AD9826 [ADI]

Complete 16-Bit Imaging Signal Processor; 完整的16位成像信号处理器
AD9826
型号: AD9826
厂家: ADI    ADI
描述:

Complete 16-Bit Imaging Signal Processor
完整的16位成像信号处理器

文件: 总20页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 16-Bit Imaging  
Signal Processor  
a
AD9826  
P RO D UCT D ESCRIP TIO N  
FEATURES  
T he AD9826 is a complete analog signal processor for imaging  
applications. It features a 3-channel architecture designed to  
sample and condition the outputs of trilinear color CCD arrays.  
Each channel consists of an input clamp, Correlated Double  
Sampler (CDS), offset DAC, and Programmable Gain Amplifier  
(PGA), multiplexed to a high-performance 16-bit A/D converter.  
16-Bit 15 MSPS A/D Converter  
3-Channel 16-Bit Operation up to 15 MSPS  
1-Channel 16-Bit Operation up to 12.5 MSPS  
2-Channel Mode for Mono Sensors with Odd/Even Outputs  
Correlated Double Sampling  
1~6
؋
 Programmable Gain  
؎300 mV Programmable Offset  
Input Clamp Circuitry  
Internal Voltage Reference  
Multiplexed Byte-Wide Output  
Optional Single Byte Output Mode  
3-Wire Serial Digital Interface  
3 V/5 V Digital I/O Compatibility  
28-Lead SSOP Package  
T he AD9826 can operate at speeds greater than 15 MSPS with  
reduced performance.  
T he CDS amplifiers may be disabled for use with sensors that  
do not require CDS, such as Contact Image Sensors (CIS),  
CMOS active pixel sensors, and Focal Plane Arrays.  
The 16-bit digital output is multiplexed into an 8-bit output word,  
which is accessed using two read cycles. T here is an optional  
single byte output mode. T he internal registers are programmed  
through a 3-wire serial interface, and provide adjustment of  
the gain, offset, and operating mode.  
Low Power CMOS: 400 mW (Typ)  
Power-Down Mode Available  
APPLICATIONS  
Flatbed Document Scanners  
Digital Copier  
T he AD9826 operates from a single 5 V power supply, typically  
consumes 400 mW of power, and is packaged in a 28-lead SSOP.  
Multifunction Peripherals  
Infrared Imaging Applications  
Machine Vision  
FUNCTIO NAL BLO CK D IAGRAM  
AVDD AVSS  
CAPT  
AVSS  
CML  
CAPB  
DRVDD  
DRVSS  
AVDD  
AD9826  
VINR  
VING  
PGA  
CDS  
OEB  
BANDGAP  
REFERENCE  
9-BIT  
DAC  
16  
8
16:8  
MUX  
3:1  
MUX  
16-BIT  
ADC  
DOUT  
PGA  
CDS  
CDS  
9-BIT  
DAC  
CONFIGURATION  
REGISTER  
MUX  
REGISTER  
VINB  
PGA  
SCLK  
DIGITAL  
CONTROL  
INTERFACE  
RED  
GREEN  
BLUE  
SLOAD  
SDATA  
6
9-BIT  
DAC  
GAIN  
REGISTERS  
INPUT  
CLAMP  
BIAS  
RED  
9
OFFSET  
GREEN  
BLUE  
OFFSET  
REGISTERS  
CDSCLK1 CDSCLK2  
ADCCLK  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
AD9826–SPECIFICATIONS  
MIN to T , AVDD = 5 V, DRVDD = 5 V, CDS Mode, fADCCLK = 15 MHz, fCDSCLK1 = fCDSCLK2 = 5 MHz, PGA  
ANALOG SPECIFICATIONS (GTain = 1, Input range = 4 V p-p, unless otherwise noted.)  
MAX  
P aram eter  
Min  
Typ  
Max  
Unit  
MAXIMUM CONVERSION RAT E  
3-Channel Mode with CDS  
2-Channel Mode with CDS  
1-Channel Mode with CDS  
30  
30  
18  
MSPS  
MSPS  
MSPS  
ACCURACY (ENT IRE SIGNAL PAT H)  
ADC Resolution  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
No Missing Codes  
16  
±16  
±0.5  
Bits  
LSB  
LSB  
Guaranteed  
ANALOG INPUT S  
Input Signal Range (Programmable)1  
Allowable Reset T ransient1  
Input Limits2  
2.0/4.0  
1.0  
V p-p  
V
V
AVSS – 0.3  
AVDD + 0.3  
Input Capacitance  
Input Bias Current  
10  
10  
pF  
nA  
AMPLIFIERS  
PGA Gain  
1
6
V/V  
Steps  
PGA Gain Resolution2  
PGA Gain Monotonicity  
Programmable Offset  
Programmable Offset Resolution  
Programmable Offset Monotonicity  
64  
Guaranteed  
–300  
+300  
mV  
Steps  
512  
Guaranteed  
NOISE AND CROSST ALK  
T otal Output Noise @ PGA Minimum  
T otal Output Noise @ PGA Maximum  
Channel-to-Channel Crosstalk  
@ 15 MSPS  
3.0  
9.0  
LSB rms  
LSB rms  
70  
90  
dB  
dB  
@ 6 MSPS  
POWER SUPPLY REJECT ION  
AVDD = 5 V 0.25 V  
0.1  
2.0  
% FSR  
V
DIFFERENT IAL VREF (at 25°C)  
CAPT –CAPB  
T EMPERAT URE RANGE  
Operating  
Storage  
–40  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLIES  
AVDD  
DRVDD  
4.75  
3.0  
5.0  
5.0  
5.25  
5.25  
V
V
OPERAT ING CURRENT  
AVDD  
DRVDD  
75  
5
200  
mA  
mA  
µA  
Power-Down Mode  
POWER DISSIPAT ION  
3-Channel Mode  
1-Channel Mode  
400  
300  
mW  
mW  
NOT ES  
1Linear Input Signal Range is from 0 V to 4 V when the CCD’s reference level is clamped to 4 V by the AD9826’s input clamp.  
4V SET BY INPUT CLAMP  
(3V OPTION ALSO AVAILABLE)  
1V TYP  
RESETTRANSIENT  
4V p-p MAX INPUT SIGNAL RANGE  
GND  
6.0  
2T he PGA Gain is approximately “linear in dB” and follows the equation:  
Specifications subject to change without notice.  
where G is the register value.  
G
ain =  
63 – G  
63  
1 + 5.0  
REV. A  
–2–  
AD9826  
MIN to T , AVDD = 5 V, DRVDD = 5 V, CDS Mode, fADCCLK = 15 MHz, fCDSCLK1 = fCDSCLK2 = 5 MHz,  
DIGITAL SPECIFICATIONS (CT = 10 pF, unless otherwise noted.)  
MAX  
L
P aram eter  
Sym bol  
Min  
Typ  
Max  
Unit  
LOGIC INPUT S  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.0  
V
V
µA  
µA  
pF  
0.8  
10  
10  
10  
LOGIC OUT PUT S  
High Level Output Voltage  
Low Level Output Voltage  
High Level Output Current  
Low Level Output Current  
VOH  
VOL  
IOH  
IOL  
4.5  
V
V
µA  
µA  
0.1  
50  
50  
LOGIC OUT PUT S (with DRVDD = 3 V)  
High Level Output Voltage, (IOH = 50 µA)  
Low Level Output Voltage (IOL = 50 µA)  
VOH  
VOL  
2.95  
V
V
0.05  
Specifications subject to change without notice.  
(TMIN to T , AVDD = 5 V, DRVDD = 5 V, specs are for 16-bit performance.)  
TIMING SPECIFICATIONS  
P aram eter  
MAX  
Sym bol  
Min  
Typ  
Max  
Unit  
CLOCK PARAMET ERS  
3-Channel Pixel Rate  
1-Channel Pixel Rate  
ADCCLK Pulsewidth  
CDSCLK1 Pulsewidth  
tPRA  
tPRB  
tADCLK  
tC1  
tC2  
tC1C2  
tADC2  
tC2ADR  
tC2ADF  
tC2C1  
tAD  
200  
80  
30  
8
8
0
0
5
30  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CDSCLK2 Pulsewidth  
CDSCLK1 Falling to CDSCLK2 Rising  
ADCCLK Falling to CDSCLK2 Rising  
CDSCLK2 Rising to ADCCLK Rising  
CDSCLK2 Falling to ADCCLK Falling  
CDSCLK2 Falling to CDSCLK1 Rising  
Aperture Delay for CDS Clocks  
2
SERIAL INT ERFACE  
Maximum SCLK Frequency  
SLOAD to SCLK Set-Up T ime  
SCLK to SLOAD Hold T ime  
SDAT A to SCLK Rising Set-Up T ime  
SCLK Rising to SDAT A Hold T ime  
SCLK Falling to SDAT A Valid  
fSCLK  
tLS  
tLH  
tDS  
tDH  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
tRDV  
ns  
DAT A OUT PUT S  
Output Delay  
tOD  
tDV  
tHZ  
6
10  
10  
3 (Fixed)  
ns  
ns  
ns  
Cycles  
3-State to Data Valid  
Output Enable High to 3-State  
Latency (Pipeline Delay)  
NOT ES  
It is recommended that CDSCLK falling edges do not occur within the first 10 ns following an ADCCLK edge.  
Specifications subject to change without notice.  
REV. A  
–3–  
AD9826  
ABSO LUTE MAXIMUM RATINGS*  
O RD ERING GUID E  
With  
Respect  
To  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
P aram eter  
Min Max  
Unit  
AD9826KRS –40°C to +85°C  
5.3 mm SSOP RS-28  
VIN, CAPT , CAPB  
Digital Inputs  
AVDD  
DRVDD  
AVSS  
Digital Outputs  
Junction T emperature  
Storage T emperature  
Lead T emperature  
(10 sec)  
AVSS  
AVSS  
AVSS  
DRVSS –0.5 +6.5  
DRVSS –0.3 +0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
–0.5 +6.5  
V
V
V
V
V
V
°C  
°C  
°C  
TH ERMAL CH ARACTERISTICS  
Ther m al Resistance  
28-Lead 5.3 mm SSOP  
θJA = 109°C/W  
DRVSS –0.3 DRVDD + 0.3  
150  
–65 +150  
300  
θJC = 39°C/W  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. T his is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9826 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high-energy electrostatic discharges. T herefore, proper ESD precautions are recom-  
mended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–4–  
AD9826  
P IN CO NFIGURATIO N  
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
1
2
3
4
5
6
7
8
9
28 AVDD  
AVSS  
27  
26 VINR  
25 OFFSET  
24 VING  
23 CML  
DRVDD  
DRVSS  
(MSB) D7  
D6  
AD9826  
TOP VIEW  
22 VINB  
(Not to Scale) 21 CAPT  
D5  
20  
CAPB  
D4 10  
19 AVSS  
11  
12  
13  
14  
18  
D3  
D2  
AVDD  
17  
SLOAD  
16  
15  
D1  
SCLK  
(LSB) D0  
SDATA  
P IN FUNCTIO N D ESCRIP TIO NS  
P in No.  
Mnem onic  
Type  
D escription  
1
CDSCLK1  
CDSCLK2  
ADCCLK  
OEB  
DI  
CDS Reference Level Sampling Clock  
CDS Data Level Sampling Clock  
A/D Converter Sampling Clock  
Output Enable, Active Low  
2
DI  
3
DI  
4
DI  
5
DRVDD  
DRVSS  
D7  
P
Digital Output Driver Supply  
Digital Output Driver Ground  
6
P
7
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI/DO  
DI  
Data Output MSB. ADC DB15 High Byte, ADC DB7 Low Byte  
Data Output. ADC DB14 High Byte, ADC DB6 Low Byte  
Data Output. ADC DB13 High Byte, ADC DB5 Low Byte  
Data Output. ADC DB12 High Byte, ADC DB4 Low Byte  
Data Output. ADC DB11 High Byte, ADC DB3 Low Byte  
Data Output. ADC DB10 High Byte, ADC DB2 Low Byte  
Data Output. ADC DB9 High Byte, ADC DB1 Low Byte  
Data Output LSB. ADC DB8 High Byte, ADC DB0 Low Byte  
Serial Interface Data Input/Output  
8
D6  
9
D5  
10  
11  
12  
13  
14  
15  
16  
17  
18, 28  
19, 27  
20  
21  
22  
23  
24  
25  
26  
D4  
D3  
D2  
D1  
D0  
SDAT A  
SCLK  
SLOAD  
AVDD  
AVSS  
CAPB  
CAPT  
VINB  
CML  
Serial Interface Clock Input  
DI  
Serial Interface Load Pulse  
P
5 V Analog Supply  
P
Analog Ground  
AO  
AO  
AI  
ADC Bottom Reference Voltage Decoupling  
ADC T op Reference Voltage Decoupling  
Analog Input, Blue Channel  
AO  
AI  
Internal Bias Level Decoupling  
VING  
OFFSET  
VINR  
Analog Input, Green Channel  
AO  
AI  
Clamp Bias Level Decoupling  
Analog Input, Red Channel  
T YPE: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power.  
REV. A  
–5–  
AD9826  
INP UT REFERRED NO ISE  
D EFINITIO NS O F SP ECIFICATIO NS  
T he rms output noise is measured using histogram techniques.  
T he ADC output codes’ standard deviation is calculated in  
LSB, and can be converted to an equivalent voltage, using the  
relationship 1 LSB = 4 V/65536 = 61 µV. T he noise may then  
be referred to the input of the AD9826 by dividing by the  
PGA gain.  
INTEGRAL NO NLINEARITY (INL)  
Integral nonlinearity error refers to the deviation of each individual  
code from a line drawn from “zero scale” through “positive full  
scale.” T he point used as “zero scale” occurs 1/2 LSB before the  
first code transition. “Positive full scale” is defined as a level  
1 1/2 LSB beyond the last code transition. T he deviation is  
measured from the middle of each particular code to the true  
straight line.  
CH ANNEL-TO -CH ANNEL CRO SSTALK  
In an ideal 3-channel system, the signal in one channel will not  
influence the signal level of another channel. T he channel-to-  
channel crosstalk specification is a measure of the change that  
occurs in one channel as the other two channels are varied. In  
the AD9826, one channel is grounded and the other two chan-  
nels are exercised with full scale input signals. The change in the  
output codes from the first channel is measured and compared  
with the result when all three channels are grounded. The differ-  
ence is the channel-to-channel crosstalk, stated in LSB.  
D IFFERENTIAL NO NLINEARITY (D NL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. T hus every  
code must have a finite width. No missing codes guaranteed  
to 16-bit resolution indicates that all 65536 codes, respec-  
tively, must be present over all operating ranges.  
O FFSET ERRO R  
T he first ADC code transition should occur at a level 1/2 LSB  
above the nominal zero scale voltage. T he offset error is the  
deviation of the actual first code transition level from the  
ideal level.  
AP ERTURE D ELAY  
T he aperture delay is the time delay that occurs from when a  
sampling edge is applied to the AD9826 until the actual sample  
of the input signal is held. Both CDSCLK1 and CDSCLK2  
sample the input signal during the transition from high to low,  
so the aperture delay is measured from each clock’s falling edge  
to the instant the actual internal sample is taken.  
GAIN ERRO R  
T he last code transition should occur for an analog value  
1 1/2 LSB below the nominal full scale voltage. Gain error is  
the deviation of the actual difference between first and last  
code transitions and the ideal difference between the first and  
last code transitions.  
P O WER SUP P LY REJECTIO N  
Power supply rejection specifies the maximum full-scale change  
that occurs from the initial value when the supplies are varied  
over the specified limits.  
REV. A  
–6–  
AD9826  
Typical Performance Characteristics–  
20  
10  
1.0  
0.5  
0
–10  
–20  
0
0.5  
1.0  
24000  
36000  
48000  
64000  
12000  
0
200  
400  
600  
800  
1000  
0
TPC 1. Typical INL Performance at 15 MSPS  
TPC 4. Typical INL Performance at 30 MSPS  
1.0  
1.0  
0.5  
0.5  
0
0
0.5  
1.0  
0.5  
1.0  
200  
400  
600  
800  
1000  
0
64000  
0
12000  
24000  
36000  
48000  
TPC 5. Typical DNL Performance at 30 MSPS  
TPC 2. Typical DNL Performance at 15 MSPS  
10  
10  
5
5
0
0
15  
30  
45  
63  
0
0
15  
30  
45  
63  
GAIN SETTING  
GAIN SETTING  
TPC 3. Output Noise vs. Gain  
TPC 6. Input Referred Noise vs. Gain  
REV. A  
–7–  
AD9826  
TIMING D IAGRAMS  
ANALOG  
INPUTS  
PIXEL n (R,G,B)  
PIXEL  
(n+2)  
PIXEL  
(n+1)  
t
AD  
t
AD  
t
t
PRA  
C1  
t
C2C1  
CDSCLK1  
CDSCLK2  
t
t
C2  
C1C2  
t
C2ADF  
t
t
t
ADCLK  
ADC2  
C2ADR  
ADCCLK  
OUTPUT  
t
t
OD  
ADCLK  
DATA  
D<7:0>  
R(n2) G(n2) G(n2) B(n2) B(n2) R(n1) R(n1) G(n1) G(n1) B(n1)  
B(n1)  
R(n)  
HB  
R(n)  
LB  
G(n)  
HB  
G(n)  
LB  
LOW  
HB  
LB  
HB  
LB  
HB  
LB  
HB  
LB  
HIGH  
BYTE  
BYTE  
Figure 1. 3-Channel CDS Mode Timing  
It is recommended that CDSCLK falling edges do not occur within the first 10 ns following an ADCCLK edge.  
ANALOG  
INPUTS  
PIXEL n  
PIXEL  
(n+1)  
PIXEL  
(n+2)  
t
AD  
t
AD  
t
C1  
t
PRB  
t
C2C1  
CDSCLK1  
CDSCLK2  
t
C1C2  
t
C2  
t
C2ADR  
t
C2ADF  
ADCCLK  
t
ADCLK  
t
t
OD  
ADCLK  
OUTPUT  
DATA  
D<7:0>  
PIXEL (n4)  
PIXEL (n4)  
PIXEL (n3)  
PIXEL (n3)  
PIXEL (n2)  
PIXEL (n2)  
HIGH BYTE  
NOTE  
LOW BYTE  
HIGH BYTE  
LOW BYTE  
HIGH BYTE  
LOW BYTE  
IN 1-CHANNEL CDS MODE, THE CDSCLK1 FALLING EDGE ANDTHE CDSCLK2 RISING EDGE MUST OCCURWHILE ADCCLK IS LOW.”  
Figure 2. 1-Channel CDS Mode Timing  
REV. A  
–8–  
AD9826  
ANALOG  
INPUTS  
PIXEL n  
t
PIXEL (n+1)  
PIXEL (n+2)  
t
AD  
AD  
t
PRA  
t
C1  
t
C2C1  
CDSCLK1  
t
t
C2  
C1C2  
CDSCLK2  
ADCCLK  
t
C2ADR  
t
t
ADC2  
C2ADF  
t
ADCLK  
t
ADCLK  
OUTPUT  
DATA  
D<7:0>  
CH1(n)  
CH1(n2)  
CH2(n2)  
CH1(n1)  
CH2(n1)  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 3. 2-Channel CDS Mode Timing  
PIXEL  
(n+1)  
PIXEL n  
t
ANALOG  
INPUTS  
AD  
t
C2  
CDSCLK2  
ADCCLK  
t
C2ADR  
t
ADC2  
t
C2ADF  
t
t
ADCLK  
ADCLK  
OUTPUT  
DATA  
CH1(n2)  
CH1(n1)  
CH2(n1)  
CH1(n)  
CH2(n2)  
D<7:0>  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
Figure 4. 2-Channel SHA Mode Timing  
REV. A  
–9–  
AD9826  
PIXEL n (R,G,B)  
PIXEL (n+1)  
t
AD  
ANALOG  
INPUTS  
t
PRA  
t
C2  
t
C2AD  
CDSCLK2  
ADCCLK  
t
t
t
ADC2  
C2ADR  
ADCLK  
t
t
OD  
ADCLK  
OUTPUT  
DATA  
D<7:0>  
R (n2) G (n2) G (n2) B (n2) B (n2) R (n1) R (n1) G (n1) G (n1) B (n1) B (n1)  
R (n)  
HB  
R (n)  
LB  
G (n)  
HB  
G (n)  
LB  
LB  
HIGH  
BYTE  
LOW  
HB  
LB  
HB  
LB  
HB  
LB  
HB  
BYTE  
Figure 5. 3-Channel SHA Mode Timing  
PIXEL n  
t
AD  
ANALOG  
INPUTS  
t
PRB  
t
C2  
CDSCLK2  
ADCCLK  
t
C2ADR  
t
C2ADF  
t
ADCLK  
t
t
t
ADCLK  
OD  
OUTPUT  
DATA  
D<7:0>  
PIXEL (n4)  
PIXEL (n4)  
PIXEL (n3)  
PIXEL (n3)  
PIXEL (n2)  
PIXEL (n2)  
HIGH BYTE  
NOTE  
LOW BYTE  
HIGH BYTE  
LOW BYTE  
HIGH BYTE  
LOW BYTE  
IN 1-CHANNEL SHA MODE,THE CDSCLK2 RISING EDGE MUST OCCURWHILE ADCCLK IS LOW.”  
Figure 6. 1-Channel SHA Mode Timing  
REV. A  
–10–  
AD9826  
ADCCLK  
t
t
OD  
OD  
OUTPUT  
DATA  
<D7:D0>  
HIGH BYTE  
DB15DB8  
LOW BYTE  
DB7DB0  
HB  
n+1  
LB  
n+1  
LB  
n+2  
HB  
n+3  
PIXEL n  
PIXEL n  
t
t
DV  
HZ  
OEB  
Figure 7. Digital Output Data Timing  
ADCCLK  
t
OD  
OUTPUT  
DATA  
<D7:D0>  
HIGH BYTE  
DB15DB8  
HIGH BYTE  
DB15DB8  
HB  
n+2  
HB  
n+3  
PIXEL n  
PIXEL n+1  
t
t
HZ  
DV  
OEB  
Figure 8. Single Byte Mode Digital Output Data Timing  
R/Wb  
t
SDATA  
A2  
A1  
A0  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
t
DH  
DS  
SCLK  
t
t
LS  
LH  
SLOAD  
Figure 9. Serial Write Operation Timing  
A2  
A1  
A0  
D8  
D6  
D5  
D3  
D2  
D0  
D7  
D4  
D1  
SDATA  
R/Wb  
t
RDV  
SCLK  
t
t
LH  
LS  
SLOAD  
Figure 10. Serial Read Operation Timing  
REV. A  
–11–  
AD9826  
ANALOG  
INPUTS  
PIXEL (n+1)  
PIXEL n (R,G,B)  
CDSCLK1  
CDSCLK2  
ADCCLK  
RED  
PGA  
OUT  
RED (n)  
GREEN (n)  
BLUE (n)  
RED (n+1)  
GREEN (n+1)  
BLUE (n+1)  
RED (n1)  
GREEN (n1)  
BLUE (n1)  
GREEN  
PGA  
OUT  
BLUE  
PGA  
OUT  
MUX  
OUT  
GREEN (n1)  
BLUE (n1)  
RED (n)  
GREEN (n)  
BLUE (n)  
RED (n+1)  
GREEN (n+1)  
OUTPUT  
DATA  
D<7:0>  
R(n2) G(n2) G(n2) B(n2) B(n2) R(n1) R(n1) G(n1) G(n1) B(n1) B(n1)  
R(n)  
HB  
R(n)  
LB  
G(n)  
HB  
G(n)  
LB  
HB  
LB  
HB  
LB  
HB  
LB  
HB  
LB  
HIGH  
BYTE  
LOW  
BYTE  
NOTES  
1.THE MUX STATE MACHINE IS INTERNALLY RESET ATTHE CDSCLK2 RISING EDGE.  
2. EACH PIXEL IS SAMPLED AND AMPLIFIED BYTHE PGAs AT CDSCLK2 FALLING EDGE.  
3. AFTER CDSCLK2 RISING EDGE,THE NEXT ADCCLK RISING EDGEWILL ALWAYS SELECT RED PGA OUTPUT.  
4.THE ADC SAMPLESTHE MUX OUTPUT ON ADCCLK FALLING EDGES.  
5.THE MUX SWITCHESTOTHE NEXT PGA OUTPUT AT ADCCLK RISING EDGES.  
Figure 11. Internal Timing Diagram for 3-Channel CDS Mode  
REV. A  
–12–  
AD9826  
FUNCTIO NAL D ESCRIP TIO N  
2-Channel CD S Mode  
T he AD9826 can be operated in six different modes: 3-Channel  
CDS Mode, 3-Channel SH A Mode, 2-Channel CDS Mode,  
2-Channel SHA Mode, 1-Channel CDS Mode, and 1-Channel  
SHA Mode. Each mode is selected by programming the Configura-  
tion Registers through the serial interface. For more detail on  
CDS or SHA mode operation, see the Circuit Operation section.  
The 2-Channel Mode is selected by writing a “1” into two of the  
channel select bits of the MUX register (D4–D6). Bit D5 of the  
configuration register also needs to be set low to take the part out  
of 3-Channel Mode. The channels that will be used is determined  
by the contents of Bits D4–D6 of the MUX Configuration Reg-  
ister (see T able III). T he combination of inputs that can be  
selected are; RG, RB, or GB by writing a “1” into the appropri-  
ate bit. T he sample order is selected by Bit D7. If D7 is high,  
the MUX will sample in the following order: RG or RB or GB  
depending on which channels are turned on. If Bit D7 is set low  
the mux will sample in the following order: GR or BR or BG  
depending on which channels are turned on.  
3-Channel CD S Mode  
In 3-Channel CDS Mode, the AD9826 simultaneously samples  
the Red, Green, and Blue input voltages from the CCD outputs.  
The sampling points for each Correlated Double Sampler (CDS)  
are controlled by CDSCLK1 and CDSCLK2 (see Figures 11  
and 13). CDSCLK1s falling edge samples the reference level of  
the CCD waveform. CDSCLK2s falling edge samples the data  
level of the CCD waveform. Each CDS amplifier outputs the  
difference between the CCD’s reference and data levels. Next,  
the output voltage of each CDS amplifier is level-shifted by an  
Offset DAC. T he voltages are then scaled by the three Program-  
mable Gain Amplifiers before being multiplexed through the  
16-Bit ADC. T he ADC sequentially samples the PGA outputs  
on the falling edges of ADCCLK.  
T he AD9826 simultaneously samples the selected channels’  
input voltages from the CCD outputs. T he sampling points  
for each Correlated Double Sampler (CDS) are controlled by  
CDSCLK1 and CDSCLK2 (see Figure 11). CDSCLK1s fall-  
ing edge samples the reference level of the CCD waveform.  
CDSCLK2s falling edge samples the data level of the CCD  
waveform. Each CDS amplifier outputs the difference between  
the CCDs reference and data levels. Next, the output voltage of  
each CDS amplifier is level-shifted by an Offset DAC. The volt-  
ages are then scaled by the two Programmable Gain Amplifiers  
before being multiplexed through the 16-bit ADC. T he ADC  
sequentially samples the PGA outputs on the falling edges of  
ADCCLK.  
T he offset and gain values for the Red, Green, and Blue chan-  
nels are programmed using the serial interface. T he order in  
which the channels are switched through the multiplexer is  
selected by programming the MUX Configuration register.  
T iming for this mode is shown in Figure 1. It is recommended  
that the falling edge of CDSCLK2 occur before the rising edge  
of ADCCLK, although this is not required to satisfy the mini-  
mum timing constraints. T he rising edge of CDSCLK2 should  
not occur before the previous falling edge of ADCCLK, as  
shown by tADC2. T he output data latency is three clock cycles.  
T he offset and gain values for the Red, Green, and Blue chan-  
nels are programmed using the serial interface. T he order in  
which the channels are switched through the multiplexer is  
selected by programming the MUX Configuration Register.  
T iming for this mode is shown in Figure 3. T he rising edge of  
CDSCLK2 should not occur before the previous falling edge of  
ADCCLK, as shown by tADC2. T he output data latency is three  
clock cycles.  
3-Channel SH A Mode  
In 3-Channel SHA Mode, the AD9826 simultaneously samples  
the Red, Green, and Blue input voltages. T he sampling point is  
controlled by CDSCLK2. CDSCLK2s falling edge samples the  
input waveforms on each channel. T he output voltages from the  
three SHAs are modified by the offset DACs and then scaled by  
the three PGAs. T he outputs of the PGAs are then multiplexed  
through the 16-bit ADC. T he ADC sequentially samples the  
PGA outputs on the falling edges of ADCCLK.  
2-Channel SH A Mode  
The 2-Channel Mode is selected by writing a “1” into two of the  
channel select bits of the MUX Register (D4–D6). Bit D5 of the  
configuration register also needs to be set low to take the part  
out of 3-Channel Mode. T he channels that will be used is deter-  
mined by the contents of Bits D4–D6 of the MUX Configuration  
Register (see T able III ). T he combination of inputs that can be  
selected are; RG, RB, or GB by writing a “1” into the appropri-  
ate bit. T he sample order is selected by Bit D7. If D7 is high,  
the mux will sample in the following order: RG or RB or GB,  
depending on which channels are turned on. If Bit D7 is set low,  
the mux will sample in the following order: GR or BR or BG,  
depending on which channels are turned on.  
T he input signal is sampled with respect to the voltage applied  
to the OFFSET pin (see Figure 14). With the OFFSET pin  
grounded, a zero volt input corresponds to the ADC’s zero scale  
output. T he OFFSET pin may also be used as a coarse offset  
adjust pin. A voltage applied to this pin will be subtracted from  
the voltages applied to the Red, Green, and Blue inputs in the first  
amplifier stage of the AD9826. The input clamp is disabled in this  
mode. For more information, see the Circuit Operation section.  
In 2-Channel SHA Mode, the AD9826 simultaneously samples  
the selected channels’ input voltages. T he sampling point is  
controlled by CDSCLK2. CDSCLK2s falling edge samples the  
input waveforms on each channel. T he output voltages from the  
two SHAs are modified by the offset DACs and then scaled by  
the two PGAs. T he outputs of the PGAs are then multiplexed  
through the 16-bit ADC. The ADC sequentially samples the PGA  
outputs on the falling edges of ADCCLK.  
T iming for this mode is shown in Figure 5. CDSCLK1 should  
be grounded in this mode. Although it is not required, it is recom-  
mended that the falling edge of CDSCLK2 occur before the  
rising edge of ADCCLK. T he rising edge of CDSCLK2 should  
not occur before the previous falling edge of ADCCLK, as shown  
by tADC2. T he output data latency is three ADCCLK cycles.  
T he offset and gain values for the Red, Green, and Blue chan-  
nels are programmed using the serial interface. T he order in  
which the channels are switched through the multiplexer is  
selected by programming the MUX Configuration register.  
T he input signal is sampled with respect to the voltage applied  
to the OFFSET pin (see Figure 14). With the OFFSET pin  
grounded, a zero volt input corresponds to the ADC’s zero scale  
output. T he OFFSET pin may also be used as a coarse offset  
REV. A  
–13–  
AD9826  
adjust pin. A voltage applied to this pin will be subtracted from  
the voltages applied to the Red, Green, and Blue inputs in the first  
amplifier stage of the AD9826. The input clamp is disabled in this  
mode. For more information, see the Circuit Operation section.  
Bit D7 controls the input range of the AD9826. Setting D7 high  
sets the input range to 4 V while setting Bit D7 low sets the  
input range to 2 V. Bit D6 controls the internal voltage refer-  
ence. If the AD9826’s internal voltage reference is used, then  
this bit is set high. Setting Bit D6 low will disable the internal  
voltage reference, allowing an external voltage reference to be  
used. Setting Bit D5 high will configure the AD9826 for 3-  
channel operation. If D5 is set low, the part will be in either  
2CH or 1CH mode based on the settings in the MUX Configu-  
ration Register (See T able III and the MUX Configuration  
Register description). Setting Bit D4 high will enable the CDS  
mode of operation, and setting this bit low will enable the SHA  
mode of operation. Bit D3 sets the dc bias level of the AD9826s  
input clamp.  
T iming for this mode is shown in Figure 4. CDSCLK1 should  
be grounded in this mode. The rising edge of CDSCLK2 should  
not occur before the previous falling edge of ADCCLK, as shown  
by tADC2. The output data latency is three ADCCLK cycles. The  
offset and gain values for the Red, Green, and Blue channels are  
programmed using the serial interface. T he order in which the  
channels are switched through the multiplexer is selected by  
programming the MUX Configuration Register.  
1-Channel CD S Mode  
T his mode operates the same way as the 3-Channel CDS mode.  
The difference is that the multiplexer remains fixed in this mode,  
so only the channel specified in the MUX Configuration Regis-  
ter is processed.  
T his bit should always be set high for the 4 V clamp bias, unless  
a CCD with a reset feedthrough transient exceeding 2 V is used.  
If the 3 V clamp bias level is used, then the peak-to-peak input  
signal range to the AD9826 is reduced to 3 V maximum. Bit D2  
controls the power-down mode. Setting Bit D2 high will place  
the AD9826 into a very low-power “sleep” mode. All register  
contents are retained while the AD9826 is in the powered-down  
state. Bit D0 controls the output mode of the AD9826. Setting  
Bit D0 high will enable a single byte output mode where only  
the 8 MSBs of the 16 b ADC will be output on each rising edge  
of ADCCLK (see Figure 8). If Bit D0 is set low, then the 16 b  
ADC output is multiplexed into two bytes. T he MSByte is  
output on ADCCLK rising edge and the LSByte is output on  
ADCCLK falling edge.  
T iming for this mode is shown in Figure 2.  
1-Channel SH A Mode  
T his mode operates the same way as 3-Channel SHA mode,  
except that the multiplexer remains stationary. Only the channel  
specified in the MUX Configuration Register is processed.  
T iming for this mode is shown in Figure 6. CDSCLK1 should  
be grounded in this mode of operation.  
Configur ation Register  
T he Configuration Register controls the AD9826s operating  
mode and bias levels. Bits D8 and D1 should always be set low.  
Table I. Internal Register Map  
Register  
Nam e  
Address  
A2 A1 A0 D 8  
D ata Bits  
D 4  
D 7  
D 6  
D 5  
D 3  
D 2  
D 1  
0
D 0  
Configuration  
MUX Config  
Red PGA  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
Input Rng  
VREF 3CH Mode  
CDS On Clamp Pwr Dn  
Blue  
1 Byte Out  
0
0
RGB/BGR  
Red  
Green  
MSB  
MSB  
MSB  
0
0
0
0
0
0
0
0
0
0
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Green PGA  
Blue PGA  
0
0
Red Offset  
MSB  
MSB  
MSB  
Green Offset  
Blue Offset  
Table II. Configuration Register Settings  
D
8
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
Set  
to  
0
Input Range Internal VREF 3CH Mode CDS Operation  
Input Clamp Bias  
Power-Down  
1 = On  
0 = Off (Normal)*  
Set  
to  
0
Output Mode  
1 = 4 V*  
1 = Enabled*  
1 = On*  
1 = CDS Mode* 1 = 4 V*  
0 = SHA Mode 0 = 3 V  
0 = 2 Byte*  
1 = 1 Byte  
0 = 2 V  
0 = Disabled  
0 = Off  
*Power-on default value.  
REV. A  
–14–  
AD9826  
MUX Configur ation Register  
P GA Gain Register s  
T he MUX Configuration Register controls the sampling chan-  
nel order and the 2-Channel Mode configuration in the AD9826.  
Bits D8 and D3–D0 should always be set low. Bit D7 is used  
when operating in 3-Channel or 2-Channel Mode. Setting Bit  
D7 high will sequence the MUX to sample the Red channel  
first, then the Green channel, and then the Blue channel. When  
in 3-channel mode, the CDSCLK2 pulse always resets the MUX  
to sample the Red channel first (see Figure 11). When Bit D7 is  
set low, the channel order is reversed to Blue first, Green sec-  
ond, and Red third. T he CDSCLK2 pulse will always reset the  
MUX to sample the Blue channel first. Bits D6, D5, and D4 are  
used when operating in 1 or 2-Channel Mode. Bit D6 is set high  
to sample the Red channel. Bit D5 is set high to sample the  
Green channel. Bit D4 is set high to sample the Blue channel.  
The MUX will remain stationary during 1-channel mode. Two-  
Channel Mode is selected by setting two of the channel select  
Bits (D4–D6) high. T he MUX samples the channels in the  
order selected by Bit D7.  
T here are three PGA registers for individually programming the  
gain in the Red, Green, and Blue channels. Bits D8, D7, and  
D6 in each register must be set low, and Bits D5 through D0  
control the gain range from 1× to 6× in 64 increments. See  
Figure 17 for a graph of the PGA gain versus PGA register  
code. T he coding for the PGA registers is straight binary, with  
an all “zeros” word corresponding to the minimum gain setting  
(1×) and an all “ones” word corresponding to the maximum  
gain setting (6×).  
O ffset Register s  
T here are three Offset Registers for individually programming  
the offset in the Red, Green, and Blue channels. Bits D8 through  
D0 control the offset range from –300 mV to +300 mV in 512  
increments. T he coding for the Offset Registers is Sign Mag-  
nitude, with D8 as the sign bit. T able V shows the offset range  
as a function of the Bits D8 through D0.  
Table III. MUX Configuration Register Settings  
D
8
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
Set  
to  
0
MUX Order  
Channel Select  
Channel Select  
Channel Select  
Set  
to  
0
Set  
to  
0
Set  
to  
0
Set  
to  
0
1 = R-G-B*  
0 = B-G-R  
1 = RED*  
0 = Off  
1 = GREEN  
0 = Off*  
1 = BLUE  
0 = Off*  
*Power-on default value.  
Table IV. P GA Gain Register Settings  
D 8  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
Gain (V/V)  
Gain (dB)  
Set to 0 Set to 0 Set to 0 MSB  
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0*  
1
1.0  
1.013  
0.0  
0.12  
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
5.56  
6.0  
14.9  
15.56  
*Power-on default value.  
Table V. O ffset Register Settings  
D 8  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
O ffset (m V)  
MSB  
LSB  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0*  
1
0
+1.2  
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
+300  
0
–1.2  
1
1
1
1
1
1
1
1
1
–300  
*Power-on default value.  
REV. A  
–15–  
AD9826  
Exter nal Input Coupling Capacitor s  
CIRCUIT O P ERATIO N  
T he recommended value for the input coupling capacitors is  
0.1 µF. While it is possible to use a smaller capacitor, this larger  
value is chosen for several reasons:  
Analog InputsCD S Mode O per ation  
Figure 12 shows the analog input configuration for the CDS  
mode of operation. Figure 13 shows the internal timing for the  
sampling switches. T he CCD reference level is sampled when  
CDSCLK1 transitions from high to low, opening S1. T he CCD  
data level is sampled when CDSCLK2 transitions from high to  
low, opening S2. S3 is then closed, generating a differential  
output voltage representing the difference between the two  
sampled levels.  
Cr ossta lk  
T he input coupling capacitor creates a capacitive divider with  
any parasitic capacitance between PCB traces and on chip traces.  
C
IN should be large relative to these parasitic capacitances in  
order to minimize this effect. For example, with a 100 pF input  
capacitance and just a few hundred fF of parasitic capacitance  
on the PCB and/or the IC the imaging system could expect  
to have hundreds of LSBs of crosstalk at the 16 b level. Using  
a large capacitor value = 0.1 µF will minimize any errors due  
to crosstalk.  
T he input clamp is controlled by CDSCLK1. When CDSCLK1  
is high, S4 closes and the internal bias voltage is connected to  
the analog input. T he bias voltage charges the external 0.1 µF  
input capacitor, level-shifting the CCD signal into the AD9826’s  
input common-mode range. T he time constant of the input  
clamp is determined by the internal 5 kresistance and the  
external 0.1 µF input capacitance.  
Signa l Attenua tion  
T he input coupling capacitor creates a capacitive divider with a  
CMOS integrated circuit’s input capacitance, attenuating the  
CCD signal level. CIN should be large relative to the IC’s 10 pF  
input capacitance in order to minimize this effect.  
AD9826  
Linea r ity  
S1  
Some of the input capacitance of a CMOS IC is junction capaci-  
tance, which varies nonlinearly with applied voltage. If the input  
coupling capacitor is too small, then the attenuation of the CCD  
signal will vary nonlinearly with signal level. T his will degrade  
the system linearity performance.  
4pF  
VINR  
CCD  
SIGNAL  
CML  
0.1F  
S3  
5K  
CML  
Sa m pling Er r or s  
S2  
4pF  
T he internal 4 pF sample capacitors have a “memory” of the  
previously sampled pixel. T here is a charge redistribution error  
between CIN and the internal sample capacitors for larger pixel-  
to-pixel voltage swings. As the value of CIN is reduced, the  
resulting error in the sampled voltage will increase. With a CIN  
value of 0.1 µF, the charge redistribution error will be less than  
1 LSB for a full-scale pixel-to-pixel voltage swing.  
S4  
1.7k⍀  
OFFSET  
4V  
3V  
+
INPUT CLAMP LEVEL  
IS SELECTED INTHE  
CONFIGURATION  
REGISTER  
1F  
0.1F  
2.2k⍀  
6.9k⍀  
Figure 12. CDS-Mode Input Configuration (All Three  
Channels Are Identical)  
S1, S4 CLOSED  
S1, S4 CLOSED  
CDSCLK1  
S1, S4 OPEN  
S2 CLOSED  
S2 CLOSED  
CDSCLK2  
S2 OPEN  
S3 OPEN  
S3 CLOSED  
S3 CLOSED  
Q3  
(INTERNAL)  
Figure 13. CDS-Mode Internal Switch Timing  
REV. A  
–16–  
AD9826  
Analog Inputs—SH A Mode O per ation  
Figure 16 shows how the OFFSET pin may be used in a CIS  
application for coarse offset adjustment. Many CIS signals have  
dc offsets ranging from several hundred millivolts to more than  
1 V. By connecting the appropriate dc voltage to the OFFSET  
pin, the CIS signal will be restored to “zero.” After the large dc  
offset is removed, the signal can be scaled using the PGA to  
maximize the ADCs dynamic range.  
Figure 14 shows the analog input configuration for the SHA  
mode of operation. Figure 15 shows the internal timing for the  
sampling switches. The input signal is sampled when CDSCLK2  
transitions from high to low, opening S1. T he voltage on the  
OFFSET pin is also sampled on the falling edge of CDSCLK2,  
when S2 opens. S3 is then closed, generating a differential out-  
put voltage representing the difference between the sampled  
input voltage and the OFFSET voltage. T he input clamp is  
disabled during SHA mode operation.  
AD9826  
VINR  
RED  
AD9826  
RED-  
SHA  
OFFSET  
4pF  
S1  
VINR  
INPUT  
SIGNAL  
CML  
VING  
GREEN  
GREEN-  
SHA  
OFFSET  
S3  
S2  
4pF  
OPTIONAL DC  
OFFSET (OR  
CONNECT  
OFFSET  
VING  
CML  
VINB  
BLUE  
BLUE-  
SHA  
TO GND)  
OFFSET  
VRED FROM  
CIS MODULE  
OFFSET  
AVDD  
0.1F  
R1  
DC OFFSET  
VINB  
R2  
Figure 16. SHA-Mode Used with External DC Offset  
Figure 14. SHA-Mode Input Configuration (All Three  
Channels Are Identical)  
S1, S2 CLOSED  
S1, S2 OPEN  
S1, S2 CLOSED  
CDSCLK2  
S3 CLOSED  
S3 CLOSED  
Q3  
S3 OPEN  
(INTERNAL)  
Figure 15. SHA-Mode Internal Switch Timing  
REV. A  
–17–  
AD9826  
P r ogr am m able Gain Am plifier s  
AP P LICATIO NS INFO RMATIO N  
T he AD9826 uses one Programmable Gain Amplifier (PGA) for  
each channel. Each PGA has a gain range from 1× (0 dB) to  
6.0× (15.56 dB), adjustable in 64 steps. Figure 17 shows the  
PGA gain as a function of the PGA register code. Although the  
gain curve is approximately “linear in dB,” the gain in V/V var-  
ies nonlinearly with register code, following the equation:  
Cir cuit and Layout Recom m endations  
T he recommended circuit configuration for 3-Channel CDS  
Mode operation is shown in Figure 18. T he recommended  
input coupling capacitor value is 0.1 µF (see Circuit Operation  
section for more details). A single ground plane is recommended  
for the AD9826. A separate power supply may be used for  
DRVDD, the digital driver supply, but this supply pin should  
still be decoupled to the same ground plane as the rest of the  
AD9826. T he loading of the digital outputs should be mini-  
mized, either by using short traces to the digital ASIC, or by  
using external digital buffers. T o minimize the effect of digital  
transients during major output code transitions, the falling edge  
of CD SCLK2 should occur coincident with or before the  
rising edge of ADCCLK (see Figures 1 through 6 for timing).  
All 0.1 µF decoupling capacitors should be located as close as  
possible to the AD9826 pins. When operating in 1CH or 2CH  
Mode, the unused analog inputs should be grounded.  
6.0  
Gain =  
63 G  
1 + 5.0  
63  
where G is the decimal value of the gain register contents, and  
varies from 0 to 63.  
6.00  
4.75  
3.50  
2.25  
1.00  
16  
12  
8
For 3-Channel SHA Mode, all of the above considerations also  
apply, except that the analog input signals are directly connected  
to the AD9826 without the use of coupling capacitors. The analog  
input signals must already be dc-biased between 0 V and 4 V.  
Also, the OFFSET pin should be grounded if the inputs to the  
AD9826 are to be referenced to ground, or a dc offset voltage  
should be applied to the OFFSET pin in the case where a coarse  
offset needs to be removed from the inputs. (See Figure 16 and  
the Circuit Operation section for more details.)  
GAIN dB  
4
0
GAIN V/V  
0
12  
24  
36  
48  
60 63  
PGA REGISTERVALUE Decimal  
Figure 17. PGA Gain Transfer Function  
5V  
0.1F  
RED INPUT  
CLOCK  
INPUTS  
0.1F  
0.1F  
GREEN INPUT  
CDSCLK1  
1
AVDD  
AVSS  
VINR  
28  
27  
26  
25  
24  
23  
22  
CDSCLK2  
2
ADCCLK  
3
0.1F  
BLUE INPUT  
OEB  
OFFSET  
VING  
5V/3V  
4
DRVDD  
0.1F  
0.1F  
10F  
0.1F  
1.0F  
5
0.1F  
DRVSS  
CML  
0.1F  
6
7
(MSB) D7  
D6  
AD9826  
TOP VIEW  
VINB  
CAPT  
CAPB  
AVSS  
AVDD  
SLOAD  
SCLK  
SDATA  
8
(Not to Scale) 21  
0.1F  
D5  
9
20  
19  
18  
17  
16  
15  
D4  
10  
11  
12  
13  
14  
D3  
0.1F  
D2  
D1  
5V  
(LSB)D0  
DATA  
INPUTS  
SERIAL  
INTERFACE  
Figure 18. Recommended Circuit Configuration, 3-Channel CDS Mode  
REV. A  
–18–  
AD9826  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
28-Lead 5.3 m m SSO P  
(RS-28)  
0.407 (10.34)  
0.397 (10.08)  
28  
15  
14  
1
0.07 (1.79)  
0.078 (1.98)  
PIN 1  
0.066 (1.67)  
0.068 (1.73)  
0.03 (0.762)  
8°  
0.0256  
(0.65)  
BSC  
0.015 (0.38)  
0.010 (0.25)  
0°  
0.022 (0.558)  
0.008 (0.203)  
0.002 (0.050)  
SEATING  
PLANE  
0.009 (0.229)  
0.005 (0.127)  
Revision History  
Location  
P age  
D ata Sheet changed fr om REV. 0 to REV. A.  
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Edits to Figure 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Edits to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
REV. A  
–19–  
–20–  

相关型号:

AD9826KRS

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRS

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28
ROCHESTER

AD9826KRSRL

IC SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28, Consumer IC:Other
ADI

AD9826KRSZ

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRSZ

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, ROHS COMPLIANT, SSOP-28
ROCHESTER

AD9826KRSZRL

Complete 16-Bit Imaging Signal Processor
ADI

AD9826KRSZRL

SPECIALTY CONSUMER CIRCUIT, PDSO28, 5.30 MM, SSOP-28
ROCHESTER

AD9826_12

Complete 16-Bit Imaging Signal Processor
ADI

AD9830

CMOS Complete DDS
ADI

AD9830AST

CMOS Complete DDS
ADI

AD9830AST-REEL

IC 16-BIT, DSP-NUM CONTROLLED OSCILLATOR, PQFP48, TQFP-48, DSP Peripheral
ADI

AD9830ASTZ

Direct Digital Synthesizer, Waveform Generator
ADI