AD9901KPZ-REEL [ADI]

Ultrahigh Speed Phase/Frequency Discriminator;
AD9901KPZ-REEL
型号: AD9901KPZ-REEL
厂家: ADI    ADI
描述:

Ultrahigh Speed Phase/Frequency Discriminator

文件: 总8页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultrahigh Speed  
a
Phase/Frequency Discriminator  
AD9901  
PHASE-LOCKED LOOP  
FEATURES  
Phase and Frequency Detection  
ECL/TTL/CMOS Compatible  
Linear Transfer Function  
No “Dead Zone”  
REFERENCE  
INPUT  
LOW-  
OSCILLATOR  
OUTPUT  
PASS  
VCO  
FILTER  
MIL-STD-883 Compliant Versions Available  
AD9901  
APPLICATIONS  
1/N  
Low Phase Noise Reference Loops  
Fast-Tuning “Agile” IF Loops  
Secure “Hopping” Communications  
Coherent Radar Transmitter/Receiver Chains  
OPTIONAL 1/N PRESCALER  
TYPICAL OF DIGITAL PLLs  
GENERAL DESCRIPTION  
A major feature of the AD9901 is its ability to compare  
phase/frequency inputs at standard IF frequencies without  
prescalers. Excessive phase uncertainty which is common with  
standard PLL configurations is also eliminated. The AD9901  
provides the locking speed of traditional phase/frequency dis-  
criminators, with the phase stability of analog mixers.  
The AD9901 is a digital phase/frequency discriminator capable  
of directly comparing phase/frequency inputs up to 200 MHz.  
Processing in a high speed trench-oxide isolated process, com-  
bined with an innovative design, gives the AD9901 a linear  
detection range, free of indeterminate phase detection zones  
common to other digital designs.  
The AD9901 is available as a commercial temperature range  
device, 0°C to +70°C, and as a military temperature device,  
–55°C to +125°C. The commercial versions are packaged in a  
14-lead ceramic DIP and a 20-lead PLCC.  
With a single +5 V supply, the AD9901 can be configured to  
operate with TTL or CMOS logic levels; it can also operate  
with ECL inputs when operated with a –5.2 V supply. The  
open-collector outputs allow the output swing to be matched to  
post-filtering input requirements. A simple current setting resis-  
tor controls the output stage current range, permitting a reduc-  
tion in power when operated at lower frequencies.  
The AD9901 Phase/Frequency Discriminator is available in  
versions compliant with MIL-STD-883. Refer to the Analog  
Devices Military Products Databook or current AD9901/883B  
data sheet for specifications.  
FUNCTIONAL BLOCK DIAGRAM  
D
Q
D
Q
REFERENCE  
FREQUENCY  
DISCRIMINATOR  
FLIP-FLOP  
REFERENCE  
INPUT  
FLIP-FLOP  
REFERENCE  
INPUT  
OUTPUT  
OUTPUT  
Q
Q
R
XOR  
D
Q
OSCILLATOR  
INPUT  
S
D
Q
FLIP-FLOP  
OSCILLATOR  
FREQUENCY  
DISCRIMINATOR  
FLIP-FLOP  
OSCILLATOR  
INPUT  
Q
Q
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
AD9901–SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS1  
Operating Temperature Range  
AD9901KQ/KP . . . . . . . . . . . . . . . . . . . . . . . 0°C to +70°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature2  
Plastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+150°C  
Ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+175°C  
Lead Soldering Temperature (10 sec) . . . . . . . . . . . . .+300°C  
Positive Supply Voltage (+VS for TTL Operation) . . . . . +7 V  
Negative Supply Voltage (–VS for ECL Operation) . . . . . –7 V  
Input Voltage Range (TTL Operation) . . . . . . . 0 V to +5.5 V  
Differential Input Voltage (ECL Operation) . . . . . . . . . .4.0 V  
ISET Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 mA  
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
(؎V = +5.0 V [for TTL] or –5.2 V [for ECL], unless otherwise noted)  
ELECTRICAL CHARACTERISTICS  
S
Commercial Temperature  
0؇C to +70؇C  
AD9901KQ/KP  
Test  
Temp  
Level  
Min  
Typ  
Max  
Units  
INPUT CHARACTERISTICS  
TTL Input Logic “1” Voltage  
TTL Input Logic “0” Voltage  
TTL Input Logic “1” Current3  
TTL Input Logic “0” Current3  
ECL Differential Switching Voltage  
ECL Input Current  
Full  
Full  
Full  
Full  
Full  
Full  
VI  
VI  
VI  
VI  
VI  
VI  
2.0  
V
V
mA  
mA  
mV  
µA  
0.8  
0.6  
1.6  
300  
1.6  
20  
OUTPUT CHARACTERISTICS  
Peak-to-Peak Output Voltage Swing4  
TTL Output Compliance Range  
ECL Output Compliance Range  
IOUT Range  
Full  
Full  
Full  
Full  
Full  
VI  
V
V
V
VI  
1.8  
3–7  
±2  
0.9–11  
0.47  
2.0  
V
V
V
mA  
V
Internal Reference Voltage  
0.42  
0.52  
AC CHARACTERISTICS  
Linear Phase Detection Range4  
40 kHz  
30 MHz  
70 MHz  
Functionality @ 70 MHz  
+25°C  
+25°C  
+25°C  
+25°C  
V
V
V
I
360  
320  
270  
Pass/Fail  
Degrees  
Degrees  
Degrees  
POWER SUPPLY CHARACTERISTICS  
TTL Supply Current (+5.0 V)5, 6  
+25°C  
Full  
+25°C  
Full  
I
I
I
I
43.5  
43.5  
42.5  
42.5  
218  
54.0  
54.0  
52.5  
52.5  
mA  
mA  
mA  
mA  
mW  
ECL Supply Current (–5.2 V)5, 6  
Nominal Power Dissipation  
+25°C  
V
NOTES  
1Absolute maximum ratings are limiting values, to be applied individually, and beyond which the service ability of the circuit may be impaired. Functional operability  
is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period of time may affect device reliability.  
2Maximum junction temperature should not exceed +175°C for ceramic packages, +150°C for plastic packages. Junction temperature can be calculated by:  
tJ = PD (θJA) +tA = PD (θJC) +tC  
where:  
PD = power dissipation  
θJA = thermal impedance from junction to air (°C/W)  
θJC = thermal impedance from junction to case (°C/W)  
tA = ambient temperature (°C)  
tC = case temperature (°C)  
typical thermal impedances:  
AD9901 Ceramic DIP = θJA = 74°C/W; θJC = 21°C/W  
AD9901 LCC = θJA = 80°C/W; θJC = 19°C/W  
AD9901 PLCC = θJA = 88.2°C/W; θJC = 45.2°C/W  
3VL = +0.4 V; VH = +2.4 V.  
4RSET = 47.5 ; RL = 182 .  
5lncludes load current of 10 mA (load resistors = 182 ).  
6Supply should remain stable within ± 5% for normal operation.  
Specifications subject to change without notice.  
–2–  
REV. B  
AD9901  
INPUT/OUTPUT EQUIVALENT CIRCUITS  
(Based on DIP Pinouts)  
TTL MODE = +V (+5.0V)  
S
ECL MODE = GROUND  
+5.0V  
4/13  
3/14  
VCO/REF, INPUT  
5/12  
VCO/REF, INPUT  
VCO/REF, INPUT  
R
SET  
0.47V  
REFERENCE  
–5.2V  
TTL MODE = GROUND  
ECL MODE = V (–5.2V)  
S
TTL Input  
ECL Input  
Output  
AD9901 BURN-IN CIRCUIT  
(Based on DIP ECL Pinouts)  
DIE LAYOUT AND MECHANICAL INFORMATION  
R
REFERENCE IN (–V  
)
+V (GND)  
OUTPUT  
SET  
S
S
GND (REFERENCE IN)  
DA3  
GND (REFERENCE IN)  
–V (–5.2V)  
S
V
MID  
GND (–V  
)
S
0.01F  
50⍀  
180⍀  
1k⍀  
GND (–V  
)
)
S
V
(–V  
S
S
+V (GND)  
S
GND (VCO IN)  
OUTPUT  
GND (VCO IN)  
VCO IN (–V )  
S
AD9901  
REG  
Die Dimensions . . . . . . . . . . . . . . . . . 63 × 118 × 16 (±2) mils  
Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 × 4 mils  
Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aluminum  
Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None  
Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –VS  
Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nitride  
Die Attach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gold Eutectic  
180⍀  
1k⍀  
DA2  
V
MID  
ALL RESISTORS ؎5%  
ALL CAPACITORS ؎20%  
ALL SUPPLY VOLTAGES ؎5%  
= –1.3V ؎5%  
ECL HIGH  
DA2  
ECL LOW  
V
MID  
STATIC: DA2 = ECL HIGH; DA3 = ECL LOW  
DYNAMIC: ECL HIGH  
Bond Wire . . . . . . . . 1.25 mil Aluminum; Ultrasonic Bonding  
ECL HIGH  
DA3  
ECL LOW  
ORDERING GUIDE  
Temperature  
Ranges  
Package  
Descriptions  
Package  
Options  
Model  
AD9901KQ  
0°C to +70°C  
14-Lead Cerdip  
Q-14  
AD9901KP  
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
20-Lead Plastic Leaded Chip Carrier  
14-Lead Cerdip  
20-Terminal Ceramic Leadless Chip Carrier  
P-20A  
Q-14  
E-20A  
AD9901TQ/8831  
AD9901TE/8831  
NOTE  
1For specifications, refer to Analog Devices Military Products Databook.  
REV. B  
–3–  
AD9901  
TTL/CMOS MODE FUNCTIONAL PIN DESCRIPTIONS  
ECL MODE FUNCTIONAL PIN DESCRIPTIONS  
GROUND  
Ground connections for AD9901. Connect  
all grounds together and to low impedance  
ground plane as close to the device as  
possible.  
–VS  
Negative supply connection, nominally  
–5.2 V for ECL operation.  
BIAS  
Connect to –5.2 V for ECL operation.  
VCO INPUT  
Inverted side of ECL compatible differential  
input, normally connected to the VCO output  
signal.  
+VS  
Positive supply connection; nominally +5.0 V  
for TTL operation.  
BIAS  
Connect to +VS (+5 V) for TTL operation.  
VCO INPUT  
Noninverted side of ECL-compatible  
differential input, normally connected to the  
VCO output signal.  
VCO INPUT  
TTL compatible input; normally connected  
to the VCO output signal. VCO INPUT and  
REFERENCE INPUT are equivalent to one  
another.  
OUTPUT  
GROUND  
The noninverted output. In ECL mode, the  
output swing is approximately 0 V to –1.8 V.  
OUTPUT  
The noninverted output. In TTL/CMOS  
mode, the output swing is approximately  
+3.2 V to +5 V.  
Ground connections for AD9901. Connect  
all grounds together and to low-impedance  
ground plane as close to the device as  
possible.  
RSET  
External RSET connection. The current  
through the RSET resistor is equal to the maxi-  
mum full-scale output current. RSET should  
be connected to ground through an external  
RSET  
External RSET connection. The current  
through the RSET resistor is equal to the maxi-  
mum full-scale output current. RSET should  
be connected to –VS through an external  
resistor in TTL mode. ISET = 0.47 V/RSET  
ILOAD (max).  
=
resistor in ECL mode. ISET = 0.47 V/RSET  
ILOAD (max).  
=
OUTPUT  
The inverted output. In TTL/CMOS mode,  
the output swing is approximately +3.2 V to  
+5 V.  
OUTPUT  
The inverted output. In ECL mode, the out-  
put swing is approximately 0 V to –1.8 V.  
REFERENCE  
INPUT  
TTL compatible input, normally connected  
to the reference input signal. The VCO  
INPUT and the REFERENCE INPUT are  
equivalent.  
REFERENCE  
INPUT  
Noninverted side of ECL-compatible  
differential input, normally connected to the  
reference input signal. The VCO INPUT and  
the REFERENCE INPUT are equivalent to  
one another.  
REFERENCE  
INPUT  
Inverted side of ECL-compatible differential  
input, normally connected to the reference  
input signal. The VCO INPUT and the  
REFERENCE INPUT are equivalent.  
+V  
S
–V  
S
R1  
R2  
R1  
REFERENCE  
OUTPUT +V  
R2  
REFERENCE  
INPUT  
REFERENCE  
INPUT  
R
S
OUTPUT  
SET  
–V  
S
R
SET  
OUTPUT  
AD9901  
AD9901  
REG  
REG  
BIAS  
+V  
OUTPUT  
R3  
VCO  
INPUT  
+V  
S
BIAS  
OUTPUT  
R3  
VCO –V  
INPUT  
VCO  
INPUT  
S
S
–V  
S
+V  
S
Figure 1. TTL Mode (Based on DIP Pinouts)  
Figure 2. ECL Mode (Based on DIP Pinouts)  
–4–  
REV. B  
AD9901  
EXPLANATION OF TEST LEVELS  
– Parameter is a typical value only.  
Test Level  
I
– 100% production tested.  
V
II – 100% production tested at +25°C, and sample tested  
at specified temperatures.  
III – Sample tested only.  
IV – Parameter is guaranteed by design and characteriza-  
tion testing.  
VI – All devices are 100% production tested at +25°C. 100%  
production tested at temperature extremes for extended  
temperature devices; sample tested at temperature ex-  
tremes for commercial/industrial devices.  
PIN CONFIGURATIONS  
ECL DIP Pinouts  
TTL DIP Pinouts  
1
2
3
4
5
6
7
14  
–V  
S
REFERENCE INPUT  
1
2
3
4
5
6
7
14 GROUND  
GROUND  
BIAS  
13  
12  
REFERENCE INPUT  
BIAS  
13  
12  
GROUND  
–V  
S
VCO INPUT  
GROUND  
GROUND  
VCO INPUT  
OUTPUT  
REFERENCE INPUT  
AD9901  
TOP VIEW  
(Not to Scale)  
AD9901  
TOP VIEW  
(Not to Scale)  
11 GROUND  
VCO INPUT  
11 +V  
10  
S
10  
–V  
S
OUTPUT  
OUTPUT  
9
8
OUTPUT  
GROUND  
R
SET  
9
8
R
SET  
–V  
S
+V  
GROUND  
S
ECL LCC Pinouts  
TTL LCC Pinouts  
3
2
1
20 19  
3
2
1
20 19  
18  
17  
16  
15  
4
REFERENCE INPUT  
NC  
GROUND  
NC  
5
6
7
8
18  
17  
16  
15  
4
5
6
7
8
–V  
S
VCO INPUT  
AD9901  
TOP VIEW  
(Not to Scale)  
+V  
S
GROUND  
NC  
NC  
NC  
VCO INPUT  
NC  
AD9901  
TOP VIEW  
(Not to Scale)  
NC  
GROUND  
NC  
VCO INPUT  
14  
OUTPUT  
–V  
S
14  
OUTPUT  
9
10 11 12 13  
NC = NO CONNECT  
9
10 11 12 13  
NC = NO CONNECT  
ECL PLCC Pinouts  
TTL PLCC Pinouts  
3
2
1
20 19  
PIN 1  
IDENTIFIER  
4
5
6
7
8
18  
GROUND  
GROUND  
VCO INPUT  
OUTPUT  
NC  
REFERENCE INPUT  
17 NC  
16 +V  
3
2
1
20 19  
AD9901  
TOP VIEW  
(Not to Scale)  
S
PIN 1  
IDENTIFIER  
4
5
6
7
8
18  
–V  
S
VCO INPUT  
15  
14  
NC  
OUTPUT  
VCO INPUT  
17 NC  
AD9901  
TOP VIEW  
(Not to Scale)  
–V  
16 GROUND  
S
15  
14  
OUTPUT  
NC  
NC  
9
10 11 12 13  
NC = NO CONNECT  
OUTPUT  
9
10 11 12 13  
NC = NO CONNECT  
REV. B  
–5–  
AD9901  
THEORY OF OPERATION  
REFERENCE  
INPUT  
A phase detector is one of three basic components of a phase-  
locked loop (PLL); the other two are a filter and a tunable oscil-  
lator. A basic PLL control system is shown in Figure 3.  
OSCILLATOR  
INPUT  
REFERENCE  
FLIP-FLOP  
OUTPUT  
REFERENCE  
INPUT  
OSCILLATOR  
FLIP-FLOP  
OUTPUT  
LOW-  
OSCILLATOR  
OUTPUT  
PASS  
VCO  
DC MEAN VALUE  
FILTER  
XORGATE  
OUTPUT  
AD9901  
1/N  
OPTIONAL 1/N PRESCALER  
TYPICAL OF DIGITAL PLLs  
Figure 6. Timing Waveforms (φOUT Lags φ )  
IN  
oscillator leading the reference frequency; and with the oscillator  
lagging. This output pulse train is low-pass filtered to extract the  
dc mean value [Kφ (φI φO)] where Kφ is a proportionality con-  
stant (phase gain).  
Figure 3. Phase-Locked Loop Control System  
The function of the phase detector is to generate an error signal  
that is used to retune the oscillator frequency whenever its out-  
put deviates from a reference input signal. The two most com-  
mon methods of implementing phase detectors are (1) an analog  
mixer and (2) a family of sequential logic circuits known as  
digital phase detectors.  
At or near lock (Figures 4, 5 and 6), only the two input flip-  
flops and the exclusive-OR gate (the phase detection circuit) are  
active. The input flip-flops divide both the reference and oscilla-  
tor frequencies by a factor of two. This insures that inputs to the  
exclusive-OR are square waves, regardless of the input duty  
cycles of the frequencies being compared. This division-by-two  
also moves the nonlinear detection range to the ends of the  
range rather than near lock, which is the case with conventional  
digital phase detectors.  
The AD9901 is a digital phase detector. As illustrated in the  
block diagram of the unit, straightforward sequential logic de-  
sign is used. The main components include four “D” flip-flops,  
an exclusive-OR gate (XOR) and some combinational output  
logic. The circuit operates in two distinct modes: as a linear  
phase detector and as a frequency discriminator.  
Figure 7 illustrates the constant gain near lock.  
When the reference and oscillator are very close in frequency,  
only the phase detection circuit is active. If the two inputs are  
substantially different in frequency, the frequency discrimina-  
tion circuit overrides the phase detector portion to drive the  
oscillator frequency toward the reference frequency and put it  
within range of the phase detector.  
2
F
= 70MHz  
O
F
= 200MHz  
O
F
= 50MHz  
O
Input signals to the AD9901 are pulse trains, and its output  
duty cycle is proportional to the phase difference of the oscilla-  
tor and reference inputs. Figures 4, 5 and 6 illustrate, respec-  
tively, the input/output relationships at lock; with the  
1
TYPICAL PHASE DETECTOR  
GAIN IS 0.2865V/RAD  
V  
= 1.8V  
OUT  
REFERENCE  
INPUT  
OSCILLATOR  
INPUT  
0
–2␲  
0
␲  
PHASE DIFFERENCE AT INPUTS  
REFERENCE  
FLIP-FLOP  
OUTPUT  
Figure 7. Phase Gain Plot  
OSCILLATOR  
FLIP-FLOP  
When the two square waves are combined by the XOR, the  
output has a 50% duty cycle if the reference and oscillator in-  
puts are exactly 180° out of phase; under these conditions, the  
AD9901 is operating in a locked mode. Any shift in the phase  
relationship between these input signals causes a change in the  
output duty cycle. Near lock, the frequency discriminator flip-  
flops provide constant HIGH levels to gate the XOR output to  
the final output.  
OUTPUT  
DC MEAN VALUE  
XORGATE  
OUTPUT  
Figure 4. AD9901 Timing Waveforms at “Lock”  
REFERENCE  
INPUT  
OSCILLATOR  
INPUT  
The duty cycle of the AD9901 is a direct measure of the phase  
difference between the two input signals when the unit is near  
lock. The transfer function can be stated as [Kφ(φI φO](V/RAD),  
where Kφ is the allowable output voltage range of the AD9901  
divided by 2 π.  
REFERENCE  
FLIP-FLOP  
OUTPUT  
OSCILLATOR  
FLIP-FLOP  
OUTPUT  
DC MEAN VALUE  
For a typical output swing of 1.8 V, the transfer function can be  
stated as (1.8 V/2 π = 0.285 V/RAD). Figure 7 shows the rela-  
tionship of the dc mean value of the AD9901 output as a func-  
tion of the phase difference of the two inputs.  
XORGATE  
OUTPUT  
Figure 5. Timing Waveforms (φOUT Leads φIN)  
–6–  
REV. B  
AD9901  
500mV  
500mV  
500mV  
100  
90  
100  
90  
100  
90  
10  
10  
10  
0%  
0%  
0%  
5ns  
200ns  
200ns  
Figure 8. AD9901 Output Waveform  
(FO << FI)  
Figure 9. AD9901 Output Waveform  
(FO >> FI)  
Figure 10. AD9901 Output Waveform  
(FO = FI = 50 MHz)  
165  
It is important to note that the slope of the transfer function is  
constant near its midpoint. Many digital phase comparators have  
an area near the lock point where their gain goes to zero, result-  
ing in a “dead zone.” This causes increased phase noise (jitter) at  
the lock point.  
155  
145  
135  
125  
115  
105  
95  
The AD9901 avoids this dead zone by shifting it to the end-  
points of the transfer curve, as indicated in Figure 7. The in-  
creased gain at either end increases the effective error signal to  
pull the oscillator back into the linear region. This does not  
affect phase noise, which is far more dependent upon lock region  
characteristics.  
85  
75  
65  
It should be noted, however, that as frequency increases, the  
linear range is decreased. At the ends of the detection range, the  
reference and oscillator inputs approach phase alignment. At this  
point, slew rate limiting in the detector effectively increases  
phase gain. This decreases the linear detection by nominally  
3.6 ns. Therefore, the typical detection range can be found by  
calculating [(1/F – 3.6 ns)/(1/F)] × 360°. As an example, at  
200 MHz the linear phase detection range is ±50°.  
0
–1  
1
2
3
4
5
6
VARACTORS TUNING VOLTAGE – Volts  
Figure 11. VCO Frequency vs. Voltage  
Next, the range of frequencies over which the VCO is to operate  
is examined to assure that it lies on a linear portion of the transfer  
curve. In this case, frequencies from 100 MHz to 120 MHz  
result from tuning voltages of approximately +1.5 V to +2.5 V.  
Because the nominal output swing of the AD9901 is 0 V to –1.8 V,  
an inverting amplifier with a gain of 2 follows the loop filter.  
Away from lock, the AD9901 becomes a frequency discrimina-  
tor. Any time either the reference or oscillator input occurs twice  
before the other, the Frequency High or Frequency Low flip-flop  
is clocked to logic LOW. This overrides the XOR output and  
holds the output at the appropriate level to pull the oscillator  
toward the reference frequency. Once the frequencies are within  
the linear range, the phase detector circuit takes over again.  
Combining the frequency discriminator with the phase detector  
eliminates locking to a harmonic of the reference.  
As shown in the illustration, a simple passive RC low-pass filter  
made up of two resistors and a tantalum capacitor eliminates the  
need for an expensive high speed op amp active-filter design. In  
this passive-filter second-order-loop system, where n = 2, the  
damping factor is equal to:  
δ = 0.5 [KOKd /n(τ1 + τ2)]1/2 [τ2 + (n/KOKd)]  
and the values for τ1 and τ2 are the low-pass filter’s time con-  
stants R1C and R2C. The gain of 2 of the inverting stage, when  
combined with the phase detector’s gain, gives:  
Figure 8 shows the effect of the “Frequency Low” flip-flop when  
the oscillator frequency is much lower than the reference input.  
The narrow pulses, which result from cycles when two positive  
reference-input transitions occur before a positive VCO edge,  
increase the dc mean value. Figure 9 illustrates the inverse effect  
when the “Frequency High” flip-flop reacts to a much higher  
VCO frequency.  
Kd = 0.572 V/RAD  
With KO = 115.2 MRAD/s/V, τ1 equals 1.715s, and τ2 equals  
3.11 × 10–4s for the required damping factor of 0.7. The illus-  
trated values of 30 (R1), 160 (R2), and 10 µF (C) in the  
diagram approximate these time constants.  
Figure 10 shows the output waveform at lock for 50 MHz opera-  
tion. This output results when the phase difference between  
reference and oscillator is approximately – πRad.  
The gain of the RC filter is:  
VO/VI = (1 + sR2C)/[1 + s(R1 + R2)C].  
Where KOKd >> ωn, the system’s natural frequency:  
ωn = [KOKd/n(τ1 + τ2)]1/2 = 4.5 kHz.  
AD9901 APPLICATIONS  
The figure below illustrates a phase-locked loop (PLL) system  
utilizing the AD9901. The first step in designing this type of  
circuit is to characterize the VCO’s output frequency as a func-  
tion of tuning voltage. The transfer function of the oscillator in  
the diagram is shown in Figure 11.  
For general information about phase-locked loop design, the  
user is advised to consult the following references: Gardner,  
Phase-Lock Techniques (Wiley); or Best, Phase Locked Loops  
(McGraw-Hill).  
REV. B  
–7–  
AD9901  
REFERENCE  
INPUT  
AD96685  
+V  
55MHz  
OFFSET  
1k⍀  
1k⍀  
S
–5.2V  
182⍀  
2k⍀  
–5.2V  
–5.2V  
+5.0V  
REF  
REF  
AD9901OUT  
OUTPUT  
160k⍀  
30⍀  
OUT  
OUTPUT  
AD741  
AD741  
OSC  
OSC  
390⍀  
10F  
47.5⍀  
R
SET  
LOOP  
AD9901  
–5.2V  
FILTER  
DIP  
PINOUTS  
OSCILLATOR  
OUTPUT  
110MHz  
MV1404  
51k⍀  
OSCILLATOR  
MC1648  
DIVIDE-  
BY-TWO  
100nH  
ALTERNATE HIGH LEVEL  
OUTPUT CIRCUIT  
S
MV1404  
50⍀  
–2V  
50⍀  
50⍀  
(؎V TYPICALLY +15V TO +60V)  
–5.2V  
–5.2V  
–2V  
Figure 12. Phased-Locked Loop Using AD9901  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
14-Lead Cerdip  
(Q-14)  
0.005 (0.13) MIN  
14  
0.098 (2.49) MAX  
8
0.310 (7.87)  
0.220 (5.59)  
1
7
0.320 (8.13)  
0.290 (7.37)  
PIN 1  
0.785 (19.94) MAX  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150  
(3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.070 (1.78)  
0.030 (0.76)  
0.100  
(2.54)  
BSC  
15°  
0°  
0.014 (0.36)  
20-Terminal Ceramic Leadless Chip Carrier  
(E-20A)  
20-Lead Plastic Leaded Chip Carrier  
(P-20A)  
0.200 (5.08)  
0.180 (4.57)  
BSC  
0.075  
(1.91)  
REF  
0.165 (4.19)  
0.100 (2.54)  
0.064 (1.63)  
0.048 (1.21)  
0.056 (1.42)  
0.042 (1.07)  
0.100 (2.54) BSC  
0.025 (0.63)  
0.042 (1.07)  
0.015 (0.38)  
MIN  
0.015 (0.38)  
0.095 (2.41)  
0.075 (1.90)  
0.048 (1.21)  
0.042 (1.07)  
3
19  
18  
3
19  
18  
20  
4
0.021 (0.53)  
0.013 (0.33)  
4
8
0.028 (0.71)  
0.022 (0.56)  
PIN 1  
0.358  
1
0.050  
(1.27)  
BSC  
0.358 (9.09)  
IDENTIFIER  
0.011 (0.28)  
0.330 (8.38)  
0.290 (7.37)  
(9.09)  
MAX  
SQ  
BOTTOM  
VIEW  
0.342 (8.69)  
SQ  
TOP VIEW  
(PINS DOWN)  
0.007 (0.18)  
R TYP  
0.075 (1.91)  
REF  
0.032 (0.81)  
0.026 (0.66)  
0.050 (1.27)  
BSC  
14  
13  
8
14  
13  
9
9
0.020  
(0.50)  
R
0.040 (1.01)  
0.025 (0.64)  
45° TYP  
0.356 (9.04)  
0.350 (8.89)  
0.395 (10.02)  
0.385 (9.78)  
SQ  
0.055 (1.40)  
0.045 (1.14)  
0.088 (2.24)  
0.054 (1.37)  
0.150 (3.81)  
BSC  
0.110 (2.79)  
0.085 (2.16)  
SQ  
–8–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY