AD9898KCPRL-20 [ADI]

CCD Signal Processor with Precision Timing⑩ Generator; CCD信号处理器具有精密Timing⑩发生器
AD9898KCPRL-20
型号: AD9898KCPRL-20
厂家: ADI    ADI
描述:

CCD Signal Processor with Precision Timing⑩ Generator
CCD信号处理器具有精密Timing⑩发生器

CD
文件: 总52页 (文件大小:518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CCD Signal Processor with  
Precision TimingGenerator  
AD9898  
FEATURES  
GENERAL DESCRIPTION  
Correlated Double Sampler (CDS)  
6 dB to 40 dB Variable Gain Amplifier (VGA)  
Black Level Clamp with Variable Level Control  
Complete On-Chip Timing Generator  
Precision Timing Core with 1 ns Resolution  
On-Chip: 2-Channel Horizontal and  
1-Channel RG Drivers  
The AD9898 is a highly integrated CCD signal processor for  
digital still camera and digital video camera applications. It  
includes a complete analog front end with A/D conversion  
combined with a full function programmable timing generator.  
A Precision Timing core allows adjustment of high speed clocks  
with 1 ns resolution at 20 MHz operation.  
The AD9898 is specified at pixel rates as high as 20 MHz. The  
analog front end includes black level clamping, CDS, VGA, and  
a 10-bit A/D converter. The timing generator provides all the  
necessary CCD clocks: RG, H-clocks, V-clocks, sensor gate  
pulses, substrate clock, and substrate bias pulse. Operation is  
programmed using a 3-wire serial interface.  
2-Phase H-Clock Modes  
4-Phase Vertical Transfer Clocks  
Electronic and Mechanical Shutter Modes  
On-Chip Sync Generator with External Sync Option  
Space Saving 48-Lead LFCSP Package  
APPLICATIONS  
Digital Still Cameras  
Digital Video Camcorders  
Packaged in a space saving 48-Lead LFCSP, the AD9898 is  
specified over an operating temperature range of –20°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
AD9898  
6dBTO 40dB  
VGA  
VREF  
10  
ADC  
CDS  
DOUT  
CLAMP  
INTERNAL CLOCKS  
RG  
DCLK1  
HORIZONTAL  
FD/DCLK2  
MSHUT  
PRECISION  
TIMING  
DRIVERS  
2
4
2
H1, H2  
GENERATOR  
STROBE  
V1, V2, V3, V4  
VSG1, VSG2  
V-H  
CONTROL  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
VSUB  
SUBCK  
HD VD SYNC  
CLI  
SL SCK SDATA  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9898  
TABLE OF CONTENTS  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 1  
FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . 1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
DIGITAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 3  
ANALOG SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 4  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 5  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . 6  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . 7  
SPECIFICATION DEFINITIONS . . . . . . . . . . . . . . . . . . . 8  
Differential Nonlinearity (DNL) . . . . . . . . . . . . . . . . . . . . 8  
Peak Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Total Output Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power Supply Rejection (PSR) . . . . . . . . . . . . . . . . . . . . . . 8  
EQUIVALENT INPUT CIRCUITS . . . . . . . . . . . . . . . . . . 8  
TYPICAL PERFORMANCE CHARACTERISTICS . . . . . 9  
SYSTEM OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
CLI INPUT CLOCK DIVIDER . . . . . . . . . . . . . . . . . . . . . 16  
GRAY CODE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . 16  
SERIAL INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . 17  
Control Register Serial Interface . . . . . . . . . . . . . . . . . . . 17  
System Register Serial Interface . . . . . . . . . . . . . . . . . . . . 17  
Mode_A and Mode_B Register Serial Interface . . . . . . . . 17  
VD SYNCHRONOUS AND ASYNCHRONOUS  
High Precision Shutter Mode . . . . . . . . . . . . . . . . . . . . . . 37  
Single Pulse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Multiple Pulse Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
VSG TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
VSUB CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
VSUB Placement and Polarity . . . . . . . . . . . . . . . . . . . . . 41  
MSHUT CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
MSHUT Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . 42  
MSHUT High Precision Operation . . . . . . . . . . . . . . . . . 43  
STROBE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
SLAVE AND MASTER MODE OPERATION . . . . . . . . . 44  
Slave Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Master Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
VARIABLE GAIN AMPLIFIER . . . . . . . . . . . . . . . . . . . . . 45  
Optical Black Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Digital I/O States for Different Operating Conditions . . . 45  
POWER-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Recommended Power-Up Sequence for Master Mode . . . 46  
STANDBY MODE OPERATION . . . . . . . . . . . . . . . . . . . 47  
Recommended Standby Mode Sequence . . . . . . . . . . . . . 47  
POWER-DOWN MODE OPERATION . . . . . . . . . . . . . . 48  
Recommended Power-Down Sequence . . . . . . . . . . . . . . 48  
HORIZONTAL TIMING SEQUENCE EXAMPLE . . . . . 49  
CIRCUIT LAYOUT INFORMATION . . . . . . . . . . . . . . . 51  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 52  
48-Lead LFCSP Package . . . . . . . . . . . . . . . . . . . . . . . . . 52  
REGISTER OPERATION . . . . . . . . . . . . . . . . . . . . . . . 18  
Asynchronous Register Operation . . . . . . . . . . . . . . . . . . 18  
VD Synchronous Register Operation . . . . . . . . . . . . . . . . 18  
ANALOG FRONT END DESCRIPTION AND  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DC Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Correlated Double Sampler . . . . . . . . . . . . . . . . . . . . . . . 19  
PRECISION TIMING HIGH SPEED TIMING  
GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Timing Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
High Speed Clock Programmability . . . . . . . . . . . . . . . . . 19  
H-Driver and RG Outputs . . . . . . . . . . . . . . . . . . . . . . . . 20  
Digital Data Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
EXTERNAL SYNCHRONIZATION (MASTER MODE) 23  
HORIZONTAL AND VERTICAL SYNCHRONOUS  
TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Special Note About the HDLEN Register . . . . . . . . . . . . 24  
HORIZONTAL CLAMPING AND BLANKING . . . . . . . 25  
Controlling CLPOB Clamp Pulse Timing . . . . . . . . . . . . 25  
Controlling CLPOB Clamp Pulse Outputs . . . . . . . . . . . 26  
H1 AND H2 BLANKING . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Normal H-Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Selective Positioning for Two H1 and H2 Outputs . . . . . 27  
Extended Blanking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
VGATE MASKING OF V1–V4 AND CLPOB  
TABLES  
Table I. Control Register Address Map . . . . . . . . . . . . . . . . 10  
Table II. System Register Address Map . . . . . . . . . . . . . . . . 12  
Table III. Mode_A Register Map . . . . . . . . . . . . . . . . . . . . . 14  
Table IV. Mode_B Register Map . . . . . . . . . . . . . . . . . . . . . 15  
Table V. Grade Code Registers . . . . . . . . . . . . . . . . . . . . . . 16  
Table VI. Type of Serial Interface Registers . . . . . . . . . . . . 17  
Table VII. AFE Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table VIII. RG, H1, SHP, SHD, DCLK, and  
DOUTPHASE Timing Parameters . . . . . . . . . . . . . . . . . 21  
Table IX. Precision Timing Edge Locations for RG, H1, SHP,  
SHD, DCLK, and DOUTPHASE . . . . . . . . . . . . . . . . . . 21  
Table X. External Synchronization (Master Mode) . . . . . . . 23  
Table XI. HD and VD Registers . . . . . . . . . . . . . . . . . . . . . 24  
Table XII. CLPOB Registers . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table XIII. SCP and CLPEN . . . . . . . . . . . . . . . . . . . . . . . 26  
Table XIV. H1 Blanking Registers . . . . . . . . . . . . . . . . . . . . 27  
Table XV. V1–V4 Registers to Configure V1–V4 Pulse  
for Each VTP Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table XVI. Mode_A and Mode_B Registers for VTPx  
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table XVII. Mode_A and Mode_B Registers for CCD  
Region Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table XVIII. Description of SVREP_MODE Register . . . . 34  
Table XIX. HD and VD Registers . . . . . . . . . . . . . . . . . . . . 35  
Table XX. SPATLOGIC Register . . . . . . . . . . . . . . . . . . . . 35  
Table XXI. SUBCK Registers . . . . . . . . . . . . . . . . . . . . . . . 37  
Table XXII. Single and Multiple Pulse Mode . . . . . . . . . . . 37  
Table XXIII. VSG Registers . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table XXIV. VSUB Registers . . . . . . . . . . . . . . . . . . . . . . . 41  
Table XXV. MSHUT and STROBE Registers . . . . . . . . . . 42  
Table XXVI. I/O Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
VERTICAL TIMING GENERATION . . . . . . . . . . . . . . . 30  
Creating Vertical Sequences . . . . . . . . . . . . . . . . . . . . . . . 30  
Special Vertical Sweep Mode Operation . . . . . . . . . . . . . 34  
Special Vertical Timing (SPAT) . . . . . . . . . . . . . . . . . . . 35  
ELECTRONIC SHUTTER TIMING CONTROL . . . . . . 37  
Normal Shutter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SUBCK Suppression Mode . . . . . . . . . . . . . . . . . . . . . . . 37  
–2–  
REV. 0  
AD9898  
SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–20  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
AVDD (AFE Analog Supply)  
TCVDD (Timing Core Analog Supply)  
RGVDD (RG Driver)  
HVDD (H1–H2 Drivers)  
DRVDD (Data Output Drivers)  
DVDD (Digital)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
POWER DISSIPATION  
20 MHz, Typical Supply Levels, 100 pF H1–H2 Loading  
Power from HVDD Only*  
150  
36  
3
mW  
mW  
mW  
Power-Down Mode (AFE and Digital in Standby Operation)  
MAXIMUM CLOCK RATE (CLI)  
AD9898  
20  
MHz  
*The total power dissipated by the HVDD supply may be approximated using the equation  
Total HVDD Power = (CLOAD × HVDD × Pixel Frequency) × HVDD × Number of H-Outputs Used  
Actual HVDD power may be slightly higher than the calculated value because of stray capacitance inherent in the PCB layout/routing.  
Specifications subject to change without notice.  
(RGVDD = HVDD = 2.7 V to 3.6 V, DVDD = DRVDD = 2.7 V to 3.6 V, CL = 20 pF, TMIN to TMAX, unless  
DIGITAL SPECIFICATIONS otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS (Except H and RG)  
High Level Output Voltage @ IOH = 2 mA  
Low Level Output Voltage @ IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
RG and H-DRIVER OUTPUTS (H1–H2)  
High Level Output Voltage @ Maximum Current  
Low Level Output Voltage @ Maximum Current  
RG Maximum Output Current (Programmable)  
H1 and H2 Maximum Output Current (Programmable)  
Maximum Load Capacitance  
VOH  
VOL  
VDD – 0.5  
V
V
mA  
mA  
pF  
0.5  
15  
30  
100  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD9898  
ANALOG SPECIFICATIONS  
Parameter  
(AVDD = 3.0 V, fCLI = 20 MHz, TMIN to TMAX, unless otherwise noted.)  
Min  
Typ  
Max  
Unit  
Comments  
CDS  
Allowable CCD Reset Transient  
500  
mV  
Input Signal Characteristics  
Maximum Input Range before Saturation* 1.0  
Maximum CCD Black Pixel Amplitude  
V p-p  
mV  
100  
VARIABLE GAIN AMPLIFIER (VGA)  
Maximum Output Range  
Gain Control Resolution  
Gain Monotonicity  
Gain Range  
2.0  
V p-p  
Steps  
1024  
Guaranteed  
Low Gain  
Maximum Gain  
6
40  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
64  
Steps  
LSB  
LSB  
LSB  
LSB is measured at ADC output.  
Minimum Clamp Level  
Maximum Clamp Level  
0
63  
A/D CONVERTER  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
10  
Bits  
LSB  
0.5  
Guaranteed  
2.0  
Full-Scale Input Voltage  
V
VOLTAGE REFERENCE  
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Gain Accuracy  
Low Gain (VGA Code = 20)  
Maximum Gain (VGA Code = 991)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
Includes entire signal chain  
5
39  
6
7
41  
dB  
dB  
%
LSB rms  
dB  
Gain = (0.035 ×Code) + 5.3 dB  
40  
0.1  
0.3  
40  
12 dB gain applied  
AC grounded input, 6 dB gain applied  
Measured with step change on supply  
Power Supply Rejection (PSR)  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
INPUT  
SIGNAL RANGE  
100mV MAX  
OPTICAL  
BLACK PIXEL  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD9898  
(CL = 20 pF, AVDD = DVDD = DRVDD = 3.0 V, fCLI = 20 MHz, unless otherwise noted.)  
TIMING SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK, CLI  
CLI Clock Period  
CLI High/Low Pulsewidth  
Delay from CLI Rising Edge to Internal Pixel Position 0  
tCONV  
50  
20  
ns  
ns  
ns  
25  
6
tCLIDLY  
AFE CLAMP PULSES*  
CLPOB Pulsewidth  
4
10  
25  
Pixels  
Pixels  
AFE SAMPLE LOCATION* (See Figure 13)  
SHP Sample Edge to SHD Sample Edge  
tS1  
20  
DATA OUTPUTS (See Figure 15)  
Output Delay from DCLK Rising Edge  
Pipeline Delay from SHP/SHD Sampling  
tOD  
9
9
ns  
Cycles  
SERIAL INTERFACE (See Figures 7 and 8)  
Maximum SCK Frequency  
SL to SCK Setup Time  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
ns  
*Parameter is programmable.  
Specifications subject to change without notice.  
REV. 0  
–5–  
AD9898  
ABSOLUTE MAXIMUM RATINGS*  
Parameter  
With Respect To  
Min  
Max  
Unit  
AVDD  
TCVDD  
HVDD  
RGVDD  
DVDD  
DRVDD  
RG Output  
H1–H2 Output  
Digital Outputs  
Digital Inputs  
SCK, SL, SDATA  
REFT, REFB  
CCDIN  
AVSS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
+3.9  
+3.9  
+3.9  
+3.9  
+3.9  
+3.9  
RGVDD + 0.3  
HVDD + 0.3  
DVDD + 0.3  
DVDD + 0.3  
DVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
150  
V
V
V
V
V
V
V
V
V
V
V
V
V
°C  
°C  
TCVSS  
HVSS  
RGVSS  
DVSS  
DRVSS  
RGVSS  
HVSS  
DVSS  
DVSS  
DVSS  
AVSS  
AVSS  
Junction Temperature  
Lead Temperature, 10 sec  
300  
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS  
Thermal Resistance  
JA = 92°C/W  
ORDERING GUIDE  
Package Description  
Model  
Temperature Range  
Package Option  
AD9898KCP-20  
AD9898KCPRL-20  
–20ºC to +85ºC  
–20ºC to +85ºC  
Lead Frame Chip Scale Package (LFCSP)  
Lead Frame Chip Scale Package (LFCSP)  
CP-48  
CP-48  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9898 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
–6–  
REV. 0  
AD9898  
PIN CONFIGURATION  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
D0  
D1  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SCK  
PIN 1  
IDENTIFIER  
SL  
3
D2  
SDATA  
REFB  
REFT  
AVSS  
CCDIN  
AVDD  
CLI  
4
D3  
5
D4  
AD9898  
TOP VIEW  
6
DRVSS  
DRVDD  
D5  
7
(Not to Scale)  
8
9
D6  
10  
11  
12  
D7  
TCVDD  
TCVSS  
RGVDD  
D8  
D9  
13 14 15 16 17 18 19 20 21 22 23 24  
PIN FUNCTION DESCRIPTION  
Pin No. Mnemonic Type* Description  
Pin No. Mnemonic Type* Description  
1
2
D0  
DO  
DO  
DO  
DO  
DO  
P
Data Output  
28  
29  
30  
31  
32  
33  
CLI  
DI  
P
Reference Clock Input  
D1  
Data Output  
AVDD  
CCDIN  
AVSS  
REFT  
REFB  
Analog Supply for AFE  
CCD Input Signal  
3
D2  
Data Output  
AI  
P
4
D3  
Data Output  
Analog Ground for AFE  
Voltage Reference Top Bypass  
5
D4  
Data Clock Output  
Data Output Driver Ground  
Data Output Driver Supply  
Data Output  
AO  
AO  
6
DRVSS  
DRVDD  
D5  
Voltage Reference Bottom  
Bypass  
7
P
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
SDATA  
SL  
DI  
3-Wire Serial Data Input  
3-Wire Serial Load Pulse  
3-Wire Serial Clock  
8
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DI  
9
D6  
Data Output  
SCK  
V1  
DI  
10  
11  
12  
13  
14  
15  
16  
D7  
Data Output  
DO  
DO  
DO  
DO  
DO  
DO  
CCD Vertical Transfer Clock 1  
CCD Vertical Transfer Clock 2  
CCD Vertical Transfer Clock 3  
CCD Vertical Transfer Clock 4  
CCD Sensor Gate Pulse 1  
CCD Sensor Gate Pulse 2  
Output Control  
D8  
Data Output  
V2  
D9  
Data Output  
V3  
DCLK1  
MSHUT  
STROBE  
Data Clock Output  
Mechanical Shutter Pulse  
Strobe Pulse  
V4  
VSG1  
VSG2  
FD/  
DCLK2  
DO  
DO  
Field Designator Output  
DCLK2 Output  
OUTCONT DI  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
HD  
DI  
DI  
P
Horizontal Sync Pulse  
Vertical Sync Pulse  
VSUB  
DO  
CCD Substrate Bias  
VD  
SYNC/  
VGATE  
DI  
DI  
External System Sync Input  
VGATE Input  
HVDD  
HVSS  
H2  
H1–H2 Driver Supply  
H1–H2 Driver Ground  
CCD Horizontal Clock 2  
CCD Horizontal Clock 1  
RG Driver Ground  
46  
DVDD  
P
Digital Supply for VSG,  
V1–V4, HD, VD, MSHUT,  
STROBE, and Serial Interface  
P
DO  
DO  
P
H1  
47  
48  
DVSS  
P
Digital Ground  
RGVSS  
RG  
SUBCK  
DO  
CCD Substrate Clock  
(E-Shutter)  
DO  
P
CCD Reset Gate Clock  
RG Driver Supply  
*AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital  
Output, P = Power.  
RGVDD  
TCVSS  
P
Analog Ground for Timing  
Core  
27  
TCVDD  
P
Analog Supply for Timing Core  
REV. 0  
–7–  
AD9898  
SPECIFICATION DEFINITIONS  
Total Output Noise  
Differential Nonlinearity (DNL)  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship 1 LSB =  
(ADC Full Scale/2N codes) where N is the bit resolution of the  
ADC. For the AD9898, 1 LSB is 2 mV.  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus every  
code must have a finite width. No missing codes guaranteed to  
10-bit resolution indicates that all 1024 codes, respectively,  
must be present over all operating conditions.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9898 from a true straight  
line. The point used as zero scale occurs 1/2 LSB before the  
first code transition. Positive full scale is defined as a level 1  
1/2 LSB beyond the last code transition. The deviation is  
measured from the middle of each particular output code to the  
true straight line. The error is then expressed as a percentage of  
the 2 V ADC full-scale signal. The input signal is always appro-  
priately gained up to fill the ADC’s full-scale range.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
EQUIVALENT INPUT CIRCUITS  
DVDD  
AVDD  
330  
R
DVSS  
AVSS  
AVSS  
Figure 3. Digital Inputs  
Figure 1. CCDIN  
HVDD OR  
RGVDD  
DVDD  
DRVDD  
RG,  
H1–H2  
DATA  
THREE-  
STATE  
ENABLE  
OUTPUT  
DOUT  
HVSS OR RGVSS  
DVSS  
DRVSS  
Figure 4. H1–H2, RG Drivers  
Figure 2. Digital Data Outputs  
–8–  
REV. 0  
Typical Performance Characteristics–AD9898  
180  
160  
0.3  
V
= 3.3V  
= 3.0V  
DD  
0.15  
0
140  
120  
100  
80  
V
DD  
V
= 2.7V  
DD  
–0.15  
–0.3  
60  
10  
0
200  
400  
600  
800  
1000  
15  
20  
SAMPLE RATE – MHz  
CODE  
TPC 2. Typical DNL Performance  
TPC 1. Power vs. Sample Rate  
REV. 0  
–9–  
AD9898  
Table I. Control Register Address Map (Register Names Are Subject to Change)  
Bit  
Default  
Register  
Name  
Address Content Width Value  
Register Description  
00  
01  
(23:0)  
23  
000000  
SW_RESET  
Software Reset = 000000. (Reset all registers to default.)  
(23:21)  
20  
(19:18)  
17  
16  
(15:14)  
13  
3
1
2
1
1
2
1
0
0
1
1
0
0
0
Unused  
Unused. Test Mode. Should be set = 0.  
Unused  
Masking Polarity for H1 during blanking period (0 = Low, 1 = High)  
External SYNC Active Polarity (0 = Active Low)  
Unused  
High Precision Shutter Mode Operation (0 = Single Pulse, 1 = Multiple  
Pulse)  
Suppress First SUBCK after Last VSG Line Pulse (0 = No Suppression,  
1 = Suppression of 1 SUBCK)  
HBLKMASK  
SYNCPOL  
SUBCKMODE_HP  
SUBCKSUPPRESS  
12  
1
0
(11:10)  
(9:8)  
2
2
0
0
Unused  
MSHUTPAT  
Selects MSHUT Pattern (See Figure 44) (0 = MSHUTPAT0,  
1 = MSHUTPAT1, 2 = MSHUTPAT2, 3 = MSHUTPAT3)  
MSHUT Masking of VGATE Input (0 = MSHUT does not mask  
VGATE, 1 = MSHUT does mask VGATE)  
MSHUT Masking of SUBCK (0 = MSHUT does not mask SUBCK,  
1 = MSHUT does mask SUBCK)  
7
6
1
1
0
0
MSHUT/VGATE_EN  
MSHUT/SUBCK_EN  
5
4
(3:1)  
0
1
1
3
1
1
1
0
0
CLP_CONT  
CLP_MODE  
CLPOB Control (0 = CLPOB OFF, 1 = CLPOB ON)  
CLPOB CCD Region Control (See Table XII)  
Unused  
VD Synchronous/Asynchronous Mode Setting (0 = VD Synchronous,  
1 = VD Asynchronous)  
VDMODE  
02  
03  
04  
(23:22)  
(21:16)  
(15:14)  
(13:8)  
(7:6)  
2
6
2
6
2
6
0
0x34  
0
0x18  
0
0x0B  
Unused  
SHD Sample Location  
Unused  
SHP Sample Location  
DCLK Pulse Adjustment  
Data Output [9:0] Phase Adjustment  
SHDLOC  
SHPLOC  
DCLKPHASE  
DOUTPHASE  
(5:0)  
(23:17)  
16  
(15:14)  
(13:8)  
(7:6)  
7
1
2
6
2
6
0x00  
0
0
0x00  
0
0x10  
Unused  
H1BLKRETIME  
H1POSLOC  
Retimes the H1 HBLK to Internal Clock  
Unused  
H1 Positive Edge Location  
Unused  
(5:0)  
RGNEGLOC  
RG Negative Edge Location  
(23:22)  
(21:16)  
(14:12)  
2
6
3
0
0x20  
5
Unused  
Black Clamp Level  
REFBLACK  
H2DRV  
H2 Drive Strength (0 = Off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA,  
4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA)  
Unused  
H1 Drive Strength (0 = Off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA,  
4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA)  
Unused  
11  
(10:8)  
1
3
0
5
H1DRV  
RGDRV  
(7:3)  
(2:0)  
5
3
0x00  
2
RG Drive Strength (0 = Off, 1 = 2.15 mA, 2 = 4.2 mA, 3 = 6.45 mA,  
4 = 8.6 mA, 5 = 10.75 mA, 6 = 12.9 mA, 7 = 15.05 mA)  
05  
(23:10)  
9
8
(7:2)  
1
14  
1
1
6
1
0x0000  
0
0
00  
0
Unused  
AFESTBY  
DIGSTBY  
AFE Standby (0 = Standby , 1 = Normal Operation)  
Digital Standby (0 = Standby , 1 = Normal Operation)  
Unused  
Internal OUTCONT Signal Control (0 = Digital Outputs held at fixed  
dc level, 1 = Normal Operation)  
OUTCONT_REG  
OUTCONT_ENB  
0
1
1
External OUTCONT Signal Input Pin 43 Control (0 = Pin Enabled,  
1 = Pin Disabled)  
–10–  
REV. 0  
AD9898  
Table I. Control Register Address Map (Register Names Are Subject to Change)  
Bit  
Default  
Register  
Name  
Address Content Width Value  
Register Description  
0A  
23  
22  
(21:16)  
(15:12)  
(11:10)  
1
1
6
4
2
1
1
4
2
1
1
0
0
0x00  
0
0
0
0
C
3
0
Unused  
FDPOL  
FD Polarity Control (0 = Low, 1 = High)  
VSG Masking (See Table XXIII)  
External SYNC Setting  
VSGMASK  
SYNCCNT  
SVREP_MODE  
HBLKEXT  
HPULSECNT  
SPATLOGIC  
SVOS  
(VD  
SyncReg)* 9  
Super Vertical Repetition Mode  
H Pulse Blanking Extend Control  
H Pulse Control during Blanking  
SPAT Logic Setting (See Table XX)  
Second V Output Setting (10 = Output Repetition 1)  
SPAT Control (0 = SPAT Disable, 1 = SPAT Enable)  
Mode Control Bit (0 = Mode_A, 1 = Mode_B)  
8
(7:4)  
(3:2)  
1
0
SPAT_EN  
MODE  
0
0B  
(23:22)  
21  
20  
2
1
1
3
1
0
1
1
0
0
Unused  
SUBCK_EN  
VSG_EN  
SUBCK Output Enable Control (0 = Disable, 1 = Enable)  
VSG Output Enable Control (0 = Disable, 1 = Enable)  
Unused  
STROBE Output Control (0 = STROBE Output Held Low,  
1 = STROBE Output Enabled)  
(VD  
SyncReg)* 16  
(19:17)  
STROBE_EN  
15  
1
0
Unused  
(14:12)  
11  
(10:0)  
3
1
11  
0
0
SUBCKNUM_HP  
SUBCKNUM  
High Precision Shutter SUBCLK Pulse Position/Number  
Unused  
Total Number of SUBCKs per Field  
0x7FF  
0C  
(23:21)  
20  
3
1
0
0
Unused  
MSHUTINIT  
MSHUT Initialize (1 = Forces MSHUT Low)  
(19:18)  
17  
2
1
0
0
Unused  
Unused  
(VD  
SyncReg)* 16  
1
0
MSHUTEN  
MSHUT Control ( 0 = MSHUT Held at Last State, 1 = MSHUT Output)  
15  
1
0
Unused  
(14:12)  
11  
(10:0)  
3
1
11  
0
0
MSHUTPOS_HP  
MSHUTPOS  
MSHUT Position during High Precision Operation  
Unused  
MSHUT Position during Normal Operation  
0x000  
0D  
(23:17)  
16  
(15:11)  
7
1
5
11  
Unused  
0
VSUBPOL  
VSUBTOG  
VSUB Active Polarity (0 = Low, 1 = High)  
Unused  
VSUB Toggle Position. Active starting line in any field.  
(VD  
SyncReg)* (10:0)  
0x000  
0E  
(23:21)  
20  
(19:18)  
17  
3
1
2
1
1
6
10  
0
0
0
0
Unused  
Unused. Test Mode. Should be set = 0.  
Unused  
Unused. Test Mode. Should be set = 0.  
Unused. Test Mode. Should be set = 0.  
Unused  
(VD  
SyncReg)* 16  
(15:10)  
0
0x00  
0x000  
(9:0)  
VGAGAIN  
VGA Gain  
D5  
(23:4)  
3
20  
1
0x00000  
1
Unused  
DCLK2SEL  
DCLK1SEL  
CLKDIV  
DCLK2 Selector (0 = Select Internal FD Signal to be Output on FD/  
DCLK2 Pin 16, 1 = Select CLI to be Output on FD/DCLK2 Pin 16)  
DCLK1 Selector (0 = Select DLL Version for DCLK1 Output,  
1 = Select CLI for DCLK1 Output)  
2
1
2
0
0
(1:0)  
Input Clock Divider (0 = No Division, 1 = 1/2, 2 = 1/3, 3 = 1/4)  
D6  
(23:1)  
0
23  
1
0x000000  
1
Unused  
SLAVE_MODE  
Operating Mode ( 0 = Master Mode, 1 = Slave Mode)  
*This register defaults to VD synchronous mode type at power up. VD sync type registers do not get updated until the first falling edge of VD is asserted after the  
register has been programmed. VD sync type registers can be programmed to be asynchronous registers by setting VDMODE = 1 (Addr 0x01).  
REV. 0  
–11–  
AD9898  
Table II. System Register Address Map (Addr 0x14)  
Default  
Bit  
Register  
Content Width (Decimal) Register Name  
Register Description  
Sys_Reg(0)  
(31:24)  
(23:0)  
8
24  
NA  
NA  
System_Reg_Addr  
System_Number_N  
System Register Address Is (Addr 0x14)  
Number N Register Writes (0x000000 = Write All Registers)  
Sys_Reg(1)  
(31:23)  
22  
21  
20  
19  
(18:10)  
(9:1)  
0
9
1
1
1
1
9
9
1
37  
0
0
1
1
0
19  
0
VTPLEN0  
Vertical Sequence No. 0: Length between Repetitions  
Vertical Sequence No. 0: V1 Start Polarity  
Vertical Sequence No. 0: V2 Start Polarity  
Vertical Sequence No. 0: V3 Start Polarity  
Vertical Sequence No. 0: V4 Start Polarity  
Vertical Sequence No. 0: V1 Toggle Position 1  
Vertical Sequence No. 0: V1 Toggle Position 2  
V1STARTPOL0  
V2STARTPOL0  
V3STARTPOL0  
V4STARTPOL0  
V1TOG1POS0  
V1TOG2POS0  
V2TOG1POS0 [8]  
Sys_Reg(2)  
Sys_Reg(3)  
(31:24)  
(23:15)  
(14:6)  
(5:0)  
8
9
9
6
12  
31  
0
V2TOG1POS0 [7:0] Vertical Sequence No. 0: V2 Toggle Position 1  
V2TOG2POS0  
V3TOG1POS0  
Vertical Sequence No. 0: V2 Toggle Position 2  
Vertical Sequence No. 0: V3 Toggle Position 1  
V3TOG2POS0 [8:3]  
(31:29)  
(28:20)  
(19:11)  
(10:2)  
1
3
9
9
9
1
1
19  
12  
31  
104  
0
V3TOG2POS0 [2:0] Vertical Sequence No. 0: V3 Toggle Position 2  
V4TOG1POS0  
V4TOG2POS0  
VTPLEN1  
V1STARTPOL1  
V2STARTPOL1  
Vertical Sequence No. 0: V4 Toggle Position 1  
Vertical Sequence No. 0: V4 Toggle Position 2  
Vertical Sequence No. 1: Length between Repetitions  
Vertical Sequence No. 1: V1 Start Polarity  
Vertical Sequence No. 1: V2 Start Polarity  
0
0
Sys_Reg(4)  
31  
30  
(29:21)  
(20:12)  
(11:3)  
(2:0)  
1
1
9
9
9
3
1
1
18  
58  
47  
V3STARTPOL1  
V4STARTPOL1  
V1TOG1POS1  
V1TOG2POS1  
V2TOG1POS1  
V2TOG2POS1 [8:6]  
Vertical Sequence No. 1: V3 Start Polarity  
Vertical Sequence No. 1: V4 Start Polarity  
Vertical Sequence No. 1: V1 Toggle Position 1  
Vertical Sequence No. 1: V1 Toggle Position 2  
Vertical Sequence No. 1: V2 Toggle Position 1  
Sys_Reg(5)  
Sys_Reg(6)  
(31:26)  
(25:17)  
(16:8)  
(7:0)  
6
9
9
8
96  
0
76  
V2TOG2POS1 [5:0] Vertical Sequence No. 1: V2 Toggle Position 2  
V3TOG1POS1  
V3TOG2POS1  
Vertical Sequence No. 1: V3 Toggle Position 1  
Vertical Sequence No. 1: V3 Toggle Position 2  
V4TOG1POS1 [8:1]  
31  
1
9
9
1
1
1
1
9
38  
105  
57  
0
0
1
V4TOG1POS1 [0]  
V4TOG2POS1  
VTPLEN2  
V1STARTPOL2  
V2STARTPOL2  
V3STARTPOL2  
V4STARTPOL2  
V1TOG1POS2  
Vertical Sequence No. 1: V4 Toggle Position 1  
Vertical Sequence No. 1: V4 Toggle Position 2  
Vertical Sequence No. 2: Length between Repetitions  
Vertical Sequence No. 2: V1 Start Polarity  
Vertical Sequence No. 2: V2 Start Polarity  
Vertical Sequence No. 2: V3 Start Polarity  
Vertical Sequence No. 2: V4 Start Polarity  
Vertical Sequence No. 2: V1 Toggle Position 1  
(30:22)  
(21:13)  
12  
11  
10  
9
(8:0)  
1
0
Sys_Reg(7)  
Sys_Reg(8)  
(31:23)  
(22:14)  
(13:5)  
(4:0)  
9
9
9
5
29  
19  
48  
V1TOG2POS2  
V2TOG1POS2  
V2TOG2POS2  
V3TOG1POS2 [8:4]  
Vertical Sequence No. 2: V1 Toggle Position 2  
Vertical Sequence No. 2: V2 Toggle Position 1  
Vertical Sequence No. 2: V2 Toggle Position 2  
(31:28)  
(27:19)  
(18:10)  
(9:1)  
4
9
9
9
1
0
V3TOG1POS2 [3:0] Vertical Sequence No. 2: V3 Toggle Position 1  
29  
19  
48  
V3TOG2POS2  
V4TOG1POS2  
V4TOG2POS2  
Vertical Sequence No. 2: V3 Toggle Position 2  
Vertical Sequence No. 2: V4 Toggle Position 1  
Vertical Sequence No. 2: V4 Toggle Position 2  
Unused  
0
–12–  
REV. 0  
AD9898  
Table II. System Register Address Map (Addr 0x14) (continued)  
Default  
Bit  
Register  
Content Width (Decimal) Register Name  
Register Description  
Sys_Reg(9)  
(31:23)  
22  
21  
20  
19  
(18:10)  
(9:1)  
0
9
1
1
1
1
9
9
1
89  
0
0
1
1
VTPLEN3  
Vertical Sequence No. 3: Length between Repetitions  
Vertical Sequence No. 3: V1 Start Polarity  
Vertical Sequence No. 3: V2 Start Polarity  
Vertical Sequence No. 3: V3 Start Polarity  
Vertical Sequence No. 3: V4 Start Polarity  
Vertical Sequence No. 3: V1 Toggle Position 1  
Vertical Sequence No. 3: V1 Toggle Position 2  
V1STARTPOL3  
V2STARTPOL3  
V3STARTPOL3  
V4STARTPOL3  
V1TOG1POS3  
V1TOG2POS3  
V2TOG1POS3 [8]  
0
60  
Sys_Reg(10) (31:24)  
8
9
9
6
30  
90  
0
V2TOG1POS3 [7:0] Vertical Sequence No. 3: V2 Toggle Position 1  
(23:15)  
(14:6)  
(5:0)  
V2TOG2POS3  
V3TOG1POS3  
Vertical Sequence No. 3: V2 Toggle Position 2  
Vertical Sequence No. 3: V3 Toggle Position 1  
V3TOG2POS3 [8:3]  
Sys_Reg(11) (31:29)  
3
9
9
10  
1
60  
30  
90  
0
V3TOG2POS3 [2:0] Vertical Sequence No. 3: V3 Toggle Position 2  
(28:20)  
(19:11)  
(10:1)  
0
V4TOG1POS3  
V4TOG2POS3  
HBLKHPOS  
Vertical Sequence No. 3: V4 Toggle Position 1  
Vertical Sequence No. 3: V4 Toggle Position 2  
H1 Pulse ON Position during Blanking Period  
Unused  
Sys_Reg(12) (31:20)  
12  
10  
9
2283  
130  
100  
HDLEN*  
HLEN  
OLEN  
12-Bit Gray Code HD Counter Value (Gray Code Number)  
10-Bit HL Counter Value  
9-Bit OL Counter Value  
(19:10)  
(9:1)  
0
1
BLLEN [8]  
Sys_Reg(13) (31:24)  
8
8
11  
5
0
BLLEN[7:0]  
MSHUTLEN  
VSGTOG1_0  
9-Bit BL Counter Value  
MSHUT Sequence Length  
VSG Sequence No. 1 Toggle Position 1  
(23:16)  
(15:5)  
(4:0)  
118  
1048  
VSGTOG1_1 [10:6]  
Sys_Reg(14) (31:26)  
6
8
9
9
1198  
60  
19  
VSGTOG1_1 [5:0]  
VSGLEN  
SUBCK1TOG1  
SUBCK1TOG2  
VSG Sequence No. 2 Toggle Position 1  
VSG Pulsewidth  
SUBCK1 First Toggle Position  
SUBCK1 Second Toggle Position  
(25:18)  
(17:9)  
(8:0)  
88  
Sys_Reg(15) (31:23)  
9
9
12  
2
19  
88  
2243  
SUBCK2TOG1  
SUBCK2TOG2  
CLPTOG1*  
SUBCK2 First Toggle Position  
SUBCK2 Second Toggle Position  
CLPOB Toggle Position No. 1  
(22:14:)  
(13:2)  
(1:0)  
CLPTOG2 [11]*  
Sys_Reg(16) (31:22)  
10  
4
10  
8
2278  
9
120  
CLPTOG2 [10:0]*  
VDRISE  
HDRISE  
CLPOB Toggle Position No. 2  
VD Toggle Position No. 1  
HD Toggle Position No. 2  
Unused  
(21:18)  
(17:8)  
(7:0)  
*Register value must be a gray code number. (See Gray Code Registers section.)  
REV. 0  
–13–  
AD9898  
Table III. Mode_A Register Map (Addr 0x15)  
Default  
Bit  
Content Width (Decimal) Register Name  
Register  
Register Description  
Mode_Reg(0) (31:24)  
(23:0)  
8
24  
NA  
NA  
Mode_A_Addr  
Mode_A Address Is (Addr 0x15)  
Mode_A_Number_N Number N Register Writes (0x000000 = Write All Registers)  
Mode_Reg(1) (31:21)  
11  
12  
1
1
7
262  
1139  
1
0
0
VDLEN  
HDLASTLEN  
VSGSEL0  
VSGSEL1  
VSGACTLINE  
VD Counter Value  
(20:9)  
8
7
Number of Pixels in Last Line (Gray Code Number)  
VSG1 Sequence Selector (See Table XXIII)  
VSG2 Sequence Selector (See Table XXIII)  
VSG Active Line  
(6:0)  
Mode_Reg(2) 31  
1
3
3
3
3
3
1
1
1
1
1
8
3
0
0
0
0
0
0
1
0
0
0
0
0
SUBCKSEL  
VTPSEQPTR0  
VTPSEQPTR1  
VTPSEQPTR2  
VTPSEQPTR3  
VTPSEQPTR4  
CLPEN0  
CLPEN1  
CLPEN2  
CLPEN3  
CLPEN4  
Select one of two SUBCK Patterns  
Vertical Transfer Sequence Region No. 0  
Vertical Transfer Sequence Region No. 1  
Vertical Transfer Sequence Region No. 2  
Vertical Transfer Sequence Region No. 3  
Vertical Transfer Sequence Region No. 4  
CLPOB Output Control No. 1  
CLPOB Output Control No. 2  
CLPOB Output Control No. 3  
CLPOB Output Control No. 4  
CLPOB Output Control No. 5  
(30:28)  
(27:25)  
(24:22)  
(21:19)  
(18:16)  
15  
14  
13  
12  
11  
(10:3)  
(2:0)  
SCP1  
SCP2  
Sequence Change Position No. 1  
Mode_Reg(3) (31:27)  
5
8
8
2
2
2
2
3
0
0
0
0
0
0
0
3
SCP2  
SCP3  
SCP4  
VTPSEL0  
VTPSEL1  
VTPSEL2  
VTPSEL3  
VTPREP0  
Sequence Change Position No. 2  
Sequence Change Position No. 3  
Sequence Change Position No. 4  
Vertical Pattern Selection 0  
Vertical Pattern Selection 1  
Vertical Pattern Selection 2  
(26:19)  
(18:11)  
(10:9)  
(8:7)  
(6:5)  
(4:3)  
Vertical Pattern Selection 3  
Number of Vertical Pulse Repetitions for Pattern0  
(2:0)  
Mode_Reg(4) (31:29)  
3
3
3
11  
11  
1
0
0
0
0
0
VTPREP1  
VTPREP2  
VTPREP3  
SVREP0  
Number of Vertical Pulse Repetitions for Pattern1  
Number of Vertical Pulse Repetitions for Pattern2  
Number of Vertical Pulse Repetitions for Pattern3  
Vertical Sweep Repetition Number for CCD Region0  
Vertical Sweep Repitition Number for CCD Region3  
Unused  
(28:26)  
(25:23)  
(22:12)  
(11:1)  
0
SVREP3  
Mode_Reg(5) (31:19)  
13  
13  
6
988  
1138  
V1SPAT_TOG1  
V1SPAT_TOG2  
V2SPAT_TOG1  
Polarity Change Position Start for V1 SPAT  
Polarity Change Position End for V1 SPAT  
(18:6)  
(5:0)  
Mode_Reg(6) (31:25)  
(24:12)  
7
13  
12  
1078  
1168  
V2SPAT_TOG1  
V2SPAT_TOG2  
V3SPAT_TOG1  
Polarity Change Position Start for V2 SPAT  
Polarity Change Position End for V2 SPAT  
(11:0)  
Mode_Reg(7) 31  
(30:18)  
1
958  
1138  
988  
V3SPAT_TOG1  
V3SPAT_TOG2  
V4SPAT_TOG1  
V4SPAT_TOG2  
Polarity Change Position Start for V3 SPAT  
Polarity Change Position End for V3 SPAT  
Polarity Change Position Start for V4 SPAT  
13  
13  
5
(17:5)  
(4:0)  
Mode_Reg(8) (31:24)  
8
13  
2
1228  
1392  
3
V4SPAT_TOG2  
SECONDVPOS  
VPATSECOND  
Polarity Change Position End for V4 SPAT  
Second V Pattern Output Position  
Selected Second V Pattern Group for VSG Active Line  
Unused  
(23:11)  
(10:9)  
(8:0)  
9
–14–  
REV. 0  
AD9898  
Table IV. Mode_B Register Map (Addr 0x16)  
Default  
Bit  
Content Width (Decimal) Register Name  
Register  
Register Description  
Mode_Reg(0) (31:24)  
(23:0)  
8
24  
NA  
NA  
Mode_B_Addr  
Mode_B Address Is (Addr 0x16)  
Mode_B_Number_N Number N Register Writes (0x000000 = Write All Registers)  
Mode_Reg(1) (31:21)  
11  
12  
1
1
7
262  
1139  
1
0
0
VDLEN  
HDLASTLEN*  
VSGSEL0  
VSGSEL1  
VD Counter Value  
(20:9)  
8
7
Number of Pixels in Last Line (Gray Code Number)  
VSG1 Sequence Selector (See Table XXIII)  
VSG2 Sequence Selector (See Table XXIII)  
VSG Active Line  
(6:0)  
VSGACTLINE  
Mode_Reg(2) 31  
1
3
3
3
3
3
1
1
1
1
1
8
3
0
0
0
0
0
0
1
0
0
0
0
0
SUBCKSEL  
VTPSEQPTR0  
VTPSEQPTR1  
VTPSEQPTR2  
VTPSEQPTR3  
VTPSEQPTR4  
CLPEN0  
CLPEN1  
CLPEN2  
CLPEN3  
CLPEN4  
Select One of Two SUBCK Patterns  
Vertical Transfer Sequence Region No. 0  
Vertical Transfer Sequence Region No. 1  
Vertical Transfer Sequence Region No. 2  
Vertical Transfer Sequence Region No. 3  
Vertical Transfer Sequence Region No. 4  
CLPOB Output Control No. 1  
CLPOB Output Control No. 2  
CLPOB Output Control No. 3  
CLPOB Output Control No. 4  
CLPOB Output Control No. 5  
(30:28)  
(27:25)  
(24:22)  
(21:19)  
(18:16)  
15  
14  
13  
12  
11  
(10:3)  
(2:0)  
SCP1  
SCP2  
Sequence Change Position No. 1  
Mode_Reg(3) (31:27)  
5
8
8
2
2
2
2
3
0
0
0
0
0
0
0
3
SCP2  
SCP3  
SCP4  
VTPSEL0  
VTPSEL1  
VTPSEL2  
VTPSEL3  
VTPREP0  
Sequence Change Position No. 2  
Sequence Change Position No. 3  
Sequence Change Position No. 4  
Vertical Pattern Selection 0  
Vertical Pattern Selection 1  
Vertical Pattern Selection 2  
(26:19)  
(18:11)  
(10:9)  
(8:7)  
(6:5)  
(4:3)  
Vertical Pattern Selection 3  
Number of VTP0 Pulse Repetitions for Pattern0  
(2:0)  
Mode_Reg(4) (31:29)  
3
3
3
11  
11  
1
0
0
0
0
0
VTPREP1  
VTPREP2  
VTPREP3  
SVREP0  
Number of VTP1 Pulse Repetitions for Pattern1  
Number of VTP2 Pulse Repetitions for Pattern2  
Number of VTP0 Pulse Repetitions for Pattern3  
Vertical Sweep Repetition Number for CCD Region0  
Vertical Sweep Repetition Number for CCD Region3  
Unused  
(28:26)  
(25:23)  
(22:12)  
(11:1)  
0
SVREP3  
Mode_Reg(5) (31:19)  
13  
13  
6
988  
1138  
V1SPAT_TOG1  
V1SPAT_TOG2  
V2SPAT_TOG1  
Polarity Change Position Start for V1 SPAT  
Polarity Change Position End for V1 SPAT  
(18:6)  
(5:0)  
Mode_Reg(6) (31:25)  
(24:12)  
7
13  
12  
1078  
1168  
V2SPAT_TOG1  
V2SPAT_TOG2  
V3SPAT_TOG1  
Polarity Change Position Start for V2 SPAT  
Polarity Change Position End for V2 SPAT  
(11:0)  
Mode_Reg(7) 31  
(30:18)  
1
958  
1138  
988  
V3SPAT_TOG1  
V3SPAT_TOG2  
V4SPAT_TOG1  
V4SPAT_TOG2  
Polarity Change Position Start for V3 SPAT  
Polarity Change Position End for V3 SPAT  
Polarity Change Position Start for V4 SPAT  
13  
13  
5
(17:5)  
(4:0)  
Mode_Reg(8) (31:24)  
8
13  
2
1228  
1392  
3
V4SPAT_TOG2  
SECONDVPOS  
VPATSECOND  
Polarity Change Position End for V4 SPAT  
Second V Pattern Output Position  
Selected Second V Pattern Group for VSG Active Line  
Unused  
(23:11)  
(10:9)  
(8:0)  
9
*Register value must be a gray code number. (See Gray Code Registers section.)  
REV. 0  
–15–  
AD9898  
SYSTEM OVERVIEW  
MAXIMUM FIELD DIMENSIONS  
Figure 5 shows the typical system block diagram for the AD9898.  
The CCD output is processed by the AD9898’s AFE circuitry,  
which consists of a CDS, VGA, black level clamp, and A/D  
converter. The digitized pixel information is sent to the digital  
image processor chip, which performs the postprocessing and  
compression. To operate the CCD, all CCD timing parameters  
are programmed into the AD9898 from the system micropro-  
cessor, through the 3-wire serial interface. From the system  
master clock, CLI, provided by the image processor or external  
crystal, the AD9898 generates all the CCD’s horizontal and  
vertical clocks and all internal AFE clocks. External synchroni-  
zation is provided by a SYNC pulse from the microprocessor,  
which will reset internal counters and resynchronize the VD and  
HD outputs.  
12-BIT HORIZONTALCOUNTER = 4096 PIXELS MAX  
V1–V4, VSG1, VSG2, SUBCK  
V-DRIVER  
Figure 6. Horizontal and Vertical Counters  
H1, H2, RG, VSUB  
DOUT[9:0]  
CCDIN  
DCLK1  
FD  
CCD  
CLI INPUT CLOCK DIVIDER  
DIGITAL  
IMAGE  
PROCESSING  
ASIC  
The AD9898 provides the capability of dividing the CLI input  
clock using register CLKDIV (Addr 0xD5). The following  
procedure must be followed to reset the AFE and digital circuits  
when CLKDIV is reprogrammed back to 0 from CLKDIV = 1,  
2, or 3. The DCLK1 output will become unstable if this proce-  
dure is not followed:  
AD9898  
HD, VD  
VGATE  
CLI  
MSHUT  
STROBE  
SERIAL  
INTERFACE  
OUTCONT  
SYNC  
P  
Step 1: CLKDIV = 1, 2, or 3 (CLI divided by setting value)  
Step 2: CLKDIV = 0 (CLI reprogrammed for no division)  
Step 3: DIGSTBY = AFESTBY = 0  
Figure 5. Typical System Block Diagram, Master Mode  
Step 4: DIGSTBY = AFESTBY = 1  
The AD9898 powers up in slave mode, in which the VD and  
HD are provided externally from the image processor. In this  
mode, all AD9898 timing will be synchronized with VD and  
HD. The H-drivers for H1–H2 and RG are included in the  
AD9898, allowing these clocks to be directly connected to the  
CCD. H-drive voltage of up to 3.6 V is supported. An external  
V-driver is required for the vertical transfer clocks, the sensor  
gate pulses, and the substrate clock. The AD9898 also includes  
programmable MSHUT and STROBE outputs, which may be  
used to trigger mechanical shutter and strobe (flash) circuitry.  
GRAY CODE REGISTERS  
Table V lists the AD9898 registers requiring gray code values.  
Below is an example of applying a gray code number for  
HDLEN using a line length of 1560 pixels:  
HDLEN = (1560 – 4) = 155610  
(See Table XI note about HDLEN.)  
155610 = 0x51E  
The gray code value of 0x51E would be programmed in the  
12-bit HDLEN register.  
Figure 6 shows the horizontal and vertical counter dimensions  
for the AD9898. All internal horizontal and vertical clocking is  
programmed using these dimensions and is used to specify line  
and pixel locations.  
Table V. Gray Code Registers  
Register Name  
Register Type  
HDLEN  
System_Reg(12)  
System_Reg(15)  
System_Reg(15 and 16)  
Mode_Reg(1)  
CLPTOG1  
CLPTOG2  
HDLASTLEN  
–16–  
REV. 0  
AD9898  
System Register Serial Interface  
SERIAL INTERFACE TIMING  
There are seventeen 32-bit system registers that get accessed  
sequentially at Address 0x14 beginning with Sys_Reg[0]. When  
writing to the system registers, SDATA contains the 8-bit address  
of 0x14, followed by Number Writes N[23:0], followed by the  
Sys_Reg[31:0] data as shown in Figure 8. The system register  
map is listed in Table II.  
All of the internal registers of the AD9898 are accessed through a  
3-wire serial interface. The interface consists of a clock (SCK),  
serial load (SL), and serial data (SDATA).  
The AD9898 has three different register types that are config-  
ured by the 3-wire serial interface. They are control registers,  
system registers, and mode registers and are described in Table VI.  
There are two options available when writing to the system  
registers. The choice is automatically determined by the value of  
the Number Writes N[23:0] word. If Number Writes N[23:0] =  
0x000000, the device gets put into a mode where it expects all  
17 Sys_Reg[31:0] data-words to be clocked in before SL is  
asserted high. If the Number Writes N[23:0] is decoded as  
some number N other than 0x000000, the device expects N  
number of registers to be programmed where N is equal to the  
value of Number Writes N[23:0]. For example, if Number  
Writes N[23:0] = 0x000004, the device would expect data to be  
provided for Sys_Reg[3:0]. In all cases, the system registers  
would be written to begin with Sys_Reg[0], no matter what the  
value of Number Writes N[23:0] is. Note that SL can be brought  
high or low during access to system registers, as shown in Figure 8.  
Table VI. Type of Serial Interface Registers  
Register  
Address  
No. of Registers  
Control  
0x00 through There is a 24-bit register at each  
0xD6  
0x14  
0x15  
0x16  
address. Not all addresses are  
used. See Table I.  
System  
Seventeen 32-bit system registers  
at Address 0x14. See Table II.  
Mode_A  
Mode_B  
Eight 32-bit Mode_A registers at  
Address 0x15. See Table III.  
Eight 32-bit Mode_B registers at  
Address 0x16. See Table IV.  
Mode_A and Mode_B Register Serial Interface  
There are eight 32-bit Mode_A and eight 32-bit Mode_B regis-  
ters that get accessed sequentially at Address 0x15 and Address  
0x16, respectively. The Mode_A and Mode_B registers get  
written to exactly as the system registers are. (See the descrip-  
tion above.) The mode registers are listed in Tables III and IV.  
Control Register Serial Interface  
The control register 3-wire interface timing requirements are  
shown in Figure 7. Control data must be written into the device  
one address at a time due to the noncontiguous address spacing  
for the control registers. This requires eight bits of address data  
followed by 24 bits of configuration data between each active  
low period of SL for each address. The SL signal must be kept  
high for at least one full SCK cycle between successive writes to  
control registers.  
Changing operation between Mode_A and Mode_B is done by  
setting the 1-bit MODE register (Addr 0x0A). The desired  
Mode_A (Addr 0x15) or Mode_B (Addr 0x16) data must be  
programmed into the Mode_A or Mode_B registers before  
changing the MODE bit.  
....  
....  
SDATA  
SCK  
A7  
A6  
tDH  
A5  
A4  
A3  
A2  
A1  
A0  
D23  
D22  
D21  
D3  
D2  
D1  
D0  
tDS  
1
2
3
4
5
6
7
8
9
10  
11  
29  
30  
31  
tLH  
32  
tLS  
SL  
1. SDATA BITS ARE INTERNALLY LATCHED ON THE RISING EDGES OF SCK.  
2. SYSTEM UPDATE OF LOADED REGISTERS OCCURS ON SL RISING EDGE.  
3. THIS TIMING PATTERN MUST BE WRITTEN FOR EACH REGISTER WRITE WITH SL REMAINING HIGH FOR AT  
LEAST ONE FULL SCK PERIOD BEFORE ASSERTING SL LOW AGAIN FOR THE NEXT REGISTER WRITE.  
Figure 7. 3-Wire Serial Interface Timing for Control Registers  
REV. 0  
–17–  
AD9898  
ADDRESS [7:0]  
DATA 1 [31:0]  
DATA 1 [31:0]  
1
NUMBER WRITES N [23:0]  
DATA 2 [31:0]  
DATA 2 [31:0]  
1
DATA N [31:0]  
DATA N [31:0]  
SDATA  
8-BIT  
ADDRESS  
NUMBER OF 32-BIT  
DATA WRITES (N)  
SCK  
SL  
1
2
1. ALL SL PULSES ARE IGNORED UNTIL THE LSB OF THE LAST DATA N WORD IS CLOCKED IN.  
2. VALID SL PULSE. SL MUST BE ASSERTED HIGH WHEN ALL SDI DATA TRANSMISSIONS HAVE BEEN FINISHED.  
Figure 8. System and Mode Register Writes  
OPERATION OF VD SYNCHRONOUS TYPE  
REGISTER WRITES BEGIN AT THE NEXT VD  
FALLING EDGE.  
VD  
HD  
CLI  
PROGRAMMING OF VD SYNCHRONOUS  
TYPE REGISTERS MUST BE COMPLETED  
AT LEAST 4 CLI CYCLES BEFORE THE  
FALLING EDGE OF VD.  
Figure 9. VD Synchronous Type Register Writes  
VD SYNCHRONOUS AND ASYNCHRONOUS REGISTER  
OPERATION  
VD Synchronous Register Operation  
For VD synchronous type registers, SDATA data is temporarily  
stored in a buffer register at the rising edge of SL. This data is  
held in the buffer register until the next falling edge of VD is  
applied. Once the next falling edge of VD occurs, the buffered  
SDATA data is loaded into the serial register and the register  
operation begins (see Figure 9).  
There are two types of control registers, VD synchronous and  
VD asynchronous, as indicated in the address column of Table I.  
Register writes to synchronous and asynchronous type registers  
operate differently, as described below. Writes to system, Mode_A,  
and Mode_B registers occur asynchronously.  
Asynchronous Register Operation  
All control registers at the following addresses are VD Synchro-  
nous type registers—Addr: 0x0A, 0x0B, 0x0C, 0x0D, and 0x0E  
(see Table I).  
For VD asynchronous register writes, SDATA data is stored  
directly into the serial register at the rising edge of SL. As a  
result, register operation begins immediately after the rising  
edge of SL.  
–18–  
REV. 0  
AD9898  
ANALOG FRONT END (AFE) DESCRIPTION AND  
OPERATION  
The AD9898 AFE signal processing chain is shown in Figure 10.  
Each processing step is essential to achieving a high quality image  
from the raw CCD pixel data. Registers for the AD9898 AFE  
section are listed in Table VII.  
PRECISION TIMING HIGH SPEED TIMING GENERATION  
The AD9898 generates flexible high speed timing signals using  
the Precision Timing core. This core is the foundation for gen-  
erating the timing used for both the CCD and the AFE signals,  
including the reset gate RG, the horizontal drivers H1–H2, and  
the CDS sample clocks. By providing precise control over the  
horizontal CCD readout and the AFE correlated double sampling,  
the unique architecture of the AD9898 makes optimizing image  
quality a routine task for a system designer.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to approxi-  
mately 1.5 V, which is compatible with the 3 V analog supply of  
the AD9898.  
Timing Resolution  
The Precision Timing core uses a 1× master clock input (CLI)  
as a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 11 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge posi-  
tions. Using a 20 MHz CLI frequency for the AD9898, the  
edge resolution of the Precision Timing core is 1 ns. A 40 MHz  
CLI frequency can be applied where the AD9898 will inter-  
nally divide the CLI frequency by two. Division by one-third  
and one-fourth is also provided. CLI frequency division is con-  
trolled using the CLKDIV (Addr 0xD5) register.  
Correlated Double Sampler  
To extract the video information and reject low frequency noise,  
the CDS circuit samples each CCD pixel twice. The timing  
shown in Figure 12 illustrates how the two internally generated  
CDS clocks, SHP and SHD, are used to sample the reference  
level and the data level of the CCD signal, respectively. The  
placement of the SHP and SHD sampling edges is determined  
by the setting of the SHPLOC (Addr 0x02) and SHDLOC  
(Addr 0x02) registers. Placement of these two clock edges is criti-  
cal to achieving the best performance from the CCD.  
High Speed Clock Programmability  
Figure 13 shows how the high speed clocks RG, H1–H2, SHP,  
and SHD are generated. The RG pulse has a fixed rising edge  
and a programmable falling edge. The horizontal clock H1  
has a programmable rising and a fixed falling edge occurring at  
H1POSLOC + 24 steps. The H2 clock is always the inverse of  
H1. Table VIII summarizes the high speed timing registers and  
the parameters for the high speed clocks. Each register is six bits  
wide with the 2 MSB used to select the quadrant region as  
outlined in Table VIII. Figure 13 shows the range and de-  
fault locations of the high speed clock signals.  
Table VII. AFE Registers  
Register  
Name  
Bit  
Width Register Type  
Description  
VGAGAIN  
REFBLACK  
AFESTBY  
10  
6
1
Control (Addr 0x0E) VGA Gain  
Control (Addr 0x04) Blk Clamp Level  
Control (Addr 0x05) AFE Standby  
1.0F  
REFT  
2.0V  
1.0F  
REFB  
1.0V  
DC RESTORE  
AD9898  
INTERNAL  
1.5V  
V
REF  
DOUT  
PHASE  
2V FULL  
SCALE  
SHP  
SHD  
6dB TO 40dB  
0.1F  
OUTPUT  
DATA  
LATCH  
10  
CCDIN  
ADC  
CDS  
VGA  
DOUT  
10  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
VGA GAIN  
REGISTER  
CLPOB  
DIGITAL  
FILTER  
6
DOUT  
PHASE  
SHD  
CLPOB  
SHP  
CLAMP LEVEL  
REGISTER  
V-H  
PRECISION  
TIMING  
TIMING  
GENERATION  
GENERATION  
Figure 10. AFE Block Diagram  
REV. 0  
–19–  
AD9898  
H-Driver and RG Outputs  
As shown in Figure 13, the H2 output is the inverse of H1. The  
internal propagation delay resulting from the signal inversion is  
less than 1 ns, which is significantly less than the typical rise  
time driving the CCD load. This results in an H1/H2 crossover  
voltage of approximately 50% of the output swing. The cross-  
over voltage is not programmable.  
In addition to the programmable timing positions, the AD9898  
features on-chip output drivers for the RG and H1–H2 outputs.  
They are sufficiently powerful to directly drive the CCD inputs.  
The H-driver current can be adjusted for optimum rise/fall time  
into a particular load by using the H1DRV and H2DRV regis-  
ters (Addr 0x04). The RG drive current is adjustable using the  
RGDRV register (Addr 0x04). The H1DRV and H2DRV regis-  
ter is adjustable in 4.3 mA increments. The RGDRV register is  
adjustable in 2.15 mA increments. All DRV registers have a setting  
of 0 equal to OFF or three-state, and the maximum setting of 7.  
Digital Data Outputs  
The AD9898 DOUT[9:0] and DCLK phases are independently  
programmable using the DOUTPHASE register (Addr 0x02)  
and DCLKPHASE register (Addr 0x02) (see Figure 15).  
POSITION  
CLI  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
tCLIDLY  
1 PIXEL  
PERIOD  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6 ns TYP).  
Figure 11. High Speed Clock Resolution from CLI Master Clock Input  
3
CCD  
SIGNAL  
4
cds  
(INTERNAL)  
1
5
2
RG  
6
H1  
H2  
PROGRAMMABLE CLOCK POSITIONS  
1. RG RISING EDGE (FIXED EDGE AT 000000).  
2. RG FALLING EDGE (RGNEGLOC (ADDR 0x03)).  
3. SHP SAMPLE LOCATION (SHPLOC (ADDR 0x02)).  
4. SHD SAMPLE LOCATION (SHDLOC (ADDR 0x02)).  
5. H1 RISING EDGE LOCATION (H1POSLOC (ADDR 0x03))  
6. H1 NEGATIVE EDGE LOCATION (FIXED AT (H1POSLOC + 24 STEPS)).  
7. H2 IS ALWAYS THE INVERSE OF H1.  
Figure 12. High Speed Clock Programmable Locations  
–20–  
REV. 0  
AD9898  
Table VIII. RG, H1, SHP, SHD, DCLK, and DOUTPHASE Timing Parameters  
Register Name  
Bit Width  
Register Type  
Range  
Description  
RGNEGLOC  
H1POSLOC  
SHPLOC  
SHDLOC  
DOUTPHASE  
DCLKPHASE  
6
6
6
6
6
6
Control (Addr 0x03)  
Control (Addr 0x03)  
Control (Addr 0x02)  
Control (Addr 0x02)  
Control (Addr 0x02)  
Control (Addr 0x02)  
0–47 Edge Location  
0–47 Edge Location  
0–47 Edge Location  
0–47 Edge Location  
0–47 Edge Location  
0–47 Edge Location  
Falling Edge Location for RG  
Positive Edge Location for H1  
Sample Location for SHP  
Sample Location for SHD  
Phase Location of Data Output [9:0]  
Positive Edge of DCLK 1  
The 2 MSB are used to select the quadrant.  
Table IX. Precision Timing Edge Locations for RG, H1, SHP, SHD, DCLK, and DOUTPHASE  
RG Rising Edge  
RG Falling Edge  
Signal Name  
Quadrant  
(Not Programmable)  
RGNEGLOC  
Quadrant Range  
RG  
I
II  
III  
IV  
Fixed at 000000  
Fixed at 000000  
Fixed at 000000  
Fixed at 000000  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
H1 Rising Edge  
Quadrant Range  
H1 Falling Edge  
Signal Name  
Quadrant  
H1POSLOC  
(Not Programmable)  
H1  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
H1POSLOC + 24 Steps  
H1POSLOC + 24 Steps  
H1POSLOC + 24 Steps  
H1POSLOC + 24 Steps  
cds Rising Edge  
cds Falling Edge  
Signal Name  
Quadrant  
SHPLOC  
Quadrant Range  
SHDLOC  
Quadrant Range  
cds  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
Data Output[9:0] Rising Edge  
Data Output[9:0] Falling Edge  
(Not Programmable)  
Signal Name  
Quadrant  
DOUTPHASE  
Quadrant Range  
Data Output[9:0]  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
Signal Name  
DCLKPHASE Value  
DCLKPHASE Rising Edge  
DCLKPHASE Falling Edge  
DCLK1  
00  
01  
10  
11  
P[6]  
P[26]  
P[36]  
P[06]  
P[16]  
P[16]  
P[26]  
P[36]  
REV. 0  
–21–  
AD9898  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
PIXEL  
PERIOD  
RGr[0]  
Hr[0]  
RGf[12]  
RG  
H1  
Hf[24]  
cds  
(INTERNAL)  
tS1  
SHP[20]  
CCD  
SIGNAL  
SHD[40]  
1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLETO ANY OFTHE 48 POSITIONSWITHIN ONE PIXEL PERIOD.  
2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.  
Figure 13. High Speed Clock Default and Programmable Locations  
tRISE  
H1  
H2  
tPD < tRISE  
tPD  
H2  
H1  
FIXED CROSSOVER VOLTAGE  
Figure 14. H-Clock Inverse Phase Relationship  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
PIXEL  
PERIOD  
DCLK1  
tOD  
DOUT  
1. DCLK1 PHASE IS ADJUSTED BY SETTING THE DCLKPHASE REGISTER (ADDR 0x02).  
2. DOUT PHASE CAN BE ADJUSTED BY SETTING THE DOUTPHASE REGISTER (ADDR 0x02).  
Figure 15. Digital Output Phase Adjustment  
–22–  
REV. 0  
AD9898  
EXTERNAL SYNCHRONIZATION (MASTER MODE)  
External synchronization can be used to synchronize the VD  
and HD signal by applying an external pulse on the SYNC/  
VGATE pin (Pin 45) for master mode operation. The SYNC/  
VGATE pin is configured as an external SYNC input for mas-  
ter mode operation by setting the SLAVE_MODE register  
(Addr 0xD6) = 0. (The AD9898 defaults to slave mode at  
power-up.)  
Table X. External Synchronization (Master Mode)  
SYNCCNT  
External Synchronization Options  
0
1
2
3
4
5
6
7
Disable External Synchronization  
VD Sync at every SYNC Pulse  
VD Sync after Second Applied SYNC Pulse  
VD Sync after Third Applied SYNC Pulse  
VD Sync after Fourth Applied SYNC Pulse  
VD Sync after Fifth Applied SYNC Pulse  
VD Sync after Sixth Applied SYNC Pulse  
VD Sync after Seventh Applied SYNC Pulse  
VD Sync after Eighth Applied SYNC Pulse  
VD Sync after Ninth Applied SYNC Pulse  
VD Sync after Tenth Applied SYNC Pulse  
VD Sync after Eleventh Applied SYNC Pulse  
VD Sync after Twelfth Applied SYNC Pulse  
VD Sync after Thirteenth Applied SYNC Pulse  
VD Sync after Fourteenth Applied SYNC Pulse  
VD Sync after First Applied SYNC Pulse Only  
SYNCCNT (Addr 0x0A) and SYNCPOL (Addr 0x01) are the  
only two registers used for configuring the AD9898 for external  
synchronization. The SYNCPOL is a 1-bit register used for  
configuring the SYNC input as either active low or active high.  
The AD9898 defaults to active low at power-up. The function  
of the SYNCCNT register is described in Table X. Figures 16  
and 17 provide two examples of external synchronization with  
SYNCPOL = 0.  
8
9
10  
11  
12  
13  
14  
15  
4 CLI  
4 CLI  
4 CLI  
VD  
SYNC  
2 CLI  
MIN  
CHANGE TO MODE B  
SERIAL  
WRITES  
OPERATION  
MODE  
MODE A  
MODE B  
Figure 16. Example of Synchronization with SYNCPOL = 0 and SYNCCNT = 1  
4 CLI  
4 CLI  
4 CLI  
VD  
SYNC  
2 CLI  
MIN  
Figure 17. Example of Synchronization with SYNCPOL = 0 and SYNCCNT = 3  
REV. 0  
–23–  
AD9898  
HORIZONTAL AND VERTICAL SYNCHRONOUS TIMING  
The HD and VD output pulses are programmable using the  
registers listed in Table XI. The HD output is asserted low at  
the start of the horizontal line shift. The VD output is asserted  
low at the start of each line. As shown in Figure 18, the 11-bit  
VD counter is used to count the number of lines set by the  
VDLEN register. The 12-bit HD counter is used to count the  
number of pixels in each line set by the HDLEN register. For  
example, if the CCD array size is 2000 lines by 2100 pixels per  
line, VDLEN = 2000 and HDLEN = 0xC28. The HLEN regis-  
ter sets the HL counter that is used as a reference for the rising  
edge of the HD pulse.  
Special Note about the HDLEN Register  
The 12-bit HD counter value must be programmed using a gray  
code number. There is also a 4-clock cycle setup period that  
must be considered when determining the HDLEN register  
value, as shown in Figure 18. As a result of the 4-clock cycle  
setup period, the value of HDLEN is always equal to the actual  
number of pixels per line minus four. For example, if there are  
2100 pixels per line, HDLEN equals (2100 – 4) = 2096. The  
gray code value of 2096 is 0xC28, which is what would be pro-  
grammed in the HDLEN register.  
Table XI. HD and VD Registers  
Register  
Name  
Bit  
Width  
Reference  
Counter  
Register Type  
Range  
Description  
HDLEN  
HLEN  
HDRISE  
HDLASTLEN*  
VDLEN  
12  
10  
10  
12  
11  
4
Sys_Reg(12)  
Sys_Reg(12)  
Sys_Reg(16)  
Mode_Reg(1)  
Mode_Reg(1)  
Sys_Reg(16)  
0–4095 Pixels  
0–1023 Pixels  
0–1023 Pixels  
0–4095 Pixels  
0–2047 Lines  
0–15 Lines  
12-Bit Gray Code Counter Value  
10-Bit HL Counter Value  
HD Rise Position  
HD Last Line Length  
VD Counter Value  
HL  
HD  
VDRISE  
VD  
VD Rise Position  
*Register value must be a gray code number. (See Gray Code Registers section.)  
VDLEN  
11-BIT  
VD COUNTER  
000  
001  
002  
N
2048  
HDLEN  
SETUP  
HDLASTLEN  
12-BIT  
GRAY COUNTER  
+ SETUP  
HLEN  
10-BIT  
HL COUNTER  
VD  
HD  
2
1
LINE LENGTH =  
HDLEN + 4  
1. THE SETUP DELAY IS 4 CLI CYCLES. THE ACTUAL LENGTH OF ONE LINE IS 4  
MORE CYCLES THAN THE VALUE SET IN HDLEN AND HDLASTLEN DUE TO SETUP DELAY.  
2. VDRISE REFERENCES THE 11-BIT VD COUNTER.  
3. HDRISE REFERENCES THE 10-BIT HL COUNTER.  
PROGRAMMABLE CLOCK POSITIONS  
1. HDRISE (SYS_REG(16))  
2. VDRISE (SYS_REG(16))  
Figure 18. VD and HD Horizontal Timing  
–24–  
REV. 0  
AD9898  
Table XII. CLPOB Registers  
Reference  
Register  
Name  
Bit  
Width Register Type  
Counter Range  
Description  
CLP_CONT  
CLP_MODE 1  
1
Control (0x01)  
Control(0x01)  
CLPOB Control (0 = CLPOB Off, 1 = CLPOB On)  
CLPOB CCD Region Control  
(0 = Enable CLPENx Register Settings,  
1 = Disable CLPENx Register Settings)  
CLPTOG1  
CLPTOG2  
CLPEN0  
12  
12  
1
Sys_Reg(15)  
Sys_Reg(15 and 16) HD  
Mode_Reg(2)  
HD  
0–4095 Pixel Locations CLPOB Toggle Position 1 (Gray Code Number)  
0–4095 Pixel Locations CLPOB Toggle Position 2 (Gray Code Number)  
CLPOB Control for CCD Region 0  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 1  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 2  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 3  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 4  
CLPEN1  
CLPEN2  
CLPEN3  
CLPEN4  
1
1
1
1
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
VD  
HD  
12-BIT  
GRAY COUNTER  
+ SETUP  
CLPOB  
1
2
PROGRAMMABLE CLOCK POSITIONS  
1. CLPTOG1 (SYS_REG(15))  
2. CLPTOG2 (SYS_REG(15 AND 16))  
Figure 19. Location of CLPOB Using CLPTOG1 and CLPTOG2 Registers  
HORIZONTAL CLAMPING AND BLANKING  
Figure 21 shows that no CLPOB pulse will be applied when the  
last HD length set by HDLASTLEN is longer than the regular  
HD length. Note that the CLPOB pulse is applied in the last  
line only when HDLASTLEN = HDLEN.  
The AD9898’s horizontal clamping and blanking pulses are  
programmable to suit a variety of applications. Similar to verti-  
cal timing generation, individual sequences are defined for each  
signal and are then organized into multiple regions during  
image readout. This allows the dark pixel clamping and blanking  
patterns to be changed at each stage of the readout to accommo-  
date different image transfer timing and high speed line shifts.  
HD  
CLPOB  
Controlling CLPOB Clamp Pulse Timing  
LAST LINE  
The AFE horizontal CLPOB pulse is generated based on the  
12-bit gray code counter. Once the length of the 12-bit gray  
code counter is set using the HDLEN register (Sys_Reg(12)),  
CLPTOG1 and CLPTOG2 registers (Sys_Reg(15 and16)) can  
be used to place the CLPOB pulse location, as shown in Figure 19.  
Table XII lists all CLPOB registers that are used to configure  
and control the placement and output of the CLPOB pulse.  
Figure 20. Last HD Shorter Than Regular HD  
HD  
CLPOB  
LAST LINE  
The length of the last HD line is set using the HDLASTLEN  
register (Sys_Reg(1)). Figure 20 shows that no CLPOB pulse  
will be asserted when the last HD length set by HDLASTLEN  
is shorter than the regular HD length set by HDLEN.  
Figure 21. Last HD Longer Than Regular HD  
REV. 0  
–25–  
AD9898  
Controlling CLPOB Clamp Pulse Outputs  
Table XIII. SCP and CLPEN  
The registers in Table XII are used for programming the CLPOB  
pulse, which will be disabled in all CCD regions by setting  
CLPCNT = 0. The CLPTOGx (x = 0, 1) are used to set the  
CLPOB toggle positions. The CLPENx (x = 0, 1, 2, 3, and 4)  
are used to enable or disable the CLPOB pulse separately in  
each CCD region when CLPMODE = 0. The CLPEN regis-  
ters have no effect if CLPMODE = 1. In this case, the CLPOB  
pulse will be asserted in all CCD regions, regardless of the value  
set in the CLPENx registers.  
SCP[4:1]  
CLPEN[4:0]  
SCP0*  
SCP1  
SCP2  
SCP3  
SCP4  
CLPEN0  
CLPEN1  
CLPEN2  
CLPEN3  
CLPEN4  
*SCP0 is not a programmable register and therefore is not listed in the register  
map tables. SCP0 is a fixed sequence and always starts at the falling edge of  
VD. Although this register is not programmable, the CLPEN0 register is still  
used to enable or disable the CLPOB pulse for the SCP0 region.  
Figure 22 shows an example of the CLPOB pulse being disabled  
in CCD Regions 1 and 3 by setting CLPEN1 = 1 and CLPEN3  
= 1. Note that the CLPOB pulse remains disabled in the first  
line of the following CCD region.  
VD  
HD  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLPOB  
CLPMASK  
(INTERNAL)  
A
B
1
2
3
4
5
PROGRAMMING POSITIONS  
1. SCP0 = 0 (FIXED), CLPEN0 = 1  
2. SCP1 = 3, CLPEN1 = 0  
3. SCP2 = 4, CLPEN2 = 1  
4. SCP3 = 5, CLPEN3 = 0  
5. SCP4 = 1, CLPEN4 = 1  
NOTE  
THE INTERNAL CLPMASK SIGNAL EXTENDS ONE EXTRA HD CYCLE FROM THE TIME WHEN THE  
CLPMASK PERIOD CHANGES FROM LOW TO HIGH. AS A RESULT, ONE ADDITIONAL CLPOB PULSE  
IS MASKED, AS SHOWN AT POSITIONS A AND B.  
Figure 22. CLPOB Outputs with CLPMODE = 0  
–26–  
REV. 0  
AD9898  
H1 AND H2 BLANKING  
Selective Positioning for Two H1 and H2 Outputs  
The AD9898 provides three options for controlling the period  
where H1 and H2 pulses get blanked. These options are normal  
H blanking, selective positioning for 2 H1 and H2 outputs, and  
extended blanking. In all cases, HBLKMASK is used to set the  
polarity of H1 during the blanking period. Table XIV describes  
the registers used to control H blanking.  
For selective positioning operation, HPULSECNT = 1 and  
HBLKMASK = 0 or 1. In this mode, two H1 pulses are output  
during the blanking period. The location of these two pulses are  
set using the HBLKHPOS register, as shown in Figure 24.  
Extended Blanking  
Extended blanking is enabled by setting HBLKEXT = 1. The  
HBLKEXT register uses the 9-bit BL counter to suspend operation  
of the HD and HL counters. This delays the blanking period by  
the length set in the BLLEN register as shown in Figure 25.  
Normal H Blanking  
For normal H blanking operation, HPULSECNT = 0 and  
BLKMASK = 0 or 1. The HBLKHPOS register is not used in  
this mode. Figure 23 shows one example where HBLKMASK = 0.  
As seen in Figure 23, H1 and H2 are blanked while HD is Low.  
Table XIV. H1 Blanking Registers  
Register  
Name  
Bit  
Width  
Register Type  
Description  
HBLKMASK  
HPULSECNT  
1
1
Control (0x01)  
Control (0x0A)  
Masking Polarity for H1 during Blanking Period1 (0 = Low, 1 = High)  
H Pulse Control during Blanking Period  
(0 = No Output during Blanking, 1 = Output during Blanking)  
HBLKEXT  
1
Control (0x0A)  
Control (0x03)  
Sys_Reg(11)  
H Pulse Blanking Extend Control2  
(0 = Extended Blanking Disabled, 1 = Extended Blanking Enabled)  
Retimes the H1 HBLK to Internal Clock  
(0 = Retiming Disabled, 1 = Retiming Enabled)  
H1 Pulse ON Position during Blanking Period  
H1BLKRETIME  
1
HBLKHPOS  
10  
NOTES  
1The polarity of H2 is always the opposite polarity of the H1 polarity.  
2The HBLKEXT extend control extends the blanking period by the number of counts set in the BLLEN register for the 9-bit BL counter.  
HD  
HDRISE  
HBLK  
(INTERNAL)  
1
H1  
H2  
RG  
1. THE RISING EDGE OF HBLK IS ALWAYS THE SAME AS HDRISE.  
Figure 23. Normal H-Blanking Operation HBLKMASK = 0, HPULSECNT = 0, HBLKHPOS = xxx  
REV. 0  
–27–  
AD9898  
HD  
HBLK  
(INTERNAL)  
H12  
(INTERNAL)  
RG  
H1  
THE H2 POLARITY IS OPPOSITE THE POLARITY OF H1.  
Figure 24. Selective H-Blanking Operation HBLKMASK = 0, HPULSECNT = 1, HBLKHPOS = 003  
BLLEN  
9-BIT  
BL COUNTER  
VD  
HD  
H1  
1
2
CLPOB  
3
4
1. POSITIONS 1, 2, 3, AND 4 ARE DELAYED BY THE VALUE OF THE BL COUNTER.  
2. VSG1, VSG2, V1–V4, AND SUBCK PULSES ARE NOT DELAYED BY THE BL COUNTER.  
Figure 25. VD, HD, and H1 Extended Blanking Operation HBLKEXT = 1  
–28–  
REV. 0  
AD9898  
VGATE MASKING OF V1–V4 AND CLPOB OUTPUTS  
During slave mode operation, the SYNC/VGATE, Pin 45, is  
configured as an input for an external VGATE signal. While  
operating in this mode, the external VGATE signal can be used  
to mask the V1–V4 and CLPOB outputs. There are two options  
available for masking the V1–V4 and CLPOB outputs. The  
selection is made by setting the MSHUT/VGATE_EN register  
located at Control Addr 0x01. Examples of these two options  
are shown in Figures 26 and 27.  
Figure 26 shows an example of MSHUT/VGATE_EN = 0. In  
this example, the VGATE signal is internally latched on the  
falling edge of HD, resulting in the V1–V4 and CLPOB outputs  
being masked when the internally latched VGATE signal is High.  
Figure 27 shows an example when MSHUT/VGATE_EN = 1.  
In this example, the preprogrammed MSHUT signal blocks the  
VGATE input from masking V1–V4 and CLPOB outputs while  
MSHUT is Low. The internally latched VGATE signal will  
only mask V1–V4 and CLPOB when MSHUT is High while  
operating in this mode.  
VD  
HD  
VGATE  
(PIN 45)  
VGATE  
(INTERNAL)  
V1–V4  
CLPOB  
V1–V4 AND CLPOB MASKED  
V1–V4 AND CLPOB MASKED  
Figure 26. Example of VGATE Input Masking V1–V4 and CLPOB Outputs with MSHUT/VGATE_EN = 0  
VD  
HD  
VGATE  
(PIN 45)  
VGATE  
(INTERNAL)  
MSHUT  
V1–V4  
CLPOB  
V1–V4 AND CLPOB MASKED  
Figure 27. Example of VGATE Input Masking V1–V4 and CLPOB Outputs with MSHUT/VGATE_EN = 1  
REV. 0  
–29–  
AD9898  
VERTICAL TIMING GENERATION  
Step 2  
The AD9898 provides a very flexible solution for generating  
vertical CCD timing and can support multiple CCDs and dif-  
ferent system architectures. The 4-phase vertical transfer clocks  
V1–V4 are used to shift each line of pixels into the horizontal  
output register of the CCD. The AD9898 vertical outputs can  
be individually programmed into four different vertical pulse  
patterns identified as VTP0, VTP1, VTP2, and VTP3. Each  
vertical pulse pattern is a unique set of preconfigured V1–V4  
sequences. Once the vertical patterns have been configured  
using the registers in Table XVII, pointer registers are used to  
select which region of the CCD a particular vertical pattern is  
output in. The pointer registers are described in Table XV.  
Create the Individual Vertical Sequences (See Figure 29)  
The individual vertical sequences are created by assigning pulse  
repetitions to patterns VTP0, VTP1, VTP2, and VTP3, using  
VTPREPx registers in Table XVI. The number of repetitions  
(VTPREPx) determines the number of pulse repetitions desired  
within a single line. Programming 1 for VTPREPx gives a single  
pulse, while setting it to 0 will provide a fixed dc output based  
on the start polarity value. Figure 29 shows an example of a VTPx  
sequence of two VTPx patterns made by setting VTPREPx = 2.  
Step 3  
Output Vertical Sequences into CCD Regions (See Figure 30)  
The AD9898 arranges individual sequences into CCD regions  
through the use of sequence pointers (VTPSEQPTRx) and  
vertical transfer pattern select (VTPSELx) registers, as described  
in Table XVI. The VTPSEQPTRx registers are used to point to  
a desired VTPSELx register whose value determines what VTPx  
pattern will be output on the V1–V4 pins. For example, if  
VTPSEQPTR0 = 1 and VTPSEL1 = 2, the VTP2 pulse pattern  
would output while operating in Region 0 of the CCD.  
Up to five unique CCD regions may be specified. The readout  
of the entire field is constructed by combining one or more of  
the individual regions sequentially. With up to five region areas  
available, different steps of the readout, such as high speed line  
shifts and vertical image transfer, can be supported.  
Creating Vertical Sequences  
Figures 28, 29, and 30 provide an overview of how the vertical  
timing is generated in four basic steps.  
Step 4  
Combining CCD Regions (See Figure 30)  
The entire field readout can be built by combining multiple regions  
by using mode registers SCP0, SCP1, SCP2, SCP3, and SCP4.  
Step 1  
Create the Individual Pulses for Patterns VTP0, VTP1, VTP2,  
and VTP3 (See Figure 28)  
The registers shown in Table XV are used to generate the  
individual vertical timing pulses, as shown in Figure 28. The  
VTPLENx determines the number of pixels between pulse  
repetitions. The start polarity (VxSTARTPOLx) sets the start-  
ing polarity of the vertical sequence and can be programmed  
high or low. The first toggle position (VxTOG1POSx) and  
second toggle position (VxTOG2POSx) are the pixel locations  
within the line where the pulse transitions.  
The individual CCD regions are combined into a complete field  
readout using the sequence change position (SCPx) pointers as  
described in Table XVII. Figure 30 shows how each field is  
divided into multiple regions which allows the user to change  
vertical timing during various stages of the image readout. The  
boundaries of each region are defined by the sequence change  
position (SCP). Each SCP is an 8-bit value representing the line  
number boundary region. A total of four SCPs allow up to five  
different regions in the field to be defined. The first SCP0 is  
always hard coded to line zero, and the remaining four SCPs are  
register programmable.  
0
50  
100  
150  
200  
250  
300  
350  
400  
HD  
1
4
2
3
V1  
V2  
5
6
7
8
9
V3  
V4  
10  
11  
12  
VTPLENx [8:0] = 210  
PROGRAMMABLE CLOCK POSITIONS  
1. V1STARTPOLx = 0  
2. V1TOG1x[8:0] = 50  
3. V1TOG2x[8:0] = 130  
4. V2STARTPOLx = 1  
5. V2TOG1x[8:0] = 30  
6. V2TOG2x[8:0] = 150  
7. V3STARTPOLx = 1  
8. V3TOG1x[8:0] = 110  
9. V3TOG2x[8:0] = 180  
10. V4STARTPOLx = 0  
11. V4TOG1x[8:0] = 20  
12. V4TOG2x[8:0] = 160  
Figure 28. Step 1: Create Individual Vertical Pulses for VTP0, VTP1, VTP2, and VTP3 Patterns  
–30–  
REV. 0  
AD9898  
0
50  
100  
150  
200  
250  
300  
350  
400  
HD  
1
2
3
V1  
V2  
4
7
5
6
8
9
V3  
V4  
10  
11  
12  
VTPLENx [8:0] = 210  
Figure 29. Step 2: Create Individual Sequences for V1–V4 Outputs by Assigning Pulse Repetitions to VTP0, VTP1,  
VTP2, and VTP3 Patterns. This Example Shows VTPREPx = 2.  
SCP0  
(FIXED AT LINE 0)  
CCD REGION0  
VERTICAL TRANSFER PULSES  
SCP1 [7:0]  
CCD REGION1  
V1  
V2  
V3  
V4  
V1  
V2  
V3  
V4  
VTP0  
VTP2  
VTP1  
VTP3  
SCP2 [7:0]  
CCD REGION2  
V1  
V2  
V3  
V4  
V1  
V2  
V3  
V4  
SCP3 [7:0]  
SCP4 [7:0]  
CCD REGION3  
CCD REGION4  
SCP 0  
SCP 1  
REGION 1  
(LINE 4)  
SCP 2  
REGION 2  
(LINE 7)  
SCP 4  
REGION 4  
(LINE (N + 7))  
REGION 0  
(FIXED AT LINE 0)  
VD  
HD  
V1  
V2  
V3  
V4  
VTP0  
VTPREP0 = 2  
VTP0  
VTPREP0 = 1  
VTP2  
VTPREP2 = 2  
VTP1  
VTPREP1 = 1  
Figure 30. Steps 3 and 4: Example of Building an Entire Field Readout by Assigning Sequences to Multiple CCD Regions  
REV. 0 –31–  
AD9898  
Table XV. V1–V4 Registers to Configure V1–V4 Pulse for Each VTP Pattern  
Register  
Name  
Bit  
Register  
Reference  
Counter  
VTP  
Pattern  
Width Type  
Range  
Description  
VTPLEN0  
9
1
1
1
1
9
9
9
9
9
9
9
9
Sys_Reg(1)  
V Counter  
0–511  
Length between Repetitions  
V1STARTPOL0  
V2STARTPOL0  
V3STARTPOL0  
V4STARTPOL0  
V1TOG1POS0  
V1TOG2POS0  
V2TOG1POS0  
V2TOG2POS0  
V3TOG1POS0  
V3TOG2POS0  
V4TOG1POS0  
V4TOG2POS0  
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1 and 2)  
Sys_Reg(2)  
Sys_Reg(2)  
Sys_Reg(2 and 3)  
Sys_Reg(3)  
Sys_Reg(3)  
High/Low  
High/Low  
High/Low  
High/Low  
0–511  
0–511  
0–511  
0–511  
0–511  
V1 Starting Polarity for VTP0 (0 = LO, 1 = HI)  
V2 Starting Polarity for VTP0 (0 = LO, 1 = HI)  
V3 Starting Polarity for VTP0 (0 = LO, 1 = HI)  
V4 Starting Polarity for VTP0 (0 = LO, 1 = HI)  
V1 Toggle Position 1 for VTP0  
V1 Toggle Position 2 for VTP0  
V2 Toggle Position 1 for VTP0  
V2 Toggle Position 2 for VTP0  
V3 Toggle Position 1 for VTP0  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V
T
P
0
0–511  
0–511  
0–511  
V3 Toggle Position 2 for VTP0  
V4 Toggle Position 1 for VTP0  
V4 Toggle Position 2 for VTP0  
VTPLEN1  
9
1
1
1
1
9
9
9
9
9
9
9
9
Sys_Reg(3)  
Sys_Reg(3)  
Sys_Reg(3)  
Sys_Reg(4)  
Sys_Reg(4)  
Sys_Reg(4)  
Sys_Reg(4)  
Sys_Reg(4)  
Sys_Reg(4 and 5)  
Sys_Reg(5)  
Sys_Reg(5)  
Sys_Reg(5 and 6)  
Sys_Reg(6)  
V Counter  
0–512  
Length between Repetitions  
V1STARTPOL1  
V2STARTPOL1  
V3STARTPOL1  
V4STARTPOL1  
V1TOG1POS1  
V1TOG2POS1  
V2TOG1POS1  
V2TOG2POS1  
V3TOG1POS1  
V3TOG2POS1  
V4TOG1POS1  
V4TOG2POS1  
High/Low  
High/Low  
High/Low  
High/Low  
0–511  
0–511  
0–511  
0–511  
0–511  
V1 Starting Polarity for VTP1 (0 = LO, 1 = HI)  
V2 Starting Polarity for VTP1 (0 = LO, 1 = HI)  
V3 Starting Polarity for VTP1 (0 = LO, 1 = HI)  
V4 Starting Polarity for VTP1 (0 = LO, 1 = HI)  
V1 Toggle Position 1 for VTP1  
V1 Toggle Position 2 for VTP1  
V2 Toggle Position 1 for VTP1  
V2 Toggle Position 2 for VTP1  
V3 Toggle Position 1 for VTP1  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V
T
P
1
0–511  
0–511  
0–511  
V3 Toggle Position 2 for VTP1  
V4 Toggle Position 1 for VTP1  
V4 Toggle Position 2 for VTP1  
VTPLEN2  
9
1
1
1
1
9
9
9
9
9
9
9
9
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(7)  
Sys_Reg(7)  
Sys_Reg(7)  
Sys_Reg(7 and 8)  
Sys_Reg(8)  
Sys_Reg(8)  
Sys_Reg(8)  
V Counter  
0–512  
Length between Repetitions  
V1STARTPOL2  
V2STARTPOL2  
V3STARTPOL2  
V4STARTPOL2  
V1TOG1POS2  
V1TOG2POS2  
V2TOG1POS2  
V2TOG2POS2  
V3TOG1POS2  
V3TOG2POS2  
V4TOG1POS2  
V4TOG2POS2  
High/Low  
High/Low  
High/Low  
High/Low  
0–511  
0–511  
0–511  
0–511  
0–511  
V1 Starting Polarity for VTP2 (0 = LO, 1 = HI)  
V2 Starting Polarity for VTP2 (0 = LO, 1 = HI)  
V3 Starting Polarity for VTP2 (0 = LO, 1 = HI)  
V4 Starting Polarity for VTP2 (0 = LO, 1 = HI)  
V1 Toggle Position 1 for VTP2  
V1 Toggle Position 2 for VTP2  
V2 Toggle Position 1 for VTP2  
V2 Toggle Position 2 for VTP2  
V3 Toggle Position 1 for VTP2  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V
T
P
2
0–511  
0–511  
0–511  
V3 Toggle Position 2 for VTP2  
V4 Toggle Position 1 for VTP2  
V4 Toggle Position 2 for VTP2  
VTPLEN3  
9
1
1
1
1
9
9
9
9
9
9
9
9
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9 and 10)  
Sys_Reg(10)  
Sys_Reg(10)  
Sys_Reg(10 and 11)  
Sys_Reg(11)  
Sys_Reg(11)  
V Counter  
0–512  
Length between Repetitions  
V1STARTPOL3  
V2STARTPOL3  
V3STARTPOL3  
V4STARTPOL3  
V1TOG1POS3  
V1TOG2POS3  
V2TOG1POS3  
V2TOG2POS3  
V3TOG1POS3  
V3TOG2POS3  
V4TOG1POS3  
V4TOG2POS3  
High/Low  
High/Low  
High/Low  
High/Low  
0–511  
0–511  
0–511  
0–511  
0–511  
V1 Starting Polarity for VTP3 (0 = LO, 1 = HI)  
V1 Starting Polarity for VTP3 (0 = LO, 1 = HI)  
V1 Starting Polarity for VTP3 (0 = LO, 1 = HI)  
V1 Starting Polarity for VTP3 (0 = LO, 1 = HI)  
V1 Toggle Position 1 for VTP3  
V1 Toggle Position 2 for VTP3  
V2 Toggle Position 1 for VTP3  
V2 Toggle Position 2 for VTP3  
V3 Toggle Position 1 for VTP3  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V
T
P
3
0–511  
0–511  
0–511  
V3 Toggle Position 2 for VTP3  
V4 Toggle Position 1 for VTP3  
V4 Toggle Position 2 for VTP3  
–32–  
REV. 0  
AD9898  
Table XVI. Mode_A and Mode_B Registers for VTPx Selection  
Register  
Register  
Name  
Bit  
Width  
Type  
Range  
Description  
VTPSEQPTR0*  
VTPSEQPTR1*  
VTPSEQPTR2*  
VTPSEQPTR3*  
VTPSEQPTR4*  
3
3
3
3
3
Mode_Reg(2)  
Vertical Transfer Pulse Pointer Used in CCD Region 0  
(0 = VTPSEL0, 1 = VTPSEL1, 2 = VTPSEL2, 3 = VTPSEL3  
4 = VTPSEL0 for EVEN Line and VTPSEL1 for ODD Line  
5 = VTPSEL2 for EVEN Line and VTPSEL3 for ODD Line)  
Vertical Transfer Pulse Pointer Used in CCD Region 1  
(0 = VTPSEL0, 1 = VTPSEL1, 2 = VTPSEL2, 3 = VTPSEL3  
4 = VTPSEL0 for EVEN Line and VTPSEL1 for ODD Line  
5 = VTPSEL2 for EVEN Line and VTPSEL3 for ODD Line)  
Vertical Transfer Pulse Pointer Used in CCD Region 2  
(0 = VTPSEL0, 1 = VTPSEL1, 2 = VTPSEL2, 3 = VTPSEL3  
4 = VTPSEL0 for EVEN Line and VTPSEL1 for ODD Line  
5 = VTPSEL2 for EVEN Line and VTPSEL3 for ODD Line)  
Vertical Transfer Pulse Pointer Used in CCD Region 3  
(0 = VTPSEL0, 1 = VTPSEL1, 2 = VTPSEL2, 3 = VTPSEL3  
4 = VTPSEL0 for EVEN Line and VTPSEL1 for ODD Line  
5 = VTPSEL2 for EVEN Line and VTPSEL3 for ODD Line)  
Vertical Transfer Pulse Pointer Used in CCD Region 4  
(0 = VTPSEL0, 1 = VTPSEL1, 2 = VTPSEL2, 3 = VTPSEL3  
4 = VTPSEL0 for EVEN Line and VTPSEL1 for ODD Line  
5 = VTPSEL2 for EVEN Line and VTPSEL3 for ODD Line)  
(0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
VTPSEL0  
VTPSEL1  
VTPSEL2  
VTPSEL3  
VTPREP0  
VTPREP1  
VTPREP2  
VTPREP3  
2
2
2
2
3
3
3
3
Mode_Reg(3)  
Mode_Reg(3)  
Mode_Reg(3)  
Mode_Reg(3)  
Mode_Reg(3)  
Mode_Reg(4)  
Mode_Reg(4)  
Mode_Reg(4)  
(0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3)  
(0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3)  
(0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3)  
Number of VTP0 Pulse Repetitions within a Line  
Number of VTP1 Pulse Repetitions within a Line  
Number of VTP2 Pulse Repetitions within a Line  
Number of VTP3 Pulse Repetitions within a Line  
0–7  
0–7  
0–7  
0–7  
*Registers 6 and 7 are not used.  
Table XVII. Mode_A and Mode_B Registers for CCD Region Selection  
Register  
Register  
Name  
Bit  
Width  
Type  
Range  
Description  
SCP1  
SCP2  
SCP3  
SCP4  
8
8
8
8
Mode_Reg(2)  
Mode_Reg(3)  
Mode_Reg(3)  
Mode_Reg(3)  
0–255 lines  
0–255 lines  
0–255 lines  
0–255 lines  
Sequence Change Position 1  
Sequence Change Position 2  
Sequence Change Position 3  
Sequence Change Position 4  
REV. 0  
–33–  
AD9898  
Special Vertical Sweep Mode Operation  
Normally the sequences are contained within one HD line length,  
but with the sweep mode enabled, the HD boundaries will be  
ignored until the region is finished. The special vertical sweep  
mode operation is only output in CCD Region0 and CCD  
Region3. (See Figures 33 and 34.) The SVREP_MODE register  
located at control Address 0x0A is used to enable and configure  
the special sweep mode operation as described in Table XVIII.  
The maximum number of repeats in each region is 2048  
while operating in this mode using the SVREP0 and SVREP3  
Mode_Reg(4) registers.  
The AD9898 contains a special mode of vertical timing operation  
called sweep mode. This mode is used to generate a continu-  
ous number of repetitive vertical pulses that span multiple HD  
lines. One example of when this mode may be needed is the  
start of the CCD readout operation. At the end of the image  
exposure, but before the image is transferred by the sensor gate  
pulses, the vertical interline CCD registers should be cleared of  
all charge. The charge can be shifted out quickly with a long  
series of pulses on the V1–V4 outputs. This operation will span  
multiple HD line lengths.  
Table XVIII. Description of SVREP_MODE Register  
Description of Sweep Mode Operation  
SVREP_MODE  
0
0
1
1
0
1
0
1
Normal Vertical Timing Operation in All CCD Regions  
Special Vertical Sweep Mode Timing Output in CCD Region0 Only  
Special Vertical Sweep Mode Timing Output in CCD Region3 Only  
Special Vertical Sweep Mode Timing Output in CCD Region0 and CCD Region3  
HD  
V1–V4  
Figure 31. NonOverlapping Example for Normal Vertical Timing Operation with SVREP_MODE = 0 and VTPREPx = 4  
HD  
NOT OUTPUT BECAUSE THE 8TH  
REPETITION OVERLAPS WITH HD  
V1–V4  
Figure 32. Overlapping Example for Normal Vertical Timing Operation with SVREP_MODE = 0 and VTPREPx = 8  
SCP0  
SCP1 = 3  
CCD REGION0  
HD  
0
1
2
0
V1–V4  
Figure 33. Sweep Mode Timing Example with SVREP_MODE = 1 and SVREP0 = 28  
SCP3  
SCP4 = 3  
CCD REGION3  
HD  
0
1
2
0
V1–V4  
Figure 34. Sweep Mode Timing Example with SVREP_MODE = 2 and SVREP3 = 28  
–34–  
REV. 0  
AD9898  
Table XIX. HD and VD Registers  
Register  
Name  
Bit  
Width  
Reference  
Counter  
Range  
Pixels  
Register Type  
Description  
SPAT_EN  
1
Control (Addr 0x0A)  
SPAT Enable Control  
(0 = SPAT Disabled, 1 = SPAT Enabled)  
SPAT Logic Setting  
SPATLOGIC  
4
Control (Addr 0x0A)  
Mode_Reg(5)  
Mode_Reg(5)  
Mode_Reg(6)  
Mode_Reg(6)  
Mode_Reg(6 and 7)  
Mode_Reg(7)  
Mode_Reg(7)  
V1SPAT_TOG1  
V1SPAT_TOG2  
V2SPAT_TOG1  
V2SPAT_TOG2  
V3SPAT_TOG1  
V3SPAT_TOG2  
V4SPAT_TOG1  
V4SPAT_TOG2  
13  
13  
13  
13  
13  
13  
13  
13  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
Polarity Change Position Start for V1 SPAT  
Polarity Change Position End for V1 SPAT  
Polarity Change Position Start for V2 SPAT  
Polarity Change Position End for V2 SPAT  
Polarity Change Position Start for V3 SPAT  
Polarity Change Position End for V3 SPAT  
Polarity Change Position Start for V4 SPAT  
Polarity Change Position End for V4 SPAT  
Mode_Reg(7 and 8)  
Special Vertical Timing (SPAT)  
SPAT timing will initially start Low and then toggle High at the  
first VxSPAT_TOG1 position. This provides the ability to  
output the second vertical pulse when the internal Vx pulse is  
in both High and Low states.  
The AD9898 provides additional special vertical timing (SPAT)  
generation, which is output in the same line as the VSG pulse.  
The SPAT timing allows for configuring a second vertical out-  
put pulse in the VSG line. Tables XIX and XX list the registers  
used to generate the SPAT timing.  
Table XX. SPATLOGIC Register (Addr 0x0A)  
Figures 35 and 36 show how the SPAT timing can be either an  
AND case or an OR case, depending on the value set in the  
SPATLOGIC register. As these figures show, the internal SPAT  
timing for the AND case will start High and then go Low at the  
first VxSPAT_TOG1 position. In the OR case, the internal  
SPATLOGIC [3:0]  
Description  
3
2
1
0
V4  
V3 V2 V1  
0 = OR, 1 = AND  
VD  
HD  
13-BIT  
ST COUNTER  
(FIXED)  
INTERNAL V2  
WITHOUT  
SPAT APPLIED  
INTERNAL SPAT  
TIMING FOR V2 WITH  
SPATLOGIC = 1  
1
2
V2 OUTPUT WITH  
SPAT APPLIED  
VSGx  
1. THE VxSPAT_TOG1 AND VxSPAT_TOG2 REGISTERS REFERENCE THE 13-BIT ST COUNTER.  
2. THE INTERNAL SPAT TIMING IS APPLIED IN THE SAME LINE AS THE VSGx PULSE.  
PROGRAMMABLE CLOCK POSITIONS  
1. VxSPAT_TOG1 (PROGRAMMABLE AT MODE_REGs).  
2. VxSPAT_TOG2 (PROGRAMMABLE AT MODE_REGs).  
Figure 35. SPAT Example Applied to V2 with SPATLOGIC = xx1x  
REV. 0  
–35–  
AD9898  
VD  
HD  
13-BIT  
ST COUNTER  
(FIXED)  
INTERNAL V1  
WITHOUT  
SPAT APPLIED  
INTERNAL SPAT  
TIMING FOR V1 WITH  
SPATLOGIC = 0  
1
2
V1 OUTPUT WITH  
SPAT APPLIED  
VSGx  
1. THE VxSPAT_TOG1 AND VxSPAT_TOG2 REGISTERS REFERENCE THE 13-BIT ST COUNTER.  
2. THE INTERNAL SPAT TIMING IS APPLIED IN THE SAME LINE AS THE VSGx PULSE.  
PROGRAMMABLE CLOCK POSITIONS  
1. VxSPAT_TOG1 (PROGRAMMABLE AT MODE_REGs).  
2. VxSPAT_TOG2 (PROGRAMMABLE AT MODE_REGs).  
Figure 36. SPAT Example Applied to V1 with SPATLOGIC = xxx0  
–36–  
REV. 0  
AD9898  
Table XXI. SUBCK Registers  
Reference  
Bit  
Register Name  
Width Register Type  
Counter  
Range  
Description  
SUBCKNUM  
SUBCKSUPPRESS  
11  
1
Control (Addr 0x0B)  
Control (Addr 0x01)  
0–2047 Pulses  
0–1 Pulse  
Number of SUBCK Pulses per Field  
Suppress First SUBCK after Last VSG  
Line Pulse  
SUBCK_EN  
1
Control (Addr 0x0B)  
SUBCK Output Enable Control  
(0 = Disable, 1 = Enable)  
SUBCKMODE_HP  
SUBCKNUM_HP  
1
3
Control (Addr 0x01)  
Control (Addr 0x0B)  
High Speed Shutter Mode Operation  
High Speed Shutter SUBCLK  
Position/Number  
0–7 Pulses  
SUBCK1TOG1  
SUBCK1TOG2  
SUBCK2TOG1  
SUBCK2TOG2  
SUBCKSEL  
9
9
9
9
1
System_Reg(14)  
System_Reg(14)  
System_Reg(15)  
System_Reg(15)  
Mode_Reg(2)  
OL-Counter 0–511 Pixel Location SUBCLK1 First Toggle Position  
OL-Counter 0–511 Pixel Location SUBCLK1 Second Toggle Position  
OL-Counter 0–511 Pixel Location SUBCLK2 First Toggle Position  
OL-Counter 0–511 Pixel Location SUBCLK2 Second Toggle Position  
(0 = SUBCK1, 1 = SUBCK2)  
ELECTRONIC SHUTTER TIMING CONTROL  
operating in this mode. As shown in Figure 37, the location  
CCD image exposure time is controlled through the use of the  
CCD substrate clock signal (SUBCK), which pulses the CCD  
substrate to clear out accumulated charge prior to the exposure  
period. The AD9898 supports three types of electronic shutter-  
ing: normal shutter mode, suppression shutter mode, and high  
speed shutter mode. Table XXI contains the registers required  
for programming SUBCK pulses for each of these modes.  
of the additional SUBCK pulse is adjusted by setting the  
SUBCKNUM_HP register as described in Table XXII. Finer  
resolution of the exposure time is possible using this mode by  
adding a SUBCK pulse in the line, as shown in Figure 40.  
Multiple Pulse Mode  
In addition to the normal operating SUBCK pulse, up to seven  
sequential SUBCK pulses can be applied within the same line  
while operating in this mode. As shown in Figure 41, the  
number of additional SUBCK pulses is selectable by setting  
SUBCKMODE_HP = 1 and the SUBCKNUM_HP registers  
as described in Table XXII.  
Normal Shutter Mode  
Figure 37 shows the VD and SUBCK output for normal shutter  
mode. The SUBCK will pulse once per line. The number of  
SUBCK pulses per field can be programmed by setting register  
SUBCKNUM (Addr 0x0B). As shown in Figure 37, the SUBCK  
pulses will always begin on the line after the sensor gate occurs,  
specified by VSGACTLINE (Mode_Reg(1)).  
Table XXII. Single and Multiple Pulse Mode  
SUBCKMODE_HP  
SUBCK Suppression Mode  
0
1
Normally the SUBCKs will begin to pulse on the line following  
the last sensor gate line (VSG). With some CCDs, the first  
SUBCK following the VSG line needs to be suppressed. The  
SUBCKSUPPRESS register allows for this suppression. The  
first SUBCK following the last VSG pulse is suppressed when  
SUBCKSUPPRESS = 1, as shown in Figure 38.  
Single Pulse  
Mode  
Multiple Pulse  
Mode  
SUBCKNUM_HP  
0
Normal Shutter Normal Shutter  
Mode Operation Mode Operation  
1
2
3
4
5
6
7
Position No. 1  
Position No. 2  
Position No. 3  
Position No. 4  
Position No. 5  
Position No. 6  
Position No. 7  
1 Additional Pulse  
2 Additional Pulses  
3 Additional Pulses  
4 Additional Pulses  
5 Additional Pulses  
6 Additional Pulses  
7 Additional Pulses  
High Precision Shutter Mode  
The high speed shutter mode can be operated in two differ-  
ent modes, single pulse and multiple pulse. These modes are  
set up by programming the SUBCKNUM_HP register and  
SUBCKMODE_HP register, as described in Table XXII and  
shown in Figures 40 and 41.  
Single Pulse Mode  
In addition to the normal operating SUBCK pulse, one addi-  
tional SUBCK pulse can be applied within the HD line while  
REV. 0  
–37–  
AD9898  
VD  
HD  
VSG1–  
VSG2  
tEXP  
tEXP  
1
SUBCK  
2
3
SUBCK PROGRAMMABLE SETTINGS  
1. SUBCK STARTING POLARITY IS ALWAYS HIGH.  
2. FALLING EDGE OF SUBCK IS SET USING THE SUBCK1TOG1 OR SUBCK2TOG1 REGISTERS.  
3. RISING EDGE OF SUBCK IS SET USING THE SUBCK1TOG2 OR SUBCK2TOG2 REGISTERS.  
NUMBER OF SUBCK PULSES WITHIN THE FIELD IS SET USING THE SUBCKNUM REGISTER. IN THIS EXAMPLE, SUBCKNUM = 2.  
Figure 37. Normal Shutter Mode  
VD  
HD  
VSG1–  
VSG2  
tEXP  
tEXP  
SUBCK  
1
SUBCK PROGRAMMABLE SETTINGS  
SETTING SUBCKSUPPRESS REGISTER = 1 SUPPRESSES THIS FIRST SUBCK FOLLOWING VSG PULSE.  
Figure 38. SUBCK Suppression Mode  
–38–  
REV. 0  
AD9898  
HD  
OLEN  
9-BIT  
OL-COUNTER  
SUBCK  
1
2
3
4
5
6
7
NORMAL SHUTTER MODE PULSE  
ALWAYS OUTPUT  
Figure 39. Electronic Shutter Timing  
HD  
9-BIT  
OL-COUNTER  
SUBCK  
1
Figure 40. Electronic Shutter Timing Example with SUBCKMODE_HP = 0 and SUBCKNUM_HP = 1  
HD  
9-BIT  
OL-COUNTER  
SUBCK  
1
2
3
Figure 41. Electronic Shutter Timing Example with SUBCKMODE_HP = 1 and SUBCKNUM_HP = 3  
REV. 0  
–39–  
AD9898  
VSG TIMING  
Figure 42 also shows an example of the VSG pulse being output  
in the fourth line by setting the VSGACTLINE = 3. The VSG1  
and VSG2 pulses reference the 13-bit fixed ST counter, which  
starts counting from the line set in the VSGACTLINE register.  
The 13-bit counter allows for overlapping of the VSG pulse into  
the next line, if needed.  
The VSG timing is controlled using the registers in Table XXIII.  
Two unique preprogrammed VSG pulses can be configured  
using the VSGTOG1_x (x = 0, 1) registers. As shown in  
Figure 42, the period of the VSG pulse is set by programming  
the VSGLEN register. The VSGSELx (x = 0, 1) can then be  
used to point to either the VSGTOG1_0 or VSGTOG1_1 pulse.  
Table XXIII. VSG Registers  
Reference  
Register  
Name  
Bit  
Width Register Type  
Counter  
Range  
Description  
VSGMASK  
6
Control (Addr 0x0A)  
VSG Mask Control  
(00 = VSG1 masked, VSG2 masked)  
(02 = VSG1 not masked, VSG2 masked)  
(08 = VSG1 masked, VSG2 not masked)  
(0A = VSG1 not masked, VSG2 not masked)  
VSG Output Enable Control  
VSG_EN  
1
Control (Addr 0x0B)  
High/Low  
(0 = Disable VSG Outputs,  
1 = Enable VSG Outputs)  
VSGTOG1_0  
VSGTOG1_1  
VSGLEN  
11  
11  
8
Sys_Reg(13)  
Sys_Reg(13)  
Sys_Reg(14)  
Mode_Reg(1)  
ST  
ST  
ST  
0–8191 Pixels  
0–8191 Pixels  
0–255 Pixels  
High/Low  
VSG Sequence 1, Toggle Position 1  
VSG Sequence 2, Toggle Position 1  
VSG Pulsewidth  
VSGSEL0  
1
VSG1 Output Selector  
(0 = VSGTOG1_0 applied on VSG1 output,  
1 = VSGTOG1_1 applied on VSG1 output)  
VSG2 Output Selector  
(0 = VSGTOG1_0 applied on VSG2 output,  
1 = VSGTOG1_1 applied on VSG2 output)  
VSG Active Line  
VSGSEL1  
1
7
Mode_Reg(1)  
Mode_Reg(1)  
High/Low  
VSGACTLINE  
0–128 Lines  
VD  
HD  
0
1
2
3
13-BIT  
ST COUNTER  
(FIXED)  
VSGACTLINE  
VSGLEN  
1
VSGx  
1. VSGTOG1_x (x = 0, 1) REFERENCES THE 13-BIT ST COUNTER.  
2. VSGACTLINE (PROGRAMMABLE AT MODE_REG (1)).  
3. VSGLEN (PROGRAMMABLE AT SYS_REG (14)).  
PROGRAMMABLE CLOCK POSITION  
VSGTOG1_x (PROGRAMMABLE AT SYS_REG (13)).  
Figure 42. Example of VSG Pulse  
–40–  
REV. 0  
AD9898  
VSUB CONTROL  
VSUB Placement and Polarity  
The CCD readout bias (VSUB) can be programmed to accom-  
modate different CCDs. VSUB ON and OFF toggle positions  
and polarity are controlled using VSUBTOG (Addr 0x0D) and  
VSUBPOL (Addr 0x0D) registers, respectively, as described in  
Table XXIV. Since the VSUBTOG is an 11-bit register, the  
VSUB ON position is programmable within any line. Figure 43  
shows an example of controlling VSUB using these registers.  
Figure 43 shows the sequence of events for programming the  
VSUB ON and OFF toggle positions and polarity.  
1. Program VSUBTOG = 2 and VSUBPOL = 1.  
2. Since VSUBTOG and VSUBPOL are VD synchronous type  
registers, the falling edge of VD will update the serial writes  
from Step 1 here.  
3. VSUB will be asserted high after two HD cycles.  
4. Program VSUBTOG = 3 and VSUBPOL = 0.  
5. Since VSUBTOG and VSUBPOL are VD synchronous type  
registers, the falling edge of VD will update the serial writes  
from Step 4 here.  
Table XXIV. VSUB Registers  
Register  
Name  
Bit  
Register Range  
(Lines) Description  
Width Type  
6. VSUB will be asserted low after three HD cycles.  
VSUBPOL  
1
Control  
(0 = Low, 1 = High)  
VSUBTOG 11  
Control  
0–2048 VSUB Toggle Position  
4
1
SERIAL  
WRITES  
5
2
VD  
HD  
3
6
VSUB  
2 LINES  
3 LINES  
Figure 43. VSUB Timing Example  
REV. 0  
–41–  
AD9898  
MSHUT CONTROL  
MSHUT Basic Operation  
The AD9898 provides an MSHUT output pulse that can be  
configured to control the mechanical shutter of the camera.  
The registers used to control the MSHUT pulse are listed in  
Table XXV.  
The AD9898 offers four preprogrammed MSHUT patterns that  
are selectable using the MSHUTPAT register. The  
preprogrammed length is the same for all patterns set by the  
MSHUTLEN register, but the active ON period of the  
MSHUT pulse is different for each pattern, as shown in Figure  
44. Figure 45 shows an example of selecting MSHUTPAT0  
positioned to start three lines after the falling edge of VD with  
MSHUTLEN = 5.  
The MSHUT pulse can be placed at the start of any line by using  
the 11-bit MSHUTPOS register. The MSHUT pulsewidth is  
controlled using the MSHUTLEN register.  
Table XXV. MSHUT and STROBE Registers  
Register Name  
Bit Width  
Register Type  
Description  
MSHUTPAT  
2
Control (Addr 0x01)  
Selects MSHUT Pattern (See Figure 44)  
(0 = MSHUTPAT0, 1 = MSHUTPAT1, 2 = MSHUTPAT2,  
3 = MSHUTPAT3)  
MSHUT Initialize  
(1 = MSHUT Output Held LOW, 0 = Normal Operation Resumes)  
MSHUT Control (0 = MSHUT Held at Last State,  
1 = MSHUT Output Enabled for Normal Operation)  
MSHUT Position during Normal Operation  
MSHUT Position during High Precision Operation  
MSHUT Pattern Length (See Figures 44 and 45)  
STROBE Output Enable Control  
MSHUTINIT  
MSHUTEN  
1
1
Control (Addr 0x0C)  
Control (Addr 0x0C)  
MSHUTPOS  
MSHUTPOS_HP  
MSHUTLEN  
STROBE_EN  
11  
3
8
Control (Addr 0x0C)  
Control (Addr 0x0C)  
Sys_Reg(13)  
1
Control (Addr 0x0B)  
(0 = STROBE Output Held Low, 1 = Enable STROBE Output)  
HD  
MSHUTPAT0  
MSHUTPAT1  
MSHUTPAT2  
MSHUTPAT3  
MSHUTLEN + 1  
Figure 44. MSHUT Patterns Available by Setting MSHUTPAT Register  
VD  
HD  
1
2
3
1
2
3
4
5
6
VSG1–  
VSG2  
tEXP  
SUBCK  
MSHUT  
MSHUTPOS = 3  
MSHUTPAT = 0, MSHUTLEN = 5  
Figure 45. Example of MSHUT Timing with MSHUTEN = 1 and MSHUTPOS_HP = 0  
–42–  
REV. 0  
AD9898  
MSHUT High Precision Operation  
register. For example, if MSHUTPOS_HP = 3, the MSHUT  
rising and falling edges will be delayed by three OL counter  
cycles after the falling edge of HD, as shown in Figure 46.  
The MSHUTPOS_HP register allows more precise control of  
the MSHUT position within a line. Under normal MSHUT  
operation when MSHUTPOS_HP = 0, the MSHUT polarity  
changes from high to low on the negative edge of the HD pulse,  
as shown in Figure 44. By using the MSHUTPOS_HP register,  
the rising and falling edges of MSHUT can be delayed by mul-  
tiples of the OL counter length, which has been set in the OLEN  
Figure 46 provides an example of high precision MSHUT and  
SUBCK timing. In this example, the length of the OL counter  
is shorter. This provides very precise control of the placement  
of the MSHUT pulse within a line.  
VD  
HD  
1
2
3
1
2
3
4
5
6
VSG1–  
VSG2  
tEXP  
SUBCK  
MSHUT  
OL  
OL  
COUNTER  
COUNTER  
OL  
OL  
COUNTER COUNTER  
MSHUTPOS = 3  
MSHUTPAT = 0, MSHUTLEN = 5  
Figure 46. Example of MSHUT High Precision Timing—MSHUTEN = 1 and MSHUTPOS_HP = 3  
VD  
HD  
1
2
3
1
2
3
4
5
6
VSG1–  
VSG2  
tEXP  
SUBCK  
1
MSHUT  
2
MSHUT  
DELAY = 3 OL  
COUNTER LENGTHS  
MSHUTPOS = 3  
MSHUTPAT = 0, MSHUTLEN = 5  
NOTES  
1
MSHUT OUTPUT IN NORMAL OPERATION WITH MSHUTPOS_HP = 0  
2
MSHUT OUTPUT IN HIGH PRECISION OPERATION WITH MSHUTPOS_HP = 3  
Figure 47. Example of MSHUT High Precision Timing—MSHUTEN = 1, MSHUTPOS_HP = 3, with  
SUBCKMODE_HP = 1, SUBCKNUM_HP = 3  
REV. 0  
–43–  
AD9898  
STROBE Control  
SLAVE_MODE register (Addr 0xD6) can be used to configure  
the AD9898 into master mode by setting SLAVE_MODE = 0.  
The AD9898 provides a STROBE output pulse that can be used  
to trigger the camera flash circuit. STROBE operation is set by  
only one register, as described in Table XXV. The STROBE  
output is held Low when STROBE_EN (Addr 0x0B) is set to  
0 and enabled when set to 1. Providing STROBE_EN = 1, the  
STROBE output pulse will be asserted High on the rising edge of  
the last SUBCK pulse in the field, as shown in Figure 48.  
Figure 48 also shows the STROBE pulse asserted Low again on  
the rising edge of VSG.  
Slave Mode Operation  
While operating in slave mode, VD, HD, and VGATE are pro-  
vided externally from the image processor. VGATE is input  
active high on Pin 45. Unlike master mode operation, there is a  
7 CLI clock cycle delay from the falling edge of HD to when the  
12-bit gray code H counter is reset to zero (see Figure 49).  
Master Mode Operation  
While operating in master mode, VD and HD are outputs and  
the SYNC/VGATE pin is configured as an external SYNC input.  
Master mode is selected by setting register SLAVE_MODE  
(Addr 0xD6) = 0.  
SLAVE AND MASTER MODE OPERATION  
The AD9898 can be operated in either slave mode or master  
mode. It defaults to the slave mode operation at power-up. The  
SET STROBE_EN (ADDR 0x0B) = 1  
VD  
VSG1–  
VSG2  
tEXP  
SUBCK  
STROBE  
2
1
1. STROBE OUTPUT ASSERTED HIGH ON RISING EDGE OF LAST SUBCK PULSE.  
2. STROBE OUTPUT ASSERTED LOW ON NEGATIVE EDGE OF VSG PULSE.  
Figure 48. STROBE Output Timing  
VD  
H-COUNTER  
RESET  
H-COUNTER  
RESET  
HD  
3ns MIN  
CLI  
H-GRAY CODE  
COUNTER  
(PIXEL COUNTER)  
X
X
X
X
X
X
X
X
X
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
INTERNAL 12-BIT H-GRAY CODE COUNTER IS RESET 7 CLOCK CYCLES AFTER THE HD FALLING EDGE.  
Figure 49. External VD/HD and Internal 12-Bit H-Gray Code Counter Synchronization, SLAVE Mode  
–44–  
REV. 0  
AD9898  
VARIABLE GAIN AMPLIFIER  
Optical Black Clamp  
The VGA provides a gain range of 6 dB to 40 dB, programmable  
with 10-bit resolution through the serial digital interface. The  
minimum gain of 6 dB is needed to match a 1 V input signal  
with the ADC full-scale range of 2 V.  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with a fixed  
black level reference, selected by the user in the clamp level  
register. Any value between 0 LSB and 63 LSB may be pro-  
grammed with 6-bit resolution. The resulting error signal is  
filtered to reduce noise, and the correction value is applied to  
the ADC input through a D/A converter. Normally the optical  
black clamp loop is turned on once per horizontal line, but this  
loop can be updated more slowly to suit a particular application.  
The VGA gain curve follows a linear-in-dB characteristic. The  
exact VGA gain can be calculated for any gain register value  
using the equation  
Gain = 0.035 ×Code + 5.3  
(
)
where the code range is 0 to 1023. Figure 50 shows a typical  
AD9898 VGA gain curve.  
The optical black clamp is controlled by the CLPOB signal,  
which is fully programmable (see Horizontal Clamping and  
Blanking section). System timing examples are shown in the  
Horizontal Timing Sequence Example section. The CLPOB  
pulse should be placed during the CCD’s optical black pixel.  
It is recommended that the CLPOB pulse duration be at least  
20 pixels wide. Shorter pulsewidths may be used, but the ability  
to track low frequency variations in the black level will be reduced.  
42  
36  
30  
24  
A/D Converter  
The AD9898 uses a high performance 10-bit ADC architecture,  
optimized for high speed and low power. Differential nonlinearity  
(DNL) performance is typically better than 0.5 LSB. The ADC  
uses a 2 V input range. Better noise performance results from  
using a larger ADC full-scale range.  
18  
12  
6
0
127  
255  
383  
511  
639  
767  
895  
1023  
Digital I/O States for Different Operating Conditions  
Table XXVI describes the state of the digital I/Os for different  
operating conditions.  
VGA GAIN REGISTER CODE  
Figure 50. VGA Gain Curve  
Table XXVI. I/O Levels  
I/O  
OCONT_REG1= 0  
SW_RESET  
DIGSTBY  
SYNC  
DCLK1  
DCLK2  
VD2  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
L
L
ACTIVE  
ACTIVE  
H
H
H
L
H
L
H
H
H
H
H
H
H
L
H
H
L
H
L
L
L
L
H
H
L
H
L
H
H
L
H
L
H
L
L
H
H
H
H
L
HD2  
H
RG  
H1  
H2  
V1  
V2  
V3  
V4  
SUBCK  
VSG1  
VSG2  
STROBE  
MSHUT  
FD  
ACTIVE  
ACTIVE  
ACTIVE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
FREEZE  
L
H
L
L
L
L
NOTES  
1OUTCONT_REG is a register setting located at Addr 0x05. It defaults to 0 at power-up.  
2VD and HD operating in master mode.  
REV. 0  
–45–  
AD9898  
VDD  
(INPUT)  
1
CLI  
(INPUT)  
2
1
OUTCONT  
(INTERNAL  
SIGNAL)  
tPWR  
4
5
6
7
8
9
10  
SERIAL  
WRITES  
1V  
VD  
(OUTPUT)  
ODD FIELD  
1H  
EVEN FIELD  
ODD FIELD  
HD  
(OUTPUT)  
H1, V1, V2, V3, VSG1, VSG2, VSUB, SUBCK, FD  
H2, RG, MSHUT, STROBE  
DIGITAL  
OUTPUTS  
3
tDELAY  
2
DCLK2  
(OUTPUT)  
DCLK1  
(OUTPUT)  
4
tSETTLING  
NOTES  
1
OUTCONT IS AN INTERNAL SIGNAL CONTROLLED USING REGISTER OUTCONT_REG (ADDR 0x05).  
2
DCLK2 WILL BE OUTPUT ON FD/DLCK2, PIN 16, PROVIDING REGISTER DCLK2SEL (ADDR 0xD5) = 1.  
3
4
IT TAKES 11 CLI CLOCKS FROM WHEN OUTCONT GOES HIGH UNTIL VD, HD, AND DIGITAL OUTPUT DATA IS VALID.  
THERE IS 500 s SETTLING TIME FROM WHEN THE DIGSTBY REGISTER IS SET TO WHEN THE DLCK1 IS STABLE.  
Figure 51. Recommended Power-Up Sequence and Synchronization, Master Mode  
POWER-UP  
Recommended Power-Up Sequence for Master Mode  
When the AD9898 is powered up, the following sequence is  
recommended. (Refer to Figure 51 for each step.)  
5. Program system registers (Addr 0x14).  
6. Program Mode_A registers (Addr 0x15).  
7. Program Mode_B registers (Addr 0x16).  
8. Program OUTCONT_REG register (addr 0x05) = 1.  
(The internal OUTCONT signal will be asserted high at  
this time and will enable the digital outputs.)  
9. Program control register MODE (Addr 0x0A) = 0. This  
selects Mode_A operation. (This step is optional because  
the AD9898 defaults to Mode_A at initial power-up.)  
10. Program control register MODE (Addr 0x0A) = 1. This  
selects Mode_B operation. Complete this write at least  
four CLI cycles before start of the next field.  
1. Turn on power supplies for AD9898.  
2. Apply the CLI master clock input. CLI will be output on  
DCLK2 (Pin 16) at this time.  
3. Reset the internal AD9898 registers. Write a 0x000000 to  
the SW_RESET register (Addr 0x00). This will set all  
internal register values to their default values. (This step is  
optional because an internal power-on reset circuit is  
applied at power-up.)  
4. Program the DIGSTBY and AFESTBY registers  
(Addr 0x05) = 1, and program all other necessary control  
registers.  
–46–  
REV. 0  
AD9898  
VDD  
(INPUT)  
CLI  
(INPUT)  
OUTCONT  
(INTERNAL  
SIGNAL)  
1
2
5
6
3
SERIAL  
WRITES  
VD  
(OUTPUT)  
HD  
(OUTPUT)  
H1, V1, VSG1, VSG2, VSUB, SUBCK  
H2, V2, V3, FD, RG, MSHUT, STROBE  
DIGITAL  
OUTPUTS  
2
tDELAY  
DCLK1  
AND  
1
DCLK2  
AFESTBY  
(REGISTER)  
DIGSTBY  
(REGISTER)  
NOTES  
1
DCLK2 WILL BE OUTPUT ON FD/DLCK2, PIN 16, PROVIDING REGISTER DCLK2SEL (ADDR 0xD5) = 1.  
2
IT TAKES 11 CLI CLOCKS FROM WHEN OUTCONT GOES HIGH UNTIL VD, HD, AND DIGITAL OUTPUT DATA IS VALID.  
Figure 52. Recommended Standby Sequence  
STANDBY MODE OPERATION  
Recommended Standby Mode Sequence  
When the AD9898 is going into standby operation, the following  
sequence is recommended. (Refer to Figure 52 for each step.)  
3. When it is time to come out of standby operation, program  
register DIGSTBY (Addr 0x05) = 1 and register AFESTBY  
(Addr 0x05) = 1.  
4. Program necessary control registers.  
5. Program control register MODE (Addr 0x0A) = 0. This  
selects Mode_A operation.  
6. Program register OUTCONT_REG (Addr 0x05) = 1. This  
will assert the internal OUTCONT signal high, causing all  
digital outputs to become active.  
1. Program OUTCONT_REG (Addr 0x05) = 0. This will  
assert the internal OUTCONT signal LO causing all digital  
outputs to become disabled.  
2. Program registers AFESTBY (Addr 0x05) = 0 and DIGSTBY  
(Addr 0x05) = 0. The AD9898 is then in standby operation.  
REV. 0  
–47–  
AD9898  
4
VDD  
(INPUT)  
CLI  
(INPUT)  
OUTCONT  
(INTERNAL)  
SERIAL  
WRITES  
VD  
(OUTPUT)  
ODD FIELD  
EVEN FIELD  
ODD FIELD  
HD  
(OUTPUT)  
H1, V1, V2, V3, V4, VSG1, VSG2, VSUB, FD, SUBCK  
,
DIGITAL  
OUTPUTS  
H2, RG, MSHUT, STROBE  
DCLK1  
DCLK2*  
AFESTBY  
(REGISTER)  
DIGSTBY  
(REGISTER)  
*DCLK2 WILL BE OUTPUT ON FD/DLCK2, PIN 16, PROVIDING REGISTER DCLK2SEL (ADDR 0xD5) = 1.  
Figure 53. Recommended Power-Down Sequence  
POWER-DOWN MODE OPERATION  
Recommended Power-Down Sequence  
When the AD9898 is going to be powered down, the following  
sequence is recommended. (Refer to Figure 53 for each step.)  
1. Program OUTCONT_REG (Addr 0x05) = 0.  
2. Program registers AFESTBY (Addr 0x05) = 0 and DIGSTBY  
(Addr 0x05) = 0.  
3. Remove power from the AD9898.  
–48–  
REV. 0  
AD9898  
HORIZONTAL TIMING SEQUENCE EXAMPLE  
Figure 54 shows a sample CCD layout. The horizontal register  
contains 28 dummy pixels, which will occur on each line clocked  
from the CCD. In the vertical direction, there are 10 optical  
black (OB) lines at the front of the readout and two at the back.  
The horizontal direction has four OB pixels in the front and 48  
in the back.  
valid OB pixels from the sensor, so the CLPOB is not used. In  
some cases, if the horizontal clocks are used during this time,  
the CLPOB signal may be used to keep the AD9898’s clamp  
partially settled.  
Figure 56 shows the recommended sequence for the vertical OB  
interval. The clamp signal is used across the whole line in order  
to stabilize the clamp loop of the AD9898. Figure 57 shows the  
recommended sequence for the effective pixel readout. The 48 OB  
pixels at the end of each line are used for the CLPOB signal.  
To configure the AD9898 horizontal signals for this CCD, three  
sequences can be used. Figure 55 shows the first sequence to be  
used during vertical blanking. During this time, there are no  
SEQUENCE 2 (OPTIONAL)  
2 VERTICAL OB LINES  
USE SEQUENCE 3  
EFFECTIVE IMAGE AREA  
V
10 VERTICAL OB LINES  
USE SEQUENCE 2  
H
4 OB PIXELS  
48 OB PIXELS  
HORIZONTAL CCD REGISTER  
28 DUMMY PIXELS  
Figure 54. Sample CCD Configuration  
SEQUENCE 1: VERTICAL BLANKING  
INVALID PIX  
VERTICAL SHIFT  
DUMMY  
INVALID PIXELS  
VERT SHIFT  
CDIN  
SHP  
SHD  
H1  
H2  
HD  
CLPOB  
CLPOB PULSE MAY BE USED DURING HORIZONTAL DUMMY PIXELS  
IF THE H-CLOCKS ARE USED DURING VERTICAL BLANKING.  
Figure 55. Horizontal Sequence during Vertical Blanking  
REV. 0  
–49–  
AD9898  
SEQUENCE 2: VERTICAL OPTICAL BLACK LINES  
CCDIN OPTICAL BLACK  
SHP  
VERTICAL SHIFT  
DUMMY  
OPTICAL BLACK  
VERT SHIFT  
SHD  
H1  
H2  
HD  
CLPOB  
Figure 56. Horizontal Sequence during Vertical Optical Black Pixels  
SEQUENCE 3: EFFECTIVE PIXEL LINES  
OB  
CCDIN  
SHP  
OPTICAL BLACK  
VERTICAL SHIFT  
DUMMY  
EFFECTIVE PIXELS  
OPTICAL BLACK  
VERT SHIFT  
SHD  
H1  
H2  
HD  
CLPOB  
Figure 57. Horizontal Sequences during Effective Pixels  
–50–  
REV. 0  
AD9898  
CIRCUIT LAYOUT INFORMATION  
supply pin should still be decoupled to the same ground plane  
as the rest of the chip. A separate ground for DRVSS is not  
recommended.  
The AD9898 typical circuit connection is shown in Figure 58.  
The PCB layout is critical to achieving good image quality from  
the AD9898. All of the supply pins, particularly the AVDD,  
TCVDD, RGVDD, and HVDD supplies, must be decoupled to  
ground with good quality high frequency chip capacitors. The  
decoupling capacitors should be located as close as possible to  
the supply pins and should have a very low impedance path to a  
continuous ground plane. There should also be a 4.7 µF or  
larger value bypass capacitor for each main supply—AVDD,  
RGVDD, HVDD, and DRVDD—although this is not necessary  
for each individual pin. For most applications, it is easier to  
share the supply for RGVDD and HVDD, which may be done  
as long as the individual supply pins are separately bypassed. A  
separate 3 V supply may also be used for DRVDD, but this  
The analog bypass pins (REFB, REFT) also should be carefully  
decoupled to ground as close as possible to their respective pins.  
The analog input (CCDIN) capacitor also should be located  
close to the pin.  
The H1, H2, and RG traces should be designed to have low  
inductance to avoid excessive distortion of the signals. Heavier  
traces are recommended because of the CCD’s large transient  
current demand on H1 and H2. When possible, physically  
locating the AD9898 closer to the CCD will reduce the induc-  
tance on these lines. As always, the routing path should be as  
direct as possible from the AD9898 to the CCD.  
3V  
ANALOG  
SUPPLY  
3V  
DRIVER  
SUPPLY  
0.1F  
10kꢀ  
VSUB TO CCD  
EXTERNAL SYNC FROM ASIC/DSP  
OUTCONT  
V1–V4  
7
VSG1, VSG2  
SUBCK  
TO V-DRIVER  
3
SERIAL  
INTERFACE  
48 47 46 45 44 43 42 41 40 39 38 37  
SCK  
D0  
D1  
D2  
D3  
D4  
1
2
36  
35  
34  
SL  
PIN 1  
IDENTIFIER  
SDATA  
3
1.0F  
REFB  
33  
32  
31  
30  
29  
28  
27  
4
REFT 1.0F  
AVSS  
5
DRVSS  
DRVDD  
D5  
AD9898  
6
0.1F  
3V  
DRIVER  
SUPPLY  
4.7F  
0.1F  
CCDIN  
TOP VIEW  
7
CCD SIGNAL  
(Not to Scale)  
AVDD  
CLI  
3V  
ANALOG SUPPLY  
0.1F  
8
D6  
9
INPUT CLOCK  
TCVDD  
D7  
10  
11  
12  
0.1F  
0.1F  
TCVSS  
RGVDD  
D8  
D9  
26  
25  
3V  
ANALOG SUPPLY  
10  
4.7F  
DATA  
OUTPUTS  
13 14 15 16 17 18 19 20 21 22 23 24  
4
3
DCLK1, FD/DCLK2, HD, VD  
H2, H1, RG  
TO MECHANICAL SHUTTER CIRCUIT  
TO STROBE CIRCUIT  
0.1F  
3V  
ANALOG SUPPLY  
Figure 58. Typical Circuit Configuration  
REV. 0  
–51–  
AD9898  
OUTLINE DIMENSIONS  
48-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-48)  
Dimensions shown in millimeters  
0.30  
7.00  
BSC SQ  
0.23  
0.18  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
37  
36  
48  
1
PIN 1  
INDICATOR  
5.25  
5.10 SQ  
4.95  
6.75  
BSC SQ  
BOTTOM  
VIEW  
TOP  
VIEW  
0.50  
0.40  
0.30  
25  
24  
12  
13  
0.25 MIN  
5.50  
REF  
1.00 MAX  
0.65 NOM  
1.00  
0.90  
0.80  
12MAX  
0.05 MAX  
0.02 NOM  
0.20  
REF  
0.50 BSC  
COPLANARITY  
0.08  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2  
–52–  
REV. 0  

相关型号:

AD9901

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KP

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KP-REEL

PHASE DETECTOR, 200 MHz, PQCC20, PLASTIC, LCC-20
ROCHESTER

AD9901KPZ

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KPZ-REEL

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KQ

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901KQZ

PHASE DETECTOR, 200MHz, CDIP14, CERDIP-14
ADI

AD9901TE

暂无描述
ADI

AD9901TE/883

Ultrahigh Speed Phase/Frequency Discriminator
ADI

AD9901TE/883B

IC PHASE LOCKED LOOP, CQCC20, CERAMIC, LCC-20, PLL or Frequency Synthesis Circuit
ADI

AD9901TQ

AD9901TQ
ADI

AD9901TQ/883

Ultrahigh Speed Phase/Frequency Discriminator
ADI