AD9840AJSTZRL [ADI]

Complete 10-Bit 40 MSPS CCD Signal Processor; 完整的10位, 40 MSPS CCD信号处理器
AD9840AJSTZRL
型号: AD9840AJSTZRL
厂家: ADI    ADI
描述:

Complete 10-Bit 40 MSPS CCD Signal Processor
完整的10位, 40 MSPS CCD信号处理器

消费电路 商用集成电路 CD
文件: 总16页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 10-Bit 40 MSPS  
CCD Signal Processor  
a
AD9840A  
PRODUCT DESCRIPTION  
FEATURES  
The AD9840A is a complete analog signal processor for CCD  
applications. It features a 40 MHz single-channel architecture  
designed to sample and condition the outputs of interlaced and  
progressive scan area CCD arrays. The AD9840A’s signal chain  
consists of an input clamp, correlated double sampler (CDS),  
digitally controlled variable gain amplifier (VGA), black level  
clamp, and 10-bit A/D converter. Additional input modes are  
provided for processing analog video signals.  
40 MSPS Correlated Double Sampler (CDS)  
4 dB 6 dB Variable CDS Gain with 6-Bit Resolution  
2 dB to 36 dB 10-Bit Variable Gain Amplifier (VGA)  
Low Noise Clamp Circuits  
Analog Preblanking Function  
10-Bit 40 MSPS A/D Converter  
Auxiliary Inputs with VGA and Input Clamp  
3-Wire Serial Digital Interface  
3 V Single Supply Operation  
Low Power: 155 mW @ 3.0 V Supply  
48-Lead LQFP Package  
The internal registers are programmed through a 3-wire serial  
digital interface. Programmable features include gain adjustment,  
black level adjustment, input configuration, and power-down modes.  
APPLICATIONS  
The AD9840A operates from a 3 V power supply, typically  
dissipates 155 mW, and is packaged in a 48-lead LQFP.  
Digital Video Camcorders  
Digital Still Cameras  
Industrial Imaging  
FUNCTIONAL BLOCK DIAGRAM  
PBLK  
CLPOB  
AVDD  
AVSS  
DRVDD  
CLP  
4dB6dB  
DRVSS  
2dB TO 36dB  
CDS  
CCDIN  
10  
2:1  
MUX  
10-BIT  
ADC  
DOUT  
VGA  
CLP  
VRT  
VRB  
BANDGAP  
CLPDM  
AUX1IN  
REFERENCE  
OFFSET  
DAC  
10  
2:1  
MUX  
BUF  
INTERNAL  
BIAS  
6
CML  
AUX2IN  
8
INTERNAL  
REGISTERS  
CLP  
DVDD  
DVSS  
DIGITAL  
INTERFACE  
INTERNAL  
TIMING  
AD9840A  
SHP  
SHD DATACLK  
SL  
SCK  
SDATA  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD9840A–SPECIFICATIONS  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = 40 MHz, unless otherwise noted.)  
GENERAL SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
Analog, Digital, Digital Driver  
2.7  
3.6  
V
POWER CONSUMPTION  
Normal Operation  
Power-Down Modes  
Fast Recovery Mode  
Standby  
(Specified Under Each Mode of Operation)  
90  
5
1
mW  
mW  
mW  
Total Power-Down  
MAXIMUM CLOCK RATE  
40  
10  
MHz  
A/D CONVERTER  
Resolution  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
Data Output Coding  
0.5  
2.0  
1.0  
LSB  
Bits Guaranteed  
V
10  
Straight Binary  
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
Specifications subject to change without notice.  
(DRVDD = 2.7 V, CL = 20 pF unless otherwise noted.)  
DIGITAL SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
Specifications subject to change without notice.  
REV. 0  
–2–  
AD9840A  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = fSHP = fSHD = 40 MHz, unless otherwise noted.)  
CCD-MODE SPECIFICATIONS  
Parameter  
OWER CONSUMPTION  
Min  
Typ  
Max  
Unit  
mW  
Notes  
P
155  
MAXIMUM CLOCK RATE  
20  
MHz  
CDS  
Allowable CCD Reset Transient1  
Max CCD Black Pixel Amplitude1  
Max Input Range before Saturation1  
Max Input Range before Saturation  
Max Input Range before Saturation  
Max Output Range  
500  
200  
mV  
mV  
V p-p  
V p-p  
V p-p  
V p-p  
Steps  
See Input Waveform in Note 1  
1.0  
1.6  
With 4 dB CDS Gain  
With –2 dB CDS Gain  
With 10 dB CDS Gain  
At Any CDS Gain Setting  
1.5  
0.5  
Gain Resolution  
64  
Gain Range (Two’s Complement Coding)  
Min Gain (CDS Gain Register Code 32)  
Medium Gain (CDS Gain Code 63)  
Max Gain (CDS Gain Code 31)  
See Figure 15 for CDS Gain Curve  
–2  
4
10  
dB  
dB  
dB  
4 dB is Default with CDS Gain Disabled  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
1.6  
2.0  
V p-p  
V p-p  
Steps  
Gain Control Resolution  
1024  
Gain Monotonicity  
Guaranteed  
Gain Range  
Low Gain (VGA Register Code 91)  
Max Gain (VGA Code 1023)  
See Figure 13 for VGA Gain Curve  
See Page 12 for Gain Equations  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC Output  
Min Clamp Level  
Max Clamp Level  
0
LSB  
LSB  
63.75  
SYSTEM PERFORMANCE  
Gain Accuracy, VGA Code 91 to 1023  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Specifications Include Entire Signal Chain  
Use Equations on Page 12 to Calculate Gain  
12 dB Gain Applied (4 dB CDS Gain)  
–1.0  
+1.0  
dB  
%
0.4  
0.25  
40  
LSB rms AC Grounded Input, 6 dB Gain Applied  
Power Supply Rejection (PSR)  
dB  
Measured with Step Change on Supply  
POWER-UP RECOVERY TIME  
From Fast Recovery Mode  
From Reference Standby Mode  
From Total Shutdown Mode  
From Power-Off Condition  
Clocks Must Be Applied, as in Figures 8 and 9  
0.1  
1
3
ms  
ms  
ms  
ms  
15  
NOTES  
1Input Signal Characteristics defined as follows, with 4 dB CDS gain:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
200mV MAX  
OPTICAL  
INPUT  
SIGNAL RANGE  
BLACK PIXEL  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD9840A–SPECIFICATIONS  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = 40 MHz, unless otherwise noted.)  
AUX1-MODE SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
mW  
POWER CONSUMPTION  
MAXIMUM CLOCK RATE  
105  
40  
MHz  
INPUT BUFFER  
Gain  
0
dB  
Max Input Range  
1.0  
2.0  
V p-p  
VGA  
Max Output Range  
Gain Control Resolution  
Gain (Selected Using VGA Gain Register)  
Min Gain  
V p-p  
Steps  
1023  
0
36  
dB  
dB  
Max Gain  
Specifications subject to change without notice.  
(TMIN to TMAX, AVDD = DVDD = 3.0 V, fDATACLK = 40 MHz, unless otherwise noted.)  
AUX2-MODE SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
mW  
POWER CONSUMPTION  
MAXIMUM CLOCK RATE  
INPUT BUFFER  
105  
40  
MHz  
(Same as AUX1-MODE)  
512  
VGA  
Max Output Range  
Gain Control Resolution  
Gain (Selected Using VGA Gain Register)  
Min Gain  
2.0  
V p-p  
Steps  
0
18  
dB  
dB  
Max Gain  
ACTIVE CLAMP  
Clamp Level Resolution  
Clamp Level (Measured at ADC Output)  
Min Clamp Level  
256  
Steps  
0
LSB  
LSB  
Max Clamp Level  
63.75  
Specification subject to change without notice.  
REV. 0  
–4–  
AD9840A  
(CL = 20 pF, fSAMP = 40 MHz, CCD-Mode Timing in Figures 5 and 6, AUX-Mode Timing in Figure 7.  
Serial Timing in Figures 8–10.)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SAMPLE CLOCKS  
DATACLK, SHP, SHD Clock Period  
DATACLK Hi/Low Pulsewidth  
SHP Pulsewidth  
tCP  
25  
10  
5
5
4
2
0
10  
ns  
ns  
ns  
ns  
Pixels  
Pixels  
ns  
ns  
ns  
tADC  
tSHP  
tSHD  
tCDM  
tCOB  
tS1  
12.5  
6
6
10  
20  
6
12.5  
3.0  
SHD Pulsewidth  
CLPDM Pulsewidth  
CLPOB Pulsewidth1  
SHP Rising Edge to SHD Falling Edge  
SHP Rising Edge to SHD Rising Edge  
Internal Clock Delay  
tS2  
tID  
Inhibited Clock Period  
tINH  
10  
ns  
DATA OUTPUTS  
Output Delay  
Output Hold Time  
Pipeline Delay  
tOD  
tH  
14.5  
7.6  
9
16  
ns  
ns  
Cycles  
7.0  
SERIAL INTERFACE  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
NOTES  
1Minimum CLPOB pulsewidth is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp performance.  
Specifications subject to change without notice.  
ORDERING GUIDE  
ABSOLUTE MAXIMUM RATINGS  
With  
Respect  
To  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
Parameter  
Min Max  
Unit  
AD9840AJST –20°C to +85°C  
Thin Plastic  
Quad Flatpack  
(LQFP)  
ST-48  
AVDD1, AVDD2  
DVDD1, DVDD2  
DRVDD  
AVSS  
DVSS  
DRVSS –0.3 +3.9  
–0.3 +3.9  
–0.3 +3.9  
V
V
V
Digital Outputs  
SHP, SHD, DATACLK  
CLPOB, CLPDM, PBLK DVSS  
SCK, SL, SDATA  
VRT, VRB, CMLEVEL  
BYP1-4, CCDIN  
Junction Temperature  
Lead Temperature  
(10 sec)  
DRVSS –0.3 DRVDD + 0.3  
V
V
V
V
V
V
°C  
°C  
THERMAL CHARACTERISTICS  
Thermal Resistance  
48-Lead LQFP Package  
DVSS  
–0.3 DVDD + 0.3  
–0.3 DVDD + 0.3  
–0.3 DVDD + 0.3  
–0.3 AVDD + 0.3  
–0.3 AVDD + 0.3  
150  
DVSS  
AVSS  
AVSS  
θJA = 92°C  
300  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD9840A features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. 0  
–5–  
AD9840A  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
DRVSS  
DRVSS  
(LSB) D0  
D1  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AUX1IN  
AVSS  
AUX2IN  
AVDD2  
BYP4  
PIN 1  
IDENTIFIER  
3
4
5
D2  
AD9840A  
TOP VIEW  
(Not to Scale)  
6
D3  
NC  
7
D4  
CCDIN  
BYP2  
8
D5  
9
D6  
BYP1  
10  
11  
D7  
AVDD1  
AVSS  
AVSS  
D8  
12  
(MSB) D9  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Pin Number  
Name  
Type  
Description  
1, 2  
3–12  
13  
14  
DRVSS  
D0–D9  
DRVDD  
DRVSS  
DVSS  
P
DO  
P
P
P
Digital Driver Ground  
Digital Data Outputs  
Digital Output Driver Supply  
Digital Output Driver Ground  
Digital Ground  
15, 18, 24, 41  
16  
17  
19  
20  
21  
22  
23  
DATACLK  
DVDD1  
PBLK  
CLPOB  
SHP  
SHD  
CLPDM  
AVSS  
AVDD1  
BYP1  
BYP2  
CCDIN  
NC  
BYP4  
AVDD2  
AUX2IN  
AUX1IN  
CML  
VRT  
VRB  
DVDD2  
THREE-STATE  
NC  
STBY  
NC  
DI  
P
Digital Data Output Latch Clock  
Digital Supply  
Preblanking Clock Input  
Black Level Clamp Clock Input  
CDS Sampling Clock for CCD’s Reference Level  
CDS Sampling Clock for CCD’s Data Level  
Input Clamp Clock Input  
DI  
DI  
DI  
DI  
DI  
P
25, 26, 35  
27  
28  
29  
30  
31  
32  
33  
34  
36  
37  
38  
39  
40  
42  
43  
44  
Analog Ground  
Analog Supply  
P
AO  
AO  
AI  
NC  
AO  
P
AI  
AI  
AO  
AO  
AO  
P
DI  
NC  
DI  
NC  
DI  
DI  
DI  
Internal Bias Level. Decoupling  
Internal Bias Level Decoupling  
Analog Input for CCD Signal  
Leave Floating or Decouple to Ground with 0.1 F  
Internal Bias Level Decoupling  
Analog Supply  
Analog Input  
Analog Input  
Internal Bias Level Decoupling  
A/D Converter Top Reference Voltage Decoupling  
A/D Converter Bottom Reference Voltage Decoupling  
Digital Supply  
Digital Output Disable. Active High  
May be tied High or Low. Should not be left floating.  
Standby Mode, Active High. Same as Serial Interface Standby Mode  
Internally Not Connected. May be tied high or low  
Serial Digital Interface Load Pulse  
Serial Digital Interface Data  
45  
46  
47  
48  
SL  
SDATA  
SCK  
Serial Digital Interface Clock  
TYPE: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power.  
REV. 0  
–6–  
AD9840A  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship 1 LSB  
= (ADC Full Scale/2N codes) when N is the bit resolution of the  
ADC. For the AD9840A, 1 LSB is 2 mV.  
DEFINITIONS OF SPECIFICATIONS  
DIFFERENTIAL NONLINEARITY (DNL)  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus every code  
must have a finite width. No missing codes guaranteed to 10-bit  
resolution indicates that all 1024 codes, respectively, must be  
present over all operating conditions.  
POWER SUPPLY REJECTION (PSR)  
The PSR is measured with a step change applied to the supply  
pins. This represents a very high-frequency disturbance on the  
AD9840A’s power supply. The PSR specification is calculated  
from the change in the data outputs for a given step change in  
the supply voltage.  
PEAK NONLINEARITY  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9840A from a true straight  
line. The point used as “zero scale” occurs 1/2 LSB before the  
first code transition. “Positive full scale” is defined as a Level  
1, 1/2 LSB beyond the last code transition. The deviation is mea-  
sured from the middle of each particular output code to the true  
straight line. The error is then expressed as a percentage of the 2 V  
ADC full-scale signal. The input signal is always appropriately  
gained up to fill the ADC’s full-scale range.  
INTERNAL DELAY FOR SHP/SHD  
The internal delay (also called aperture delay) is the time delay  
that occurs from when a sampling edge is applied to the AD9840A  
until the actual sample of the input signal is held. Both SHP and  
SHD sample the input signal during the transition from low to  
high, so the internal delay is measured from each clock’s rising  
edge to the instant the actual internal sample is taken.  
TOTAL OUTPUT NOISE  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB, and represents the rms noise level of the total signal  
EQUIVALENT INPUT CIRCUITS  
DVDD  
ACVDD  
330ꢁ  
ACVSS  
ACVSS  
DVSS  
Figure 1. Digital Inputs—SHP, SHD, DATACLK, CLPOB,  
CLPDM, HD, VD, PBLK, SCK, SL  
Figure 3. CCDIN (Pin 30)  
DVDD  
DRVDD  
DATA  
DVDD  
DVDD  
DATA IN  
330ꢁ  
THREE-  
STATE  
DATA OUT  
DOUT  
RNW  
DVSS  
DVSS  
DVSS  
Figure 4. SDATA (Pin 47)  
DVSS  
DRVSS  
Figure 2. Data Outputs  
REV. 0  
–7–  
AD9840A  
CCD-MODE AND AUX-MODE TIMING  
CCD  
SIGNAL  
N
N+1  
N+2  
N+9  
N+10  
tID  
tID  
SHP  
tS1  
tCP  
tS2  
SHD  
tINH  
DATACLK  
tOD  
tH  
OUTPUT  
DATA  
N–10  
N–9  
N–8  
N–1  
N
NOTES:  
1. RECOMMENDED PLACEMENT FOR DATACLK RISING EDGE IS BETWEEN THE SHD RISING EDGE AND NEXT SHP FALLING EDGE.  
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.  
Figure 5. CCD-Mode Timing  
HORIZONTAL  
BLANKING  
EFFECTIVE PIXELS  
OPTICAL BLACK PIXELS  
DUMMY PIXELS  
EFFECTIVE PIXELS  
CCD  
SIGNAL  
CLPOB  
CLPDM  
PBLK  
OUTPUT  
DATA  
OB PIXEL DATA  
DUMMY BLACK  
EFFECTIVE DATA  
EFFECTIVE PIXEL DATA  
NOTES:  
1. CLPOB AND CLPDM WILL OVERWRITE PBLK. PBLK WILL NOT AFFECT CLAMP OPERATION IF OVERLAPPING CLPDM AND/OR CLPOB.  
2. PBLK SIGNAL IS OPTIONAL.  
3. DIGITAL OUTPUT DATA WILL BE ALL ZEROS DURING PBLK. OUTPUT DATA LATENCY IS 9 DATACLK CYCLES.  
Figure 6. Typical CCD-Mode Line Clamp Timing  
N+9  
N
N+1  
N+8  
N+2  
VIDEO  
SIGNAL  
tID  
tCP  
DATACLK  
tOD  
tH  
OUTPUT  
DATA  
N10  
N9  
N8  
N1  
N
Figure 7. AUX-Mode Timing  
REV. 0  
–8–  
AD9840A  
SERIAL INTERFACE TIMING AND INTERNAL REGISTER DESCRIPTION  
Table I. Internal Register Map  
Register  
Name  
Address  
A0 A1 A2  
Data Bits  
D4  
D0  
D1  
D2  
D3  
D5  
D6  
D7  
D8  
D9  
D10  
Operation  
0
0
0
Channel Select  
CCD/AUX  
Power-Down  
Modes  
Software OB Clamp 0*  
Reset On/Off  
1**  
0*  
0*  
0*  
VGA Gain  
Clamp Level  
Control  
1
0
1
0
1
1
0
0
0
LSB  
LSB  
MSB  
X
X
X
X
MSB  
X
0*  
0*  
0*  
CDS Gain Clock Polarity Select for  
On/Off SHP/SHD/CLP/DATA  
0*  
0*  
Three-  
State  
CDS Gain  
0
0
1
LSB  
MSB  
X
X
X
X
X
*
Internal use only, must be set to zero. **Should be set to one.  
RNW  
0
TEST  
0
SDATA  
A0  
A1  
A2  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
tDS  
tDH  
SCK  
SL  
tLS  
tLH  
NOTES:  
1. SDATA BITS ARE INTERNALLY LATCHED ON THE RISING EDGES OF SCK.  
2. RNW = READ-NOT WRITE. SET LOW FOR WRITE OPERATION.  
3. TEST BIT = INTERNAL USE ONLY. MUST BE SET LOW.  
4. SYSTEM UPDATE OF LOADED REGISTERS OCCURS ON SL RISING EDGE.  
Figure 8. Serial Write Operation  
RNW  
1
TEST  
SDATA  
SCK  
0
A0  
tDH  
A1  
A2  
D9  
D0  
tDV  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D10  
tDS  
tLS  
tLH  
SL  
NOTES:  
1. RNW = READ-NOT WRITE. SET HIGH FOR READ OPERATION.  
2. TEST BITS = INTERNAL USE ONLY. MUST BE SET LOW.  
3. SERIAL DATA FROM THE SELECTED REGISTER IS VALID STARTING AFTER THE 5TH SCK FALLING EDGE, AND IS UPDATED ON SCK  
FALLING EDGES.  
Figure 9. Serial Readback Operation  
11 BITS  
10 BITS  
8 BITS  
10 BITS  
OPERATION  
AGC GAIN  
CLAMP LEVEL  
CONTROL  
RNW A0  
A1  
0
...  
...  
...  
...  
SDATA  
SCK  
SL  
0
0
0
0
D0 D1 D2 D3  
D10 D0 D1 D2 D3  
D9 D0  
D9  
44  
D7 D0  
...  
...  
...  
...  
2
3
4
5
6
7
8
9
16  
17  
18  
19  
20  
26  
34  
35  
27  
1
...  
NOTES:  
1. ANY NUMBER OF ADJACENT REGISTERS MAY BE LOADED SEQUENTIALLY, BEGINNING WITH THE LOWEST ADDRESS AND INCREMENTING  
ONE ADDRESS AT A TIME.  
2. WHEN SEQUENTIALLY LOADING MULTIPLE REGISTERS, THE EXACT REGISTER LENGTH (SHOWN ABOVE) MUST BE USED FOR EACH REGISTER.  
3. ALL LOADED REGISTERS WILL BE SIMULTANEOUSLY UPDATED WITH THE RISING EDGE OF SL.  
Figure 10. Continuous Serial Write Operation to Multiple Registers  
–9–  
REV. 0  
AD9840A  
Table II. Operation Register Contents (Default Value x000)  
Optical Black Clamp  
D5  
Reset  
D4  
Power-Down Modes  
D3 D2  
Channel Selection  
D1 D0  
D10  
D9  
D8  
D7  
**  
D6  
0
*
0
*
0
*
1
0
*
0
1
Enable Clamping  
Disable Clamping  
0 Normal  
1 Reset all  
Registers  
0
0
1
1
0
1
0
1
Normal Power  
Fast Recovery  
Standby  
0
0
1
0
1
0
1
CCD-Mode  
AUX1-Mode  
AUX2-Mode  
Test Only  
to Default  
Total Power-Down 1  
*Must be set to zero. **Set to one.  
Table III. VGA Gain Register Contents (Default Value x096)  
MSB  
D9  
LSB  
D0  
D10  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Gain (dB)  
X
0
0
0
1
0
1
1
1
1
1
2.0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
35.965  
36.0  
Table IV. Clamp Level Register Contents (Default Value x080)  
MSB  
D7  
LSB  
D0  
D10  
D9  
D8  
D6  
D5  
D4  
D3  
D2  
D1  
Clamp Level (LSB)  
X
X
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0.25  
0.5  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
63.5  
63.75  
Table V. Control Register Contents (Default Value x000)  
Data Out  
D9  
DATACLK  
D6  
CLP/PBLK  
D5  
SHP/SHD  
D4  
CDS Gain  
D3  
D10  
D8  
D7  
0*  
D2 D1 D0  
X
0 Enable  
0*  
0 Rising Edge Trigger  
0 Active Low  
0 Active Low 0 Disabled** 0*  
0*  
0*  
1 Three-State  
1 Falling Edge Trigger 1 Active High 1 Active High 1 Enabled  
*Must be set to zero.  
**When D3 = 0 (CDS Gain Disabled), the CDS Gain Register is fixed at 4 dB (code 63 dec).  
Table VI. CDS Gain Register Contents (Default Value x000)  
MSB  
D5  
LSB  
D0  
D10  
D9  
D8  
D7  
D6  
D4  
D3  
D2  
D1  
Gain (dB)*  
X
X
X
X
X
0
0
0
0
0
0
+4.3  
0
1
1
0
1
0
1
0
1
0
0
0
+10.0  
–2.0  
1
1
1
1
1
1
+4.0  
*Control Register Bit D3 must be set high for the CDS Gain Register to be used.  
REV. 0  
–10–  
AD9840A  
DC RESTORE  
CDS GAIN  
REGISTER  
INTERNAL  
V
6
REF  
2dB TO 36dB  
VGA  
2V FULL SCALE  
2dB TO +10dB  
0.1F  
CCDIN  
10  
10-BIT  
ADC  
CDS  
DOUT  
INPUT OFFSET  
CLAMP  
CLPOB  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
10  
CLPDM  
DIGITAL  
FILTERING  
0 TO 64 LSB  
8
VGA GAIN  
REGISTER  
CLAMP LEVEL  
REGISTER  
Figure 11. CCD-Mode Block Diagram  
CIRCUIT DESCRIPTION AND OPERATION  
The AD9840A signal processing chain is shown in Figure 11.  
Each processing step is essential in achieving a high-quality  
image from the raw CCD pixel data.  
Table VII. Example CDS Gain Settings  
Recommended  
Max Input Signal  
Gain Range  
Register Code Range  
250 mV p-p  
500 mV p-p  
800 mV p-p  
1 V p-p  
1.25 V p-p  
1.5 V p-p  
8 dB to 10 dB  
6 dB to 8 dB  
4 dB to 6 dB  
2 dB to 4 dB  
0 dB to 2 dB  
–2 dB to 0 dB  
21 to 31  
10 to 21  
63 to 10  
53 to 63  
42 to 53  
32 to 42  
DC Restore  
To reduce the large dc offset of the CCD output signal, a  
dc-restore circuit is used with an external 0.1 µF series-coupling  
capacitor. This restores the dc level of the CCD signal to approxi-  
mately 1.5 V, to be compatible with the 3 V single supply of  
the AD9840A.  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low-frequency noise. The timing  
shown in Figure 5 illustrates how the two CDS clocks, SHP  
and SHD, are used to sample the reference level and data level  
of the CCD signal respectively. The CCD signal is sampled on the  
rising edges of SHP and SHD. Placement of these two clock  
signals is critical in achieving the best performance from the CCD.  
An internal SHP/SHD delay (tID) of 3 ns is caused by internal  
propagation delays.  
10  
8
6
4
2
The CDS stage has a default gain of 4 dB, but uses a unique  
architecture that allows the CDS gain to be varied. Using the  
CDS Gain Register, the gain-of is programmable from –2 dB to  
+10 dB in 64 steps, using two’s complement coding. The CDS  
Gain curve is shown in Figure 12. To change the gain of the  
CDS using the CDS Gain Register, the Control Register bit D3  
must be set high (CDS Gain Enabled). The default gain setting  
when bit Control Register Bit D3 is low (CDS Gain Disabled) is  
4 dB. See Tables V and VI for more details.  
0
-2  
32  
40  
48  
56  
0
8
16  
24  
31  
(011111)  
(100000)  
CDS GAIN REGISTER CODE  
Figure 12. CDS Gain Curve  
Input Clamp  
A line-rate input clamping circuit is used to remove the CCD’s  
optical black offset. This offset exists in the CCD’s shielded  
black reference pixels. Unlike some AFE architectures, the  
AD9840A removes this offset in the input stage to minimize the  
effect of a gain change on the system black level, usually called the  
“gain step.” Another advantage of removing this offset at the  
input stage is to maximize system headroom. Some area CCDs  
have large black level offset voltages, which, if not corrected at  
the input stage, can significantly reduce the available headroom  
in the internal circuitry when higher VGA gain settings are used.  
A CDS gain of 4 dB provides some front-end signal gain and  
improves the overall signal-to-noise ratio. This gain setting  
works very well in most applications, and the CCD-Mode  
Specifications use this default gain setting. However, the CDS  
gain may be varied to optimize the AD9840A operation in a  
particular application. Increased CDS gain can be useful with  
low output level CCDs, while decreased CDS gain allows the  
AD9840A to accept CCD signal swings greater than 1 V p-p.  
Table VII summarizes some example CDS gain settings for  
different maximum signal swings. The CDS Gain Register may  
also be used “on the fly” to provide a +6 dB boost or –6 dB  
attenuation when setting exposure levels. It is best to keep the  
CDS output level from exceeding 1.5 V–1.6 V.  
Horizontal timing is shown in Figure 6. It is recommended  
that the CLPDM pulse be used during valid CCD dark pixels.  
CLPDM may be used during the optical black pixels, either  
REV. 0  
–11–  
AD9840A  
together with CLPOB or separately. The CLPDM pulse should  
be a minimum of four pixels wide.  
black clamp loop is turned on once per horizontal line, but this  
loop can be updated more slowly to suit a particular application.  
If external digital clamping is used during the post processing, the  
AD9840A’s optical black clamping may be disabled using Bit D5  
in the Operation Register (see Serial Interface Timing and  
Internal Register Description section). When the loop is dis-  
abled, the Clamp Level Register may still be used to provide  
programmable offset adjustment.  
Variable Gain Amplifier  
The VGA stage provides a gain range of 2 dB to 36 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
Combined with the typical 4 dB gain from the CDS stage, the  
total gain range for the AD9840A is 6 dB to 40 dB. A gain of 6 dB  
will match a 1 V input signal with the ADC full-scale range of 2 V.  
When compared to 1 V full-scale systems (such as ADI’s AD9803),  
the equivalent gain range is 0 dB to 34 dB.  
Horizontal timing is shown in Figure 6. The CLPOB pulse  
should be placed during the CCD’s optical black pixels. It is  
recommended that the CLPOB pulse duration be at least 20  
pixels wide to minimize clamp noise. Shorter pulsewidths may be  
used, but clamp noise may increase, and the loop’s ability to  
track low-frequency variations in the black level will be reduced.  
The VGA gain curve is divided into two separate regions. When  
the VGA Gain Register code is between 0 and 511, the curve  
follows a (1 + x)/(1 – x) shape, which is similar to a “linear-in-  
dB” characteristic. From code 512 to code 1023, the curve follows  
a “linear-in-dB” shape. The exact VGA gain can be calculated  
for any Gain Register value by using the following two equations:  
A/D Converter  
The AD9840A uses a high-performance ADC architecture,  
optimized for high speed and low power. Differential nonlin-  
earity (DNL) performance is typically better than 0.5 LSB.  
Instead of the 1 V full-scale range used by the earlier AD9801 and  
AD9803 products from Analog Devices, the AD9840A’s ADC  
uses a 2 V input range. Better noise performance results from  
using a larger ADC full-scale range.  
Code Range Gain Equation (dB)  
0–511  
512–1023  
Gain = 20 log10 ([658 + code]/[658 – code]) – 0.35  
Gain = (0.0354)(code) – 0.35  
Using these two equations, the actual gain of the AD9840A can  
be accurately predicted to within 0.5 dB. As shown in the CCD-  
Mode Specifications, only the VGA gain range from 2 dB to 36 dB  
is specified. This corresponds to a VGA gain code range of 91 to  
1023. The Gain Accuracy specifications also include a CDS gain  
of 4 dB, for a total gain range of 6 dB to 40 dB.  
AUX1-Mode  
For applications that do not require CDS, the AD9840A can be  
configured to sample ac-coupled waveforms. Figure 14 shows the  
circuit configuration for using the AUX1 channel input (Pin  
36). A single 0.1 µF ac-coupling capacitor is needed between the  
input signal driver and the AUX1IN pin. An on-chip dc-bias  
circuit sets the average value of the input signal to approxi-  
mately 0.4 V, which is referenced to the midscale code of the ADC.  
The VGA gain register provides a gain range of 0 dB to 36 dB  
in this mode of operation (see VGA Gain Curve, Figure 13).  
The VGA gains up the signal level with respect to the 0.4 V bias  
level. Signal levels above the bias level will be further increased  
to a higher ADC code, while signal levels below the bias level  
will be further decreased to a lower ADC code.  
36  
30  
24  
18  
12  
6
AUX2-Mode  
For sampling video-type waveforms, such as NTSC and PAL  
signals, the AUX2 channel provides black level clamping, gain  
adjustment, and A/D conversion. Figure 15 shows the circuit  
configuration for using the AUX2 channel input (Pin 34). An  
external 0.1 µF blocking capacitor is used with the on-chip  
video clamp circuit, to level-shift the input signal to a desired  
reference level. The clamp circuit automatically senses the most  
negative portion of the input signal, and adjusts the voltage  
across the input capacitor. This forces the black level of the input  
signal to be equal to the value programmed into the Clamp Level  
register (see Serial Interface Register Description). The VGA  
provides gain adjustment from 0 dB to 18 dB. The same VGA  
Gain register is used, but only the 9 MSBs of the gain register  
are used (see Table VIII.)  
0
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 13. VGA Gain Curve (Gain from CDS Not Included)  
Optical Black Clamp  
The optical black clamp loop is used to remove residual offsets  
in the signal chain, and to track low-frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with a fixed  
black level reference, selected by the user in the Clamp Level  
Register. Any value between 0 LSB and 64 LSB may be pro-  
grammed, with 8-bit resolution. The resulting error signal is  
filtered to reduce noise, and the correction value is applied to  
the ADC input through a D/A converter. Normally, the optical  
REV. 0  
–12–  
AD9840A  
0.4V  
0.8V  
??V  
0dB TO 36dB  
VGA  
5kꢁ  
0.1F  
AUX1IN  
INPUT SIGNAL  
ADC  
MIDSCALE  
10  
0.4V  
0.4V  
VGA GAIN  
REGISTER  
Figure 14. AUX1 Circuit Configuration  
VGA GAIN  
REGISTER  
9
0dB TO 18dB  
BUFFER  
AUX2IN  
VIDEO  
SIGNAL  
VGA  
ADC  
0.1F  
CLAMP LEVEL  
VIDEO CLAMP  
CIRCUIT  
LPF  
8
CLAMP LEVEL  
REGISTER  
Figure 15. AUX2 Circuit Configuration  
Table VIII. VGA Gain Register Used for AUX2-Mode  
MSB  
D9  
LSB  
D0  
D10  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Gain (dB)  
X
0
1
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
0.0  
0.0  
1
1
1
1
1
1
1
1
1
1
18.0  
REV. 0  
–13–  
AD9840A  
AD9840A  
CCD  
DIGITAL  
OUTPUTS  
V
OUT  
ADC  
0.1F  
OUT  
DIGITAL IMAGE  
PROCESSING  
ASIC  
SERIAL  
INTERFACE  
CCDIN  
REGISTER  
DATA  
BUFFER  
CDS/CLAMP  
TIMING  
V-DRIVE  
CCD  
TIMING  
TIMING  
GENERATOR  
Figure 16. System Applications Diagram  
APPLICATIONS INFORMATION  
Grounding and Decoupling Recommendations  
The AD9840A is a complete Analog Front End (AFE) product  
for digital still camera and camcorder applications. As shown in  
Figure 16, the CCD image (pixel) data is buffered and sent to  
the AD9840A analog input through a series input capacitor. The  
AD9840A performs the dc restoration, CDS, gain adjustment,  
black level correction, and analog-to-digital conversion. The  
AD9840A’s digital output data is then processed by the image  
processing ASIC. The internal registers of the AD9840A—used  
to control gain, offset level, and other functions—are programmed  
by the ASIC or microprocessor through a 3-wire serial digital  
interface. A system timing generator provides the clock signals  
for both the CCD and the AFE.  
As shown in Figure 17, a single ground plane is recommended  
for the AD9840A. This ground plane should be as continuous  
as possible, particularly around Pins 25 through 39. This will  
ensure that all analog decoupling capacitors provide the lowest  
possible impedance path between the power and bypass pins  
and their respective ground pins. All decoupling capacitors  
should be located as close as possible to the package pins. A  
single clean power supply is recommended for the AD9840A,  
but a separate digital driver supply may be used for DRVDD  
(Pin 13). DRVDD should always be decoupled to DRVSS (Pin  
14), which should be connected to the analog ground plane.  
Advantages of using a separate digital driver supply include  
using a lower voltage (2.7 V) to match levels with a 2.7 V ASIC,  
reducing digital power dissipation, and reducing potential noise  
coupling. If the digital outputs (Pins 3–12) must drive a load  
larger than 20 pF, buffering is recommended to reduce digital  
code transition noise. Alternatively, placing series resistors  
close to the digital output pins may help reduce noise.  
Internal Power-On Reset Circuitry  
After power-on, the AD9840A will automatically reset all internal  
registers and perform internal calibration procedures. This takes  
approximately 1 ms to complete. During this time, normal clock  
signals and serial write operations may occur. However, serial  
register writes will be ignored until the internal reset operation is  
completed. Pin 43 (formerly RSTB on the AD9843 non-A) is no  
longer used for the reset operation. Toggling Pin 43 in the  
AD9840A will have no effect.  
REV. 0  
–14–  
AD9840A  
3V  
ANALOG SUPPLY  
0.1F  
1.0F  
1.0F  
0.1F  
3
SERIAL  
INTERFACE  
48 47 46 45 44 43 42 41 40 39 38 37  
DRVSS  
AUX1IN  
AVSS  
AUX2IN  
AVDD2  
BYP4  
1
2
36  
35  
34  
PIN 1  
DRVSS  
(LSB) D0  
D1  
IDENTIFIER  
0.1F  
0.1F  
3V  
ANALOG  
SUPPLY  
3
4
33  
32  
31  
D2  
5
D3  
NC  
AD9840A  
6
0.1F  
D4  
CCDIN  
BYP2  
TOP VIEW  
CCD  
SIGNAL  
7
30  
29  
28  
(Not to Scale)  
D5  
8
D6  
BYP1  
0.1F  
9
D7  
AVDD1  
AVSS  
AVSS  
10  
11  
12  
27  
26  
25  
D8  
(MSB) D9  
3V  
ANALOG  
SUPPLY  
0.1F  
0.1F  
10  
DATA  
OUTPUTS  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
3V  
DRIVER  
6
CLOCK  
INPUTS  
SUPPLY  
0.1F  
0.1F  
3V  
ANALOG SUPPLY  
Figure 17. Recommended Circuit Configuration for CCD-Mode  
REV. 0  
–15–  
AD9840A  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
48-Lead LQFP  
(ST-48)  
0.063 (1.60)  
MAX  
0.354 (9.00) BSC SQ  
0.030 (0.75)  
0.018 (0.45)  
37  
48  
36  
1
0.276  
(7.00)  
BSC  
SQ  
TOP VIEW  
(PINS DOWN)  
COPLANARITY  
0.003 (0.08)  
25  
12  
0ꢃ  
MIN  
13  
24  
0.011 (0.27)  
0.006 (0.17)  
0.019 (0.5)  
BSC  
0.008 (0.2)  
0.004 (0.09)  
0.057 (1.45)  
0.053 (1.35)  
7ꢃ  
0ꢃ  
0.006 (0.15)  
0.002 (0.05)  
SEATING  
PLANE  
–16–  
REV. 0  

相关型号:

AD9840JST

SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, LQFP-48
ROCHESTER

AD9840JSTRL

SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, LQFP-48
ROCHESTER

AD9841A

Complete 20 MSPS CCD Signal Processors
ADI

AD9841AJST

Complete 20 MSPS CCD Signal Processors
ADI

AD9841AJSTRL

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, LQFP-48, Consumer IC:Other
ADI

AD9841AJSTZ

Complete 10-bit, 20 MHz CCD Signal Processor with PxGA™
ADI

AD9841AJSTZRL

Complete 10-bit, 20 MHz CCD Signal Processor with PxGA™
ADI

AD9841A_15

Complete 20 MSPS CCD Signal Processors
ADI

AD9842A

Complete 20 MSPS CCD Signal Processors
ADI

AD9842AJST

Complete 20 MSPS CCD Signal Processors
ADI

AD9842AJSTZRL

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, LQFP-48, Consumer IC:Other
ADI

AD9842A_15

Complete 20 MSPS CCD Signal Processors
ADI