AD9849_15 [ADI]

CCD Signal Processors with Integrated Timing Driver;
AD9849_15
型号: AD9849_15
厂家: ADI    ADI
描述:

CCD Signal Processors with Integrated Timing Driver

CD
文件: 总32页 (文件大小:1455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CCD Signal Processors with  
Integrated Timing Driver  
a
AD9848/AD9849  
PRODUCT DESCRIPTION  
FEATURES  
The AD9848 and AD9849 are highly integrated CCD signal pro-  
cessors for digital still camera applications. Both include a complete  
analog front end with A/D conversion, combined with a program-  
mable timing driver. The Precision Timing core allows adjustment  
of high speed clocks with approximately 1 ns resolution.  
AD9848: 10-Bit, 20 MHz Version  
AD9849: 12-Bit, 30 MHz Version  
Correlated Double Sampler (CDS)  
–2 dB to +10 dB Pixel Gain Amplifier (PxGA )  
2 dB to 36 dB 10-Bit Variable Gain Amplifier (VGA)  
10-Bit 20 MHz A/D Converter (AD9848)  
12-Bit 30 MHz A/D Converter (AD9849)  
Black Level Clamp with Variable Level Control  
Complete On-Chip Timing Driver  
®
The AD9848 is specified at pixel rates of 20 MHz, and the  
AD9849 is specified at 30 MHz. The analog front end includes  
black level clamping, CDS, PxGA, VGA, and a 10-bit or 12-bit A/D  
converter. The timing driver provides the high speed CCD clock  
drivers for RG and H1–H4. Operation is programmed using a  
3-wire serial interface.  
Precision Timing  
Core with 1 ns Resolution @ 20 MSPS  
On-Chip 3 V Horizontal and RG Drivers (AD9848)  
On-Chip 5 V Horizontal and RG Drivers (AD9849)  
48-Lead LQFP Package  
Packaged in a space saving 48-lead LQFP, the AD9848 and  
AD9849 are specified over an operating temperature range of  
–20°C to +85°C.  
APPLICATIONS  
Digital Still Cameras  
FUNCTIONAL BLOCK DIAGRAM  
VRT VRB  
VREF  
4؎6dB  
2dB TO 36dB  
VGA  
10 OR 12  
DOUT  
CDS  
ADC  
PxGA  
CCDIN  
CLAMP  
CLAMP  
INTERNAL  
CLOCKS  
CLPOB  
CLPDM  
PBLK  
CLI  
RG  
PRECISION  
TIMING  
CORE  
HORIZONTAL  
DRIVERS  
4
H1–H4  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
AD9848/AD9849  
HD  
VD  
SL  
SCK SDATA  
PxGA is a registered trademark and Precision Timing is a trademark of Analog Devices, Inc.  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc.  
–SPECIFICATIONS  
AD9848/AD9849  
GENERAL SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
MAXIMUM CLOCK RATE  
AD9848  
AD9849  
20  
30  
MHz  
MHz  
POWER SUPPLY VOLTAGE, AD9848  
Analog (AVDD1, 2, 3)  
Digital1 (DVDD1) H1–H4  
Digital2 (DVDD2) RG  
Digital3 (DVDD3) D0–D11  
Digital4 (DVDD4) All Other Digital  
2.7  
2.7  
2.7  
3.6  
3.6  
3.6  
V
V
V
V
V
3.0  
3.0  
POWER SUPPLY VOLTAGE, AD9849  
Analog (AVDD1, 2, 3)  
Digital1 (DVDD1) H1–H4  
Digital2 (DVDD2) RG  
Digital3 (DVDD3) D0–D11  
Digital4 (DVDD4) All Other Digital  
2.7  
3.0  
3.0  
3.6  
5.5  
5.5  
V
V
V
V
V
3.0  
3.0  
POWER DISSIPATION, AD9848  
20 MHz, DVDD1, 2 = 3 V, 100 pF H Loading  
Total Shutdown Mode  
220  
1
mW  
mW  
POWER DISSIPATION, AD9849  
30 MHz, DVDD1, 2 = 5 V, 100 pF H Loading  
Total Shutdown Mode  
450  
1
mW  
mW  
Specifications subject to change without notice.  
–2–  
REV. A  
AD9848/AD9849  
(TMIN to TMAX, AVDD1 = DVDD3, DVDD4 = 2.7 V, DVDD1, DVDD2 = 2.7 V (AD9848), DVDD1,  
DIGITAL SPECIFICATIONS DVDD2 = 5.25 V (AD9849), CL = 20 pF, unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage, IOH = 2 mA  
Low Level Output Voltage, IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
CLI INPUT  
High Level Input Voltage  
(AVDD1, 2 + 0.5 V)  
Low Level Input Voltage  
VIH–CLI  
VIL–CLI  
1.85  
V
V
0.85  
0.5  
RG AND H-DRIVER OUTPUTS, AD9848  
High Level Output Voltage  
(DVDD1, 2 – 0.5 V)  
Low Level Output Voltage  
VOH  
VOL  
2.2  
V
V
Maximum Output Current (Programmable)  
Maximum Load Capacitance  
24  
100  
mA  
pF  
RG AND H-DRIVER OUTPUTS, AD9849  
High Level Output Voltage  
(DVDD1, 2 – 0.5 V)  
Low Level Output Voltage  
VOH  
VOL  
4.75  
V
V
0.5  
Maximum Output Current (Programmable)  
Maximum Load Capacitance  
24  
100  
mA  
pF  
Specifications subject to change without notice.  
–3–  
REV. A  
AD9848/AD9849  
AD9848–ANALOG SPECIFICATIONS (TMIN to TMAX, AVDD = DVDD = 3.0 V, fCLI = 20 MHz, unless otherwise noted.)  
Parameter  
Min Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
500  
dB  
Allowable CCD Reset Transient*  
Max Input Range Before Saturation*  
Max CCD Black Pixel Amplitude*  
mV  
V p-p  
mV  
See Input Waveform in Note  
1.0  
150  
PIXEL GAIN AMPLIFIER (PxGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1.0  
1.6  
64  
V p-p  
V p-p  
Steps  
Guaranteed  
Min Gain (32)  
Med Gain (0)  
Max Gain (31)  
–2  
4
10  
dB  
dB  
dB  
Medium Gain (4 dB) Is Default Setting  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1.6  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Low Gain (91)  
Max Gain (1023)  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC Output  
Min Clamp Level (0)  
Max Clamp Level (255)  
0
LSB  
LSB  
63.75  
A/D CONVERTER  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
10  
Bits  
LSB  
0.4  
Guaranteed  
2.0  
1.0  
Full-Scale Input Voltage  
V
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
VGA Gain Accuracy  
Specifications Include Entire Signal Chain  
Gain Includes 4 dB Default PxGA Gain  
Low Gain (91)  
Max Gain (1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Power Supply Rejection (PSR)  
5
38  
6
7
41  
dB  
dB  
%
39.5  
0.2  
0.2  
40  
12 dB Gain Applied  
LSB rms AC Grounded Input, 6 dB Gain Applied  
dB Measured with Step Change on Supply  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
150mV MAX  
INPUT  
OPTICAL  
SIGNAL RANGE  
BLACK PIXEL  
Specifications subject to change without notice.  
–4–  
REV. A  
AD9848/AD9849  
AD9849–ANALOG SPECIFICATIONS (TMIN to TMAX, AVDD = DVDD = 3.0 V, fCLI = 30 MHz, unless otherwise noted.)  
Parameter  
Min Typ  
Max  
Unit  
Notes  
CDS  
Gain  
0
500  
dB  
Allowable CCD Reset Transient*  
Max Input Range Before Saturation*  
Max CCD Black Pixel Amplitude*  
mV  
V p-p  
mV  
See Input Waveform in Note  
1.0  
150  
PIXEL GAIN AMPLIFIER (PxGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1.0  
1.6  
64  
V p-p  
V p-p  
Steps  
Guaranteed  
Min Gain (32)  
Med Gain (0)  
Max Gain (31)  
–2  
4
10  
dB  
dB  
dB  
Medium Gain (4 dB) Is Default Setting  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Input Range  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
1.6  
2.0  
V p-p  
V p-p  
Steps  
1024  
Guaranteed  
Low Gain (91)  
Max Gain (1023)  
2
36  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC Output  
Min Clamp Level (0)  
Max Clamp Level (255)  
0
255  
LSB  
LSB  
A/D CONVERTER  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
12  
Bits  
LSB  
0.5  
Guaranteed  
2.0  
1.0  
Full-Scale Input Voltage  
V
VOLTAGE REFERENCE  
Reference Top Voltage (VRT)  
Reference Bottom Voltage (VRB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Gain Accuracy  
Specifications Include Entire Signal Chain  
Gain Includes 4 dB Default PxGA Gain  
Low Gain (91)  
Max Gain (1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Power Supply Rejection (PSR)  
5
38  
6
7
41  
dB  
dB  
%
39.5  
0.2  
0.6  
40  
12 dB Gain Applied  
LSB rms AC Grounded Input, 6 dB Gain Applied  
dB Measured with Step Change on Supply  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
150mV MAX  
INPUT  
OPTICAL  
SIGNAL RANGE  
BLACK PIXEL  
Specifications subject to change without notice.  
–5–  
REV. A  
AD9848/AD9849  
(CL = 20 pF, fCLI = 20 MHz (AD9848) or 30 MHz (AD9849), Serial Timing in Figures 3a and 3b,  
unless otherwise noted.)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK (CLI), AD9848  
CLI Clock Period  
CLI High/Low Pulsewidth  
tCLI  
tADC  
tCLIDLY  
50  
25  
ns  
ns  
ns  
Delay From CLI to Internal Pixel Period Position  
6
MASTER CLOCK (CLI), AD9849  
CLI Clock Period  
CLI High/Low Pulsewidth  
tCONV  
tADC  
33.33  
16.67  
ns  
ns  
EXTERNAL MODE CLAMPING  
CLPDM Pulsewidth  
CLPOB Pulsewidth*  
tCDM  
tCOB  
4
2
10  
20  
Pixels  
Pixels  
SAMPLE CLOCKS  
SHP Rising Edge to SHD Rising Edge (AD9848)  
SHP Rising Edge to SHD Rising Edge (AD9849)  
tS1  
tS1  
20  
13  
ns  
ns  
DATA OUTPUTS  
Output Delay from Programmed Edge  
Pipeline Delay  
tOD  
6
9
ns  
Cycles  
SERIAL INTERFACE  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
*Maximum CLPOB pulsewidth is for functional operation only. Wider typical pulses are recommended to achieve low noise clamp reference.  
Specifications subject to change without notice.  
–6–  
REV. A  
AD9848/AD9849  
ABSOLUTE MAXIMUM RATINGS  
With  
Parameter  
Respect To  
Min  
Max  
Unit  
AVDD1, 2, 3  
AVSS  
DVSS  
DVSS  
DVSS  
DVSS3  
DVSS4  
AVSS  
DVSS4  
AVSS  
AVSS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
+3.9  
+3.9  
+5.5  
+3.9  
DVDD3 + 0.3  
DVDD4 + 0.3  
AVDD + 0.3  
DVDD4 + 0.3  
AVDD + 0.3  
AVDD + 0.3  
150  
V
V
V
V
V
V
V
V
V
V
°C  
°C  
DVDD1, DVDD2 (AD9848)  
DVDD1, DVDD2 (AD9849)  
DVDD3, 4  
Digital Outputs  
CLPOB, CLPDM, BLK  
CLI  
SCK, SL, SDATA  
VRT, VRB  
BYP1–3, CCDIN  
Junction Temperature  
Lead Temperature (10 sec)  
300  
ORDERING GUIDE  
THERMAL CHARACTERISTICS  
Thermal Resistance  
48-Lead LQFP Package  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
JA = 92°C  
AD9848AKST  
–20°C to +85°C  
–20°C to +85°C  
Thin Plastic Quad  
Flatpack (LQFP)  
Thin Plastic Quad  
Flatpack (LQFP)  
ST-48  
AD9849AKST  
ST-48  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9848/AD9849 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–7–  
AD9848/AD9849  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
3
4
5
6
7
8
9
(LSB) D0  
D1  
D2  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SL  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SL  
PIN 1  
IDENTIFIER  
PIN 1  
IDENTIFIER  
D3  
REFT  
REFT  
D2  
D4  
D5  
3
REFB  
REFB  
D3  
4
CMLEVEL  
AVSS3  
AVDD3  
CMLEVEL  
AVSS3  
AVDD3  
D6  
D4  
5
AD9849  
TOP VIEW  
(Not to Scale)  
AD9848  
TOP VIEW  
(Not to Scale)  
DVSS3  
DVDD3  
D7  
DVSS3  
DVDD3  
D5  
6
7
BYP3  
CCDIN  
BYP3  
CCDIN  
8
D6  
D8  
9
BYP2  
BYP2  
D9 10  
11  
D7  
10  
11  
BYP1  
BYP1  
D10  
(MSB) D11 12  
D8  
AVDD2  
AVSS2  
AVDD2  
AVSS2  
(MSB) D9 12  
13 14 15 16 17 18 19 20 21 22 23 24  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS  
Pin  
Mnemonic  
Type*  
Description  
1–5  
1–5  
6
D0–D4  
D2–D6  
DVSS3  
DVDD3  
D5–D9  
D7–D11  
H1, H2  
DVSS1  
DVDD1  
H3, H4  
DVSS2  
RG  
DVDD2  
AVSS1  
CLI  
AVDD1  
AVSS2  
AVDD2  
BYP1  
BYP2  
CCDIN  
BYP3  
AVDD3  
AVSS3  
CMLEVEL  
REFB  
REFT  
SL  
DO  
DO  
P
Data Outputs AD9848 Only  
Data Outputs AD9849 Only  
Digital Ground 3 – Data Outputs  
Digital Supply 3 – Data Outputs  
Data Outputs (D9 is MSB) AD9848 Only  
Data Outputs (D9 is MSB) AD9849 Only  
Horizontal Clocks (to CCD)  
Digital Ground 1 – H Drivers  
Digital Supply 1 – H Drivers  
Horizontal Clocks (to CCD)  
Digital Ground 1 – RG Driver  
Reset Gate Clock (to CCD)  
Digital Supply 2 – RG Driver  
Analog Ground 1  
Master Clock Input  
Analog Supply 1  
Analog Ground 2  
Analog Supply 2  
Bypass Pin (0.1 µF to AVSS)  
Bypass Pin (0.1 µF to AVSS)  
Analog Input for CCD Signal  
Bypass Pin (0.1 µF to AVSS)  
Analog Supply 3  
7
P
8–12  
8–12  
13, 14  
15  
16  
17, 18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47, 48  
47, 48  
DO  
DO  
DO  
P
P
DO  
P
DO  
P
P
DI  
P
P
P
AO  
AO  
AI  
AO  
P
P
Analog Ground 3  
AO  
AO  
AO  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
DI  
P
Internal Bias Level Decoupling (0.1 µF to AVSS)  
Reference Bottom Decoupling (1.0 µF to AVSS)  
Reference Top Decoupling (1.0 µF to AVSS)  
3-Wire Serial Load (from µP)  
3-Wire Serial Data Input (from µP)  
3-Wire Serial Clock (from µP)  
Optical Black Clamp Pulse  
Dummy Black Clamp Pulse  
HCLK Blanking Pulse  
Preblanking Pulse  
Vertical Sync Pulse  
Horizontal Sync Pulse  
Digital Ground 4 – VD, HD, CLPOB, CLPDM, HBLK, PBLK, SCK, SL, SDATA  
Digital Supply 4 – VD, HD, CLPOB, CLPDM, HBLK, PBLK, CK, SL, SDATA  
Internally Not Connected AD9848 Only  
SDI  
SCK  
CLPOB  
CLPDM  
HBLK  
PBLK  
VD  
HD  
DVSS4  
DVDD4  
NC  
P
NC  
DO  
D0, D1  
Data Output (D0 is LSB) AD9849 Only  
*Type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power  
–8–  
REV. A  
AD9848/AD9849  
EQUIVALENT INPUT/OUTPUT CIRCUITS  
AVDD2  
DVDD4  
330  
R
DVSS4  
AVSS2  
AVSS2  
Circuit 1. CCDIN (Pin 29)  
Circuit 4. Digital Inputs (Pins 36–44)  
DVDD1  
DATA  
AVDD1  
330⍀  
25k⍀  
OUTPUT  
ENABLE  
CLI  
1.4V  
AVSS1  
DVSS1  
Circuit 5. H1–H4 and RG (Pins 13, 14, 17, 18, 20)  
Circuit 2. CLI (Pin 23)  
DVDD4  
DVDD3  
DATA  
THREE-  
STATE  
DOUT  
DVSS4  
DVSS3  
Circuit 3. Data Outputs D0–D11 (Pins 1–5, 8–12, 47–48)  
–9–  
REV. A  
AD9848/AD9849—Typical Performance Characteristics  
0.5  
0.50  
0.25  
0
0.25  
0
–0.25  
–0.25  
–0.5  
–0.50  
0
200  
400  
600  
800  
1000  
0
500  
1000 1500  
2000 2500 3000 3500 4000  
TPC 3. AD9849 Typical DNL  
TPC 1. AD9848 Typical DNL  
15  
10  
5
4
3
2
1
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
VGA GAIN CODE – LSB  
VGA GAIN CODE – LSB  
TPC 2. AD9848 Output Noise vs. VGA Gain Setting  
TPC 4. AD9849 Output Noise vs. VGA Gain Setting  
–10–  
REV. A  
AD9848/AD9849  
SYSTEM OVERVIEW  
V-DRIVER  
V-DRIVER  
V1–V4, VSG1–VSG8, SUBCK  
V1–V4, VSG1–VSG8, SUBCK  
DOUT  
H1–H4, RG  
DOUT  
CLPOB  
CLPDM  
H1–H4, RG  
CCDIN  
AD9848/AD9849  
INTEGRATED  
AFE+TD  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCD  
PBLK  
CCDIN  
CCD  
AD9848/AD9849  
DIGITAL IMAGE  
PROCESSING  
ASIC  
HBLK  
INTEGRATED  
AFE+TD  
HD, VD  
HD, VD  
CLI  
CLI  
SERIAL  
INTERFACE  
SERIAL  
INTERFACE  
Figure 1b. Typical Application (External Mode)  
Figure 1a. Typical Application (Internal Mode)  
Figure 2 shows the horizontal and vertical counter dimensions  
for the AD9848/AD9849. All internal horizontal clocking is  
programmed using these dimensions to specify line and  
pixel locations.  
Figures 1a and 1b show the typical system application diagrams  
for the AD9848/AD9849. The CCD output is processed by the  
AD9848/AD9849’s AFE circuitry, which consists of a CDS,  
PxGA, VGA, black level clamp, and A/D converter. The  
digitized pixel information is sent to the digital image  
processor chip, where all post-processing and compression  
occurs. To operate the CCD, CCD timing parameters are  
programmed into the AD9848/AD9849 from the image  
processor, through the 3-wire serial interface. From the system  
master clock, CLI, provided by the image processor, the  
AD9848/AD9849 generates the high speed CCD clocks and all  
internal AFE clocks. All AD9848/AD9849 clocks are  
MAXIMUM FIELD DIMENSIONS  
12-BIT HORIZONTAL = 4096 PIXELS MAX  
12-BIT VERTICAL = 4096 LINES MAX  
synchronized with VD and HD.  
Figure 1a shows the AD9848/AD9849 used in Internal Mode, in  
which all the horizontal pulses (CLPOB, CLPDM, PBLK,  
and HBLK) are programmed and generated internally. Figure 1b  
shows the AD9848/AD9849 operating in External Mode, in  
which the horizontal pulses are supplied externally by the  
image processor.  
The H-drivers for H1–H4 and RG are included in the AD9848/  
Figure 2. Vertical and Horizontal Counters  
AD9849, allowing these clocks to be directly connected to the  
CCD. H-drive voltage of 5 V is supported in the AD9849.  
REV. A  
–11–  
AD9848/AD9849  
SERIAL INTERFACE TIMING  
SDATA  
A0  
A1  
tDS  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
D4  
D5  
XX  
XX  
A3  
tDH  
SCK  
tLS  
tLH  
SL  
VD  
SL UPDATED  
VD/HD UPDATED  
HD  
NOTES  
1. SDATA BITS ARE LATCHED ON SCK RISING EDGES.  
2. 14 SCK EDGES ARE NEEDED TO WRITE ADDRESS AND DATA BITS.  
3. FOR 16-BIT SYSTEMS, TWO EXTRA DUMMY BITS MAY BE WRITTEN. DUMMY BITS ARE IGNORED.  
4. NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE, OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
5. VD/HD UPDATE POSITION MAY BE DELAYED TO ANY HD FALLING EDGE IN THE FIELD USING THE UPDATE REGISTER.  
Figure 3a. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
...  
...  
SDATA  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
D1  
D2  
D3  
D4  
D5  
D0  
A3  
D1  
D2  
SCK  
SL  
...  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS MAY BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 6-BIT DATA-WORDS.  
3. THE ADDRESS WILL AUTOMATICALLY INCREMENT WITH EACH 6-BIT DATA-WORD (ALL 6 BITS MUST BE WRITTEN).  
4. SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
5. NEW DATA IS UPDATED AT EITHER THE SL RISING EDGE, OR AT THE HD FALLING EDGE AFTER THE NEXT VD FALLING EDGE.  
Figure 3b. Continuous Serial Write Operation  
COMPLETE REGISTER LISTING  
Table I.  
Register  
Register  
Description  
Description  
oprmode  
ctlmode  
preventpdate  
readback  
vdhdpol  
AFE Operation Modes  
AFE Control Modes  
Prevents Loading of VD-Updated Registers  
Enables Serial Register Readback Mode  
VD/HD Active Polarity  
h1drv  
h2drv  
h3drv  
h4drv  
H1 Drive Current  
H2 Drive Current  
H3 Drive Current  
H4 Drive Current  
rgpol  
RG Polarity  
fieldval  
Internal Field Pulse Value  
rgposloc  
rgnegloc  
rgdrv  
shpposloc  
shdposloc  
RG Positive Edge Location  
RG Negative Edge Location  
RG Drive Current  
SHP Sample Location  
SHD Sample Location  
hblkretime  
tgcore_rstb  
h12pol  
h1posloc  
h1negloc  
Retimes the H1 hblk to Internal Clock  
Reset Bar Signal for Internal TG Core  
H1/H2 Polarity Control  
H1 Positive Edge Location  
H1 Negative Edge Location  
NOTES  
1. All addresses and default values are expressed in hexadecimal.  
2. All registers are VD/HD updated as shown in Figure 3a, except for the above-listed registers that are SL updated.  
–12–  
REV. A  
AD9848/AD9849  
Accessing a Double-Wide Register  
clpdmscp3 register, the contents of Address 0x81 must  
be written first followed by the contents of Address 0x82.  
The register will be updated after the completion of the  
write to Register 0x82, either at the next SL rising edge  
or next VD/HD falling edge.  
There are many double-wide registers in the AD9848/AD9849,  
for example, oprmode, clpdmtog1_0, and clpdmscp3, and so  
on. These registers are configured into two consecutive 6-bit  
registers with the least significant six bits located in the lower of  
the two addresses and the remaining most significant bits  
located in the higher of the two addresses. For example, the  
six LSBs of the clpdmscp3 register, clpdmscp3[5:0], are  
located at Address 0x81. The most significant six bits of the  
clpdmscp3 register, clpdmscp3[11:6], are located at Address 0x82.  
The following rules must be followed when accessing double-  
wide registers:  
3. A single write to the lower of the two consecutive ad-  
dresses of a double-wide register that is not followed by  
a write to the higher address of the registers is not per-  
mitted. This will not update the register.  
4. A single write to the higher of the two consecutive ad-  
dresses of a double-wide register that is not preceded by  
a write to the lower of the two addresses is not permit-  
ted. Although the write to the higher address will  
update the full double-wide register, the lower six bits  
of the register will be written with an indeterminate  
value if the lower address was not written first.  
1. When accessing a double-wide register, BOTH addresses  
must be written to.  
2. The lower of the two consecutive addresses for the double-  
wide register must be written to first. In the example of the  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
AFE Registers # Bits 56  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
[5:0]  
[1:0]  
[5:0]  
[3:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
6
2
6
4
6
2
6
6
6
6
6
00  
00  
16  
02  
00  
02  
00  
00  
00  
00  
00  
oprmode[5:0]  
oprmode[7:6]  
ccdgain[5:0]  
ccdgain[9:6]  
refblack[5:0]  
refblack[7:6]  
ctlmode  
pxga gain0  
pxga gain1  
pxga gain2  
pxga gain3  
AFE Operation Mode (See AFE Register Breakdown)  
VGA Gain  
Black Clamp Level  
Control Mode (See AFE Register Breakdown)  
PxGA Color 0 Gain  
PxGA Color 1 Gain  
PxGA Color 2 Gain  
PxGA Color 3 Gain  
Miscellaneous/Extra # Bits 26  
0F  
[5:0]  
6
00  
INITIAL2  
See Recommended Power-Up Sequence Section. Should be  
set to “4” decimal (000100).  
16  
17  
18  
19  
1B  
1C  
[0]  
1
6
6
1
6
1
00  
00  
00  
00  
00  
00  
out_cont  
Output Control (0 = Make All Outputs DC Inactive)  
Serial Data Update Control. Sets the line within the field  
for serial data update to occur.  
Prevent the Update of the “VD/HD Updated” Registers  
DOUT Phase Control  
Disable CCDIN DC Restore Circuit during PBLK  
(1 = Disable)  
[5:0]  
[5:0]  
[0]  
[5:0]  
[0]  
update[5:0]  
update[11:6]  
preventupdate  
doutphase  
disablerestore  
1D  
1E  
[0]  
[0]  
1
1
00  
01  
vdhdpol  
fieldval  
VD/HD Active Polarity (0 = Low Active, 1 = High Active)  
Internal Field Pulse Value (0 = Next Field Odd,  
1 = Next Field Even)  
1F  
20  
[0]  
[5:0]  
1
6
00  
00  
hblkretime  
INITIAL1  
Re-Sync hblk to h1 Clock  
See Recommended Power-Up Sequence Section. Should be  
set to “53” decimal (110101).  
26  
[0]  
1
00  
tgcore_rstb  
TG Core Reset_Bar (0 = Hold TG Core in Reset,  
1 = Resume Normal Operation)  
REV. A  
–13–  
AD9848/AD9849  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
CLPDM # Bits 146  
64  
65  
[0]  
[0]  
1
1
01  
00  
clpdmdir  
clpdmpol  
CLPDM Internal/External (0 = Internal, 1 = External)  
CLPDM External Active Polarity (0 = Low Active,  
1 = High Active)  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
2C  
00  
35  
00  
01  
3E  
02  
16  
03  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
clpdmspol0  
Sequence #0: Start Polarity for CLPDM  
Sequence #0: Toggle Position 1 for CLPDM  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
clpdmtog1_0[5:0]  
clpdmtog1_0[11:6]  
clpdmtog2_0[5:0]  
clpdmtog2_0[11:6]  
clpdmspol1  
clpdmtog1_1[5:0]  
clpdmtog1_1[11:6]  
clpdmtog2_1[5:0]  
clpdmtog2_1[11:6]  
clpdmspol2  
clpdmtog1_2[5:0]  
clpdmtog1_2[11:6]  
clpdmtog2_2[5:0]  
clpdmtog2_2[11:6]  
clpdmspol3  
clpdmtog1_3[5:0]  
clpdmtog1_3[11:6]  
clpdmtog2_3[5:0]  
clpdmtog2_3[11:6]  
clpdmscp0  
Sequence #0: Toggle Position 2 for CLPDM  
Sequence #1: Start Polarity for CLPDM  
Sequence #1: Toggle Position 1 for CLPDM  
Sequence #1: Toggle Position 2 for CLPDM  
Sequence #2: Start Polarity for CLPDM  
Sequence #2: Toggle Position 1 for CLPDM  
Sequence #2: Toggle Position 2 for CLPDM  
Sequence #3: Start Polarity for CLPDM  
Sequence #3: Toggle Position 1 for CLPDM  
Sequence #3: Toggle Position 2 for CLPDM  
CLPDM Sequence-Change-Position #0 (Hardcoded to 0)  
CLPDM Sequence Pointer for SCP #0  
CLPDM Sequence-Change-Position #1  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
clpdmsptr0  
clpdmscp1[5:0]  
clpdmscp1[11:6]  
clpdmsptr1  
clpdmscp2[5:0]  
clpdmscp2[11:6]  
clpdmsptr2  
clpdmscp3[5:0]  
clpdmscp3[11:6]  
clpdmsptr3  
CLPDM Sequence Pointer for SCP #1  
CLPDM Sequence-Change-Position #2  
CLPDM Sequence Pointer for SCP #2  
CLPDM Sequence-Change-Position #3  
CLPDM Sequence Pointer for SCP #3  
–14–  
REV. A  
AD9848/AD9849  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
CLPOB # Bits 146  
84  
85  
[0]  
[0]  
1
1
01  
00  
clpobdir  
clpobpol  
CLPOB Internal/External (0 = Internal, 1 = External)  
CLPOB External Active Polarity (0 = Low Active,  
1 = High Active)  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
0E  
00  
2B  
00  
01  
2B  
06  
3F  
3F  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
03  
01  
00  
01  
02  
00  
00  
37  
03  
03  
clpobpol0  
Sequence #0: Start Polarity for CLPOB  
Sequence #0: Toggle Position 1 for CLPOB  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
clpobtog1_0[5:0]  
clpobtog1_0[11:6]  
clpobtog2_0[5:0]  
clpobtog2_0[11:6]  
clpobpol1  
clpobtog1_1[5:0]  
clpobtog1_1[11:6]  
clpobtog2_1[5:0]  
clpobtog2_1[11:6]  
clpobspol2  
clpobtog1_2[5:0]  
clpobtog1_2[11:6]  
clpobtog2_2[5:0]  
clpobtog2_2[11:6]  
clpobspol3  
clpobtog1_3[5:0]  
clpobtog1_3[11:6]  
clpobtog2_3[5:0]  
clpobtog2_3[11:6]  
clpobscp0  
Sequence #0: Toggle Position 2 for CLPOB  
Sequence #1: Start Polarity for CLPOB  
Sequence #1: Toggle Position 1 for CLPOB  
Sequence #1: Toggle Position 2 for CLPOB  
Sequence #2: Start Polarity for CLPOB  
Sequence #2: Toggle Position 1 for CLPOB  
Sequence #2: Toggle Position 2 for CLPOB  
Sequence #3: Start Polarity for CLPOB  
Sequence #3: Toggle Position 1 for CLPOB  
Sequence #3: Toggle Position 2 for CLPOB  
CLPOB Sequence-Change-Position #0 (Hardcoded to 0)  
CLPOB Sequence Pointer for SCP #0  
CLPOB Sequence-Change-Position #1  
9A  
9B  
9C  
9D  
9E  
9F  
A0  
A1  
A2  
A3  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
clpobsptr0  
clpobscp1[5:0]  
clpobscp1[11:6]  
clpobsptr1  
clpobscp2[5:0]  
clpobscp2[11:6]  
clpobsptr2  
clpobscp3[5:0]  
clpobscp3[11:6]  
clpobsptr3  
CLPOB Sequence Pointer for SCP #1  
CLPOB Sequence-Change-Position #2  
CLPOB Sequence Pointer for SCP #2  
CLPOB Sequence-Change-Position #3  
CLPOB Sequence Pointer for SCP #3  
REV. A  
–15–  
AD9848/AD9849  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
HBLK # Bits 147  
A4  
A5  
[0]  
[0]  
1
1
01  
00  
hblkdir  
hblkpol  
HBLK Internal/External (0 = Internal, 1 = External)  
HBLK External Active Polarity (0 = Low Active,  
1 = High Active)  
A6  
[0]  
1
01  
hblkextmask  
HBLK External Masking Polarity (0 = Mask H1 and H3 Low,  
1 = Mask H1 and H3 High)  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
B0  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
BA  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
3E  
00  
0D  
06  
01  
38  
00  
3C  
02  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
00  
3F  
3F  
00  
3F  
3F  
00  
3F  
3F  
00  
hblkmask0  
Sequence #0: Masking Polarity for HBLK  
Sequence #0: Toggle Low Position for HBLK  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
hblktog1_0[5:0]  
hblktog1_0[11:6]  
hblkbtog2_0[5:0]  
hblkbtog2_0[11:6]  
hblkmask1  
hblktog1_1[5:0]  
hblktog1_1[11:6]  
hblktog2_1[5:0]  
hblktog2_1[11:6]  
hblkmask2  
hblktog1_2[5:0]  
hblktog1_2[11:6]  
hblktog2_2[5:0]  
hblktog2_2[11:6]  
hblkmask3  
hblktog1_3[5:0]  
hblktog1_3[11:6]  
hblktog2_3[5:0]  
hblktog2_3[11:6]  
hblkscp0  
Sequence #0: Toggle High Position for HBLK  
Sequence #1: Masking Polarity for HBLK  
Sequence #1: Toggle Low Position for HBLK  
Sequence #1: Toggle High Position for HBLK  
Sequence #2: Masking Polarity for HBLK  
Sequence #2: Toggle Low Position for HBLK  
Sequence #2: Toggle High Position for HBLK  
Sequence #3: Masking Polarity for HBLK  
Sequence #3: Toggle Low Position for HBLK  
Sequence #3: Toggle High Position for HBLK  
HBLK Sequence-Change-Position #0 (Hardcoded to 0)  
HBLK Sequence Pointer for SCP #0  
HBLK Sequence-Change-Position #1  
BB  
BC  
BD  
BE  
BF  
C0  
C1  
C2  
C3  
C4  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
hblksptr0  
hblkscp1[5:0]  
hblkscp1[11:6]  
hblksptr1  
hblkscp2[5:0]  
hblkscp2[11:6]  
hblksptr2  
hblkscp3[5:0]  
hblkscp3[11:6]  
hblksptr3  
HBLK Sequence Pointer for SCP #1  
HBLK Sequence-Change-Position #2  
HBLK Sequence Pointer for SCP #2  
HBLK Sequence-Change-Position #3  
HBLK Sequence Pointer for SCP #3  
–16–  
REV. A  
AD9848/AD9849  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
PBLK # Bits 146  
C5  
C6  
[0]  
[0]  
1
1
01  
00  
pblkdir  
pblkpol  
PBLK Internal/External (0 = Internal, 1 = External)  
PBLK External Active Polarity (0 = Low Active,  
1 = High Active)  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
[0]  
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
1
6
6
6
6
0
2
6
6
2
6
6
2
6
6
2
01  
3D  
00  
2A  
06  
00  
2A  
06  
3F  
3F  
00  
3F  
3F  
3F  
3F  
01  
3F  
3F  
3F  
3F  
00  
02  
01  
00  
01  
02  
00  
00  
37  
03  
02  
pblkspol0  
Sequence #0: Start Polarity for PBLK  
Sequence #0: Toggle Position 1 for PBLK  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
[0]  
[5:0]  
[5:0]  
[5:0]  
[5:0]  
pblktog1_0[5:0]  
pblktog1_0[11:6]  
pblkbtog2_0[5:0]  
pblkbtog2_0[11:6]  
pblkspol1  
pblktog1_1[5:0]  
pblktog1_1[11:6]  
pblktog2_1[5:0]  
pblktog2_1[11:6]  
pblkspol2  
pblktog1_2[5:0]  
pblktog1_2[11:6]  
pblktog2_2[5:0]  
pblktog2_2[11:6]  
pblkspol3  
pblktog1_3[5:0]  
pblktog1_3[11:6]  
pblktog2_3[5:0]  
pblktog2_3[11:6]  
pblkscp0  
Sequence #0: Toggle Position 2 for PBLK  
Sequence #1: Start Polarity for PBLK  
Sequence #1: Toggle Position 1 for PBLK  
Sequence #1: Toggle Position 2 for PBLK  
Sequence #2: Start Polarity for PBLK  
Sequence #2: Toggle Position 1 for PBLK  
Sequence #2: Toggle Position 2 for PBLK  
Sequence #3: Start Polarity for PBLK  
Sequence #3: Toggle Position 1 for PBLK  
Sequence #3: Toggle Position 2 for PBLK  
PBLK Sequence-Change-Position #0 (Hardcoded to 0)  
PBLK Sequence Pointer for SCP #0  
PBLK Sequence-Change-Position #1  
DB  
DC  
DD  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
[5:0]  
[5:0]  
[1:0]  
pblksptr0  
pblkscp1[5:0]  
pblkscp1[11:6]  
pblksptr1  
pblkscp2[5:0]  
pblkscp2[11:6]  
pblksptr2  
pblkscp3[5:0]  
pblkscp3[11:6]  
pblksptr3  
PBLK Sequence Pointer for SCP #1  
PBLK Sequence-Change-Position #2  
PBLK Sequence Pointer for SCP #2  
PBLK Sequence-Change-Position #3  
PBLK Sequence Pointer for SCP #3  
H1–H4, RG, SHP, SHD # Bits 53  
E5  
E6  
E7  
E8  
[0]  
1
6
6
3
00  
00  
20  
03  
h1pol  
H1/H2 Polarity Control (0 = No Inversion, 1 = Inversion)  
H1 Positive Edge Location  
H1 Negative Edge Location  
H1 Drive Strength (0 = OFF, 1 = 3.5 mA, 2 = 7 mA,  
3 = 10.5 mA, 4 = 14 mA, 5 = 17.5 mA, 6 = 21 mA, 7 = 24.5 mA)  
H2 Drive Strength  
H3 Drive Strength  
H4 Drive Strength  
RG Polarity Control (0 = No Inversion, 1 = Inversion)  
RG Positive Edge Location  
RG Negative Edge Location  
[5:0]  
[5:0]  
[2:0]  
h1posloc  
h1negloc  
h1drv  
E9  
[2:0]  
[2:0]  
[2:0]  
[0]  
[5:0]  
[5:0]  
[2:0]  
3
3
3
1
6
6
3
03  
03  
03  
00  
00  
10  
02  
h2drv  
h3drv  
h4drv  
rgpol  
rgposloc  
rgnegloc  
rgdrv  
EA  
EB  
EC  
ED  
EE  
EF  
RG Drive Strength (0 = OFF, 1 = 3.5 mA, 2 = 7 mA, 3 = 10.5 mA,  
4 = 14 mA, 5 = 17.5 mA, 6 = 21 mA, 7 = 24.5 mA)  
SHP (Positive) Edge Sampling Location  
SHD (Positive) Edge Sampling Location  
F0  
F1  
[5:0]  
[5:0]  
6
6
24  
00  
shpposloc  
shdposloc  
REV. A  
–17–  
AD9848/AD9849  
Bit  
Content  
Default  
Value  
Address  
Width  
Register Name  
Register Description  
AFE REGISTER BREAKDOWN  
Serial Address:  
8'h00 {oprmode[5:0]}, 8'h01 {oprmode[7:6]}  
oprmode  
[7:0]  
8'h0  
[1:0]  
2'h0  
2'h1  
2'h2  
2'h3  
powerdown[1:0]  
Full Power  
Fast Recovery  
Reference Standby  
Total Shutdown  
[2]  
[3]  
[4]  
[5]  
[6]  
[7]  
disblack  
Disable Black Loop Clamping (High Active)  
Test Mode—Should Be Set LOW  
Test Mode—Should Be Set HIGH  
Test Mode—Should Be Set LOW  
Test Mode—Should Be Set LOW  
Test Mode—Should Be Set LOW  
test mode  
test mode  
test mode  
test mode  
test mode  
ctlmode  
[5:0]  
6'h0  
Serial Address: 8'h06 {cltmode[5:0]}  
[2:0]  
3'h0  
3'h1  
3'h2  
3'h3  
3'h4  
3'h5  
3'h6  
3'h7  
ctlmode[2:0]  
Off  
Mosaic Separate  
VD Selected/Mosaic Interlaced  
Mosaic Repeat  
Three-Color  
Three-Color II  
Four-Color  
Four-Color II  
[3]  
[4]  
enablepxga  
outputlat  
Enable PxGA (High Active)  
Latch Output Data on Selected DOUT Edge  
Leave Output Latch Transparent  
ADC Outputs Are Driven  
ADC Outputs Are Three-Stated  
1'h0  
1'h1  
1'h0  
1'h1  
[5]  
tristateout  
PRECISION TIMING HIGH SPEED TIMING  
High Speed Clock Programmability  
GENERATION  
Figure 5 shows how the high speed clocks RG, H1–H4, SHP, and  
SHD are generated. The RG pulse has programmable rising and  
falling edges and may be inverted using the polarity control. The  
horizontal clocks H1 and H3 have programmable rising and falling  
edges and polarity control. The H2 and H4 clocks are always  
inverses of H1 and H3, respectively. Table II summarizes the  
high speed timing registers and their parameters.  
The AD9848 and AD9849 generate flexible high speed timing  
signals using the Precision Timing core. This core is the founda-  
tion for generating the timing used for both the CCD and the  
AFE; the reset gate RG, horizontal drivers H1–H4, and the  
SHP/SHD sample clocks. A unique architecture makes it rou-  
tine for the system designer to optimize image quality by  
providing precise control over the horizontal CCD readout and  
the AFE correlated double sampling.  
The edge location registers are six bits wide, but there are only  
48 valid edge locations available. Therefore, the register values  
are mapped into four quadrants, with each quadrant containing  
12 edge locations. Table III shows the correct register values for  
the corresponding edge locations. Figure 6 shows the range and  
default locations of the high speed clock signals.  
Timing Resolution  
The Precision Timing core uses a 1ϫ master clock input (CLI) as  
a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 4 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge posi-  
tions. Therefore, the edge resolution of the Precision Timing  
core is (tCLI/48). For more information on using the CLI input,  
see the Driving the CLI Input section.  
–18–  
REV. A  
AD9848/AD9849  
P[12]  
P[24]  
P[36]  
POSITION  
CLI  
P[0]  
P[48] = P[0]  
...  
tCLIDLY  
...  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS ( = 6 ns TYP).  
t
CLIDLY  
Figure 4. High Speed Clock Resolution from CLI Master Clock Input  
(3)  
(4)  
CCD SIGNAL  
(1)  
(5)  
(2)  
RG  
(6)  
H1/H3  
H2/H4  
NOTES  
PROGRAMMABLE CLOCK POSITIONS:  
(1) RG RISING EDGE AND (2) FALLING EDGE  
(3) SHP AND (4) SHD SAMPLE LOCATION  
(5) H1/H3 RISING EDGE POSITION AND (6) FALLING EDGE POSITION (H2/H4 ARE INVERSE OF H1/H3)  
Figure 5. High Speed Clock Programmable Locations  
P[48] = P[0]  
P[0]  
P[24]  
P[36]  
P[12]  
POSITION  
PIXEL  
PERIOD  
RGf[12]  
RGr[0]  
RG  
Hf[24]  
Hr[0]  
H1/H3  
SHP[28]  
SHD[48]  
tS1  
CCD SIGNAL  
NOTES  
1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD.  
2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN ABOVE.  
Figure 6. High Speed Clock Default and Programmable Locations  
REV. A  
–19–  
AD9848/AD9849  
Table II. H1–H4, RG, SHP, SHD Timing Parameters  
Register Name  
Length  
Range  
Description  
POL  
POSLOC  
1b  
6b  
High/Low  
0–47 Edge Location  
Polarity Control for H1, H3, and RG (0 = No Inversion, 1 = Inversion)  
Positive Edge Location for H1, H3, and RG  
Sample Location for SHP, SHD  
Negative Edge Location for H1, H3, and RG  
Drive Current for H1–H4 and RG Outputs (3.5 mA per Step)  
NEGLOC  
DRV  
6b  
3b  
0–47 Edge Location  
0–7 Current Steps  
Table III. Precision Timing Edge Locations  
Quadrant  
Edge Location (Decimal)  
Register Value (Decimal)  
Register Value (Binary)  
I
II  
III  
IV  
0 to 11  
0 to 11  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
12 to 23  
24 to 35  
36 to 47  
16 to 27  
32 to 43  
48 to 59  
H-Driver and RG Outputs  
Digital Data Outputs  
In addition to the programmable timing positions, the AD9848/  
AD9849 features on-chip output drivers for the RG and H1–H4  
outputs. These drivers are powerful enough to directly drive the  
CCD inputs. The H-driver current can be adjusted for optimum  
rise/fall time into a particular load by using the DRV registers.  
The RG drive current is adjustable using the RGDRV register.  
Each 3-bit DRV register is adjustable in 3.5 mA increments, with  
the minimum setting of 0 equal to OFF or three-state, and the  
maximum setting of 7 equal to 24.5 mA.  
The AD9848/AD9849 data output phase is programmable  
using the DOUTPHASE register. Any edge from 0 to 47 may  
be programmed, as shown in Figure 8.  
HORIZONTAL CLAMPING AND BLANKING  
The AD9848/AD9849’s horizontal clamping and blanking  
pulses are fully programmable to suit a variety of applications.  
As with the vertical timing generation, individual sequences are  
defined for each signal and are then organized into multiple  
regions during image readout. This allows the dark pixel clamping  
and blanking patterns to be changed at each stage of the readout  
to accommodate different image transfer timing and high speed  
line shifts.  
As shown in Figure 7, the H2/H4 outputs are inverses of H1/H3.  
The internal propagation delay resulting from the signal inversion  
is less than l ns, which is significantly less than the typical rise time  
driving the CCD load. This results in a H1/H2 crossover voltage  
at approximately 50% of the output swing. The crossover voltage  
is not programmable.  
tRISE  
H1/H3  
H2/H4  
tPD  
tRISE  
<<  
tPD  
H1/H3  
H2/H4  
FIXED CROSSOVER VOLTAGE  
Figure 7. H-Clock Inverse Phase Relationship  
P[12]  
P[24]  
P[48] = P[0]  
P[0]  
P[36]  
CLI  
1 PIXEL PERIOD  
tOD  
DOUT  
NOTES  
1. DIGITAL OUTPUT DATA (DOUT) PHASE IS ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
2. WITHIN 1 CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO ANY OF THE 48 LOCATIONS.  
Figure 8. Digital Output Phase Adjustment  
–20–  
REV. A  
AD9848/AD9849  
. . .  
HD  
(2)  
(3)  
. . .  
CLPOB  
CLPDM  
PBLK  
(1)  
CLAMP  
CLAMP  
NOTES  
PROGRAMMABLE SETTINGS:  
(1) START POLARITY (CLAMP AND BLANK REGION ARE ACTIVE LOW)  
(2) FIRST TOGGLE POSITION  
(3) SECOND TOGGLE POSITION  
Figure 9. Clamp and Preblank Pulse Placement  
. . .  
. . .  
HD  
(2)  
(1)  
BLANK  
BLANK  
HBLK  
NOTES  
PROGRAMMABLE SETTINGS:  
(1) FIRST TOGGLE POSITION = START OF BLANKING  
(2) SECOND TOGGLE POSITION = END OF BLANKING  
Figure 10. Horizontal Blanking (HBLK) Pulse Placement  
. . .  
. . .  
HD  
HBLK  
H1/H3  
THE POLARITY OF H1 DURING BLANKING IS PROGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1)  
. . .  
H1/H3  
H2/H4  
. . .  
Figure 11. HBLK Masking Control  
Individual CLPOB, CLPDM, PBLK Sequences  
H2 = H4 = high during the blanking, as shown in Figure 11.  
Up to four individual sequences are available for HBLK.  
The AFE horizontal timing consists of CLPOB, CLPDM, and  
PBLK, as shown in Figure 9. These three signals are indepen-  
dently programmed using the registers in Table IV. SPOL is the  
start polarity for the signal, and TOG1 and TOG2 are the first  
and second toggle positions of the pulse. All three signals are  
active low and should be programmed accordingly. Up to four  
individual sequences can be created for each signal.  
Horizontal Sequence Control  
The AD9848/AD9849 uses Sequence Change Positions (SCP)  
and Sequence Pointers (SPTR) to organize the individual  
horizontal sequences. Up to four SCPs are available to divide  
the readout into four separate regions, as shown in Figure 12.  
The SCP 0 is always hard-coded to line 0, and SCP1–3 are  
register programmable. During each region bounded by the  
SCP, the SPTR registers designate which sequence is used by  
each signal. CLPOB, CLPDM, PBLK, and HBLK each have a  
separate set of SCP. For example, CLPOBSCP1 will define Region  
0 for CLPOB, and in that region any of the four individual  
CLPOB sequences may be selected with the CLPOBSPTR  
registers. The next SCP defines a new region and in that region  
each signal can be assigned to a different individual sequence. The  
Sequence Control Registers are summarized in Table VI.  
Individual HBLK Sequences  
The HBLK programmable timing shown in Figure 10 is similar to  
CLPOB, CLPDM, and PBLK. However, there is no start polar-  
ity control. Only the toggle positions are used to designate the  
start and the stop positions of the blanking period. Additionally,  
there is a polarity control HBLKMASK that designates the  
polarity of the horizontal clock signals H1–H4 during the blank-  
ing period. Setting HBLKMASK high will set H1 = H3 = low and  
–21–  
REV. A  
AD9848/AD9849  
SINGLE FIELD (1 VD INTERVAL)  
SEQUENCE CHANGE OF POSITION #0  
(V-COUNTER = 0)  
CLAMP AND PBLK SEQUENCE REGION 0  
SEQUENCE CHANGE OF POSITION #1  
SEQUENCE CHANGE OF POSITION #2  
CLAMP AND PBLK SEQUENCE REGION 1  
CLAMP AND PBLK SEQUENCE REGION 2  
CLAMP AND PBLK SEQUENCE REGION 3  
SEQUENCE CHANGE OF POSITION #3  
UP TO FOUR INDIVIDUAL HORIZONTAL CLAMP AND BLANKING REGIONS MAY BE  
PROGRAMMED WITHIN A SINGLE FIELD, USING THE SEQUENCE CHANGE POSITIONS.  
Figure 12. Clamp and Blanking Sequence Flexibility  
Table IV. CLPOB, CLPDM, PBLK Individual Sequence Parameters  
Register Name  
Length  
Range  
Description  
SPOL  
TOG1  
TOG2  
1b  
12b  
12b  
High/Low  
0–4095 Pixel Location  
0–4095 Pixel Location  
Starting Polarity of Clamp and Blanking Pulses for Sequences 0–3  
First Toggle Position within the Line for Sequences 0–3  
Second Toggle Position within the Line for Sequences 0–3  
Table V. HBLK Individual Sequence Parameters  
Register Name  
Length  
Range  
Description  
HBLKMASK  
HBLKTOG1  
HBLKTOG2  
1b  
12b  
12b  
High/Low  
0–4095 Pixel Location  
0–4095 Pixel Location  
Masking Polarity for H1 for Sequences 0–3 (0 = H1 Low, 1 = H1 High)  
First Toggle Position within the Line for Sequences 0–3  
Second Toggle Position within the Line for Sequences 0–3  
Table VI. Horizontal Sequence Control Parameters for CLPOB, CLPDM, PBLK, and HBLK  
Register Name  
Length  
Range  
Description  
SCP1–SCP3  
SPTR0–SPTR3  
12b  
2b  
0–4095 Line Number  
0–3 Sequence Number  
CLAMP/BLANK SCP to Define Horizontal Regions 0–3  
Sequence Pointer for Horizontal Regions 0–3  
H-Counter Synchronization  
The H-Counter reset occurs on the sixth CLI rising edge following the HD falling edge. The PxGA steering is synchronized with the  
reset of the internal H-Counter (see Figure 13).  
VD  
3ns MIN  
HD  
H-COUNTER  
RESET  
3ns MIN  
CLI  
H-COUNTER  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
2
0
3
1
4
0
5
1
6
0
7
1
8
0
9
1
10 11 12 14 15  
0
2
1
3
2
2
3
3
5
3
4
2
(PIXEL COUNTER)  
PxGA GAIN  
REGISTER  
X
0
1
0
1
0
NOTES  
1. INTERNAL H-COUNTER IS RESET ON THE SIXTH CLI RISING EDGE FOLLOWING THE HD FALLING EDGE.  
2. PxGA STEERING IS SYNCRONIZED WITH THE RESET OF THE INTERNAL H-COUNTER (MOSAIC SEPARATE MODE IS SHOWN).  
3. VD FALLING EDGE SHOULD OCCUR ONE CLOCK CYCLE BEFORE HD FALLING EDGE FOR PROPER PxGA LINE SYNCHRONIZATION.  
Figure 13. H-Counter Synchronization  
–22–  
REV. A  
AD9848/AD9849  
POWER-UP PROCEDURE  
VDD  
(INPUT)  
CLI  
(INPUT)  
tPWR  
SERIAL  
WRITES  
1V  
...  
...  
...  
...  
VD  
ODD FIELD  
1 H  
EVEN FIELD  
(OUTPUT)  
HD  
(OUTPUT)  
H2/H4  
DIGITAL  
OUTPUTS  
H1/H3, RG  
CLOCKS ACTIVE WHEN OUT_CONT REGISTER IS  
UPDATED AT VD/HD EDGE  
Figure 14. Recommended Power-Up Sequence  
Recommended Power-Up Sequence  
DC Restore  
When the AD9848 and AD9849 are powered up, the following  
sequence is recommended (refer to Figure 14 for each step).  
To reduce the large dc offset of the CCD output signal, a dc restore  
circuit is used with an external 0.1 µF series coupling capacitor.  
This restores the dc level of the CCD signal to approximately 1.5 V  
to be compatible with the 3 V analog supply signal of the  
AD9848/AD9849.  
1. Turn on power supplies for AD9848/AD9849.  
2. Apply the master clock input CLI, VD, and HD.  
3. The Precision Timing core must be reset by writing a “0” to the  
TGCORE_RSTB Register (Address x026) followed by writing  
a “l” to the TGCORE_RSTB Register. This will start the inter-  
nal timing core operation. Next, initialize the internal circuitry  
by first writing “110101” or “53” decimal to the INITIAL1  
Register (Address x020). Finally, write “000100” or “4” deci-  
mal to the INITIAL2 Register (Address x00F).  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 6 illustrates how the two internally generated CDS  
clocks, SHP and SHD, are used to sample the reference level  
and data level of the CCD signal, respectively. The placement  
of the SHP and SHD sampling edges is determined by the setting  
of the SHPPOSLOC and SHDPOSLOC Registers located at  
Address 0xF0 and 0xF1, respectively. Placement of these two clock  
signals is critical to achieve the best performance from the CCD.  
4. Write a “1” to the PREVENTUPDATE Register (Address x019).  
This will prevent the updating of the serial register data.  
5. Write to desired registers to configure high speed timing and  
horizontal timing.  
Input Clamp  
A line-rate input clamping circuit removes the CCD’s optical black  
offset. This offset exists in the CCD’s shielded black reference  
pixels. The AD9848/AD9849 removes this offset in the input  
stage to minimize the effect of a gain change on the system black  
level, usually called the “gain step.” Another advantage of remov-  
ing this offset at the input stage is to maximize system headroom.  
Some area CCDs have large black level offset voltages that can  
significantly reduce the available headroom in the internal circuitry  
when higher VGA gain settings are used, if not corrected after  
the input stage.  
6. Write a “1” to the OUT_CONT Register (Address x016). This  
will allow the outputs to become active after the next VD/HD  
rising edge.  
7. Write a “0” to the PREVENTUPDATE Register (Address  
x019). This will allow the serial information to be updated  
at next VD/HD falling edge.  
8. The next VD/HD falling edge allows register updates to occur,  
including OUT_CONT, which enables all clock outputs.  
ANALOG FRONT END DESCRIPTION AND OPERATION  
The AD9848/AD9849 signal processing chain is shown in  
Figure 15. Each processing step is essential in achieving a high  
quality image from the raw CCD pixel data.  
Horizontal timing examples are shown on the last page of the  
Applications Information section. It is recommended that the  
CLPDM pulse be used during valid CCD dark pixels. CLPDM  
may be used during the optical black pixels, either together with  
CLPOB or separately. The CLPDM pulse should be a minimum  
of four pixels wide.  
REV. A  
–23–  
AD9848/AD9849  
0.1F  
1.0F 1.0F  
CML  
REFB REFT  
1.0V  
2.0V  
AVDD  
2
DC RESTORE  
1.5V  
SHP  
INTERNAL  
BIASING  
AD9848/AD9849  
INTERNAL  
V
REF  
DOUT  
PHASE  
SHD  
2V FULL SCALE  
–2dB TO +10dB  
0dB TO 36dB  
0.1F  
OUTPUT  
DATA  
LATCH  
10/12  
CCDIN  
10-/12-BIT  
ADC  
VGA  
DOUT  
CDS  
PxGA  
10  
CLPDM  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
VGA GAIN  
REGISTER  
INPUT OFFSET  
CLAMP  
PBLK  
CLPOB  
8
0.1F  
DIGITAL  
BYP1  
BYP 2  
BYP 3  
FILTER  
0.1F  
0.1F  
CLAMP LEVEL  
REGISTER  
DOUT  
PHASE  
CLPDM  
SHD  
CLPOB PBLK  
SHP  
PRECISION  
TIMING  
GENERATION  
V-H  
TIMING  
GENERATION  
Figure 15. Analog Front End Block Diagram  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
0
1
1
0
1
2
3
2
3
0
1
0
1
2
3
2
3
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “0101” AND “2323” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 16a. Mosaic Separate Mode  
–24–  
REV. A  
AD9848/AD9849  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
2
X
X
1
0
1
3
2
3
0
1
0
1
0
1
0
1
2
3
2
3
2
3
2
3
0
NOTES  
1. FLD FALLING EDGE (START OF ODD FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. FLD RISING EDGE (START OF EVEN FIELD) WILL RESET THE PxGA GAIN REGISTER STEERING TO “2323” LINE.  
3. HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO EITHER “0” (FLD = ODD) OR “2” (FLD = EVEN).  
Figure 16b. Mosaic Interlaced Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
0
1
1
0
1
1
2
1
2
0
1
0
1
1
2
1
2
0
1
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “0101” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “0101” AND “1212” LINES.  
3. ALL FIELDS WILL HAVE THE SAME PxGA GAIN STEERING PATTERN (FLD STATUS IS IGNORED).  
Figure 16c. Mosaic Repeat Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
1
2
0
0
NOTES  
1. EACH LINE FOLLOWS “012012” STEERING PATTERN.  
2. VD AND HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO “0.”  
3. FLD STATUS IS IGNORED.  
Figure 16d. Three-Color Mode  
REV. A  
–25–  
AD9848/AD9849  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
0
0
X
X
1
2
0
1
2
0
2
1
0
2
0
1
2
0
2
1
0
2
0
1
1
1
2
2
2
0
3
3
0
0
0
REGISTER  
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “012012” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “012012” AND “210210” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 16e. Three-Color Mode II  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
3
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
0
NOTES  
1. EACH LINE FOLLOWS “01230123” STEERING PATTERN.  
2. VD AND HD FALLING EDGES WILL RESET THE PxGA GAIN REGISTER STEERING TO GAIN REGISTER “0.”  
3. FLD STATUS IS IGNORED.  
Figure 16f. Four-Color Mode  
ODD FIELD  
EVEN FIELD  
FLD  
VD  
HD  
PxGA GAIN  
REGISTER  
0
0
X
X
1
2
3
1
2
3
2
3
0
1
0
1
2
3
2
3
0
1
0
NOTES  
1. VD FALLING EDGE WILL RESET THE PxGA GAIN REGISTER STEERING TO “01230123” LINE.  
2. HD FALLING EDGES WILL ALTERNATE THE PxGA GAIN REGISTER STEERING BETWEEN “01230123” AND “23012301” LINES.  
3. FLD STATUS IS IGNORED.  
Figure 16g. Four-Color Mode II  
–26–  
REV. A  
AD9848/AD9849  
VD SELECTED COLOR  
STEERING MODE  
PxGA  
CCD: INTERLACED BAYER  
EVEN FIELD  
The PxGA provides separate gain adjustment for the individual  
color pixels. A programmable gain amplifier with four separate  
values, the PxGA has the capability to “multiplex” its gain value on  
a pixel-to-pixel basis (see Figure 17). This allows lower output  
color pixels to be gained up to match higher output color pixels.  
Also, the PxGA may be used to adjust the colors for white balance,  
reducing the amount of digital processing that is needed. The  
four different gain values are switched according to the “Color  
Steering” circuitry. Seven different color steering modes for  
different types of CCD color filter arrays are programmed in the  
AD9848/AD9849 AFE Register, ctlmode, at Address 0x06 (see  
Figures 16a to 16g for timing examples). For example, Mosaic  
Separate steering mode accommodates the popular “Bayer”  
arrangement of Red, Green, and Blue filters (see Figures 18a  
and 18b).  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
R
R
R
R
Gr  
Gr  
Gr  
Gr  
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN0, GAIN1, GAIN0, GAIN1...  
ODD FIELD  
Gb  
Gb  
Gb  
Gb  
B
B
B
B
Gb  
Gb  
Gb  
Gb  
B
B
B
B
LINE0  
LINE1  
LINE2  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN2, GAIN3, GAIN2, GAIN3...  
VD  
HD  
CONTROL  
REGISTER  
BITS D0–D2  
PxGA STEERING  
MODE  
SELECTION  
COLOR  
STEERING  
CONTROL  
3
SHP/SHD  
2
GAIN0  
Figure 18b. CCD Color Filter Example: Interlaced  
GAIN1  
GAIN2  
GAIN3  
PxGA GAIN  
REGISTERS  
4:1  
MUX  
6
The same Bayer pattern can also be interlaced, and the VD selected  
mode should be used with this type of CCD (see Figure 18b).  
The Color Steering performs the proper multiplexing of the R, G,  
and B gain values (loaded into the PxGA gain registers) and is  
synchronized by the user with vertical (VD) and horizontal (HD)  
sync pulses. For more detailed information, see the PxGA Timing  
section. The PxGA gain for each of the four channels is variable  
from –2 dB to +10 dB, controlled in 64 steps through the serial  
interface. The PxGA gain curve is shown in Figure 19.  
PxGA  
VGA  
CDS  
Figure 17. PxGA Block Diagram  
CCD: PROGRESSIVE BAYER  
MOSAIC SEPARATE COLOR  
STEERING MODE  
R
Gb  
R
Gr  
B
R
Gb  
R
Gr  
B
LINE0  
LINE1  
LINE2  
GAIN0, GAIN1, GAIN0, GAIN1...  
GAIN2, GAIN3, GAIN2, GAIN3...  
GAIN0, GAIN1, GAIN0, GAIN1...  
10  
8
Gr  
B
Gr  
B
6
Gb  
Gb  
4
Figure 18a. CCD Color Filter Example: Progressive Scan  
2
0
–2  
32  
40  
48  
58  
0
8
16  
24  
31  
(100000)  
(011111)  
PxGA GAIN REGISTER CODE  
Figure 19. PxGA Gain Curve  
REV. A  
–27–  
AD9848/AD9849  
Variable Gain Amplifier  
application. If external digital clamping is used during the post  
processing, the AD9848/AD9849 optical black clamping may be  
disabled using Bit D2 in the OPRMODE Register. When the  
loop is disabled, the Clamp Level Register may still be used to  
provide programmable offset adjustment.  
The VGA stage provides a gain range of 2 dB to 36 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
Combined with 4 dB from the PxGA stage, the total gain range for  
the AD9848/AD9849 is 6 dB to 40 dB. The minimum gain of 6 dB  
is needed to match a 1 V input signal with the ADC full-scale  
range of 2 V. When compared to 1 V full-scale systems (such as  
ADI’s AD9803), the equivalent gain range is 0 dB to 34 dB.  
The CLPOB pulse should be placed during the CCD’s optical  
black pixels. It is recommended that the CLPOB pulse duration be  
at least 20 pixels wide to minimize clamp noise. Shorter pulse-  
widths may be used, but clamp noise may increase, and the  
ability to track low frequency variations in the black level will be  
reduced. See the section on Horizontal Clamping and Blanking and  
also the Applications Information section for timing examples.  
The VGA gain curve is divided into two separate regions. When  
the VGA Gain Register code is between 0 and 511, the curve follows  
a (1 + x)/(1 – x) shape, which is similar to a “linear-in-dB”  
characteristic. From code 512 to code 1023, the curve follows a  
“linear-in-dB” shape. The exact VGA gain can be calculated for  
any Gain Register value by using the following two equations:  
A/D Converter  
The AD9848/AD9849 uses high performance 10-bit/12-bit  
ADC architecture, optimized for high speed and low power.  
Differential Nonlinearity (DNL) performance is typically better  
than 0.5 LSB. The ADC uses a 2 V input range. Better noise  
performance results from using a larger ADC full-scale range.  
See TPC 1 to TPC 4 for typical linearity and noise performance  
plots for the AD9848/AD9849.  
Code Range Gain Equation (dB)  
0–511  
512–1023  
Gain = 20 log10 ([658 + code]/[658 – code]) – 0.4  
Gain = (0.0354)(code) – 0.04  
36  
30  
24  
18  
12  
6
APPLICATIONS INFORMATION  
External Circuit Configuration  
The AD9848/AD9849 recommended circuit configuration for  
External Mode is shown in Figure 21. All signals should be  
carefully routed on the PCB to maintain low noise performance. The  
CCD output signal should be connected to Pin 29 through a  
0.1 µF capacitor. The CCD timing signals H1–H4 and RG should  
be routed directly to the CCD with minimum trace lengths, as  
shown in Figures 22a and 22b. The digital outputs and clock  
inputs are located on Pins 1–12 and Pins 36–48 and should be  
connected to the digital ASIC, away from the analog and CCD  
clock signals. The CLI signal from the ASIC may be routed  
under the package to Pin 23. This will help separate the CLI  
signal from the H1–H4 and RG signal routing.  
0
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Grounding and Decoupling Recommendations  
Figure 20. VGA Gain Curve (Gain from PxGA Not Included)  
As shown in Figure 21, a single ground plane is recommended  
for the AD9848/AD9849. This ground plane should be as con-  
tinuous as possible, particularly around Pins 25–35. This will  
ensure that all analog decoupling capacitors provide the lowest  
possible impedance path between the power and bypass pins  
and their respective ground pins. All decoupling capacitors  
should be located as close as possible to the package pins. Plac-  
ing series resistors close to the digital output pins (Pins 1–12,  
47–48) may help reduce digital code transition noise. If the  
digital outputs must drive a load larger than 20 pF, buffering is  
recommended to minimize additional noise.  
Optical Black Clamp  
The optical black clamp loop removes residual offsets in the signal  
chain to track low frequency variations in the CCD’s black level.  
During the optical black (shielded) pixel interval on each line,  
the ADC output is compared with a fixed black level reference,  
selected by the user in the Clamp Level Register. The value can  
be programmed between 0 LSB and 63.75 LSB on the AD9848  
and between 0 LSB and 255 LSB on the AD9849. The clamp  
level can be programmed with 8-bit resolution. The resulting  
error signal is filtered to reduce noise, and the correction value is  
applied to the ADC input through a D/A converter. Normally,  
the optical black clamp loop is turned on once per horizontal line,  
but this loop can be updated more slowly to suit a particular  
Power supply decoupling is very important for low noise performance.  
Figure 21 shows the local high frequency decoupling capacitors,  
but additional capacitance is recommended for lower frequencies.  
Additional capacitors and ferrite beads can further reduce noise.  
–28–  
REV. A  
AD9848/AD9849  
0.1F  
3V  
DIGITAL  
SUPPLY  
CLOCK  
INPUTS  
6
SERIAL  
INTERFACE  
3
1F  
48 47 46 45 44 43 42 41 40 39 38 37  
SL  
D2  
D3  
D4  
1
1F  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIN 1  
IDENTIFIER  
REFT  
2
3
REFB  
CMLEVEL  
AVSS3  
AVDD3  
BYP3  
0.1F  
D5  
4
0.1F  
D6  
3V  
0.1F  
5
3V  
DRIVER  
SUPPLY  
ANALOG  
SUPPLY  
DVSS3  
DVDD3  
D7  
AD9849  
TOP VIEW  
(Not to Scale)  
6
7
CCDIN  
BYP2  
CCD  
8
SIGNAL  
D8  
9
0.1F  
BYP1  
D9  
10  
11  
12  
3V  
ANALOG  
SUPPLY  
AVDD2  
AVSS2  
D10  
(MSB) D11  
0.1F  
12  
DATA  
OUTPUTS  
13 14 15 16 17 18 19 20 21 22 23 24  
0.1F 0.1F  
0.1F  
H DRIVER  
SUPPLY  
CLOCK  
INPUT  
3V  
RG DRIVER  
SUPPLY  
ANALOG  
SUPPLY  
0.1F  
0.1F  
0.1F  
5
HIGH SPEED  
CLOCKS  
Figure 21. Recommend Circuit Configuration for External Mode  
Driving the CLI Input  
The AD9848/AD9849’s master clock input (CLI) may be used in  
two different configurations, depending on the application.  
Figure 23a shows a typical dc-coupled input from the master clock  
source. When the dc-coupled technique is used, the master clock  
signal should be at standard 3 V CMOS logic levels. As shown in  
Figure 23b, a 1000 pF ac-coupling capacitor may be used between  
the clock source and the CLI input. In this configuration, the  
CLI input will self-bias to the proper dc voltage level of approxi-  
mately 1.4 V. When the ac-coupled technique is used, the  
master clock signal can be as low as 500 mV in amplitude.  
CCDIN  
29  
AD9848/AD9849  
17  
18  
13  
H1  
14  
H2  
20  
H3  
H4  
RG  
SIGNAL  
OUT  
H2  
H1  
RG  
CCD IMAGER  
Figure 22a. CCD Connections (2 H-Clock)  
REV. A  
–29–  
AD9848/AD9849  
Internal Mode Circuit Configuration  
The AD9848/AD9849 may be used in Internal Mode using the  
circuit configuration of Figure 24. Internal Mode uses the same  
circuit as Figure 21, except that the horizontal pulses (CLPOB,  
CLPDM, PBLK, and HBLK) are internally generated in the  
AD9848/AD9849. These pins may be grounded when Internal  
Mode is used. Only the HD and VD signals are required from  
the ASIC.  
CCDIN  
29  
AD9848/AD9849  
13  
H1  
14  
H2  
17  
H3  
18  
H4  
20  
RG  
2
HD/VD  
INPUTS  
SIGNAL  
OUT  
H1  
H2  
RG  
CCD IMAGER  
H2  
H1  
42  
40  
44 43  
41  
39  
AD9848/AD9849  
Figure 22b. CCD Connections (4 H-Clock)  
Figure 24. Internal Mode Circuit Configuration  
AD9848/AD9849  
TIMING EXAMPLES FOR DIFFERENT SEQUENCES  
23  
2
ASIC  
CLI  
SEQUENCE 2  
V
SEQUENCE 3  
MASTER CLOCK  
Figure 23a. CLI Connection, DC-Coupled  
SEQUENCE 2  
10  
H
48  
4
AD9848/AD9849  
28  
Figure 25. Typical CCD  
23  
ASIC  
CLI  
LPF  
1nF  
MASTER CLOCK  
Figure 23b. CLI Connection, AC-Coupled  
–30–  
REV. A  
AD9848/AD9849  
Timing Examples (continued)  
DUMMY  
VERT SHIFT  
CCDIN  
INVALID PIXELS  
VERT SHIFT  
INVALID PIXELS  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 26. Sequence 1: Vertical Blanking  
EFF. PIXELS  
OPTICAL BLACK  
OPTICAL BLACK  
VERT SHIFT DUMMY  
CCDIN  
SHP  
VERT SHIFT  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 27. Sequence 2: Vertical Optical Black  
EFF. PIXELS  
OPTICAL BLACK  
DUMMY OB  
EFFECTIVE PIXELS  
OPTICAL BLACK  
VERT SHIFT  
CCDIN  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
CLPDM  
Figure 28. Sequence 3: Effective Pixels  
REV. A  
–31–  
AD9848/AD9849  
OUTLINE DIMENSIONS  
48-Lead Plastic Quad Flatpack [LQFP]  
1.4 mm Thick  
(ST-48)  
Dimensions shown in millimeters  
1.60 MAX  
PIN 1  
INDICATOR  
0.75  
0.60  
0.45  
9.00 BSC  
37  
48  
36  
1
SEATING  
PLANE  
1.45  
1.40  
1.35  
0.20  
0.09  
7.00  
BSC  
TOP VIEW  
(PINS DOWN)  
VIEW A  
7؇  
3.5؇  
0؇  
0.15  
0.05  
25  
12  
SEATING  
PLANE  
24  
0.08 MAX  
13  
COPLANARITY  
0.27  
0.22  
0.17  
0.50  
BSC  
VIEW A  
ROTATED 90؇ CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BBC  
Revision History  
Location  
Page  
1/03—Data Sheet changed from REV. 0 to REV. A.  
Change to PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Change to Register Description Table – HBLK # Bits 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Changes to Recommended Power Sequence section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
–32–  
REV. A  

相关型号:

AD9850

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9850/CGPCB

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9850/FSPCB

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9850BRS

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9850BRS-REEL

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9850BRSZ

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9850BRSZ-REEL

CMOS, 125 MHz Complete DDS Synthesizer
ADI

AD9851

CMOS 180 MHz DDS/DAC Synthesizer
ADI

AD9851BRS

CMOS 180 MHz DDS/DAC Synthesizer
ADI

AD9851BRSRL

CMOS 180 MHz DDS/DAC Synthesizer
ADI

AD9851BRSZ

CMOS 180 MHz DDS/DAC Synthesizer
ADI

AD9851BRSZRL

CMOS 180 MHz DDS/DAC Synthesizer
ADI