON  
DVDD33  
DCIP, DCIN  
SDO  
Differential Data Clock Output. LVDS clock at the DAC sample rate.  
Digital Input and Output Pad Ring Supply Voltage (3.3 V).  
Differential Data Clock Input. LVDS clock aligned with input data.  
Serial Port Data Output.  
ꢀ±  
ꢀ1  
SDIO  
SCLK  
Serial Port Data Input (4-Wire Mode) or Bidirectional Serial Data Line (3-Wire Mode).  
Serial Port Clock Input.  
ꢀ2  
CSB  
Serial Port Chip Select (Active Low).  
ꢀ3  
RESET  
Chip Reset (Active High).  
ꢀ4  
FS ADJ  
Full-Scale Current Output Adjust.  
ꢀꢀ  
REFIO  
AVDD33  
AVSS  
Analog Reference Input/Output (1.2 V Nominal).  
Analog Supply Voltage (3.3 V).  
Analog Common.  
ꢀ6, ꢀ7, 71, 72  
ꢀ8, 61, 64, 67, 7±  
ꢀ9  
6±  
62, 63  
6ꢀ, 66  
68  
69  
IOUT2P  
IOUT2N  
AUX2P, AUX2N  
AUX1N, AUX1P  
IOUT1N  
IOUT1P  
N/A  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
Differential Auxiliary DAC Current Output (Channel 2).  
Differential Auxiliary DAC Current Output (Channel 1).  
Complementary DAC Current Output. Full-scale current is sourced when all data bits are ±s.  
DAC Current Output. Full-scale current is sourced when all data bits are 1s.  
Heat Sink Pad  
The heat sink pad on the bottom of the package should be soldered to the PCB plane that  
carries AVSS.  
Rev. A | Page 8 of 36  
AD9780/AD9781/AD9783  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.5  
0.4  
0.2  
0
1.0  
0.5  
–0.2  
–0.4  
–0.6  
0
–0.5  
–1.0  
–0.8  
–1.0  
–1.2  
–1.4  
–1.5  
–2.0  
–2.5  
–1.6  
0
0
0
16,384  
32,768  
CODE  
49,152  
65,535  
65,535  
65,535  
0
0
0
16,384  
32,768  
CODE  
49,152  
65,535  
65,535  
65,535  
Figure 5. AD9783 INL, TA = 85°C, FS = 20 mA  
Figure 8. AD9783 DNL, TA = 85°C, FS = 20 mA  
5
4
3
2
1
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1  
–2  
–3  
–1.6  
16,384  
32,768  
CODE  
49,152  
16,384  
32,768  
CODE  
49,152  
Figure 6. AD9783 INL, TA = 25°C, FS = 20 mA  
Figure 9. AD9783 DNL, TA = 25°C, FS = 20 mA  
5
4
3
2
1
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1  
–2  
–3  
–1.0  
16,384  
32,768  
CODE  
49,152  
16,384  
32,768  
CODE  
49,152  
Figure 7. AD9783 INL, TA = −40°C, FS = 20 mA  
Figure 10. AD9783 DNL, TA = −40°C, FS = 20 mA  
Rev. A | Page 9 of 36  
 
AD9780/AD9781/AD9783  
0.059  
–0.060  
–0.179  
–0.297  
–0.416  
0.4  
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0
0
0
4096  
8192  
12,288  
16,383  
16,383  
4096  
0
4096  
8192  
12,288  
16,383  
CODE  
CODE  
Figure 11. AD9781 INL, TA = 85°C, FS = 20 mA  
Figure 14. AD9781 DNL, TA = 85°C, FS = 20 mA  
0.1  
0
0.6  
0.4  
0.2  
–0.1  
0
–0.2  
–0.3  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.4  
–0.5  
0
4096  
8192  
12,288  
16,383  
4096  
8192  
12288  
CODE  
CODE  
Figure 12. AD9781 INL, TA = −40°C, FS = 20 mA  
Figure 15. AD9781 DNL, TA = −40°C, FS = 20 mA  
0.2  
0.2  
0.1  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.6  
0
1024  
2048  
3072  
1024  
2048  
3072  
4096  
CODE  
CODE  
Figure 16. AD9780 INL, TA = 85°C, FS = 20 mA  
Figure 13. AD9780 INL, TA = −40°C, FS = 20 mA  
Rev. A | Page 1± of 36  
AD9780/AD9781/AD9783  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
250MSPS  
+25°C  
400MSPS  
–40°C  
+85°C  
500MSPS  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
Figure 20. AD9783 SFDR vs. fOUT Over Temperature, at 500 MSPS, FS = 20 mA  
Figure 17. AD9783 SFDR vs. fOUT Over fDAC in Baseband and Mix Modes,  
FS = 20 mA  
100  
95  
100  
95  
90  
90  
250MSPS  
85  
85  
20mA  
80  
75  
70  
80  
30mA  
75  
70  
65  
60  
400MSPS  
65  
60  
55  
50  
45  
40  
55  
50  
45  
40  
10mA  
500MSPS  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
Figure 21. AD9783 IMD vs. fOUT Over fDAC in Baseband and Mix Modes,  
FS = 20 mA  
Figure 18. AD9783 SFDR vs. fOUT Over Analog Output, TA = 25°C, at 500 MSPS  
100  
95  
100  
95  
90  
90  
10mA  
85  
85  
–3dBFS  
80  
80  
20mA  
75  
75  
70  
70  
30mA  
65  
60  
55  
50  
65  
60  
55  
50  
45  
40  
–6dBFS  
0dBFS  
45  
40  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
Figure 19. AD9783 SFDR vs. fOUT Over Digital Input Level,  
TA = 25°C, at 500 MSPS, FS = 20 mA  
Figure 22. AD9783 IMD vs. fOUT Over Analog Output, TA = 25°C, at 500 MSPS  
Rev. A | Page 11 of 36  
AD9780/AD9781/AD9783  
100  
–140  
–143  
–146  
–149  
–152  
–155  
–158  
–161  
–164  
–167  
–170  
95  
–6dBFS  
90  
–3dBFS  
85  
80  
75  
70  
65  
60  
250MSPS  
0dBFS  
55  
500MSPS  
50  
45  
40  
400MSPS  
0
30  
60  
90  
120  
150  
180  
210  
240  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
fOUT (MHz)  
Figure 23. AD9783 IMD vs. fOUT Over Digital Input Level, TA = 25°C, at  
500 MSPS, FS = 20 mA  
Figure 26. AD9783 Eight-Tone NSD vs. fOUT Over fDAC Baseband and  
Mix Modes, FS = 20 mA  
100  
95  
–140  
–143  
–146  
–149  
90  
85  
+85°C  
80  
+85°C  
–152  
–155  
75  
70  
65  
60  
55  
50  
45  
40  
+25°C  
+25°C  
–40°C  
–158  
–40°C  
–161  
–164  
–167  
–170  
0
30  
60  
90  
120  
150  
180  
210  
240  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
fOUT (MHz)  
Figure 24. AD9783 IMD vs. fOUT Over Temperature, at 500 MSPS, FS = 20 mA  
Figure 27. AD9783 One-Tone NSD vs. fOUT Over Temperature, at 500 MSPS,  
FS = 20 mA  
–140  
–143  
–146  
–140  
–143  
–146  
–149  
–152  
–155  
–149  
250MSPS  
–152  
500MSPS  
–155  
–158  
–158  
+85°C  
–161  
–161  
400MSPS  
–164  
–167  
–170  
–164  
+25°C  
–167  
–170  
–40°C  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
0
25  
50  
75  
100 125 150 175 200 225 250  
fOUT (MHz)  
Figure 25. AD9783 One-Tone NSD vs. fOUT Over fDAC Baseband and Mix Modes,  
FS = 20 mA  
Figure 28. AD9783 Eight-Tone NSD vs. fOUT Over Temperature, at 500 MSPS,  
FS = 20 mA  
Rev. A | Page 12 of 36  
AD9780/AD9781/AD9783  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
491.52MSPS  
0dB  
245.76MSPS  
–3dB  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 29. AD9783 ACLR for First Adjacent Band One-Carrier W-CDMA  
Baseband and Mix Modes, FS = 20 mA  
Figure 32. AD9783 ACLR for First Adjacent Channel Two-Carrier W-CDMA  
Over Digital Input Level Baseband and Mix Modes, at 491.52 MSPS,  
FS = 20 mA  
–50  
–55  
–60  
–65  
–70  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–3dB  
245.76MSPS  
491.52MSPS  
–75  
–80  
–85  
–90  
0dB  
200  
0
100  
200  
300  
400  
500  
0
100  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 30. AD9783 ACLR for Second Adjacent Band One-Carrier W-CDMA  
Baseband and Mix Modes, FS = 20 mA  
Figure 33. AD9783 ACLR for Second Adjacent Channel Two-Carrier W-CDMA  
Over Digital Input Level Baseband and Mix Modes, at 491.52 MSPS,  
FS = 20 mA  
–50  
–55  
–60  
–65  
–50  
–55  
–60  
–65  
245.76MSPS  
491.52MSPS  
–70  
–75  
–80  
–85  
–90  
–70  
–75  
–80  
–85  
–90  
–3dB  
0dB  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
fOUT (MHz)  
Figure 31. AD9783 ACLR for Third Adjacent Band One-Carrier W-CDMA  
Baseband and Mix Modes, FS = 20 mA  
Figure 34. AD9783 ACLR for Third Adjacent Channel Two-Carrier W-CDMA  
Over Digital Input Level Baseband and Mix Modes, at 491.52 MSPS,  
FS = 20 mA  
Rev. A | Page 13 of 36  
AD9780/AD9781/AD9783  
–50  
1.0  
0.5  
–55  
0
–60  
–0.5  
0dB  
–1.0  
–1.5  
–2.0  
NORMAL MODE  
–65  
–70  
–3dB  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–75  
–80  
–85  
–90  
MIX MODE  
0
100  
200  
300  
400  
500  
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
fOUT (MHz)  
Figure 35. AD9783 ACLR for First Adjacent Channel Four-Carrier W-CDMA  
Over Digital Input Level Baseband and Mix Modes, at 491.52 MSPS,  
FS = 20 mA  
Figure 38. Nominal Power in the Fundamental, FS = 20 mA, at 500 MSPS,  
FS = 20 mA  
0.8  
0.6  
–50  
–55  
–60  
0.4  
0.2  
–3dB  
–65  
–70  
–75  
–80  
–85  
–90  
0
0dB  
–0.2  
–0.4  
–0.6  
–0.8  
0
4096  
8192  
12,288  
16,383  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
CODE  
Figure 39. AD9781 INL, FS = 20 mA  
Figure 36. AD9783 ACLR for Second Adjacent Channel Four-Carrier W-CDMA  
Over Digital Input Level Baseband and Mix Modes, at 491.52 MSPS,  
FS = 20 mA  
0.1  
0
–50  
–55  
–60  
–0.1  
–65  
–70  
–75  
–80  
–85  
–90  
–3dB  
–0.2  
–0.3  
0dB  
–0.4  
–0.5  
0
4096  
8192  
12,288  
16,383  
0
100  
200  
300  
400  
500  
CODE  
fOUT (MHz)  
Figure 40. AD9781 DNL, FS = 20 mA  
Figure 37. AD9783 ACLR for Third Adjacent Channel Four-Carrier W-CDMA  
Over Digital Input Level Baseband and Mix Modes, at 491.52 MSPS,  
FS = 20 mA  
Rev. A | Page 14 of 36  
AD9780/AD9781/AD9783  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
FIRST  
ADJACENT  
CHANNEL  
THIRD  
ADJACENT  
SECOND  
CHANNEL  
ADJACENT  
CHANNEL  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
Figure 44. AD9781 ACLR for One-Carrier W-CDMA Baseband and Mix Modes,  
at 491.52 MSPS, FS = 20 mA  
Figure 41. AD9781 SFDR vs. fOUT in Baseband and Mix Modes, at 500 MSPS,  
FS = 20 mA  
0.2  
100  
IMD @ 500MSPS  
95  
0.1  
0
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
0
0
60  
120 180 240 300 360 420 480 540 600  
fOUT (MHz)  
1024  
2048  
3072  
4096  
CODE  
Figure 45. AD9780 INL, FS = 20 mA  
Figure 42. AD9781 IMD vs. fOUT in Baseband and Mix Modes, at 500 MSPS,  
FS = 20 mA  
0.04  
0.02  
–140  
–142  
–144  
–146  
–148  
0
1-TONE  
–150  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.12  
–152  
–154  
–156  
8-TONE  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
0
1024  
2048  
3072  
4096  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
CODE  
Figure 46. AD9780 DNL, FS = 20 mA  
Figure 43. AD9781 One-Tone, Eight-Tone NSD vs. fOUT in Baseband and Mix  
Modes, at 500 MSPS, FS = 20 mA  
Rev. A | Page 1ꢀ of 36  
AD9780/AD9781/AD9783  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–140  
–142  
–144  
–146  
–148  
–150  
–152  
–154  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
1-TONE  
8-TONE  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
Figure 47. AD9780 SFDR vs. fOUT in Baseband and Mix Modes, at 500 MSPS,  
FS = 20 mA  
Figure 49. AD9780 One-Tone, Eight-Tone NSD vs. fOUT in Baseband and Mix  
Modes, at 500 MSPS, FS = 20 mA  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
–50  
–55  
–60  
FIRST  
–65  
–70  
–75  
–80  
–85  
–90  
ADJACENT  
CHANNEL  
SECOND  
THIRD  
ADJACENT  
CHANNEL  
ADJACENT  
CHANNEL  
35  
30  
0
50  
100 150 200 250 300 350 400 450 500  
fOUT (MHz)  
0
100  
200  
300  
400  
500  
fOUT (MHz)  
Figure 48. AD9780 IMD vs. fOUT in Baseband and Mix Modes, at 500 MSPS,  
FS = 20 mA  
Figure 50. AD9780 ACLR for One-Carrier W-CDMA Baseband and Mix Modes,  
at 491.52 MSPS, FS = 20 mA  
Rev. A | Page 16 of 36  
AD9780/AD9781/AD9783  
TERMINOLOGY  
Linearity Error or Integral Nonlinearity (INL)  
Linearity error is defined as the maximum deviation of the  
actual analog output from the ideal output, determined by a  
straight line drawn from zero scale to full scale.  
Power Supply Rejection  
Power supply rejection is the maximum change in the full-scale  
output as the supplies are varied from minimum to maximum  
specified voltages.  
Differential Nonlinearity (DNL)  
Settling Time  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
Settling time is the time required for the output to reach and  
remain within a specified error band around its final value,  
measured from the start of the output transition.  
Monotonicity  
A DAC is monotonic if the output either increases or remains  
constant as the digital input increases.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels, between the peak amplitude  
of the output signal and the peak spurious signal between dc  
and the frequency equal to half the input data rate.  
Offset Error  
Offset error is the deviation of the output current from the ideal  
of zero. For IOUTA, 0 mA output is expected when the inputs are  
all 0s. For IOUTB, 0 mA output is expected when all inputs are  
set to 1s.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first six harmonic com-  
ponents to the rms value of the measured fundamental. It is  
expressed as a percentage or in decibels.  
Gain Error  
Gain error is the difference between the actual and ideal output  
span. The actual span is determined by the difference between  
the output when all inputs are set to 1s and the output when all  
inputs are set to 0s.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the Nyquist  
frequency, excluding the first six harmonics and dc. The value  
for SNR is expressed in decibels.  
Output Compliance Range  
Output compliance range is the range of allowable voltage at  
the output of a current-output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
Adjacent Channel Leakage Ratio (ACLR)  
ACLR is the ratio in dBc between the measured power within a  
channel relative to its adjacent channel.  
Complex Image Rejection  
Temperature Drift  
Temperature drift is specified as the maximum change from  
the ambient (25°C) value to the value at either TMIN or TMAX  
For offset and gain drift, the drift is reported in ppm of full-  
scale range (FSR) per degree Celsius. For reference drift, the  
drift is reported in ppm per degree Celsius.  
In a traditional two-part upconversion, two images are created  
around the second IF frequency. These images usually waste  
transmitter power and system bandwidth. By placing the real  
part of a second complex modulator in series with the first  
complex modulator, either the upper or lower frequency image  
near the second IF can be rejected.  
.
Rev. A | Page 17 of 36  
 
AD9780/AD9781/AD9783  
THEORY OF OPERATION  
The AD9780/AD9781/AD9783 have a combination of features  
that make them very attractive for wired and wireless commu-  
nications systems. The dual DAC architecture facilitates easy  
interface to common quadrature modulators when designing  
single sideband transmitters. In addition, the speed and  
performance of the devices allow wider bandwidths and more  
carriers to be synthesized than in previously available products.  
The Phase 1 instruction byte defines whether the upcoming  
data transfer is a read or write, the number of bytes in the data  
transfer, and a reference register address for the first byte of the  
data transfer. A logic high on the CSB pin followed by a logic  
low resets the SPI port to its initial state and defines the start of  
the instruction cycle. From this point, the next eight rising  
SCLK edges define the eight bits of the instruction byte for the  
current communication cycle.  
All features and options are software programmable through  
the SPI port.  
The remaining SCLK edges are for Phase 2 of the communication  
cycle, which is the data transfer between the serial port controller  
and the system controller. Phase 2 can be a transfer of one, two,  
three, or four data bytes as determined by the instruction byte.  
Using multibyte transfers is usually preferred, although single-  
byte data transfers are useful to reduce CPU overhead or when  
only a single register access is required.  
SERIAL PERIPHERAL INTERFACE  
SDO  
AD9783  
SPI  
SDIO  
SCLK  
CSB  
PORT  
All serial port data is transferred to and from the device in  
synchronization with the SCLK pin. Input data is always latched  
on the rising edge of SCLK, whereas output data is always valid  
after the falling edge of SCLK. Register contents change imme-  
diately upon writing to the last bit of each transfer byte.  
Figure 51. SPI Port  
The serial peripheral interface (SPI) port is a flexible, synchron-  
ous serial communications port allowing easy interface to many  
industry-standard microcontrollers and microprocessors. The  
port is compatible with most synchronous transfer formats,  
including both the Motorola SPI and Intel® SSR protocols.  
Anytime synchronization is lost, the device has the ability to  
asynchronously terminate an I/O operation whenever the CSB pin  
is taken to logic high. Any unwritten register content data is lost  
if the I/O operation is aborted. Taking CSB low then resets the  
serial port controller and restarts the communication cycle.  
The interface allows read and write access to all registers that  
configure the AD9780/AD9781/AD9783. Single or multiple  
byte transfers are supported as well as MSB-first or LSB-first  
transfer formats. Serial data input/output can be accomplished  
through a single bidirectional pin (SDIO) or through two  
unidirectional pins (SDIO/SDO).  
INSTRUCTION BYTE  
The instruction byte contains the information shown in Table 9.  
Table 9.  
MSB  
The serial port configuration is controlled by Register 0x00,  
Bits[7:6]. It is important to note that any change made to the  
serial port configuration occurs immediately upon writing to  
the last bit of this byte. Therefore, it is possible with a multibyte  
transfer to write to this register and change the configuration in  
the middle of a communication cycle. Care must be taken to  
compensate for the new configuration within the remaining  
bytes of the current communication cycle.  
LSB  
B0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
R/W  
N1  
N±  
A4  
A3  
A2  
A1  
A±  
Bit 7, R/W, determines whether a read or a write data transfer  
occurs after the instruction byte write. Logic 1 indicates a read  
operation. Logic 0 indicates a write operation.  
Bits[6:5], N1 and N0, determine the number of bytes to be  
transferred during the data transfer cycle. The bits decode as  
shown in Table 10.  
Use of a single-byte transfer when changing the serial port  
configuration is recommended to prevent unexpected device  
behavior.  
GENERAL OPERATION OF THE SERIAL INTERFACE  
Table 10. Byte Transfer Count  
N1  
N0  
Description  
There are two phases to any communication cycle with the  
AD9780/AD9781/AD9783: Phase 1 and Phase 2. Phase 1 is  
the instruction cycle, which writes an instruction byte into  
the device. This byte provides the serial port controller with  
information regarding Phase 2 of the communication cycle:  
the data transfer cycle.  
±
±
1
1
±
1
±
1
Transfer one byte  
Transfer two bytes  
Transfer three bytes  
Transfer four bytes  
Rev. A | Page 18 of 36  
 
 
 
AD9780/AD9781/AD9783  
Serial Port Data I/O (SDIO)  
Bits[4:0], A4, A3, A2, A1, and A0, determine which register is  
accessed during the data transfer of the communication cycle.  
For multibyte transfers, this address is a starting or ending  
address depending on the current data transfer mode. For  
MSB-first format, the specified address is an ending address  
or the most significant address in the current cycle. Remaining  
register addresses for multiple byte data transfers are generated  
internally by the serial port controller by decrementing from  
the specified address. For LSB-first format, the specified address  
is a beginning address or the least significant address in the  
current cycle. Remaining register addresses for multiple byte  
data transfers are generated internally by the serial port  
controller by incrementing from the specified address.  
Data is always written into the device on this pin. However,  
SDIO can also function as a bidirectional data output line. The  
configuration of this pin is controlled by Register 0x00, Bit 7.  
The default is Logic 0, which configures the SDIO pin as  
unidirectional.  
Serial Port Data Output (SDO)  
Data is read from this pin for protocols that use separate lines  
for transmitting and receiving data. The configuration of this  
pin is controlled by Register 0x00, Bit 7. If this bit is set to a  
Logic 1, the SDO pin does not output data and is set to a high  
impedance state.  
MSB/LSB TRANSFERS  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
The serial port can support both MSB-first and LSB-first data  
formats. This functionality is controlled by Register 0x00, Bit 6.  
The default is Logic 0, which is MSB-first format.  
CSB  
SCLK  
SDIO  
SDO  
When using MSB-first format (LSBFIRST = 0), the instruction  
and data bit must be written from MSB to LSB. Multibyte data  
transfers in MSB-first format start with an instruction byte that  
includes the register address of the most significant data byte.  
Subsequent data bytes are loaded into sequentially lower address  
locations. In MSB-first mode, the serial port internal address  
generator decrements for each byte of the multibyte data  
transfer.  
R/W N1 N0 A4 A3 A2 A1 A0 D7 D6N D5N  
D30 D20 D10 D00  
D30 D20 D10 D00  
D7 D6N D5N  
Figure 52. Serial Register Interface Timing Diagram, MSB First  
INSTRUCTION CYCLE  
DATA TRANSFER CYCLE  
CSB  
SCLK  
SDIO  
SDO  
When using LSB-first format (LSBFIRST = 1), the instruction  
and data bit must be written from LSB to MSB. Multibyte data  
transfers in LSB-first format start with an instruction byte that  
includes the register address of the least significant data byte.  
Subsequent data bytes are loaded into sequentially higher  
address locations. In LSB-first mode, the serial port internal  
address generator increments for each byte of the multibyte  
data transfer.  
A0 A1 A2 A3 A4 N0 N1 R/W D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
N
N
D0 D1 D2  
D4 D5 D6 D7  
N N N  
0
0
0
Figure 53. Serial Register Interface Timing Diagram, LSB First  
Use of a single-byte transfer when changing the serial port data  
format is recommended to prevent unexpected device behavior.  
–1  
tS  
fSCLK  
CSB  
SERIAL INTERFACE PORT PIN DESCRIPTIONS  
tPWH  
tPWL  
Chip Select Bar (CSB)  
SCLK  
Active low input starts and gates a communication cycle. It  
allows more than one device to be used on the same serial  
communication lines. CSB must stay low during the entire  
communication cycle. Incomplete data transfers are aborted  
anytime the CSB pin goes high. SDO and SDIO pins go to a  
high impedance state when this input is high.  
tDS  
tDH  
INSTRUCTION BIT 7  
INSTRUCTION BIT 6  
SDIO  
Figure 54. Timing Diagram for SPI Write Register  
CSB  
Serial Clock (SCLK)  
The serial clock pin is used to synchronize data to and from the  
device and to run the internal state machines. The maximum  
frequency of SCLK is 40 MHz. All data input is registered on  
the rising edge of SCLK. All data is driven out on the falling  
edge of SCLK.  
SCLK  
tDV  
SDIO  
SDO  
DATA BIT N  
DATA BIT N – 1  
Figure 55. Timing Diagram for SPI Read Register  
Rev. A | Page 19 of 36  
 
AD9780/AD9781/AD9783  
SPI REGISTER MAP  
Table 11.  
Register Name  
Addr Default Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI Control  
0x00 0x00  
0x02 0x00  
0x03 0x00  
0x04 0x00  
0x05 0x00  
0x06 0x00  
0x0A 0x00  
0x0B 0xF9  
0x0C 0x01  
0x0D 0x00  
SDIO_DIR LSBFIRST  
DATA  
RESET  
Data Control  
Power-Down  
Setup and Hold  
Timing Adjust  
Seek  
INVDCO  
PD_DCO  
PD_INPT  
PD_AUX2 PD_AUX1 PD_BIAS PD_CLK  
PD_DAC2  
PD_DAC1  
SET[3:0]  
HLD[3:0]  
SAMP_DLY[4:0]  
LVDS low  
DAC1MIX[1:0]  
DAC1FSC[7:0]  
LVDS high SEEK  
DAC2MIX[1:0]  
Mix Mode  
DAC1 FSC  
DAC1 FSC MSBs  
AUXDAC1  
DAC1FSC[9:8]  
AUXDAC1[9:8]  
DAC2FSC[9:8]  
AUXDAC2[9:8]  
AUXDAC1[7:0]  
DAC2FSC[7:0]  
AUXDAC2[7:0]  
AUXDAC1 MSB  
DAC2 FSC  
0x0E  
0x0F  
0x00  
0xF9  
AUX1SGN AUX1DIR  
AUX2SGN AUX2DIR  
DAC2 FSC MSBs  
AUXDAC2  
0x10 0x01  
0x11 0x00  
0x12 0x00  
0x1A 0x00  
AUXDAC2 MSB  
BIST Control  
BISTEN  
BISTRD  
BISTCLR  
BIST Result 1 Low 0x1B 0x00  
BIST Result 1 High 0x1C 0x00  
BIST Result 2 Low 0x1D 0x00  
BISTRES1[7:0]  
BISTRES1[15:8]  
BISTRES2[7:0]  
BISTRES2[15:8]  
BIST Result 2 High 0x1E  
Hardware Version 0x1F  
0x00  
N/A  
VERSION[3:0]  
DEVICE[3:0]  
Rev. A | Page 20 of 36  
 
AD9780/AD9781/AD9783  
SPI REGISTER DESCRIPTIONS  
Reading these registers returns previously written values for all defined register bits, unless otherwise noted.  
Table 12.  
Register  
Address Bit  
Name  
Function  
SPI Control  
±x±±  
7
SDIO_DIR  
±, operate SPI in 4-wire mode. The SDIO pin operates as an input only pin.  
1, operate SPI in 3-wire mode. The SDIO pin operates as a bidirectional data line.  
±, MSB first per SPI standard.  
6
LSBFIRST  
1, LSB first per SPI standard.  
Only change LSB/MSB order in single-byte instructions to avoid erratic behavior  
due to bit order errors.  
7
RESET  
DATA  
±, execute software reset of SPI and controllers, reload default register values  
except Register ±x±±.  
1, set software reset, write ± on the next (or any following) cycle to release the reset.  
Data Control  
Power-Down  
±x±2  
±x±3  
±, DAC input data is twos complement binary format.  
1, DAC input data is unsigned binary format.  
1, inverts the data clock output. Used for adjusting timing of input data.  
1, power down data clock output driver circuit.  
1, power down input.  
4
INVDCO  
PD_DCO  
PD_INPT  
PD_AUX2  
PD_AUX1  
PD_BIAS  
PD_CLK  
7
6
1, power down AUX2 DAC  
4
1, power down AUX1 DAC.  
3
1, power down voltage reference bias circuit.  
1, power down DAC clock input circuit.  
1, power down DAC2.  
2
1
PD_DAC2  
PD_DAC1  
SET[3:±]  
±
1, power down DAC1.  
Setup and Hold  
±x±4  
7:4  
3:±  
4:±  
2
4-bit value used to determine input data setup timing.  
4-bit value used to determine input data hold timing.  
HLD[3:±]  
Timing Adjust  
Seek  
±x±ꢀ  
±x±6  
SAMP_DLY[4:±] ꢀ-bit value used to optimally position input data relative to internal sampling clock.  
LVDS low  
LVDS high  
SEEK  
One of the LVDS inputs is above the input voltage limits of the IEEE reduced link  
specification.  
1
One of the LVDS inputs is below the input voltage limits of the IEEE reduced link  
specification.  
±
Indicator bit used with LVDS_SET and LVDS_HLD to determine input data timing  
margin.  
Mix Mode  
±x±A  
3:2  
DAC1MIX[1:±]  
±±, selects normal mode, DAC1.  
±1, selects return-to-zero mode, DAC1.  
1±, selects return-to-zero mode, DAC1.  
11, selects mix mode, DAC1.  
1:±  
DAC2MIX[1:±]  
DAC1FSC[9:±]  
±±, selects normal mode, DAC2.  
±1, selects return-to-zero mode, DAC2.  
1±, selects return-to-zero mode, DAC2.  
11, selects mix mode, DAC2.  
DAC1 FSC  
±x±B  
±x±C  
7:±  
1:±  
DAC1 full-scale 1±-bit adjustment word.  
±x3FF, sets DAC full-scale output current to the maximum value of 31.66 mA.  
±x2±±, sets DAC full-scale output current to the nominal value of 2±.± mA.  
±x±±±, sets DAC full-scale output current to the minimum value of 8.66 mA.  
Rev. A | Page 21 of 36  
 
AD9780/AD9781/AD9783  
Register  
Address Bit  
Name  
Function  
AUXDAC1  
±x±D  
±x±E  
7:±  
1:±  
AUXDAC1[9:±]  
AUXDAC1 output current adjustment word.  
±x3FF, sets AUXDAC1 output current to 2.± mA.  
±x2±±, sets AUXDAC1 output current to 1.± mA.  
±x±±±, sets AUXDAC1 output current to ±.± mA.  
±, AUX1P output pin is active.  
±x±E  
7
6
AUX1SGN  
1, AUX1N output pin is active.  
AUX1DIR  
±, configures AUXDAC1 output to source current.  
1, configures AUXDAC1 output to sink current.  
DAC2 full-scale 1±-bit adjustment word.  
DAC2 FSC  
AUXDAC2  
±x±F  
±x1±  
7:±  
1:±  
DAC2FSC[9:±]  
±x3FF, sets DAC full-scale output current to the maximum value of 31.66 mA.  
±x2±±, sets DAC full-scale output current to the nominal value of 2±.± mA.  
±x±±±, sets DAC full-scale output current to the minimum value of 8.66 mA.  
AUXDAC2 output current adjustment word.  
±x3FF, sets AUXDAC2 output current to 2.± mA.  
±x2±±, sets AUXDAC2 output current to 1.± mA.  
±x±±±, sets AUXDAC2 output current to ±.± mA.  
±, AUX2P output pin is active.  
±x11  
±x12  
7:±  
1:±  
AUXDAC2[9:±]  
±x12  
±x1A  
7
6
AUX2SGN  
AUX2DIR  
1, AUX2N output pin is active.  
±, configures AUXDAC2 output to source current.  
1, configures AUXDAC2 output to sink current.  
1, enables and starts built-in self-test.  
BIST Control  
7
BISTEN  
BISTRD  
BISTCLR  
6
1, transfers BIST result registers to SPI for readback.  
1, reset BIST logic and clear BIST result registers.  
BIST Result 1  
BIST Result 2  
±x1B  
±x1C  
±x1D  
±x1E  
7:±  
7:±  
7:±  
7:±  
7:4  
3:±  
BISTRES1[1ꢀ:±] 16-bit result generated by BIST 1.  
BISTRES2[1ꢀ:±] 16-bit result generated by BIST 2.  
Hardware Version ±x1F  
VERSION[3:±]  
DEVICE[3:±]  
Read only register; indicates the version of the chip.  
Read only register; indicates the device type.  
Rev. A | Page 22 of 36  
AD9780/AD9781/AD9783  
In pin mode, the four SPI port pins take on secondary  
functions, as shown in Table 13.  
SPI PORT, RESET, AND PIN MODE  
In general, when the AD9780/AD9781/AD9783 are powered  
up, an active high pulse applied to the RESET pin should follow.  
This ensures the default state of all control register bits. In  
addition, once the RESET pin goes low, the SPI port can be  
activated; thus, CSB should be held high.  
Table 13. SPI Pin Functions (Pin Mode)  
Pin  
Name  
Pin Mode Function  
SDIO  
DATA (Register ±x±2, Bit 7), bit value (1/±) equals pin  
state (high/low).  
For applications without a controller, the AD9780/AD9781/  
AD9783 also supports pin mode operation, which allows some  
functional options to be pin selected without the use of the SPI  
port. Pin mode is enabled anytime the RESET pin is held high.  
CSB  
Enable mix mode. If CSB is high, Register ±x±A is set  
to ±x±ꢀ, putting both DAC1 and DAC2 into mix mode.  
SDO  
Enable full power-down. If SDO is high, Register ±x±3  
is set to ±xFF.  
Rev. A | Page 23 of 36  
 
 
AD9780/AD9781/AD9783  
PARALLEL DATA PORT INTERFACE  
The parallel port data interface consists of up to 18 differential  
LVDS signals, DCO, DCI, and up to 16 data lines (D[15:0]), as  
shown in Figure 56. DCO is the output clock generated by the  
AD9780/AD9781/AD9783 that is used to clock out the data  
from the digital data engine. The data lines transmit the multip-  
lexed I and Q data words for the I and Q DACs, respectively.  
DCI provides timing information about the parallel data and  
signals the I/Q status of the data.  
OPTIMIZING THE PARALLEL PORT TIMING  
Before outlining the procedure for determining the delay for  
SMP (that is, the positioning of DSS with respect to the data  
signals), it is worthwhile to describe the simplified block  
diagram of the digital data port. As can be seen in Figure 57, the  
data signals are sampled on the rising and falling edges of DSS.  
From there, the data is demultiplexed and retimed before being  
sent to the DACs.  
As diagrammed in Figure 56, the incoming LVDS data is  
latched by an internally generated clock referred to as the data  
sampling signal (DSS). DSS is a delayed version of the main  
DAC clock signal, CLKP/CLKN. Optimal positioning of the  
rising and falling edges of DSS with respect to the incoming  
data signals results in the most robust transmission of the DAC  
data. Positioning the edges of DSS with respect to the data  
signals is achieved by selecting the value of a programmable  
delay element, SMP. A procedure for determining the optimal  
value of SMP is given in the Optimizing the Parallel Port  
Timing section.  
The clock input signal provides timing information about the  
parallel data, as well as indicating the destination (that is, I DAC  
or Q DAC) of the data. A delayed version of DCI is generated  
by a delay element, SET, and is referred to as DDCI. DDCI is  
sampled by a delayed version of the DSS signal, labeled as DDSS  
in Figure 56. DDSS is simply DSS delayed by a period of time,  
HLD. The pair of delays, SET and HLD, allows accurate timing  
information to be extracted from the clock input. Increasing the  
delay of the HLD block results in the clock input being sampled  
later in its cycle. Increasing the delay of the SET block results in  
the clock input being sampled earlier in its cycle. The result of  
this sampling is stored and can be queried by reading the SEEK  
bit. Because DSS and the clock input signal are the same  
frequency, the SEEK bit should be a constant value. By varying  
the SET and HLD delay blocks and seeing the effect on the  
SEEK bit, the setup-and-hold timing of DSS with respect to  
clock input (and, hence, data) can be measured.  
In addition to properly positioning the DSS edges, maximizing  
the opening of the eye in the clock input (DCIP/DCIN) and  
data signals improves the reliability of the data port interface.  
The two sources of degradation that reduce the eye in the clock  
input and data signals are the jitter on these signals and the  
skew between them. Therefore, it is recommended that the clock  
input signals be generated in the same manner as the data  
signals with the same output driver and data line routing. In  
other words, it should be implemented as a 17th data line with  
an alternating (010101 …) bit sequence.  
I0  
Q0  
I1  
Q1  
I2  
Q2  
DATA  
DCIP/DCIN  
tHLD0  
tHLD0  
D15:D0  
I DAC  
DSS  
FF  
RETIMING  
AND  
DEMUX  
FF  
SAMPLE 1  
SAMPLE 2  
SAMPLE 3  
SAMPLE 4  
SAMPLE 5  
SAMPLE 6  
Q DAC  
Figure 57. Timing Diagram of Parallel Interface  
The incremental units of SET, HLD, and SMP are in units of  
real time, not fractions of a clock cycle. The nominal step size  
for SET and HLD is 80 ps. The nominal step size for SMP is  
160 ps. Note that the value of SMP refers to Register 0x05,  
Bits[4:0], SET refers to Register 0x04, Bits[7:4], and HLD refers  
to Register 0x04, Bits[3:0].  
DCIP/DCIN  
DDCI  
SET_DLY  
HLD_DLY  
SEEK  
FF  
DDSS  
CLK  
DSS  
CLOCK  
DISTRIBUTION  
SMP_DLY  
DCOP/DCON  
A procedure for configuring the device to ensure valid sampling  
of the data signals follows. Generally speaking, the procedure  
begins by building an array of setup-and-hold values as the sample  
delay is swept through a range of values. Based on this infor-  
mation, a value of SMP is programmed to establish an optimal  
sampling point. This new sampling point is then double-checked  
to verify that it is optimally set.  
Figure 56. Digital Data Port Block Diagram  
Rev. A | Page 24 of 36  
 
 
 
 
AD9780/AD9781/AD9783  
Table 14 shows example arrays taken at DAC sample rates of  
200 MHz, 400 MHz, and 600 MHz. It should be noted that the  
delay from the DCO input to the DCI output of the data source  
has a profound effect on when the SEEK bit toggles over the  
range of SMP values. Therefore, the tables generated in any  
particular system do not necessarily match the example timing  
data arrays in Table 14.  
Building the Array  
The following procedure is used to build the array:  
1. Set the values of SMP, SET, and HLD to 0. Read and record  
the value of the SEEK bit.  
2. With SMP and SET set to 0, increment the HLD value until  
the SEEK bit toggles, and then record the HLD value. This  
measures the hold time as shown in Figure 57.  
As may be seen in Table 14, at 600 MHz the device has only two  
working SMP settings. There is no way to monitor timing  
margin in real time, so the output must be interrupted to check  
or correct timing errors. The device should therefore not be  
clocked above 500 MHz in applications where 100% up time is a  
requirement.  
3. With SMP and HLD set to 0, increment the SET value until  
the SEEK bit toggles, and then record the SET value. This  
measures the setup time as shown in Figure 57.  
4. Set the value of SET and HLD to 0. Increment the value of  
SMP and record the value of the SEEK bit.  
5. Increment HLD until the SEEK bit toggles, and then record  
the HLD value. Set HLD to 0 and increment SET until the  
SEEK bit toggles, and then record the SET value.  
6. Repeat Step 4 and Step 5 until the procedure has been  
completed for SMP values from 0 to 31.  
Determining the SMP Value  
Once the timing data array has been built, the value of SMP can  
be determined using the following procedure:  
1. Look for the SMP value that corresponds to the 0-to-1  
transition of the SEEK bit in the table. In the 600 MHz case  
from Table 14, this occurs for an SMP value of 6.  
2. Look for the SMP value that corresponds to the 1-to-0  
transition of the SEEK bit in the table. In the 600 MHz case  
from Table 14, this occurs for an SMP value of 11.  
3. The same two values found in Step 1 and Step 2 indicate  
the valid sampling window. In the 500 MHz case, this  
occurs for an SMP value of 11.  
Note that while building the table, a value for either SET or  
HLD may not be found to make the SEEK bit toggle. In this  
case, assume a value of 15.  
Table 14. Timing Data Arrays  
fDACCLK = 200 MHz  
fDACCLK = 400 MHz  
fDACCLK = 600 MHz  
SMP SEEK SET HLD SEEK SET HLD SEEK SET HLD  
±
±
±
±
±
±
±
±
±
±
±
±
±
±
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
±
±
±
±
6
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
13  
11  
9
±
±
±
±
±
±
±
1
1
1
1
1
1
1
±
±
±
±
±
±
±
±
±
1
1
1
1
1
1
1
1
1
2
13  
11  
9
±
±
±
±
±
±
1
1
1
1
1
±
±
±
±
±
±
1
1
1
1
1
±
±
±
±
±
±
1
1
1
1
±
2
3
8
1±  
1
2
4
7
9
1
2
4
6
9
11  
1
3
7
9
1
2
4
7
9
1±  
1
1
1
1
11  
9
7
2
1
9
7
4
2
1
1±  
8
7
4
2
±
8
7
2
1
1±  
8
6
4
2
±
8
8
8
8
1
8
4
4. The optimal SMP value in the valid sampling window is  
where the following two conditions are true: SET < HLD  
and |HLD − SET| is the smallest value.  
2
1±  
12  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1
6
3
8
7
4
1±  
12  
14  
1
4
2
In the 600 MHz case, the optimal SMP value is 7.  
6
1
7
13  
11  
9
After programming the calculated value of SMP (referred to as  
SMPOPTIMAL), the configuration should be tested to verify that  
there is sufficient timing margin. This can be accomplished by  
ensuring that the SEEK bit reads back as a 1 for SMP values  
equal to SMPOPTIMAL + 1 and SMPOPTIMAL − 1. Also, it should be  
noted that the sum of SET and HLD should be a minimum of 8.  
If the sum is lower than this, you should check for excessive jitter  
on the clock input line and check that the frequency of the clock  
input does not exceed the data sheet maximum of 500 MHz (or  
1000 Mbps).  
8
7
3
9
4
1±  
11  
12  
13  
14  
1ꢀ  
16  
17  
18  
19  
2±  
21  
22  
23  
24  
2ꢀ  
26  
27  
28  
29  
3±  
31  
3
6
7
1
8
±
1±  
12  
±
3
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
13  
11  
9
1
4
1ꢀ  
13  
11  
9
6
2
8
4
1±  
12  
13  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
1
6
7
7
As mentioned previously, low jitter and skew between the input  
data bits and DCI are critical for reliable operation at the maxi-  
mum input data rates. Figure 58 shows the eye diagram for the  
input data signals that were used to collect the data in Table 14.  
9
11  
13  
1ꢀ  
2
3
1
±
7
11  
9
4
3
6
7
1
8
±
9
3
1ꢀ  
1ꢀ  
1ꢀ  
1ꢀ  
11  
11  
11  
11  
2
1
2
1
2
1
2
Rev. A | Page 2ꢀ of 36  
 
AD9780/AD9781/AD9783  
coupled, as described in this section. Alternatively, it can be  
transformer-coupled and clamped, as shown in Figure 60.  
0.1µF  
50  
TTL OR CMOS  
CLK INPUT  
CLKP  
V1: 296mV  
CLKN  
V2: –228mV  
1
50Ω  
ΔV: –524mV  
BAV99ZXCT  
HIGH SPEED  
DUAL DIODE  
V
= 400mV  
CM  
Figure 60. TTL or CMOS DAC CLK Drive Circuit  
A simple bias network for generating the 400 mV common-  
mode voltage is shown in Figure 61. It is important to use  
CVDD18 and CGND for the clock bias circuit. Any noise or  
other signal coupled onto the clock is multiplied by the DAC  
digital input signal and can degrade the DACs performance.  
CH1 100mV  
125ps/DIV 2.12ns  
A CH1  
58mV  
20GSPS IT 2.5ps/PT  
Figure 58. Eye Diagram of Data Source Used in Building the 600 MHz Timing  
Data Array of Table 14  
Over temperature, the valid sampling window shifts. Therefore,  
when attempting operation of the device over 500 MHz, the  
timing must be optimized again whenever the device undergoes  
a temperature change of more than 20oC. Another consideration  
in the timing of the digital data port is the propagation delay  
variation from the clock output (DCOP/DCON) to the clock  
input. If this varies significantly over time (more than 25% of  
SET or HLD) due to temperature changes or other effects,  
repeat this timing calibration procedure.  
V
= 400mV  
CM  
CVDD18  
1k  
1nF  
CGND  
0.1µF  
1nF  
287Ω  
Figure 61. DAC CLK VCM Generator Circuit  
FULL-SCALE CURRENT GENERATION  
Internal Reference  
At sample rates of ≤400 MSPS, the interface timing margin is  
sufficient to allow for a simplified procedure. In this case, the  
SEEK bit can be recorded as SMP is swept through the range  
from 0 to 31. The center of the first valid sampling window can  
then be chosen as the optimal value of SMP. Using the 400 MHz  
case from Table 14 as an example, the first valid sampling  
window occurs for SMP values of 7 to 13. The center of this  
window is 10, so 10 can be used as the optimal SMP value.  
Full-scale current on the I DAC and Q DAC can be set from  
8.66 mA to 31.66 mA. Initially, the 1.2 V band gap reference is  
used to set up a current in an external resistor connected to  
FS ADJ (Pin 54). A simplified block diagram of the reference  
circuitry is shown in Figure 62. The recommended value for  
the external resistor is 10 kΩ, which sets up an IREFERENCE in the  
resistor of 120 μA, which in turn provides a DAC output full-  
scale current of 20 mA. Because the gain error is a linear function  
of this resistor, a high precision resistor improves gain matching  
to the internal matching specification of the devices. Internal  
current mirrors provide a current-gain scaling, where I DAC or  
Q DAC gain is a 10-bit word in the SPI port register. The default  
value for the DAC gain registers gives a full-scale current output  
(IFS) of approximately 20 mA, where IFS is equal to  
DRIVING THE CLK INPUT  
The CLK input requires a low jitter differential drive signal. It is  
a PMOS input differential pair powered from the 1.8 V supply;  
therefore, it is important to maintain the specified 400 mV  
input common-mode voltage. Each input pin can safely swing  
from 200 mV p-p to 1 V p-p about the 400 mV common-mode  
voltage. While these input levels are not directly LVDS-compatible,  
CLK can be driven by an offset ac-coupled LVDS signal, as  
shown in Figure 59.  
I
FS = (86.6 + (0.220 × DAC gain)) × 1000/R  
AD9783  
0.1µF  
I DAC GAIN  
LVDS_P_IN  
CLKP  
1.2V BAND GAP  
I DAC  
50  
50Ω  
REFIO  
DAC FULL-SCALE  
REFERENCE CURRENT  
CURRENT  
SCALING  
V
= 400mV  
CM  
0.1µF  
FS ADJ  
Q DAC  
10k  
LVDS_N_IN  
CLKN  
Q DAC GAIN  
0.1µF  
Figure 59. LVDS DAC CLK Drive Circuit  
Figure 62. Reference Circuitry  
If a clean sine clock is available, it can be transformer-coupled  
to CLKP and CLKN as shown in Figure 60. Use of a CMOS or  
TTL clock is also acceptable for lower sample rates. It can be  
routed through a CMOS-to-LVDS translator, and then ac-  
Rev. A | Page 26 of 36  
 
 
 
 
 
 
AD9780/AD9781/AD9783  
35  
30  
25  
20  
15  
10  
5
ANALOG MODES OF OPERATION  
The AD9780/AD9781/AD9783 use a proprietary quad-switch  
architecture that lowers the distortion of the DAC by eliminating a  
code-dependent glitch that occurs with conventional dual-switch  
architectures. This architecture eliminates the code-dependent  
glitches, but creates a constant glitch at a rate of 2 × fDAC. For  
communications systems and other applications requiring good  
frequency domain performance from the DAC, this is seldom  
problematic.  
The quad-switch architecture also supports two additional  
modes of operation: mix mode and return-to-zero mode. The  
waveforms of these two modes are shown in Figure 64. In mix  
mode, the output is inverted every other half clock cycle. This  
effectively chops the DAC output at the sample rate. This chop-  
ping has the effect of frequency shifting the sinc roll-off from dc  
to fDAC. Additionally, there is a second subtle effect on the output  
spectrum. The shifted spectrum is also shaped by a second sinc  
function with a first null at 2 × fDAC. The reason for this shaping  
is that the data is not continuously varying at twice the clock  
rate, but is simply repeated.  
0
256  
512  
768  
1024  
DAC GAIN CODE  
Figure 63. IFS vs. DAC Gain Code  
DAC TRANSFER FUNCTION  
Each DAC output of the AD9780/AD9781/AD9783 drives two  
complementary current outputs, IOUTP and IOUTN. IOUTP provides  
a near IFS when all bits are high. For example,  
DAC CODE = 2N − 1  
In return-to-zero mode, the output is set to midscale every  
other half clock cycle. The output is similar to the DAC output  
in normal mode except that the output pulses are half the width  
and half the area. Because the output pulses have half the width,  
the sinc function is scaled in frequency by two and has a first  
null at 2 × fDAC. Because the area of the pulses is half that of the  
pulses in normal mode, the output power is half the normal  
mode output power.  
where N = 12/14/16 bits for AD9780/AD9781/AD9783  
(respectively), while IOUTN provides no current.  
The current output appearing at IOUTP and IOUTN is a function of  
both the input code, and IFS and can be expressed as  
I
I
OUTP = (DAC DATA/2N) × IFS  
OUTN = ((2N − 1) − DAC DATA)/2N × IFS  
(1)  
(2)  
where DAC DATA = 0 to 2N − 1 (decimal representation).  
D
D
D
D
D
D
D
D
D
D
9 10  
INPUT DATA  
1
2
3
4
5
6
7
8
The two current outputs typically drive a resistive load directly  
or via a transformer. If dc coupling is required, IOUTP and IOUTN  
should be connected to matching resistive loads (RLOAD) that are  
tied to analog common (AVSS). The single-ended voltage  
output appearing at the IOUTP and IOUTN pins is  
DAC CLK  
QUAD-SWITCH  
DAC OUTPUT  
t
t
(
fS MIX MODE)  
V
V
OUTP = IOUTP × RLOAD  
OUTN = IOUTN × RLOAD  
(3)  
(4)  
Note that to achieve the maximum output compliance of 1 V at  
the nominal 20 mA output current, RLOAD must be set to 50 Ω.  
Also note that the full-scale value of VOUTP and VOUTN should  
not exceed the specified output compliance range to maintain  
specified distortion and linearity performance.  
QUAD-SWITCH  
DAC OUTPUT  
(RETURN-TO-  
ZERO MODE)  
Figure 64. Mix Mode and Return-to-Zero Mode DAC Waveforms  
There are two distinct advantages to operating the AD9780/  
AD9781/AD9783 differentially. First, differential operation  
helps cancel common-mode error sources associated with IOUTP  
and IOUTN, such as noise, distortion, and dc offsets. Second, the  
differential code-dependent current and subsequent output  
voltage (VDIFF) is twice the value of the single-ended voltage  
output (VOUTP or VOUTN), providing 2× signal power to the load.  
The functions that shape the output spectrums for the three  
modes of operation, normal mode, mix mode, and return-to-  
zero mode, are shown in Figure 65. Switching between the  
analog modes reshapes the sinc roll-off inherent at the DAC  
output. This ability to change modes in the AD9780/AD9781/  
AD9783 makes the parts suitable for direct IF applications. The  
user can place a carrier anywhere in the first three Nyquist  
zones depending on the operating mode selected. The perfor-  
mance and maximum amplitude in all three Nyquist zones is  
V
DIFF = (IOUTP IOUTN) × RLOAD  
(5)  
Rev. A | Page 27 of 36  
 
 
AD9780/AD9781/AD9783  
0mA  
TO  
impacted by this sinc roll-off depending on where the carrier is  
placed, as shown in Figure 65.  
2mA  
AUXP  
AUXN  
V
BIAS  
0
MIX  
RETURN-TO-ZERO  
0mA  
TO  
2mA  
SINK  
OR  
SOURCE  
POSITIVE  
OR  
NEGATIVE  
–10  
Figure 66. Auxiliary DAC Functional Diagram  
NORMAL  
In a single sideband transmitter application, the combination of  
the input referred dc offset voltage of the quadrature modulator  
and the DAC output offset voltage can result in local oscillator  
(LO) feedthrough at the modulator output, which degrades system  
performance. The auxiliary DACs can be used to remove the dc  
offset and the resulting LO feedthrough. The circuit configura-  
tion for using the auxiliary DACs for performing dc offset  
correction depends on the details of the DAC and modulator  
interface. An example of a dc-coupled configuration with low-  
pass filtering is shown in Figure 67.  
–20  
–30  
–40  
0
0.5  
1.0  
fS  
1.5  
2.0  
(
)
Figure 65. Transfer Function for Each Analog Operating Mode  
Auxiliary DACs  
Two auxiliary DACs are provided on the AD9780/AD9781/  
AD9783. A functional diagram is shown in Figure 66. The  
auxiliary DACs are current output devices with two output  
pins, AUXP and AUXN. The active pin can be programmed to  
either source or sink current. When either sinking or sourcing,  
the full-scale current magnitude is 2 mA. The available compliance  
range at the auxiliary DAC outputs depends on whether the output  
is configured to sink or source current. When sourcing current,  
the compliance voltage is 0 V to 1.6 V, but when sinking current,  
the output compliance voltage is reduced to 0.8 V to 1.6 V. Either  
output can be used, but only one output of the AUX DAC (P or  
N) is active at any time. The inactive pin is always in a high  
impedance state (>100 kΩ).  
QUADRATURE  
MODULATOR V+  
AD9783  
AUX  
DAC1 OR  
DAC2  
QUAD MOD  
I OR Q INPUTS  
OPTIONAL  
PASSIVE  
FILTERING  
AD9783  
DAC1 OR  
DAC2  
25TO 50Ω  
25TO 50Ω  
Figure 67. DAC DC-Coupled to Quadrature Modulator with a Passive DC Shift  
Rev. A | Page 28 of 36  
 
 
 
AD9780/AD9781/AD9783  
POWER DISSIPATION  
Figure 68 through Figure 73 show the power dissipation of the part in single DAC and dual DAC modes.  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
CLOCK SPEED (MSPS)  
CLOCK SPEED (MSPS)  
Figure 68. Power Dissipation, I Data Only, Single DAC Mode  
Figure 71. Power Dissipation, I and Q Data, Dual DAC Mode  
0.200  
0.200  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
DVDD18  
DVDD18  
CVDD  
CVDD  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
CLOCK SPEED (MSPS)  
CLOCK SPEED (MSPS)  
Figure 69. Power Dissipation, Digital 1.8 V Supply, Clock 1.8 V Supply,  
I Data Only  
Figure 72. Power Dissipation, Digital 1.8 V Supply, Clock 1.8 V Supply,  
I and Q Data, Dual DAC Mode  
0.200  
0.175  
0.150  
0.200  
AVDD33  
0.175  
0.150  
0.125  
0.100  
0.075  
0.050  
0.025  
0
0.125  
AVDD33  
0.100  
0.075  
0.050  
DVDD33  
DVDD33  
0.025  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
CLOCK SPEED (MSPS)  
CLOCK SPEED (MSPS)  
Figure 70. Power Dissipation, Digital 3.3 V Supply, Analog 3.3 V Supply,  
I Data Only  
Figure 73. Power Dissipation, Digital 3.3 V Supply, Analog 3.3 V Supply,  
I and Q Data, Dual DAC Mode  
Rev. A | Page 29 of 36  
 
 
 
AD9780/AD9781/AD9783  
EVALUATION BOARD SCHEMATICS  
7
0 7 6 - 9 3 0 6  
Figure 74. Power Distribution  
Rev. A | Page 3± of 36  
 
AD9780/AD9781/AD9783  
7 0 8 - 3 6 6 9  
0 8 R 0 5  
0 8 R 0 5  
0 8 R 0 5  
0 8 R 0 5  
0 8 R 0 5  
Figure 75. SPI Interface  
Rev. A | Page 31 of 36  
AD9780/AD9781/AD9783  
9
0 7 6 - 9 3 0 6  
2 0 4 R 0  
2 0 4 R 0  
2 0 4 R 0  
2 0 4 R 0  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
1
2
CVDD18  
CVSS  
CLKP  
CLKN  
CVSS  
CVDD18  
DVSS  
DVDD18  
D13P  
D13N  
D12P  
D12N  
D11P  
D11N  
D10P  
D10N  
D9P  
FS ADJ  
RESET  
CSB  
3
CLKP  
CLKN  
4
SCLK  
SDIO  
SDO  
DVSS  
DVDD18  
NC  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
NC  
NC  
NC  
D0N  
D0P  
D1N  
DIP  
D2N  
D9N  
D2P  
Figure 76. Main Schematic  
Rev. A | Page 32 of 36  
AD9780/AD9781/AD9783  
8 0 6 - 9 3 0 6  
D 0 / G 2 4 0 - F 8 2 6 C F N -  
k
J a c  
0
G 5  
9
7
7
5
5
3
3
1
1
9
9
7
7
5
5
3
3
1
1
9
9
7
7
5
5
3
3
1
1
9
9
7
7
5
5
3
3
1
1
G 4  
S 4  
G 4  
S 4  
G 4  
S 4  
G 4  
S 4  
G 4  
S 3  
G 3  
S 3  
G 3  
S 3  
G 3  
S 3  
G 3  
S 3  
G 3  
S 2  
G 2  
S 2  
G 2  
S 2  
G 2  
S 2  
G 2  
S 2  
G 2  
S 1  
G 1  
S 1  
G 1  
S 1  
G 1  
S 1  
G 1  
S 1  
G 1  
8 4 S  
8
G 4  
6 4 S  
6
G 4  
4 4 S  
4
G 4  
2 4 S  
2
G 4  
0 4 S  
0
G 4  
8 3 S  
8
G 3  
6 3 S  
6
G 3  
4 3 S  
4
G 3  
2 3 S  
2
G 3  
0 3 S  
0
G 3  
8 2 S  
8
G 2  
6 2 S  
6
G 2  
4 2 S  
4
G 2  
2 2 S  
2
G 2  
0 2 S  
0
G 2  
8 1 S  
8
G 1  
6 1 S  
6
G 1  
4 1 S  
4
G 1  
2 1 S  
2
G 1  
0 1 S  
0 1 G  
S 9  
G 9  
S 7  
G 7  
S 5  
G 5  
S 3  
G 3  
S 8  
G 8  
S 6  
G 6  
S 4  
G 4  
S 2  
G 2  
S 1  
G 1  
k
J a c  
Figure 77. Data Input Detail  
Rev. A | Page 33 of 36  
AD9780/AD9781/AD9783  
8 1 0 6 - 9 3 0 6  
4 0 2 R  
2 4 0 R 0  
0 4 C 0 2  
2 4 0 C 0  
0 4 R 0 2  
0 4 R 0 2  
2
0 4 R 0  
Figure 78. AUX DAC and Clock Input Circuit Details  
Rev. A | Page 34 of 36  
AD9780/AD9781/AD9783  
OUTLINE DIMENSIONS  
0.60  
0.42  
0.24  
10.00  
BSC SQ  
0.60  
0.42  
0.24  
55  
54  
72  
1
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
0.50  
BSC  
9.75  
BSC SQ  
TOP VIEW  
4.70  
BSC SQ  
EXPOSED  
PAD  
0.50  
0.40  
0.30  
18  
19  
37  
36  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
8.50 REF  
EXPOSED PAD MUST BE  
SOLDERED TO PCB AND  
CONNECTED TO AVSS.  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VNND-4  
Figure 79. 72-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
10 mm × 10 mm, Very Thin Quad  
(CP-72-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−4±°C to +8ꢀ°C  
Package Description  
Package Option  
CP-72-1  
CP-72-1  
AD978±BCPZ1  
AD978±BCPZRL1  
AD9781BCPZ1  
AD9781BCPZRL1  
AD9783BCPZ1  
AD9783BCPZRL1  
AD978±-EBZ1  
AD9781-EBZ1  
AD9783-EBZ1  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
72-Lead LFCSP_VQ  
Evaluation Board  
Evaluation Board  
Evaluation Board  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
−4±°C to +8ꢀ°C  
CP-72-1  
CP-72-1  
CP-72-1  
CP-72-1  
1 Z = RoHS Compliant Part.  
Rev. A | Page 3ꢀ of 36  
 
AD9780/AD9781/AD9783  
NOTES  
©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06936-0-6/08(A)  
Rev. A | Page 36 of 36  

相关型号:

AD9780BCPZRL7

IC PARALLEL, WORD INPUT LOADING, 12-BIT DAC, QCC72, 10 X 10 MM, ROHS COMPLIANT, MO-220VNND-3, LFCSP-72, Digital to Analog Converter
ADI

AD9780_15

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9780_17

LVDS Interface, 500 MSPS DACs
ADI

AD9781

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9781-EBZ

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9781BCPZ

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9781BCPZRL

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9781BCPZRL7

IC PARALLEL, WORD INPUT LOADING, 14-BIT DAC, QCC72, 10 X 10 MM, ROHS COMPLIANT, MO-220VNND-3, LFCSP-72, Digital to Analog Converter
ADI

AD9781_15

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9782

12-Bit, 200 MSPS/500 MSPS TxDAC+ with 2 x /4 x /8 x Interpolation and Signal Processing
ADI

AD9783

Dual 12-/14-/16-Bit, LVDS Interface, 500 MSPS DACs
ADI

AD9783-DPG2-EBZ

LVDS Interface, 500 MSPS DACs
ADI