AD9925BBCZ [ADI]

CCD Signal Processor with Vertical Driver and Precision Timing Generator; CCD信号处理器,带有垂直驱动器和精确定时发生器
AD9925BBCZ
型号: AD9925BBCZ
厂家: ADI    ADI
描述:

CCD Signal Processor with Vertical Driver and Precision Timing Generator
CCD信号处理器,带有垂直驱动器和精确定时发生器

驱动器 消费电路 商用集成电路 CD
文件: 总96页 (文件大小:1940K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CCD Signal Processor with Vertical Driver  
and Precision Timing ™ Generator  
AD9925  
FEATURES  
GENERAL DESCRIPTION  
Integrated 10-channel V-driver  
The AD9925 is a complete 36 MHz front end solution for digi-  
tal still camera and other CCD imaging applications. Based on  
the AD9995 product, the AD9925 includes the analog front end  
and a fully programmable timing generator (AFETG), combined  
with a 10-channel vertical driver (V-driver). A Precision Timing  
core allows adjustment of high speed clocks with approximately  
600 ps resolution at 36 MHz operation.  
Register-compatible with the AD9991 and AD9995  
3-field (6-phase) vertical clock support  
2 additional vertical outputs for advanced CCDs  
Complete on-chip timing generator  
Precision Timing core with <600 ps resolution  
Correlated double sampler (CDS)  
6 dB to 42 dB 10-bit variable gain amplifier (VGA)  
12-bit 36 MHz ADC  
Black level clamp with variable level control  
On-chip 3 V horizontal and RG drivers  
2-phase and 4-phase H-clock modes  
The on-chip V-driver supports up to 10 channels for use with  
3-field (6-phase) CCDs. Two additional vertical outputs can be  
used with CCDs that contain advanced video readout modes.  
Voltage levels of up to +15 V and −8 V are supported.  
Electronic and mechanical shutter support  
On-chip driver for external crystal  
On-chip sync generator with external sync input  
8 mm × 8 mm CSPBGA package with 0.65 mm pitch  
The analog front end includes black level clamping, CDS, VGA,  
and a 12-bit ADC. The timing generator and V-driver provide  
all the necessary CCD clocks: RG, H-clocks, vertical clocks,  
sensor gate pulses, substrate clock, and substrate bias control.  
The internal registers are programmed using a 3-wire serial  
interface.  
APPLICATIONS  
Digital still cameras  
Digital video camcorders  
CCD camera modules  
Packaged in an 8 mm × 8 mm CSPBGA, the AD9925 is speci-  
fied over an operating temperature range of −25°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
AD9925  
6dB TO 42dB  
VGA  
0dB, –2dB, –4dB  
CDS  
VREF  
12  
12-BIT  
ADC  
CCDIN  
DOUT  
DCLK  
CLAMP  
INTERNAL CLOCKS  
RG  
PRECISION  
TIMING  
GENERATOR  
HORIZONTAL  
DRIVERS  
MSHUT  
4
H1 TO H4  
STROBE  
XV1 TO XV8  
8
SL  
V1, V2  
V3A, V3B  
V4, V6  
V5A, V5B  
V7, V8  
INTERNAL  
REGISTERS  
10  
SDI  
SCK  
XSG1 TO XSG6  
6
VERTICAL  
TIMING  
CONTROL  
V-DRIVER  
SYNC  
GENERATOR  
SUBCK  
RSTB  
SUBCK  
VSUB  
HD  
VD SYNC CLI CLO  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9925  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Vertical Timing Generation...................................................... 22  
Vertical Timing Example........................................................... 34  
Shutter Timing Control............................................................. 36  
Example of Exposure and Readout of Interlaced Frame........... 41  
FG_TRIG Operation.................................................................. 43  
Analog Front End Description and Operation ...................... 45  
Vertical Driver Signal Configuration ...................................... 47  
Power-Up and Synchronization ............................................... 51  
Standby Mode Operation.......................................................... 55  
Circuit Layout Information....................................................... 57  
Serial Interface Timing.............................................................. 59  
Complete Listing for Register Bank 1.......................................... 62  
Complete Listing for Register Bank 2.......................................... 66  
Complete Listing for Register Bank 3.......................................... 87  
Outline Dimensions....................................................................... 94  
Ordering Guide .......................................................................... 94  
Digital Specifications........................................................................ 4  
Vertical Driver Specifications ......................................................... 5  
Analog Specifications....................................................................... 6  
Timing Specifications....................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Package Thermal Characteristics ............................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Terminology .................................................................................... 11  
Equivalent Circuits......................................................................... 12  
Typical Performance Characteristics ........................................... 13  
System Overview ........................................................................ 14  
Precision Timing High Speed Timing Generation.................. 15  
Horizontal Clamping and Blanking......................................... 18  
Horizontal Timing Sequence Example.................................... 21  
REVISION HISTORY  
10/04—Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Specifications........................................................................................3  
Added Stress Disclaimer..........................................................................................8  
Changes to Figure 12................................................................................................13  
Changes to Figure 22................................................................................................18  
Changes to Figure 55................................................................................................45  
Change to DC Restore Section ...............................................................................45  
Change to Correlated Double Sampler Section....................................................45  
Change to ADC Section...........................................................................................46  
Change to Digital Data Outputs Section...............................................................46  
Added Paragraph to Digital Data Outputs Section..............................................46  
Changes to Table 34..................................................................................................55  
Change to Circuit Layout Information Section....................................................57  
Changes to Register Address Bank 1, Bank 2, and Bank 3 Section ...................60  
Changes to Table 40..................................................................................................63  
Change to Table 46 ...................................................................................................65  
Changes to Tables 47–56, 58–73.............................................................................66  
4/04—Revision 0: Initial Version  
Rev. A | Page 2 of 96  
AD9925  
SPECIFICATIONS  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
–25  
–65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGES  
AVDD (AFE Analog Supply)  
TCVDD (Timing Core Analog Supply)  
RGVDD (RG Driver)  
HVDD (H1 to H4 Drivers)  
DRVDD (Data Output Drivers)  
DVDD (Digital)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
V-DRIVER SUPPLY VOLTAGES  
VDVDD (V-Driver Input Logic Supply)  
VH1, VH2 (V-Driver High Supply for 3-Level Outputs)  
VM1, VM2 (V-Driver Mid Supply for 3-Level and 2-Level Outputs)  
VL1, VL2 (V-Driver Low Supply for 3-Level and 2-Level Outputs)  
POWER DISSIPATION—AFETG Section Only (see Figure 9 for Power Curves)  
36 MHz, 3.0 V Supply, 100 pF Load on Each H1 to H4 Output, 20 pF RG Load  
Standby 1 Mode  
Standby 2 Mode  
Standby 3 Mode  
Power from HVDD Only1  
Power from RGVDD Only  
Power from AVDD Only  
Power from TCVDD Only  
Power from DVDD Only  
2.7  
3.0  
15.0  
0.0  
3.6  
V
V
V
V
10.5  
–1.0  
–10.0  
16.0  
+3.0  
–6.0  
–7.5  
370  
10  
10  
1
130  
10  
105  
42  
57  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
Power from DRVDD Only  
26  
POWER DISSIPATION—V-Driver Section Only (VDVDD, VH, VL)  
Normal Operation (VH = 15.0 V, VL = −7.5 V)2  
Standby 1 Mode2  
60  
70  
70  
110  
mW  
mW  
mW  
mW  
MHz  
Standby 2 Mode2  
Standby 3 Mode2  
MAXIMUM CLOCK RATE (CLI)  
36  
1 The total power dissipated by the HVDD supply may be approximated using the equation Total HVDD Power = [CLOAD × HVDD × Pixel Frequency] × HVDD.  
Reducing the H-loading and/or using a lower HVDD supply will reduce the power dissipation. CLOAD is the total capacitance seen by all H-outputs.  
2 The power dissipated by the V-driver circuitry depends on the logic states of the inputs as well as actual CCD operation; default dc values are used for each measure-  
ment, in each mode of operation. Load conditions are described in the Vertical Driver Specifications section.  
Rev. A | Page 3 of 96  
 
 
 
AD9925  
DIGITAL SPECIFICATIONS  
RGVDD = HVDD = DVDD = DRVDD = 2.7 V to 3.6 V, CL = 20 pF, TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
Input Capacitance  
LOGIC OUTPUTS (Powered by DVDD, DRVDD)  
High Level Output Voltage at IOH = 2 mA  
Low Level Output Voltage at IOL = 2 mA  
RG and H-DRIVER OUTPUTS (Powered by HVDD, RGVDD)  
High Level Output Voltage at Maximum Current  
Low Level Output Voltage at Maximum Current  
Maximum Output Current (Programmable)  
Maximum Load Capacitance (for Each Output)  
VOH  
VOL  
VDD – 0.5  
VDD – 0.5  
V
V
0.5  
0.5  
V
V
mA  
pF  
30  
100  
Rev. A | Page 4 of 96  
 
AD9925  
VERTICAL DRIVER SPECIFICATIONS  
VDVDD = 3.3 V, VH = 15 V, VM = 0 V, VL = −7.5 V, CL shown in load model, 25°C.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
3-LEVEL OUTPUTS (V1, V2, V3A, V3B, V5A, V5B)  
(Simplified Load Conditions, 6000 pF to Ground)  
Delay Time, VL to VM and VM to VH  
Delay Time, VM to VL and VH to VM  
Rise Time, VL to VM and VM to VH  
Fall Time, VM to VL and VH to VM  
Output Currents  
tPLM, tPMH  
tPML, tPHM  
tRLM, tRMH  
tFML, tFHM  
100  
200  
500  
500  
ns  
ns  
ns  
ns  
At −7.25 V  
At −0.25 V  
At +0.25 V  
At +14.75 V  
10.0  
−5.0  
5.0  
mA  
mA  
mA  
mA  
−7.2  
2-LEVEL OUTPUTS (V4, V6, V7, V8)  
(Simplified Load Conditions, 6000 pF to Ground)  
Delay Time, VL to VM  
Delay Time, VM to VL  
Rise Time, VL to VM  
tPLM  
tPML  
tRLM  
tFML  
100  
200  
500  
500  
ns  
ns  
ns  
ns  
Fall Time, VM to VL  
Output Currents  
At −7.25 V  
At −0.25 V  
10.0  
−5.0  
mA  
mA  
SUBCK OUTPUT  
(Simplified Load Conditions, 1000 pF to Ground)  
Delay Time, VL to VH  
Delay Time, VH to VL  
Rise Time, VL to VH  
Fall Time, VH to VL  
tPLH  
tPHL  
tRLH  
tFHL  
100  
200  
200  
200  
ns  
ns  
ns  
ns  
Output Currents  
At −7.25 V  
At +14.75 V  
5.4  
−4.0  
30  
mA  
mA  
SERIAL VERTICAL CLOCK RESISTANCE  
GND VERTICAL CLOCK RESISTANCE  
10  
V-DRIVER  
INPUT  
50%  
50%  
tRLM, tRMH, tRLH  
tPML  
,
tPHM  
,
tPHL  
90%  
90%  
V-DRIVER  
OUTPUT  
tPLM, tPMH, tPLH  
tFML  
,
tFHM, tFHL  
10%  
10%  
Figure 2. Definition of V-Driver Timing Specifications  
Rev. A | Page 5 of 96  
 
 
AD9925  
ANALOG SPECIFICATIONS  
AVDD1 = 3.0 V, fCLI = 36 MHz, typical timing specifications, TMIN to TMAX, unless otherwise noted.  
Table 4.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Input Characteristics Definition.1  
CDS  
Allowable CCD Reset Transient  
Maximum Input Range before Saturation  
0 dB CDS Gain (Default Setting)  
−2 dB CDS Gain  
500  
mV  
1.0  
1.25  
1.6  
+200/–100  
V p-p  
V p-p  
V p-p  
mV  
−4 dB CDS Gain  
Maximum CCD Black Pixel Amplitude  
VARIABLE GAIN AMPLIFIER (VGA)  
Gain Control Resolution  
Gain Monotonicity  
Positive Offset Definition1  
1024  
Guaranteed  
Steps  
Gain Range  
Minimum Gain (VGA Code 0)  
Maximum Gain (VGA Code 1023)  
BLACK LEVEL CLAMP  
6
42  
dB  
dB  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Measured at ADC Output.  
Minimum Clamp Level (Code 0)  
Maximum Clamp Level (Code 255)  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
0
255  
LSB  
LSB  
12  
–1.0  
Bits  
LSB  
0.5  
+1.0  
Guaranteed  
2.0  
Full-Scale Input Voltage  
VOLTAGE REFERENCE  
V
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
SYSTEM PERFORMANCE  
Gain Accuracy  
Low Gain (VGA Code 0)  
Maximum Gain (VGA Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
2.0  
1.0  
V
V
Includes Entire Signal Chain.  
Gain = (0.0351 × Code) + 5.5 dB.  
12 dB Gain Applied.  
5.0  
40.5  
5.5  
41.5  
0.1  
6.0  
42.5  
dB  
dB  
%
0.8  
LSB rms  
AC Grounded Input, 6 dB Gain Ap-  
plied.  
Power Supply Rejection (PSR)  
50  
dB  
Measured with Step Change on  
Supply.  
1 Input signal characteristics are defined as  
500mV TYP  
RESET TRANSIENT  
+200mV MAX  
OPTICAL BLACK PIXEL  
INPUT SIGNAL RANGE  
1V MAX  
(0dB CDS GAIN)  
Rev. A | Page 6 of 96  
 
 
AD9925  
TIMING SPECIFICATIONS  
CL = 20 pF, AVDD = DVDD = DRVDD = 3.0 V, fCLI = 36 MHz, unless otherwise noted.  
Table 5.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK, CLI (Figure 17)  
CLI Clock Period  
CLI High/Low Pulse Width  
Delay from CLI Rising Edge to Internal Pixel Position 0 tCLIDLY  
AFE CLPOB PULSE WIDTH1, 2 (Figure 23 and Figure 29)  
AFE SAMPLE LOCATION1 (Figure 20)  
tCONV  
27.8  
11.2  
ns  
ns  
ns  
13.9  
6
16.6  
2
20  
Pixels  
SHP Sample Edge to SHD Sample Edge  
DATA OUTPUTS (Figure 21 and Figure 22)  
Output Delay from DCLK Rising Edge, Default Value1  
Inhibited Area for DOUTPHASE Edge Location1  
Pipeline Delay from SHP/SHD Sampling to DOUT  
SERIAL INTERFACE (Figure 74 and Figure 75)  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
tS1  
12.5  
13.9  
8
ns  
tOD  
tDOUTINH  
ns  
SHDLOC  
11  
SHDLOC + 11  
Cycles  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
36  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
1 Parameter is register-programmable.  
2 Minimum CLPOB pulse width is for functional operation only. Wider typical pulses are recommended to achieve good clamp performance.  
Rev. A | Page 7 of 96  
 
 
 
AD9925  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only, and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
VDVDD  
VL  
With  
Respect To  
Min  
Max  
Unit  
VDVSS  
VDVSS  
VDVSS  
VDVSS  
VDVSS VDVSS  
– 0.3 + 4  
VDVSS VDVSS  
– 10  
VL –  
0.3  
V
V
V
V
+ 0.3  
VL +  
27  
VL +  
27  
VH1, VH2  
VM1, VM2  
VL –  
0.3  
PACKAGE THERMAL CHARACTERISTICS  
Thermal Resistance  
AVDD  
TCVDD  
HVDD  
RGVDD  
DVDD  
DRVDD  
RG Output  
AVSS  
TCVSS  
HVSS  
RGVSS  
DVSS  
DRVSS  
RGVSS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
+3.9  
+3.9  
+3.9  
+3.9  
+3.9  
+3.9  
V
V
V
V
V
V
V
CSPBGA Package: θJA = 40.3°C/W  
RGVD  
D + 0.3  
H1 to H4 Output  
Digital Outputs  
Digital Inputs  
HVSS  
DVSS  
DVSS  
DVSS  
AVSS  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
HVDD  
+ 0.3  
DVDD  
+ 0.3  
DVDD  
+ 0.3  
DVDD  
+ 0.3  
V
V
V
SCK, SL, SDATA  
REFT/REFB, CCDIN  
V
AVDD  
+ 0.3  
V
Junction Tempera-  
ture  
Lead Temperature,  
10 s  
150  
°C  
°C  
350  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy elec-  
trostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation  
or loss of functionality.  
Rev. A | Page 8 of 96  
 
AD9925  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
A1 CORNER  
INDEX AREA  
1
2 3 4 5 6 7 8 9 10 11  
A
B
C
D
E
F
AD9925  
TOPVIEW  
(Not to Scale)  
G
H
J
K
L
Figure 3. 96-Lead CSPBGA Package Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
E1, F2, F3  
G2, G3  
F1  
Mnemonic  
HVSS  
HVSS  
H1  
Type1  
P
Description2  
H1 to H4, HL Driver Ground  
H1 to H4, HL Driver Ground  
CCD Horizontal Clock 1  
CCD Horizontal Clock 2  
H1 to H4, HL Driver Supply  
H1 to H4, HL Driver Supply  
CCD Horizontal Clock 3  
CCD Horizontal Clock 4  
RG Driver Ground  
P
DO  
DO  
P
G1  
H2  
H1, H2, H3  
J2, J3  
J1  
HVDD  
HVDD  
H3  
P
DO  
DO  
P
DO  
P
P
DO  
DI  
P
DI  
P
AI  
K1  
H4  
K2, L2  
L3  
RGVSS  
RG  
CCD Reset Gate Clock  
RG Driver Supply  
L4  
K3, K4  
J4  
RGVDD  
TCVDD  
CLO  
Analog Supply for Timing Core  
Clock Output for Crystal  
External System Sync Input  
Analog Ground for Timing Core  
Reference Clock Input  
Analog Ground for AFE  
CCD Signal Input  
Analog Supply for AFE  
Voltage Reference Top Bypass  
Voltage Reference Bottom Bypass  
Mechanical Shutter Pulse  
CCD Substrate Clock (E Shutter)  
V-Driver Low Supply  
J5  
K5, L5  
J6  
SYNC  
TCVSS  
CLI  
K6, L7  
L6  
K7  
L8  
L9  
J7  
J8  
K8  
AVSS  
CCDIN  
AVDD  
REFT  
REFB  
MSHUT  
SUBCK  
VL  
P
AO  
AO  
DO  
DO  
P
K9  
VH2  
RSTB  
SL  
P
DI  
DI  
DI  
V-Driver High Supply 2  
Reset Bar, Active Low Pulse  
3-Wire Serial Load Pulse  
3-Wire Serial Clock  
L10  
K11  
J11  
SCK  
J10  
J9  
K10  
H9  
H11  
H10  
G10  
G11  
G9  
SDI  
V8  
V7  
STROBE  
VM2  
V6  
V4  
V2  
DI  
3-Wire Serial Data Input  
CCD Vertical Transfer Clock  
CCD Vertical Transfer Clock  
Strobe Pulse  
VO2  
VO2  
DO  
P
VO2  
VO2  
VO2  
DIO  
V-Driver Mid Supply 2  
CCD Vertical Transfer Clock  
CCD Vertical Transfer Clock  
CCD Vertical Transfer Clock  
VD  
Vertical Sync Pulse (Input in Slave Mode, Output in Master Mode)  
Rev. A | Page 9 of 96  
 
AD9925  
Pin No.  
F9  
F10  
F11  
E9  
D9  
E10  
D11  
C10  
C11  
B10  
B11  
A10  
A9  
C9  
B9  
B8  
A8  
B7  
A7  
B6  
A6  
C8  
C7  
C6  
C5  
B5  
A5  
A4  
B4  
Mnemonic  
HD  
Type1  
DIO  
P
Description2  
Horizontal Sync Pulse (Input in Slave Mode, Output in Master Mode)  
Digital Ground  
Digital Logic Power Supply  
CCD Vertical Transfer Clock  
CCD Vertical Transfer Clock  
Data Clock Output  
Data Output (LSB)  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
CCD Vertical Transfer Clock  
CCD Vertical Transfer Clock  
CCD Vertical Transfer Clock  
Data Output  
Data Output  
Data Output  
DVSS  
DVDD  
V5B  
V5A  
DCLK  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
V3B  
V3A  
V1  
D7  
D8  
D9  
D10  
D11  
VM1  
VH1  
VL  
DRVDD  
DRVSS  
VSUB  
VDVDD  
VDVSS  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
P
VO3  
VO3  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
VO3  
VO3  
VO3  
DO  
DO  
DO  
DO  
DO  
P
Data Output  
Data Output (MSB)  
V-Driver Mid Supply 1  
V-Driver High Supply 1  
V-Driver Low Supply  
Data Output Driver Supply  
Data Output Driver Ground  
CCD Substrate Bias  
V-Driver Logic Supply  
V-Driver Logic Ground  
Not Internally Connected  
Not Internally Connected  
Not Internally Connected  
Not Internally Connected  
Not Internally Connected  
Not Internally Connected  
Not Internally Connected  
P
P
P
P
DO  
P
P
A1, A2, A3  
B1, B2, B3  
C1, C2, C3  
C4, D1, D2  
D3, E2, E3  
D10, E11  
L1, L11, A11  
1 AI = Analog Input; AO = Analog Output; DI = Digital Input; DO = Digital Output; DIO = Digital Input/Output; P = Power; VO2 = V-Driver Output 2-Level; VO3 = V-Driver  
Output 3-Level.  
2 See Figure 73 for circuit configuration.  
Rev. A | Page 10 of 96  
AD9925  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Total Output Noise  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus, every  
code must have a finite width. No missing codes guaranteed to  
12-bit resolution indicates that all 4096 codes, respectively, must  
be present over all operating conditions.  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be con-  
verted to an equivalent voltage, using the relationship 1 LSB =  
ADC Full Scale/2n codes, where n is the bit resolution of the  
ADC. For the AD9925, 1 LSB is 0.488 mV.  
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9925 from a true straight  
line. The point used as zero scale occurs 0.5 LSB before the first  
code transition. Positive full scale is defined as a Level 1 and is  
0.5 LSB beyond the last code transition. The deviation is meas-  
ured from the middle of each particular output code to the true  
straight line. The error is then expressed as a percentage of the  
2 V ADC full-scale signal. The input signal is always appropri-  
ately gained up to fill the ADCs full-scale range.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
Rev. A | Page 11 of 96  
 
AD9925  
EQUIVALENT CIRCUITS  
AVDD  
DVDD  
R
100k  
300Ω  
AVSS  
AVSS  
DVSS  
Figure 4. CCDIN  
Figure 7. SL and RSTB Inputs  
DVDD  
DRVDD  
HVDD OR  
RGVDD  
DATA  
RG, H1 TO H4  
THREE-  
STATE  
DOUT  
OUTPUT  
THREE-STATE  
DVSS  
DRVSS  
HVSS OR  
RGVSS  
Figure 8. H1 to H4, RG Drivers  
Figure 5. Digital Data Outputs  
DVDD  
330  
DVSS  
Figure 6. Digital Inputs  
Rev. A | Page 12 of 96  
 
AD9925  
TYPICAL PERFORMANCE CHARACTERISTICS  
450  
40  
35  
V
= 3.3V  
DD  
400  
350  
300  
250  
200  
150  
30  
25  
20  
15  
V
= 3.0V  
DD  
V
= 2.7V  
DD  
10  
5
0
18  
24  
30  
36  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLE RATE (MHz)  
GAIN CODE (Decimal)  
Figure 9. Power vs. Sample Rate  
Figure 12. Total Output Noise vs. VGA Gain  
1.0  
0.8  
5
4
0.6  
0.4  
0.2  
0
3
2
1
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
0
500  
1000 1500 2000 2500 3000  
ADC OUTPUT CODE  
3500 4000  
0
500  
1000 1500 2000 2500 3000  
ADC OUTPUT CODE  
3500 4000  
Figure 10. Typical DNL Performance  
Figure 13. Typical INL Performance  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
100 200 300 400 500 600 700 800 900 1000  
GAIN CODE (Decimal)  
Figure 11. Typical VGA Gain Curve  
Rev. A | Page 13 of 96  
 
 
 
 
AD9925  
SYSTEM OVERVIEW  
Figure 14 shows the typical system block diagram for the  
AD9925 used in master mode. The CCD output is processed by  
the AD9925s AFE circuitry, which consists of a CDS, VGA,  
black level clamp, and ADC. The digitized pixel information is  
sent to the digital image processor chip, which performs the  
postprocessing and compression. To operate the CCD, all CCD  
timing parameters are programmed into the AD9925 from the  
system microprocessor through the 3-wire serial interface.  
From the system master clock, CLI, provided by the image  
processor or external crystal, the AD9925 generates the CCDs  
horizontal and vertical clocks and internal AFE clocks. External  
synchronization is provided by a SYNC pulse from the micro-  
processor, which will reset internal counters and resync the VD  
and HD outputs. The AD9925 also contains an optional reset  
pin, RSTB, which may be used to perform an asynchronous  
hardware reset function.  
Alternatively, the AD9925 may be operated in slave mode, in  
which the VD and HD are provided externally from the image  
processor. In this mode, all AD9925 timing will be synchro-  
nized with VD and HD.  
The H-drivers for H1 to H4 and RG are included in the  
AD9925, allowing these clocks to be directly connected to the  
CCD. An H-drive voltage of up to 3.3 V is supported. A high  
voltage V-driver is also included for the vertical clocks, allowing  
direct connection to the CCD. The SUBCK and VSUB signals  
may require external transistors, depending on the CCD used.  
The AD9925 also includes programmable MSHUT and  
STROBE outputs, which may be used to trigger mechanical  
shutter and strobe (flash) circuitry.  
Figure 15 and Figure 16 show the maximum horizontal and  
vertical counter dimensions for the AD9925. All internal hori-  
zontal and vertical clocking is controlled by these counters to  
specify line and pixel locations. Maximum HD length is 8192  
pixels per line, and maximum VD length is 4096 lines per field.  
V1A, V2, V3A, V3B, V4, V5A,  
V5B, V6, V7, V8, SUBCK, VSUB  
MAXIMUM  
COUNTER  
DIMENSIONS  
H1 TO H4, RG  
DOUT  
AD9925  
AFETG  
DCLK  
DIGITAL  
IMAGE  
PROCESSING  
ASIC  
CCDIN  
CCD  
HD, VD  
CLI  
+
13-BIT HORIZONTAL = 8192 PIXELS MAX  
12-BIT VERTICAL = 4096 LINES MAX  
V-DRIVER  
MSHUT  
STROBE  
SERIAL  
INTERFACE  
SYNC  
RSTB  
µP  
Figure 15. Vertical and Horizontal Counters  
Figure 14. Typical System Block Diagram, Master Mode  
MAX VD LENGTH IS 4096 LINES  
VD  
MAX HD LENGTH IS 8192 PIXELS  
HD  
CLI  
Figure 16. Maximum VD/HD Dimensions  
Rev. A | Page 14 of 96  
 
 
 
 
AD9925  
PRECISION TIMING HIGH SPEED TIMING GENERATION  
crystal can be placed between the CLI and CLO pins to generate  
the master clock for the AD9925. For more information on  
using a crystal, see Figure 72.  
The AD9925 generates high speed timing signals using the flexi-  
ble Precision Timing core. This core is the foundation that gen-  
erates the timing used for both the CCD and the AFE: the reset  
gate (RG), horizontal drivers H1 to H4, and the SHP/SHD sample  
clocks. The unique architecture provides precise control over  
the horizontal CCD readout and the AFE correlated double sam-  
pling, allowing the system designer to optimize image quality.  
High Speed Clock Programmability  
Figure 18 shows how the high speed clocks RG, H1 to H4, SHP,  
and SHD are generated. The RG pulse has programmable rising  
and falling edges and may be inverted using the polarity control.  
The horizontal clocks, H1 and H3, have programmable rising  
and falling edges and polarity control. The H2 and H4 clocks  
are always inverses of H1 and H3, respectively. Table 8 summa-  
rizes the high speed timing registers and their parameters.  
Figure 19 shows the typical 2-phase H-clock arrangement in  
which H3 and H4 are programmed for the same edge location  
as H1 and H2.  
The high speed timing of the AD9925 operates the same in  
either master or slave mode configuration. For more informa-  
tion on synchronization and pipeline delays, see the Power-Up  
and Synchronization section.  
Timing Resolution  
The Precision Timing core uses a 13 master clock input (CLI) as  
a reference. This clock should be the same as the CCD pixel  
clock frequency. Figure 17 illustrates how the internal timing  
core divides the master clock period into 48 steps or edge posi-  
tions. Using a 20 MHz CLI frequency, the edge resolution of the  
Precision Timing core is 1 ns. If a 1× system clock is not avail-  
able, it is also possible to use a 2× reference clock by program-  
ming the CLIDIVIDE register (Addr x30). The AD9925 will  
then internally divide the CLI frequency by two.  
The edge location registers are 6 bits wide, but there are only  
48 valid edge locations available. Therefore, the register values  
are mapped into four quadrants, with each quadrant containing  
12 edge locations. Table 9 shows the correct register values for  
the corresponding edge locations.  
The AD9925 also includes a master clock output, CLO, which is  
the inverse of CLI. This output can be used as a crystal driver. A  
POSITION  
CLI  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
tCLIDLY  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITION (tCLIDLY = 6ns TYP).  
Figure 17. High Speed Clock Resolution from CLI Master Clock Input  
Rev. A | Page 15 of 96  
 
 
AD9925  
3
CCD  
4
SIGNAL  
1
5
2
RG  
6
H1  
H2  
7
8
H3  
H4  
PROGRAMMABLE CLOCK POSITIONS:  
1. RG RISING EDGE.  
2. RG FALLING EDGE.  
3. SHP SAMPLE LOCATION.  
4. SHD SAMPLE LOCATION.  
5. H1 RISING EDGE POSITION AND 6: H1 FALLING EDGE POSITION (H2 IS INVERSE OF H1).  
7. H3 RISING EDGE POSITION AND 8: H3 FALLING EDGE POSITION (H4 IS INVERSE OF H3).  
Figure 18. High Speed Clock Programmable Locations  
Digital Data Outputs  
Figure 20 shows the default timing locations for all of the high  
speed clock signals.  
The AD9925 data output and DCLK phase are programmable  
using the DOUTPHASE register (Addr x37, Bits [5:0]). Any  
edge from 0 to 47 may be programmed, as shown in Figure 21.  
Normally, the DOUT and DCLK signals will track in phase,  
based on the DOUTPHASE register contents. The DCLK out-  
put phase can also be held fixed with respect to the data outputs  
by changing the DCLKMODE register high (Addr x37, Bit [6]).  
In this mode, the DCLK output will remain at a fixed phase  
equal to CLO (the inverse of CLI), while the data output phase  
is still programmable.  
H-Driver and RG Outputs  
In addition to the programmable timing positions, the AD9925  
features on-chip output drivers for the RG and H1 to H4 out-  
puts. These drivers are powerful enough to directly drive the  
CCD inputs. The H-driver and RG current can be adjusted for  
optimum rise/fall time with a particular load by using the  
DRVCONTROL register (Addr x35). The 3-bit drive setting for  
each output is adjustable in 4.1 mA increments, with the mini-  
mum setting of 0 equal to OFF or three-state and the maximum  
setting of 7 equal to 30.1 mA.  
There is a fixed output delay from the DCLK rising edge to the  
DOUT transition, called tOD. This delay can be programmed to  
four values between 0 ns and 12 ns by using the DOUTDELAY  
register (Addr x37, Bits [8:7]). The default value is 8 ns.  
As shown in Figure 18, Figure 19, and Figure 20, the H2 and H4  
outputs are inverses of H1 and H3, respectively. The H1/H2  
crossover voltage is approximately 50% of the output swing. The  
crossover voltage is not programmable.  
The pipeline delay through the AD9925 is shown in Figure 22.  
After the CCD input is sampled by SHD, there is an 11 cycle  
delay until the data is available.  
Table 8. Timing Core Register Parameters for H1, H3, RG, SHP/SHD  
Parameter  
Length  
Range  
Description  
Polarity  
1 b  
6 b  
6 b  
6 b  
High/Low  
Polarity Control for H1, H3, and RG (0 = No Inversion, 1 = Inversion)  
Positive Edge Location for H1, H3, and RG  
Negative Edge Location for H1, H3, and RG  
Sampling Location for Internal SHP and SHD Signals  
Drive Current for H1 to H4 and RG Outputs (4.1 mA per Step)  
Positive Edge  
Negative Edge  
Sampling Location  
Drive Strength  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Current Steps  
3 b  
Rev. A | Page 16 of 96  
 
AD9925  
CCD  
SIGNAL  
RG  
H1/H3  
H2/H4  
NOTE  
1. USING THE SAME TOGGLE POSITIONS FOR H1 AND H3 GENERATES STANDARD 2-PHASE H-CLOCKING.  
Figure 19. 2-Phase H-Clock Operation  
Table 9. Precision Timing Edge Locations  
Quadrant  
Edge Location (Dec)  
Register Value (Dec)  
0 to 11  
16 to 27  
32 to 43  
48 to 59  
Register Value (Bin)  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
I
II  
III  
IV  
0 to 11  
12 to 23  
24 to 35  
36 to 47  
POSITION  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
PIXEL  
PERIOD  
RGr[0]  
Hr[0]  
RGf[12]  
RG  
Hf[24]  
H1/H3  
H2/H4  
SHP[24]  
tS1  
CCD  
SIGNAL  
SHD[48]  
NOTES  
1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD.  
2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.  
Figure 20. High Speed Timing Default Locations  
Rev. A | Page 17 of 96  
 
AD9925  
P[36]  
P[0]  
P[48] = P[0]  
P[12]  
P[24]  
PIXEL  
PERIOD  
DCLK  
tOD  
DOUT  
NOTES  
1. DATA OUTPUT (DOUT) AND DCLK PHASE IS ADJUSTABLE WITH RESPECT TO THE PIXEL PERIOD.  
2. WITHIN 1 CLOCK PERIOD, THE DATA TRANSITION CAN BE PROGRAMMED TO 48 DIFFERENT LOCATIONS.  
3. OUTPUT DELAY (tOD) FROM DCLK RISING EDGE TO DOUT RISING EDGE IS PROGRAMMABLE.  
Figure 21. Digital Output Phase Adjustment  
CLI  
tCLIDLY  
N – 1  
N
N + 1  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9 N + 10 N + 11 N + 12 N + 13  
N + 2  
N + 3  
CCDIN  
SAMPLE PIXEL N  
SHD  
(INTERNAL)  
ADC DOUT  
(INTERNAL)  
N + 1  
N + 2  
N – 11 N – 10  
tDOUTINH  
N – 9  
N – 8  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
N – 13 N – 12  
DCLK  
DOUT  
PIPELINE LATENCY = 11 CYCLES  
N – 8 N – 7 N – 6 N – 5 N – 4  
N + 1 N + 2  
N – 11 N – 10  
N – 9  
N – 3  
N – 2  
N – 1  
N
N – 13 N – 12  
NOTES  
1. TIMING VALUES SHOWN ARE SHDLOC = 0, WITH DCLKMODE = 0.  
2. HIGHER VALUES OF SHD AND/OR DOUTPHASE WILL SHIFT DOUT TRANSITION TO THE RIGHT, WITH RESPECT TO CLI LOCATION.  
3. INHIBIT TIME FOR DOUT PHASE IS DEFINED BY t , WHICH IS EQUAL TO SHDLOC PLUS 11 EDGES. IT IS RECOMMENDED THAT THE  
DOUTINH  
11 EDGE LOCATIONS FOLLOWING SHDLOC NOT BE USED FOR THE DOUTPHASE LOCATION.  
4. RECOMMENDED VALUE FOR DOUT PHASE IS TO USE THE SHPLOC EDGE OR THE 11 EDGES FOLLOWING SHPLOC.  
5. RECOMMENDED VALUE FOR tOD (DOUT DLY) IS 4ns.  
6. THE DOUT LATCH CAN BE BYPASSED USING REGISTER 0x03, BIT [4] = 1, SO THAT THE ADC DATA OUTPUTS APPEAR DIRECTLY AT THE  
DOUT PINS. THIS CONFIGURATION IS RECOMMENDED IF ADJUSTABLE DOUT PHASE IS NOT REQUIRED.  
Figure 22. Digital Data Output Pipeline Delay  
HORIZONTAL CLAMPING AND BLANKING  
The AD9925s horizontal clamping and blanking pulses are fully  
programmable to suit a variety of applications. Individual con-  
trol is provided for CLPOB, PBLK, and HBLK during the differ-  
ent regions of each field. This allows the dark pixel clamping  
and blanking patterns to be changed at each stage of the read-  
out, which accommodates the different image transfer timing  
and high speed line shifts.  
A separate pattern for CLPOB and PBLK may be programmed  
for every 10 vertical sequences. As described in the Vertical  
Timing Generation section, up to 10 separate vertical sequences  
can be created, each containing a unique pulse pattern for  
CLPOB and PBLK. Figure 37 shows how the sequence change  
positions divide the readout field into different regions. A dif-  
ferent vertical sequence can be assigned to each region, allowing  
the CLPOB and PBLK signals to be changed accordingly with  
each change in the vertical timing.  
Individual CLPOB and PBLK Patterns  
The AFE horizontal timing consists of CLPOB and PBLK, as  
shown in Figure 23. These two signals are independently pro-  
grammed using the registers in Table 10. SPOL is the start po-  
larity for the signal, and TOG1 and TOG2 are the first and sec-  
ond toggle positions of the pulse. Both signals are active low  
and should be programmed accordingly.  
CLPOB Masking Area  
Additionally, the AD9925 allows the CLPOB signal to be dis-  
abled during certain lines in the field without changing any of  
the existing CLPOB pattern settings. There are two ways to use  
CLPOB masking. First, the six CLPOBMASK registers can be used  
Rev. A | Page 18 of 96  
 
 
 
 
AD9925  
to specify six individual lines within the field. These lines will not  
contain an active CLPOB pulse. CLPMASKTYPE is set low for this  
mode of operation.  
Individual HBLK Patterns  
The HBLK programmable timing shown in Figure 24 is similar  
to CLPOB and PBLK, but there is no start polarity control. Only  
the toggle positions are used to designate the start and the stop  
positions of the blanking period. Additionally, there is a polarity  
control HBLKMASK that designates the polarity of the horizontal  
clock signals H1 to H4 during the blanking period. Setting  
HBLKMASK high will set H1 = H3 = Low and H2 = H4 = High  
during the blanking, as shown in Figure 25. As with the CLPOB  
and PBLK signals, HBLK registers are available in each vertical  
sequence, which allow different blanking signals to be used with  
different vertical timing sequences.  
Second, the CLPMASK registers can be used to specify blocks  
of adjacent lines. The CLPMASK start and end line values are pro-  
grammed to specify the starting and ending lines in the field, where  
the CLPOB patterns will be ignored. There are three sets of start  
and end values, allowing up to three CLPOB masking areas to be  
created. CLPMASKTYPE is set high for this mode of operation.  
The CLPOB masking registers are not specific to a certain vertical  
sequence; they are always active for any existing field of timing.  
To disable the CLPOB masking feature, these registers should  
be set to the maximum value of 0xFFF (default value).  
One additional feature is the ability to enable the H3/H4 signals  
to remain active during HBLK. To do this, set register Bit D6 in  
Addr 0xE7 equal to 1. This feature is useful if the H3 output is  
used to drive the HL (last horizontal gate) input of the CCD.  
Table 10. CLPOB and PBLK Pattern Registers  
Register  
Length Range  
Description  
SPOL  
TOG1  
TOG2  
CLPOBMASK  
1 b  
High/Low  
Starting Polarity of CLPOB/PBLK for Vertical Sequence 0 to 9.  
First Toggle Position within Line for Vertical Sequence 0 to 9.  
Second Toggle Position within Line for Vertical Sequence 0 to 9.  
CLPOBMASK0 through CLPOBMASK5 specify six individual lines in the field for the  
CLPOB pulse to be temporarily disabled. These registers can also be used to specify  
three ranges of adjacent lines, rather than six individual lines.  
12 b  
12 b  
12 b  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Line Location  
CLPMASKTYPE 1 b  
High/Low  
When set low (default), the CLPOBMASK registers select individual lines in the field  
to disable the CLPOB pulse. When set high, the range masking is enabled, allowing  
up to three blocks of adjacent lines to have the CLPOB signal masked. CLPOB-  
MASK0 and CLPOBMASK1 are the start/end of the first block of lines, CLPOBMASK2  
and CLPOBMASK3 are the start/end of the second block, and CLPOBMASK4 and  
CLPOBMASK5 are the start/end of the third block.  
HD  
2
3
CLPOB  
1
ACTIVE  
ACTIVE  
PBLK  
NOTES  
PROGRAMMABLE SETTINGS:  
1. START POLARITY (CLAMP AND BLANK REGION ARE ACTIVE LOW).  
2. FIRST TOGGLE POSITION.  
3. SECOND TOGGLE POSITION.  
Figure 23. Clamp and Preblank Pulse Placement  
Rev. A | Page 19 of 96  
 
 
AD9925  
Table 11. HBLK Pattern Registers  
Register  
Length Range  
Description  
HBLKMASK  
H3HBLKOFF 1 b  
1 b High/Low  
Masking Polarity for H1/H3 (0 = H1/H3 Low, 1 = H1/H3 High).  
Addr 0xE7, Bit [6]. Set = 1 to keep H3/H4 active during HBLK pulse. Normal set to 0.  
High/Low  
HBLKALT  
2 b  
0 to 3 Alternation Mode  
Enables Odd/Even Alternation of HBLK Toggle Positions.  
0 = Disable Alternation.  
1 = TOG1 to TOG2 Odd, TOG3 to TOG6 Even.  
2 = 3 = TOG1to TOG2 Even, TOG3 to TOG6 Odd.  
HBLKTOG1  
HBLKTOG2  
HBLKTOG3  
HBLKTOG4  
HBLKTOG5  
HBLKTOG6  
12 b  
12 b  
12 b  
12 b  
12 b  
12 b  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
First Toggle Position within Line for Each Vertical Sequence 0 to 9.  
Second Toggle Position within Line for Each Vertical Sequence 0 to 9.  
Third Toggle Position within Line for Each Vertical Sequence 0 to 9.  
Fourth Toggle Position within Line for Each Vertical Sequence 0 to 9.  
Fifth Toggle Position within Line for Each Vertical Sequence 0 to 9.  
Sixth Toggle Position within Line for Each Vertical Sequence 0 to 9.  
Generating Special HBLK Patterns  
Generating HBLK Line Alternation  
There are six toggle positions available for HBLK. Normally,  
only two of the toggle positions are used to generate the stan-  
dard HBLK interval. However, the additional toggle positions  
may be used to generate special HBLK patterns, as shown in  
Figure 26. The pattern in this example uses all six toggle posi-  
tions to generate two extra groups of pulses during the HBLK  
interval. By changing the toggle positions, different patterns can  
be created.  
One further feature of the AD9925 is the ability to alternate dif-  
ferent HBLK toggle positions on odd and even lines. This may be  
used in conjunction with vertical pattern odd/even alternation or  
on its own. When a 1 is written to the HBLKALT register, TOG1  
and TOG2 are used on odd lines, while TOG3 to TOG6 are  
used on even lines. Writing a 2 to the HBLKALT register gives  
the opposite result: TOG1 and TOG2 are used on even lines,  
while TOG3 to TOG6 are used on odd lines. See the Vertical  
Timing Generation section for more information.  
HD  
1
2
BLANK  
BLANK  
HBLK  
PROGRAMMABLE SETTINGS:  
1. FIRST TOGGLE POSITION = START OF BLANKING.  
2. SECOND TOGGLE POSITION = END OF BLANKING.  
Figure 24. Horizontal Blanking (HBLK) Pulse Placement  
HD  
HBLK  
H1/H3  
H1/H3  
H2/H4  
NOTE  
1. THE POLARITY OF H1 DURING BLANKING IS PROGRAMMABLE (H2 IS OPPOSITE POLARITY OF H1).  
Figure 25. HBLK Masking Control  
Rev. A | Page 20 of 96  
 
AD9925  
TOG1  
TOG2  
TOG3  
TOG4  
TOG5  
TOG6  
HBLK  
H1/H3  
H2/H4  
SPECIAL H-BLANK PATTERN IS CREATED USING MULTIPLE HBLK TOGGLE POSITIONS  
Figure 26. Generating Special HBLK Patterns  
Increasing H-Clock Width during HBLK  
HORIZONTAL TIMING SEQUENCE EXAMPLE  
The AD9925 will also allow the H1 to H4 pulse width to be  
increased during the HBLK interval. The H-clock pulse width  
can increase by reducing the H-clock frequency (see Figure 27).  
The HBLKWIDTH register, at Bank 1 Address 0x38, is a 3-bit  
register that allows the H-clock frequency to be reduced by 1/2,  
1/4, 1/6, 1/8, 1/10, 1/12, or 1/14. The reduced frequency will  
only occur for H1 to H4 pulses that are located within the  
HBLK area.  
Figure 28 shows an example CCD layout. The horizontal register  
contains 28 dummy pixels, which will occur on each line clocked  
from the CCD. In the vertical direction, there are 10 optical black  
(OB) lines at the front of the readout and 2 at the back of the  
readout. The horizontal direction has 4 OB pixels in the front  
and 48 in the back.  
Figure 29 shows the basic sequence layout to be used during the  
effective pixel readout. The 48 OB pixels at the end of each line  
are used for the CLPOB signals. PBLK is optional and is often  
used to blank the digital outputs during the noneffective CCD  
pixels. HBLK is used during the vertical shift interval. The  
HBLK, CLPOB, and PBLK parameters are programmed in the  
vertical sequence registers.  
Table 12. HBLK Width Register  
Register  
Length Range  
Description  
HBLKWIDTH 3 b  
1 to 1/14  
Controls H1 to H4 width  
during HBLK as a frac-  
tion of pixel rate  
0: same frequency as  
pixel rate  
1: 1/2 pixel frequency,  
i.e., doubles the H1 to H4  
pulse width  
2: 1/4 pixel frequency  
3: 1/6 pixel frequency  
4: 1/8 pixel frequency  
5: 1/10 pixel frequency  
6: 1/12 pixel frequency  
7: 1/14 pixel frequency  
More elaborate clamping schemes may be used, such as adding  
in a separate sequence to clamp during the entire shield OB  
lines. This requires configuring a separate vertical sequence for  
reading out the OB lines.  
HBLK  
H1/H3  
H2/H4  
1/F  
PIX  
2 × (1/F  
)
PIX  
H-CLOCK FREQUENCY CAN BE REDUCED DURING HBLK BY 1/2 (AS  
SHOWN), 1/4, 1/6, 1/8, 1/10, 1/12, OR 1/14 USING HBLKWIDTH REGISTER  
Figure 27. Generating Wide H-Clock Pulses during HBLK Interval  
Rev. A | Page 21 of 96  
 
 
AD9925  
2 VERTICAL  
OB LINES  
V
EFFECTIVE IMAGE AREA  
10 VERTICAL  
OB LINES  
H
48 OB PIXELS  
4 OB PIXELS  
HORIZONTAL CCD REGISTER  
28 DUMMY PIXELS  
Figure 28. Example CCD Configuration  
OPTICAL BLACK  
OB  
HD  
CCDIN  
VERTICAL SHIFT  
DUMMY  
EFFECTIVE PIXELS  
OPTICAL BLACK  
VERT SHIFT  
SHP  
SHD  
H1/H3  
H2/H4  
HBLK  
PBLK  
CLPOB  
Figure 29. Horizontal Sequence Example  
Second, the vertical pattern groups are used to build the  
sequences, where additional information is added. Third, the  
readout for an entire field is constructed by dividing the field  
into different regions and then assigning a sequence to each  
region. Each field can contain up to seven different regions to  
accommodate the different steps of the readout, such as high  
speed line shifts and unique vertical line transfers. Up to six  
different fields may be created. Finally, the MODE register al-  
lows the different fields to be combined into any order for vari-  
ous readout configurations.  
VERTICAL TIMING GENERATION  
The AD9925 provides a very flexible solution for generating  
vertical CCD timing and can support multiple CCDs and dif-  
ferent system architectures. The vertical transfer clocks XV1 to  
XV8 are used to shift each line of pixels into the horizontal out-  
put register of the CCD. The AD9925 allows these outputs to be  
individually programmed into various readout configurations,  
using a 4-step process.  
Figure 30 shows an overview of how the vertical timing is gen-  
erated in four steps. First, the individual pulse patterns for XV1  
to XV8 are created by using the vertical pattern group registers.  
Rev. A | Page 22 of 96  
 
AD9925  
CREATE THE VERTICAL PATTERN GROUPS  
(MAXIMUM OF 10 GROUPS)  
BUILD THE VERTICAL SEQUENCES BY ADDING LINE START  
POSITION, # OF REPEATS, AND HBLK/CLPOB PULSES  
(MAXIMUM OF 10 VERTICAL SEQUENCES)  
1
2
XV1  
XV2  
XV1  
XV2  
XV3  
XV3  
XV4  
XV5  
XV6  
VPAT 0  
VERTICAL SEQUENCE 0  
(VPAT0, 1 REP)  
XV4  
XV5  
XV6  
XV1  
XV2  
XV1  
XV2  
XV3  
XV4  
XV5  
XV6  
XV3  
XV4  
XV5  
XV6  
VERTICAL SEQUENCE 1  
(VPAT9, 2 REP)  
VPAT 9  
XV1  
XV2  
XV3  
XV4  
XV5  
XV6  
VERTICAL SEQUENCE 2  
(VPAT9, N REP)  
USE THE MODE REGISTER TO CONTROL WHICH FIELDS  
ARE USED, AND IN WHAT ORDER  
(MAXIMUM OF 7 FIELDS MAY BE COMBINED IN ANY ORDER)  
BUILD EACH FIELD BY DIVIDING INTO DIFFERENT REGIONS  
AND ASSIGNING A DIFFERENT VERTICAL SEQUENCE TO EACH  
(MAXIMUM OF 7 REGIONS IN EACH FIELD)  
3
3
(MAXIMUM OF 6 FIELDS)  
FIELD 0  
FIELD 1  
FIELD 4  
FIELD 1  
FIELD 2  
FIELD 0  
FIELD 3  
FIELD 5  
REGION 0: USE VERTICAL SEQUENCE 2  
REGION 1: USE VERTICAL SEQUENCE 0  
REGION 2: USE VERTICAL SEQUENCE 3  
REGION 3: USE VERTICAL SEQUENCE 0  
FIELD 2  
FIELD 4  
REGION 4: USE VERTICAL SEQUENCE 2  
FIELD 1  
FIELD 2  
Figure 30. Summary of Vertical Timing Generation  
Rev. A | Page 23 of 96  
AD9925  
Vertical Pattern Groups (VPAT)  
separate register, VPATSTART, specifies the start position of the  
vertical pattern groups within the line (see the Vertical Sequences  
(VSEQ) section). The VPATLEN register designates the total  
length of the vertical pattern group, which determines the number  
of pixels between each of the pattern repetitions when repetitions  
are used (see the Vertical Sequences (VSEQ) section).  
The vertical pattern groups define the individual pulse patterns  
for each XV1 to XV6 output signal. Table 13 summarizes the  
registers available for generating each of the 10 vertical pattern  
groups. The start polarity (VPOL) determines the starting  
polarity of the vertical sequence and can be programmed high  
or low for each XV1 to XV6 output. The first, second, and third  
toggle positions (XVTOG1, XVTOG2, and XVTOG3) are the  
pixel locations within the line where the pulse transitions. A  
fourth toggle position (XVTOG4) is also available for vertical  
pattern groups 8 and 9. All toggle positions are 12-bit values,  
allowing their placement anywhere in the horizontal line. A  
Additional VPAT groups are provided in Register Bank 3 for the  
XV7 and XV8 outputs. This allows the AD9925 to remain back-  
ward-compatible with the AD9995 register settings while still  
providing additional flexibility with XV7 and XV8 for new CCDs.  
Table 13. Vertical Pattern Group Registers  
Register  
Length Range  
Description  
XVPOL  
1 b  
High/Low  
Starting Polarity of Each XV Output  
XVTOG1  
XVTOG2  
XVTOG3  
XVTOG4  
12 b  
12 b  
12 b  
12 b  
0 to 4096 Pixel Location  
0 to 4096 Pixel Location  
0 to 4096 Pixel Location  
0 to 4096 Pixel Location  
First Toggle Position within Line for Each XV Output  
Second Toggle Position within Line for Each XV Output  
Third Toggle Position within Line for Each XV Output  
Fourth Toggle Position, Only Available in Vertical Pattern Groups 8 and 9 and Also in  
XV7 and XV8 Vertical Pattern Groups  
VPATLEN 12 b  
FREEZE1 12 b  
RESUME1 12 b  
FREEZE2 12 b  
0 to 4096 Pixels  
Total Length of Each Vertical Pattern Group  
0 to 4096 Pixel Location  
0 to 4096 Pixel Location  
0 to 4096 Pixel Location  
0 to 4096 Pixel Location  
Holds the XV Outputs at Their Current Levels (Static DC)  
Resumes Operation of the XV Outputs to Finish Their Pattern  
Holds the XV Outputs at Their Current Levels (Static DC)  
Resumes Operation of the XV Outputs to Finish Their Pattern  
RESUME2 12 b  
START POSITION OF VERTICAL PATTERN GROUP IS PROGRAMMABLE IN VERTICAL SEQUENCE REGISTERS  
HD  
4
XV1  
XV2  
1
1
2
3
2
3
XV6  
1
2
3
PROGRAMMABLE SETTINGS FOR EACH VERTICAL PATTERN:  
1. START POLARITY.  
2. FIRST TOGGLE POSITION.  
3. SECOND TOGGLE POSITION (THIRD TOGGLE POSITION ALSO AVAILABLE,  
FOURTH TOGGLE POSITION AVAILABLE FOR VERTICAL PATTERN GROUPS 8 AND 9).  
4. TOTAL PATTERN LENGTH FOR ALL XV OUTPUTS.  
Figure 31. Vertical Pattern Group Programmability  
Rev. A | Page 24 of 96  
 
AD9925  
Masking Using FREEZE/RESUME Registers  
RESUME register is reached, at which point the signals will  
continue with any remaining toggle positions. Two sets of  
FREEZE/RESUME registers are provided, allowing the vertical  
outputs to be interrupted twice in the same line. The FREEZE  
and RESUME positions are programmed in the vertical pattern  
group registers, but are enabled separately using the VMASK  
registers. The VMASK registers are described in the Vertical  
Sequences (VSEQ) section.  
As shown in Figure 33, the FREEZE/RESUME registers are used  
to temporarily mask the XV outputs. The pixel locations to  
begin the masking (FREEZE) and end the masking (RESUME)  
create an area in which the vertical toggle positions are ignored.  
At the pixel location specified in the FREEZE register, the XV  
outputs will be held static at their current dc state, high or low.  
The XV outputs are held until the pixel location specified by the  
HD  
NO MASKING AREA  
XV1  
XV8  
Figure 32. No Vertical Masking  
MASKING AREA  
FOR XV1 TO XV8  
HD  
FREEZE  
RESUME  
XV1  
XV8  
NOTES  
1. ALL TOGGLE POSITIONS WITHIN THE FREEZE/RESUME MASKING AREA ARE IGNORED. H-COUNTER CONTINUES TO COUNT DURING MASKING.  
2. TWO SEPARATE MASKING AREAS ARE AVAILABLE FOR EACH VPAT GROUP, USING FREEZE1/RESUME1 AND FREEZE2/RESUME2 REGISTERS.  
Figure 33. Vertical Masking Using the FREEZE/RESUME Registers  
Rev. A | Page 25 of 96  
 
AD9925  
Hold Area Using FREEZE/RESUME Registers  
The FREEZE/RESUME registers can also be used to create a  
hold area, in which the XV outputs are temporarily held and  
then later continued starting at the point where they were held.  
As shown in Figure 34 and Figure 35, this is different than the  
VMASK, because the XV outputs continue from where they  
stopped rather than continuing from where they would have  
been. The hold area temporarily stops the pixel counter for the  
XV outputs, while the v-masking allows the counter to continue  
during the masking area.  
XV7 and XV8 may or may not use the hold area, as shown in  
Figure 34 and Figure 35. The hold operation is controlled in the  
Bank 3 vertical sequence registers, described in the Vertical  
Sequences (VSEQ) section.  
HD  
HOLD AREA  
FOR XV1–XV6  
FREEZE  
RESUME  
XV1  
XV6  
XV7  
NO HOLD  
AREA FOR  
XV7–XV8  
XV8  
NOTES  
1. WHEN HOLD = 1 FOR ANY V-SEQUENCE, THE FREEZE AND RESUME REGISTERS ARE USED TO SPECIFY THE HOLD AREA BOUNDRIES.  
2. WHEN XV78HOLDEN = 0, XV7 AND XV8 DO NOT USE THE HOLD AREA, ONLY XV1XV6. H-COUNTER FOR XV1–XV6 WILL STOP DURING HOLD AREA.  
Figure 34. Vertical Hold Area Using the FREEZE/RESUME Registers  
HD  
XV1  
XV6  
HOLD AREA  
FOR XV1 TO XV8  
FREEZE  
RESUME  
XV7  
XV8  
NOTES  
1. WHEN HOLD = 1 FOR ANY VERTICAL SEQUENCE, THE FREEZE AND RESUME REGISTERS ARE USED TO SPECIFY THE HOLD AREA BOUNDRIES.  
2. WHEN XV78HOLDEN = 1, XV7 AND XV8 ALSO USE THE HOLD AREA. H-COUNTER FOR XV1 TO XV8 WILL STOP DURING HOLD AREA.  
Figure 35. Apply Hold Area to XV7 and XV8  
Rev. A | Page 26 of 96  
 
 
 
AD9925  
The line length (in pixels) is programmable using the HDLEN  
registers. Each vertical sequence can have a different line length  
to accommodate the various image readout techniques. The  
maximum number of pixels per line is 8192. Note that the 13th bit  
(MSB) of the line length is located in a separate register. Also  
note that the last line of the field is separately programmable  
using the HDLAST register, located in the field register section.  
Vertical Sequences (VSEQ)  
The vertical sequences are created by selecting one of the 10 ver-  
tical pattern groups and adding repeats, the start position, and  
horizontal clamping and blanking information. Up to 10 verti-  
cal sequences may be programmed, each using the registers  
shown in Table 14. Figure 36 shows how the different registers  
are used to generate each vertical sequence.  
Additional vertical sequences are provided in Register Bank 3  
for the XV7 and XV8 outputs. This allows the AD9925 to re-  
main backward-compatible with the AD9995 register settings  
while still providing additional flexibility with XV7 and XV8 for  
new CCDs.  
The VPATSEL register selects which vertical pattern group will  
be used in a given vertical sequence. The basic vertical pattern  
group can have repetitions added for high speed line shifts or  
line binning by using the VPATREPO and VPATREPE registers.  
Generally, the same number of repetitions is programmed into  
both registers, but if a different number of repetitions is re-  
quired on odd and even lines, separate values may be used for  
each register (see the Generating Line Alternation for Vertical  
Sequence and HBLK section). The VPATSTART register speci-  
fies the pixel location where the vertical pattern group will start.  
As described in the Hold Area Using FREEZE/RESUME Regis-  
ters section, the hold registers in Bank 3 are used to specify a  
hold area instead of vertical masking. The FREEZE/RESUME  
registers are used to define the hold area. The XV78HOLDEN  
registers are used to specify whether XV7 and XV8 will use the  
hold area or not.  
The VMASK register is used in conjunction with the FREEZE/  
RESUME registers to enable optional masking of the vertical  
outputs. Either or both of the FREEZE1/RESUME1 and  
FREEZE2/RESUME2 registers can be enabled using the  
VMASK register.  
Table 14. Vertical Sequence Registers (See Table 10 and Table 11 for the HBLK, CLPOB, and PBLK registers)  
Register  
VPATSEL  
VMASK  
Length Range  
Description  
4 b  
2 b  
0 to 9 Vertical Pattern Group No.  
0 to 3 Mask Mode  
Selected Vertical Pattern Group for Each Vertical Sequence.  
Enables the Masking of V1 to V6 Outputs at the Locations Specified by the  
FREEZE/RESUME Registers.  
0 = No Mask.  
1 = Enable Freeze1/Resume1.  
2 = Enable Freeze2/Resume2.  
3 = Enable Both 1 and 2.  
VPATREPO  
VPATREPE  
12 b  
12 b  
0 to 4095 Number of Repeats  
0 to 4095 Number of Repeats  
Number of Repetitions for the Vertical Pattern Group for Odd Lines. If no  
odd/even alternation is required, set equal to VPATREPE.  
Number of Repetitions for the Vertical Pattern Group for Even Lines. If no  
odd/even alternation is required, set equal to VPATREPO.  
VPATSTART  
HDLEN  
12 b  
13 b  
0 to 4095 Pixel Location  
0 to 8191 Number of Pixels  
Start Position for the Selected Vertical Pattern Group.  
HD Line Length for Lines in Each Vertical Sequence. Note that 13th bit (MSB)  
of the line length is located in a separate register to maintain compatibility  
with AD9995.  
HOLD1  
1 b  
High/Low  
High/Low  
Enable Hold Area Instead of Vertical Masking, Using FREEZE/RESUME  
Registers.  
XV78HOLDEN1 1 b  
Enable XV7 and XV8 to Use Hold Area.  
0 = Disable.  
1 = Enable.  
1Located in Bank 3, vertical sequence registers for XV7 and XV8.  
Rev. A | Page 27 of 96  
 
 
AD9925  
1
HD  
2
3
4
4
XV1 TO XV6  
VPAT REP 3  
VPAT REP 2  
VERTICAL PATTERN GROUP  
CLPOB  
PBLK  
5
6
HBLK  
PROGRAMMABLE SETTINGS FOR EACH VERTICAL SEQUENCE:  
1. START POSITION IN THE LINE OF SELECTED VERTICAL PATTERN GROUP.  
2. HD LINE LENGTH.  
3. VERTICAL PATTERN SELECT (VPATSEL) TO SELECT ANY VERTICAL PATTERN GROUP.  
4. NUMBER OF REPETITIONS OF THE VERTICAL PATTERN GROUP (IF NEEDED).  
5. START POLARITY AND TOGGLE POSITIONS FOR CLPOB AND PBLK SIGNALS.  
6. MASKING POLARITY AND TOGGLE POSITIONS FOR HBLK SIGNAL.  
Figure 36. Vertical Sequence Programmability  
Rev. A | Page 28 of 96  
AD9925  
Complete Field: Combining Vertical Sequences  
boundaries for each region. The VDLEN register specifies the  
total number of lines in the field. The total number of pixels per  
line (HDLEN) is specified in the vertical sequence registers, but  
the HDLAST register specifies the number of pixels in the last  
line of the field. Note that the 13th bit (MSB) of the last line  
length is located in a separate register. During the sensor gate  
(SG) line, the VPATSECOND register is used to add a second  
vertical pattern group to the XV outputs.  
After the vertical sequences have been created, they are combined  
to create different readout fields. A field consists of up to seven  
different regions, and within each region, a different vertical  
sequence can be selected. Figure 37 shows how the sequence  
change positions (SCP) designate the line boundary for each  
region, and how the VSEQSEL registers select which vertical  
sequence is used during each region. Registers to control the  
XSG outputs are also included in the field registers.  
The SGMASK register is used to enable or disable each individual  
VSG output. There is a single bit for each XSG output, setting  
the bit high will mask the output and setting it low will enable  
the output. The SGPAT register assigns one of the four different  
SG patterns to each VSG output. The individual SG patterns are  
created separately using the SG pattern registers. The SGLINE1  
register specifies which line in the field will contain the XSG  
outputs. The optional SGLINE2 register allows the same SG pulses  
to be repeated on a different line.  
Table 15 summarizes the registers used to create the different  
fields. Up to six different fields can be preprogrammed using  
the field registers.  
The VEQSEL registers, one for each region, select which of the  
10 vertical sequences will be active during each region. The  
SWEEP registers are used to enable the sweep mode during any  
region. The MULTI registers are used to enable the multiplier  
mode during any region. The SCP registers create the line  
Table 15. Field Registers  
Register  
VSEQSEL  
SWEEP  
MULTI  
SCP  
VDLEN  
HDLAST  
Length Range  
Description  
4 b  
0 to 9 V Sequence Number  
Selected Vertical Sequence for Each Region in the Field.  
Enables Sweep Mode for Each Region, When Set High.  
Enables Multiplier Mode for Each Region, When Set High.  
Sequence Change Position for Each Region.  
Total Number of Lines in Each Field.  
Length in Pixels of the Last HD Line in Each Field. The13th bit (MSB) is located  
in a separate register to maintain compatibility with the AD9995.  
1 b  
High/Low  
1 b  
High/Low  
12 b  
12 b  
13 b  
0 to 4095 Line Number  
0 to 4095 Number of Lines  
0 to 8191 Number of Pixels  
VPATSECOND 4 b  
0 to 9 Vertical Pattern Group  
Number  
Selected Vertical Pattern Group for Second Pattern Applied During SG Line.  
SGMASK  
6 b  
High/Low, Each XSG  
Set High to Mask Each Individual XSG Output.  
XSG1 [0], XSG2 [1], XSG3 [2], XSG4 [3], XSG5 [4], XSG6 [5].  
SGPATSEL  
12 b  
0 to 3 Pattern Number, Each XSG Selects the SG Pattern Number for Each XSG Output.  
XSG1 [1:0], XSG2 [3:2], XSG3 [5:4], XSG4 [7:6], XSG5 [9:8], XSG6 [11:10].  
SGLINE1  
SGLINE2  
12 b  
12 b  
0 to 4095 Line Number  
0 to 4095 Line Number  
Selects the Line in the Field Where the SG Signals Are Active.  
Selects a Second Line in the Field to Repeat the SG Signals.  
SCP 2  
SCP 1  
SCP 6  
SCP 3  
SCP 4  
SCP 5  
VD  
HD  
REGION 0  
REGION 1  
REGION 2  
REGION 4  
REGION 6  
REGION 3  
REGION 5  
XV1 TO XV6  
VSEQSEL0  
VSEQSEL1  
SGLINE  
VSEQSEL5  
VSEQSEL6  
VSEQSEL2  
VSEQSEL3  
VSEQSEL4  
XSG  
FIELD SETTINGS:  
1. SEQUENCE CHANGE POSITIONS (SCP1 TO SCP6) DEFINE EACH OF THE SEVEN REGIONS IN THE FIELD.  
2. VSEQSEL0 TO VSEQSEL6 SELECTS THE DESIRED VERTICAL SEQUENCE (0–9) FOR EACH REGION.  
3. SGLINE1 REGISTER SELECTS WHICH HD LINE IN THE FIELD WILL CONTAIN THE SENSOR GATE PULSE(S).  
Figure 37. Complete Field Is Divided into Regions  
Rev. A | Page 29 of 96  
 
 
 
AD9925  
Generating Line Alternation for Vertical Sequence and  
HBLK  
Second Vertical Pattern Group during VSG Active Line  
Most CCDs require additional vertical timing during the sensor  
gate (SG) line. The AD9925 supports the option to output a  
second vertical pattern group for XV1 to XV8 during the line  
when the sensor gates XSG1 to XSG6 are active. Figure 39 shows  
a typical SG line that includes two separate sets of vertical pattern  
group for XV1 to XV6. The vertical pattern group at the start of  
the SG line is selected in the same manner as the other regions,  
using the appropriate VSEQSEL register. The second vertical  
pattern group, unique to the SG line, is selected using the  
VPATSECOND register, located with the field registers. The  
start position of the second VPAT group uses the VPATLEN  
register from the selected VPAT registers. Because the VPATLEN  
register is used as the start position and not as the VPAT length,  
it is not possible to program multiple repetitions for the second  
VPAT group.  
During low resolution readout, some CCDs require a different  
number of vertical clocks on alternate lines. The AD9925 can  
support this by using the VPATREPO and VPATREPE registers.  
This allows a different number of VPAT repetitions to be pro-  
grammed on odd and even lines. Note that only the number of  
repeats can be different in odd and even lines, but the VPAT  
group remains the same.  
Additionally, the HBLK signal can also be alternated for odd  
and even lines. When the HBLKALT register is set high, the  
HBLK TOG1 and HBLK TOG2 positions will be used on odd  
lines, and the HBLK TOG3 to HBLK TOG6 positions will be  
used on even lines. This allows the HBLK interval to be adjusted  
on odd and even lines if needed.  
Figure 38 shows an example of a VPAT repetition alternation  
and a HBLK alternation used together. It is also possible to use  
the VPAT and HBLK alternation separately.  
HD  
VPATREPO = 2  
VPATREPE = 5  
VPATREPO = 2  
XV1  
XV2  
XV6  
TOG1  
TOG2  
TOG3  
TOG1  
TOG2  
TOG4  
HBLK  
NOTES  
1. THE NUMBER OF REPEATS FOR THE VERTICAL PATTERN GROUP MAY BE ALTERNATED ON ODD AND EVEN LINES.  
2. THE HBLK TOGGLE POSITIONS MAY BE ALTERNATED BETWEEN ODD AND EVEN LINES, IN ORDER TO  
GENERATE DIFFERENT HBLK PATTERNS FOR ODD/EVEN LINES.  
Figure 38. Odd/Even Line Alteration of VPAT Repetitions and HBLK Toggle Positions  
START POSITION FOR SECOND VPAT GROUP  
USES VPATLEN REGISTER  
HD  
XSG  
XV1  
XV2  
XV6  
SECOND VPAT GROUP  
Figure 39. Example of Second VPAT Group during Sensor Gate Line  
Rev. A | Page 30 of 96  
 
 
AD9925  
Sweep Mode Operation  
Multiplier Mode  
The AD9925 contains an additional mode of vertical timing  
operation called sweep mode. This mode is used to generate a  
large number of repetitive pulses that span across multiple HD  
lines. One example of where this mode is needed is at the start  
of the CCD readout operation. At the end of the image exposure,  
but before the image is transferred by the sensor gate pulses, the  
vertical interline CCD registers should be free of all charge. This  
can be accomplished by quickly shifting out any charge using a  
long series of pulses from the XV outputs. Depending on the  
vertical resolution of the CCD, up to two or three thousand clock  
cycles will be needed to shift the charge out of each vertical CCD  
line. This operation will span across multiple HD line lengths.  
Normally, the AD9925 vertical timing must be contained within  
one HD line length, but when sweep mode is enabled, the HD  
boundaries will be ignored until the region is finished. To enable  
sweep mode within any region, program the appropriate SWEEP  
register to high.  
To generate very wide vertical timing pulses, a vertical region  
may be configured into a multiplier region. This mode uses the  
vertical pattern registers in a slightly different manner. Multiplier  
mode can be used to support unusual CCD timing requirements,  
such as vertical pulses that are wider than a single HD line length.  
The start polarity and toggle positions are still used in the same  
manner as the standard VPAT group programming, but the  
VPATLEN is used differently. Instead of using the pixel counter  
(HD counter) to specify the toggle position locations (VTOG1,  
2, 3) of the VPAT group, the VPATLEN is multiplied with the  
VTOG position to allow very long pulses to be generated. To  
calculate the exact toggle position, counted in pixels after the  
start position, use the following equation:  
Multiplier ModeToggle Position =VTOG×VPATLEN  
Because the VTOG register is multiplied by VPATLEN, the  
resolution of the toggle position placement is reduced. If  
VPATLEN = 4, then the toggle position accuracy will be reduced  
to a 4-pixel step size, instead of a single pixel step size. Table 16  
summarizes how the VPAT group registers are used in multi-  
plier mode operation. In multiplier mode, the VPATREPO and  
VPATREPE registers should always be programmed to the same  
value as the highest toggle position.  
Figure 40 shows an example of the sweep mode operation. The  
number of vertical pulses needed depends on the vertical reso-  
lution of the CCD. The XV output signals are generated using  
the vertical pattern registers (shown in Table 15). A single pulse  
is created using the polarity and toggle position registers. The  
number of repetitions is then programmed to match the num-  
ber of vertical shifts required by the CCD. Repetitions are pro-  
grammed in the vertical sequence registers using the VPATREP  
registers. This produces a pulse train of the appropriate length.  
Normally, the pulse train is truncated at the end of the HD line  
length, but with sweep mode enabled for this region, the HD  
boundaries are ignored. In Figure 40, the sweep region occupies  
23 HD lines. After the sweep mode region is completed in the  
next region, normal sequence operation will resume. When using  
sweep mode, be sure to set the region boundaries to the appro-  
priate lines (using the sequence change positions) to prevent the  
sweep operation from overlapping the next vertical sequence.  
The example shown in Figure 41 illustrates this operation. The  
first toggle position is two, and the second toggle position is nine.  
In nonmultiplier mode, this would cause the vertical sequence  
to toggle at pixel 2 and then pixel 9 within a single HD line. How-  
ever, now toggle positions are multiplied by the VTPLEN = 4, so  
the first toggle occurs at pixel count = 8, and the second toggle  
occurs at pixel count = 36. Sweep mode has also been enabled  
to allow the toggle positions to cross the HD line boundaries.  
Table 16. Multiplier MODE Register Parameters  
Register  
Length  
Range  
Description  
MULTI  
1 b  
High/Low  
High Enables Multiplier Mode.  
XVPOL  
1 b  
High/Low  
Starting Polarity of XV Signal in Each VPAT Group.  
First Toggle Position for XV Signal in Each VPAT Group.  
Second Toggle Position for XV Signal in Each VPAT Group.  
Third Toggle Position for XV Signal in Each VPAT Group.  
Used as Multiplier Factor for Toggle Position Counter.  
VPATREPE/VPATREPO Should Be Set to the Same Value as TOG2 or TOG3.  
XVTOG1  
XVTOG2  
XVTOG3  
VPATLEN  
VPATREP  
12 b  
12 b  
12 b  
10 b  
12 b  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
0 to 1023 Pixels  
0 to 4095  
Rev. A | Page 31 of 96  
 
AD9925  
VD  
SCP 1  
SCP 2  
HD  
LINE 0  
LINE 1  
LINE 2  
LINE 24  
LINE 25  
XV1 TO XV8  
REGION 0  
REGION 1: SWEEP REGION  
REGION 2  
Figure 40. Example of Sweep Region for High Speed Vertical Shift  
START POSITION OF VPAT GROUP IS STILL PROGRAMMED IN THE VERTICAL SEQUENCE REGISTERS  
HD  
5
5
3
VPATLEN  
1
1
2
2
3
3
4
4
1
5
2
6
3
7
4
8
1
9
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
1
2
3
4
PIXEL  
NUMBER  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
4
4
XV1 TO XV8  
1
2
2
MULTIPLIER MODE VERTICAL PATTERN GROUP PROPERTIES:  
1. START POLARITY (ABOVE: STARTPOL = 0).  
2. FIRST, SECOND, AND THIRD TOGGLE POSITIONS (ABOVE: VTOG1 = 2, VTOG2 = 9).  
3. LENGTH OF VPAT COUNTER (ABOVE: VPATLEN = 4); THIS IS THE MINIMUM RESOLUTION FOR TOGGLE POSITION CHANGES.  
4. TOGGLE POSITIONS OCCUR ATLOCATION EQUAL TO (VTOG × VPATLEN).  
5. IF SWEEP REGION IS ENABLED, THE VERTICAL PULSES MAY ALSO CROSS THE HD BOUNDRIES, AS SHOWN ABOVE.  
Figure 41. Example of Multiplier Region for Wide Vertical Pulse Timing  
Vertical Sensor Gate (Shift Gate) Patterns  
SGLINE2 registers. Additionally, any of the XSG1 to XSG6  
outputs may be individually disabled by using the SGMASK  
register. The individual masking allows all of the SG patterns to  
be preprogrammed, and the appropriate pulses for the different  
fields can be separately enabled. For maximum flexibility, the  
SGPATSEL, SGMASK, and SGLINE registers are separately  
programmable for each field. See the Complete Field: Combin-  
ing Vertical Sequences section for more details.  
In an interline CCD, the sensor gates (SG) are used to transfer  
the pixel charges from the light-sensitive image area into the  
light-shielded vertical registers. From the light-shielded vertical  
registers, the image is then clocked out line-by-line, using the  
vertical transfer pulses in conjunction with the high speed hori-  
zontal clocks.  
Table 17 contains the summary of the SG pattern registers. The  
AD9925 has six SG outputs, XSG1 to XSG6. Each of the outputs  
can be assigned to one of four programmed patterns by using  
the SGPATSEL registers. Each pattern is generated in a similar  
manner as the vertical pattern groups, with a programmable  
start polarity (SGPOL), first toggle position (SGTOG1), and  
second toggle position (SGTOG2). The active line where the SG  
pulses occur is programmable using the SGLINE1 and  
Additionally, there is a register in Bank 1 (Addr 0x55) that over-  
rides the SG masking in the field registers (Bank 2). The  
SGMASK_OVR register allows sensor gate masking to be  
changed without modifying the field register values. Setting the  
SGMASKOVR_EN bit high enables the SGMASK override  
function. The SGMASK_OVR register is SCK updated, so the  
new SG masking values will update immediately.  
Rev. A | Page 32 of 96  
AD9925  
Table 17. SG Pattern Registers (Also See Field Registers in Table 15)  
Register  
Length  
Range  
Description  
SGPOL  
SGTOG1  
SGTOG2  
SGMASK_OVR  
SGMASKOVR_EN  
1 b  
High/Low  
Sensor Gate Starting Polarity for SG Pattern 0 to 3  
First Toggle Position for SG Pattern 0 to 3  
Second Toggle Position for SG Pattern 0 to 3  
SG Masking, Overrides the Values in the Field Registers  
1: Enables SGMASK Fast Update  
12 b  
12 b  
6 b  
0 to 4095 Pixel Location  
0 to 4095 Pixel Location  
Six Individual Bits  
Disable/Enable  
1 b  
VD  
HD  
4
1
2
XSG PATTERNS  
3
PROGRAMMABLE SETTINGS FOR EACH PATTERN:  
1. START POLARITY OF PULSE.  
2. FIRST TOGGLE POSITION.  
3. SECOND TOGGLE POSITION.  
4. ACTIVE LINE FOR XSG PULSES WITHIN THE FIELD (PROGRAMMABLE IN THE FIELD REGISTER, NOT FOR EACH PATTERN).  
Figure 42. Vertical Sensor Gate Pulse Placement  
MODE Register  
which field timing would be active depending on how the camera  
was being used. Table 18 shows how the MODE register data  
bits are used. The three MSBs, D23 to D21, are used to specify  
how many total fields will be used. Any value from 1 to 7 can be  
selected using these three bits. The remaining register bits are  
divided into 3-bit sections to select which of the six fields are  
used and in which order. Up to seven fields may be used in a  
single MODE write. The AD9925 will start with the field timing  
specified by the first field bits, and on the next VD it will switch  
to the timing specified by the second field bits, and so on.  
The MODE register is a single register that selects the field timing  
of the AD9925. Typically, all the field, vertical sequence, and ver-  
tical pattern group information is programmed into the AD9925  
at startup. During operation, the MODE register allows the user to  
select any combination of field timing to meet the current require-  
ments of the system. The advantage of using the MODE register in  
conjunction with preprogrammed timing is that it greatly reduces  
the system programming requirements during camera operation.  
Only a few register writes are required when the camera operating  
mode is changed, rather than having to write in all the vertical  
timing information with each camera mode change.  
After completing the total number of fields specified in Bits D23  
to D21, the AD9925 will repeat by starting at the first field again.  
This will continue until a new write to the MODE register occurs.  
Figure 43 shows examples of the MODE register settings for  
different field configurations.  
A basic still camera application might require five different fields  
of vertical timing: one for draft mode operation, one for auto-  
focusing, and three for still image readout. All of the register  
timing information for the five fields would be loaded at startup.  
Then, during camera operation, the MODE register would select  
Table 18. MODE Register Data Bit Breakdown (D23 = MSB)  
D23 D22 D21  
D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9  
D8 D7 D6  
D5 D4 D3  
D2 D1 D0  
Total Number of  
Fields to Use  
Seventh Field Sixth Field  
Fifth Field  
0 = Field 0  
5 = Field 5  
6, 7 = Invalid  
Fourth Field Third Field  
Second Field First Field  
1 = First Field Only 0 = Field 0  
7 = All 7 Fields  
0 = Invalid  
0 = Field 0  
5 = Field 5  
6, 7 = Invalid  
0 = Field 0  
5 = Field 5  
6, 7 = Invalid  
0 = Field 0  
5 = Field 5  
6, 7 = Invalid 6, 7 = Invalid  
0 = Field 0  
5 = Field 5  
0 = Field 0  
5 = Field 5  
6, 7 = Invalid  
5 = Field 5  
6, 7 = Invalid  
Rev. A | Page 33 of 96  
 
AD9925  
EXAMPLE 1:  
TOTAL FIELDS = 3, FIRST FIELD = FIELD 0, SECOND FIELD = FIELD 1, THIRD FIELD = FIELD 2  
MODE REGISTER CONTENTS = 0x60 0088  
FIELD 1  
FIELD 2  
FIELD 0  
EXAMPLE 2:  
TOTAL FIELDS = 2, FIRST FIELD = FIELD 3, SECOND FIELD = FIELD 4  
MODE REGISTER CONTENTS = 0x40 0023  
FIELD 4  
FIELD 3  
EXAMPLE 3:  
TOTAL FIELDS = 4, FIRST FIELD = FIELD 5, SECOND FIELD = FIELD 1, THIRD FIELD = FIELD 4, FOURTH FIELD = FIELD 2  
MODE REGISTER CONTENTS = 0x80 050D  
FIELD 2  
FIELD 1  
FIELD 4  
FIELD 5  
Figure 43. Using the MODE Register to Select Field Timing  
number of high speed vertical pulses needed to clear any charge  
VERTICAL TIMING EXAMPLE  
from the CCDs vertical registers. Region 1 consists of only two  
lines and, like Region 3, uses standard single line vertical shift  
timing. Region 2 is the sensor gate line, where the VSG pulses  
transfer the image into the vertical CCD registers. This region  
may require the use of the second vertical pattern group for the  
SG active line.  
To better understand how the AD9925 vertical timing generation  
is used, consider CCD timing chart in Figure 44. This particular  
example illustrates a CCD using a general 3-field readout tech-  
nique. As described in the previous field section, each readout  
field should be divided into separate regions to perform each  
step of the readout. The sequence change positions (SCP)  
determine the line boundaries for each region, and then the  
VSEQSEL registers assign a particular vertical sequence to each  
region. The vertical sequences contain the specific timing  
information required in each region: XV1 to XV6 pulses (using  
VPAT groups), HBLK/CLPOB timing, and XSG patterns for the  
SG active lines.  
In summary, four regions are required in each of the three  
fields. The timing for Region 1 and Region 3 is essentially the  
same, reducing the complexity of the register programming.  
However, other registers will need to be used during the actual  
readout operation, such as the MODE register, shutter control  
registers (TRIGGER, SUBCK, VSUB, MSHUT, and STROBE),  
and the AFE gain register. These registers will be explained in  
other examples.  
This particular timing example requires four regions for each of  
the three fields, labeled Region 0, Region 1, Region 2, and  
Region 3. Because the AD9925 allows up to six individual fields  
to be programmed, the Field 0, Field 1, and Field 2 registers can  
be used to meet the requirements of this timing example. The  
four regions for each field are very similar in this example, but  
the individual registers for each field allow flexibility to accom-  
modate other timing charts.  
Important Note about Signal Polarities  
When programming the AD9925 to generate the XV1 to XV8,  
XSG1 to XSG6, and SUBCK signals, it is important to note that  
the vertical driver circuit will invert these signals. Carefully  
check the required timing signals needed at the output of the  
vertical driver circuit and adjust the polarities of the XV signals  
accordingly.  
Region 0 is a high speed vertical shift region. Sweep mode may  
be used to generate this timing operation, with the desired  
Rev. A | Page 34 of 96  
 
AD9925  
N
N – 3  
2 1  
1 8  
1 5  
1 2  
9
6
3
N – 1  
N – 4  
2 0  
1 7  
1 4  
1 1  
8
5
2
2
5
N –  
N –  
1 6  
1 3  
1 0  
7
4
1
Figure 44. CCD Timing Example—Dividing Each Field into Regions  
Rev. A | Page 35 of 96  
 
AD9925  
High Precision Shutter Operation  
SHUTTER TIMING CONTROL  
High precision shuttering is used in the same manner as normal  
shuttering, but it uses an additional register to control the last  
SUBCK pulse. In this mode, the SUBCK still pulses once per  
line, but the last SUBCK in the field will have an additional  
SUBCK pulse, the location of which is determined by the  
SUBCK2TOG register, as shown in Figure 46. Finer resolution  
of the exposure time is possible using this mode. Leaving the  
SUBCK2TOG register set to its maximum value (0xFF FFFF)  
will disable the last SUBCK pulse (default setting).  
The CCD image exposure time is controlled by the substrate  
clock signal (SUBCK), which pulses the CCD substrate to clear  
out accumulated charge. The AD9925 supports three types of  
electronic shuttering: normal, high precision, and low speed.  
Along with the SUBCK pulse placement, the AD9925 can ac-  
commodate different readout configurations to further suppress  
the SUBCK pulses during multiple field readouts. The AD9925  
also provides programmable outputs to control an external me-  
chanical shutter (MSHUT), a strobe/flash (STROBE), and the  
CCD bias select signal (VSUB).  
Low Speed Shutter Operation  
Normal and high precision shutter operations are used when  
the exposure time is less than one field long. For exposure times  
longer than one field interval, low speed shutter operation is  
used. The AD9925 uses a separate exposure counter to achieve  
long exposure times. The number of fields for the low speed  
shutter operation is specified in the EXPOSURE register  
(Addr 0x62). As shown in Figure 47, this shutter mode will  
suppress the SUBCK and VSG outputs for up to 4095 fields (VD  
periods). The VD and HD outputs may be suppressed during the  
exposure period by programming the VDHDOFF register to 1.  
Normal Shutter Operation  
By default, the AD9925 always operates in the normal shutter  
configuration, in which the SUBCK signal pulses in every VD  
field (see Figure 45). The SUBCK pulse occurs once per line,  
and the total number of repetitions within the field will deter-  
mine the length of the exposure time. The SUBCK pulse polar-  
ity and toggle positions within a line are programmable using  
the SUBCKPOL and SUBCK1TOG registers (see Table 19). The  
number of SUBCK pulses per field is programmed in the  
SUBCKNUM register (Addr 0x63).  
To generate a low speed shutter operation, it is necessary to  
trigger the start of the long exposure by writing to the TRIGGER  
Register Bit D3. When this bit is set high, at the next VD edge,  
the AD9925 will begin an exposure operation. If a value greater  
than 0 is specified in the EXPOSURE register, AD9925 will  
suppress the SUBCK output on subsequent fields.  
As shown in Figure 45, the SUBCK pulses will always begin  
in the line following the SG active line, which is specified  
in the SGACTLINE registers for each field. The SUBCKPOL,  
SUBCK1TOG, SUBCK2TOG, SUBCKNUM, and SUBCKSUP-  
PRESS registers are updated at the start of the line after the sensor  
gate line, as described in the Updating New Register Values section.  
If the exposure is generated using the TRIGGER register and  
the EXPOSURE register is set to 0, then the behavior of the  
SUBCK will not be any different than that of normal shutter or  
high precision shutter operations, in which the TRIGGER regis-  
ter is not used.  
VD  
HD  
XSG  
tEXP  
tEXP  
SUBCK  
SUBCK PROGRAMMABLE SETTINGS:  
1. PULSE POLARITY USING THE SUBCKPOL REGISTER.  
2. NUMBER OF PULSES WITHIN THE FIELD USING THE SUBCKNUM REGISTER (SUBNUM = 3 IN THE ABOVE EXAMPLE).  
3. PIXEL LOCATION OF PULSE WITHIN THE LINE AND PULSE WIDTH PROGRAMMED USING SUBCK1 TOGGLE POSITION REGISTER.  
Figure 45. Normal Shutter Mode  
Rev. A | Page 36 of 96  
 
 
AD9925  
VD  
HD  
XSG  
tEXP  
tEXP  
SUBCK  
NOTES  
1. SECOND SUBCK PULSE IS ADDED IN THE LAST SUBCK LINE.  
2. LOCATION OF SECOND PULSE IS FULLY PROGRAMMABLE USING THE SUBCK2 TOGGLE POSITION REGISTER.  
Figure 46. High Precision Shutter Mode  
TRIGGER  
EXPOSURE  
VD  
XSG  
tEXP  
SUBCK  
NOTES  
1. SUBCK MAY BE SUPPRESSED FOR MULTIPLE FIELDS BY PROGRAMMING THE EXPOSURE REGISTER GREATER THAN ZERO.  
2. ABOVE EXAMPLE USES EXPOSURE = 1.  
3. TRIGGER REGISTER MUST ALSO BE USED TO START THE LOW SPEED EXPOSURE.  
4. VD/HD OUTPUTS MAY ALSO BE SUPPRESSED USING THE VDHDOFF REGISTER = 1.  
Figure 47. Low Speed Shutter Mode Using EXPOSURE Register  
Table 19. Shutter MODE Register Parameters  
Register  
Length Range  
Description  
TRIGGER  
5 b  
On/Off for Five Signals  
Trigger for VSUB [0], MSHUT [1], STROBE [2],  
Exposure [3], and Readout Start [4]  
READOUT  
EXPOSURE  
3 b  
12 b  
0 to 7 Number of Fields  
0 to 4095 Number of Fields Number of Fields to Suppress to SUBCK and VSG  
during Exposure Time (Low Speed Shutter)  
Number of Fields to Suppress SUBCK after Exposure  
VDHDOFF  
1 b  
1 b  
24 b  
24 b  
12 b  
On/Off  
High/Low  
Disable VD/HD Output during Exposure (1 = On, 0 = Off)  
SUBCK Start Polarity for SUBCK1 and SUBCK2  
Toggle Positions for First SUBCK Pulse (Normal Shutter)  
SUBCKPOL1  
SUBCK1TOG1  
SUBCK2TOG1  
SUBCKNUM1  
0 to 4095 Pixel Locations  
0 to 4095 Pixel Locations  
1 to 4095 Number of Pulses Total Number of SUBCKs per Field, at 1 Pulse per Line  
Toggle Positions for Second SUBCK Pulse in Last Line (High Precision)  
SUBCKSUPPRESS1 12 b  
0 to 4095 Number of Pulses Number of Lines to Further Suppress SUBCK after the VSG Line  
1 Register is not VD updated, but is updated at the start of the line after the sensor gate line.  
Rev. A | Page 37 of 96  
 
AD9925  
It is possible to independently trigger the readout operation  
without triggering the exposure operation. This will cause the  
readout to occur at the next VD, and the SUBCK output will be  
suppressed according to the value of the READOUT register.  
SUBCK Suppression  
Normally, the SUBCKs will begin to pulse on the line following  
the sensor gate line (VSG). With some CCDs, the SUBCK pulse  
needs to be suppressed for one or more lines following the VSG  
line. The SUBCKSUPPRESS register allows for the suppression  
of the SUBCK pulses for lines following the VSG line.  
The TRIGGER register is also used to control the STROBE,  
MSHUT, and VSUB signal transitions. Each of these signals is  
individually controlled, although they will be dependent on the  
triggering of the exposure and readout operation.  
Readout after Exposure  
After the exposure, the readout of the CCD data occurs, begin-  
ning with the sensor gate (VSG) operation. By default, the  
AD9925 is generating the VSG pulses in every field. In the case  
where only a single exposure and a single readout frame is  
needed, such as the CCDs preview mode, the VSG and SUBCK  
pulses can operate in every field.  
See Figure 49 for a complete example of triggering the exposure  
and readout operations.  
VSUB Control  
The CCD readout bias (VSUB) can be programmed to accom-  
modate different CCDs. Figure 48 shows two different modes  
that are available. In Mode 0, VSUB goes active during the field  
of the last SUBCK when the exposure begins. The on position  
(rising edge in Figure 48) is programmable to any line within  
the field. VSUB will remain active until the end of the image  
readout. In Mode 1, the VSUB is not activated until the start of  
the readout.  
However, in many cases, during readout, the SUBCK output  
needs to be further suppressed until the readout is completed.  
The READOUT register specifies the number of additional  
fields after the exposure to continue the suppression of SUBCK.  
READOUT can be programmed for zero to seven additional  
fields and should be preprogrammed at startup, not at the same  
time as the exposure write. A typical interlaced CCD frame  
readout mode will generally require two additional fields of  
SUBCK suppression (READOUT = 2). A 3-field, 6-phase CCD  
will require three additional fields of SUBCK suppression after  
the readout begins (READOUT = 3).  
An additional function called VSUB keep-on is also available.  
When this bit is set high, the VSUB output will remain on (active)  
even after the readout has finished. To disable the VSUB, set  
this bit back to low.  
MSHUT and STROBE Control  
If the SUBCK output is required to start back up during the last  
field of readout, simply program the READOUT register to one  
less than the total number of CCD readout fields.  
MSHUT and STROBE operation is shown in Figure 49, Figure  
50, and Figure 51. Table 20 shows the registers parameters for  
controlling the MSHUT and STROBE outputs. The MSHUT  
output is switched on with the MSHUTON registers, and it will  
remain on until the location specified in the MSHUTOFF is  
reached. The location of MSHUTOFF is fully programmable to  
anywhere within the exposure period, using the FD (field), LN  
(line), and PX (pixel) registers. The STROBE pulse is defined by  
the on and off positions. STROBON_FD is the field in which  
the STROBE is turned on, measured from the field containing  
the last SUBCK before exposure begins. The STROBON_ LN  
PX register gives the line and pixel positions with respect to  
STROBON_FD. The STROBE off position is programmable to  
any field, line, and pixel location with respect to the field of the  
last SUBCK.  
Like the exposure operation, the readout operation must be  
triggered using the TRIGGER register.  
Using the TRIGGER Register  
As described above, by default, the AD9925 will output the  
SUBCK and VSG signals on every field. This works well for  
continuous single-field exposure and readout operations, such  
as the CCDs live preview mode. However, if the CCD requires a  
longer exposure time, or if multiple readout fields are needed,  
the TRIGGER register needs to initiate specific exposure and  
readout sequences.  
Typically, the exposure and readout bits in the TRIGGER regis-  
ter are used together. This will initiate a complete exposure-plus  
readout operation. Once the exposure has been completed, the  
readout will automatically occur. The values in the EXPOSURE  
and READOUT registers will determine the length of each  
operation.  
Rev. A | Page 38 of 96  
AD9925  
TRIGGER  
VSUB  
VD  
XSG  
tEXP  
READOUT  
SUBCK  
VSUB  
4
2
2
MODE 0  
1
MODE 1  
3
VSUB OPERATION:  
1. ACTIVE POLARITY IS POLARITY (ABOVE EXAMPLE IS VSUB ACTIVE HIGH).  
2. ON-POSITION IS PROGRAMMABLE, MODE 0 TURNS ON AT THE START OF EXPOSURE, MODE 1 TURNS ON AT THE START OF READOUT.  
3. OFF-POSITION OCCURS AT END OF READOUT.  
4. OPTIONAL VSUB KEEP-ON MODE WILL LEAVE THE VSUB ACTIVE AT THE END OF READOUT.  
Figure 48. VSUB Programmability  
TRIGGER  
EXPOSURE  
AND MSHUT  
VD  
XSG  
tEXP  
SUBCK  
MSHUT  
2
1
3
MSHUT PROGRAMMABLE SETTINGS:  
1. ACTIVE POLARITY.  
2. ON-POSITION IS VD UPDATED AND MAY BE SWITCHED ON AT ANY TIME.  
3. OFF-POSITION CAN BE PROGRAMMED ANYWHERE FROM THE FIELD OF LAST SUBCK UNTIL THE FIELD BEFORE READOUT.  
Figure 49. MSHUT Output Programmability  
TRIGGER Register Limitations  
The VSUB trigger requires two idle fields between expo-  
Although the TRIGGER register can be used to perform a com-  
plete exposure and readout operation, there are limitations on  
its use.  
sure/readout operations in order to ensure proper VSUB on/off  
triggering. If the VSUB signal is not required to be turned on  
and off in between each successive exposure/readout operation,  
then this limitation can be ignored. Using the VSUB keep-on  
mode is useful when successive exposure/readout operations  
are required.  
Once an exposure-plus readout operation has been triggered,  
another exposure/readout operation cannot be triggered right  
away. There must be at least one idle field (VD intervals) before  
the next exposure/readout can be triggered. The same limita-  
tion applies to the triggering of the MSHUT signal. There  
must be at least one idle field after the completion of the  
MSHUT OFF operation before another MSHUT OFF opera-  
tion can be programmed.  
Rev. A | Page 39 of 96  
AD9925  
TRIGGER  
EXPOSURE  
AND STROBE  
VD  
XSG  
tEXP  
SUBCK  
STROBE  
1
2
3
STROBE PROGRAMMABLE SETTINGS:  
1. ACTIVE POLARITY.  
2. ON-POSITION IS PROGRAMMABLE IN ANY FIELD DURING THE EXPOSURE TIME (WITH RESPECT TO THE FIELD CONTAINING THE LAST SUBCK).  
3. OFF-POSITION IS PROGRAMMABLE IN ANY FIELD DURING THE EXPOSURE TIME.  
Figure 50. STROBE Output Programmability  
Table 20. VSUB, MSHUT, and STROBE Register Parameters  
Register  
Length Range  
Description  
VSUBMODE[0]  
VSUBMODE[1]  
VSUBON[11:0]  
VSUBON[12]  
MSHUTPOL[0]  
MSHUTPOL[1]  
MSHUTON  
1 b  
1 b  
12 b  
1 b  
1 b  
1 b  
24 b  
12 b  
High/Low  
High/Low  
0 to 4095 Line Location  
High/Low  
High/Low  
VSUB Mode (0 = Mode 0, 1 = Mode 1) (See Figure 44).  
VSUB Keep-On Mode. VSUB will stay active after readout when set high.  
VSUB On Position. Active starting in any line of field.  
VSUB Active Polarity.  
MSHUT Active Polarity.  
MSHUT Manual Enable (1 = Active or Open).  
On/Off  
0 to 4095 Line/Pixel Location MSHUT On Position Line [11:0] and Pixel [23:12] Location.  
0 to 4095 Field Location Field Location to Switch Off MSHUT (Inactive or Closed).  
0 to 4095 Line/Pixel Location Line/Pixel Position to Switch Off MSHUT (Inactive or Closed).  
MSHUTOFF_FD  
MSHUTOFF_LNPX 24 b  
STROBPOL  
1 b  
High/Low  
STROBE Active Polarity.  
STROBON_FD  
STROBON_LNPX  
STROBOFF_FD  
STROBOFF_LNPX  
12 b  
24 b  
12 b  
24 b  
0 to 4095 Field Location  
0 to 4095 Line/Pixel Location STROBE ON Line/Pixel Position.  
0 to 4095 Field Location  
0 to 4095 Line/Pixel Location STROBE OFF Line/Pixel Position.  
STROBE ON Field Location, with Respect to Last SUBCK Field.  
STROBE OFF Field Location, with Respect to Last SUBCK Field.  
Rev. A | Page 40 of 96  
AD9925  
EXAMPLE OF EXPOSURE AND READOUT OF INTERLACED FRAME  
Figure 51. Example of Exposure and Still Image Readout Using Shutter Signals and MODE Register  
Rev. A | Page 41 of 96  
 
AD9925  
Refer to Figure 51 for each step:  
4. STROBE output turns on and off at the location specified  
in the STROBEON and STROBEOFF registers (Addr x6E  
to x71).  
1. Write to the READOUT register (Addr x61) to specify the  
number of fields to further suppress SUBCK while the  
CCD data is readout. In this example, READOUT = 3.  
5. MSHUT output turns off at the location specified in the  
MSHUTOFF registers (Addr x6B and x6C).  
Write to the EXPOSURE register (Addr x62) to specify the  
number of fields to suppress SUBCK and VSG outputs dur-  
ing exposure. In this example, EXPOSURE = 1.  
6. The next VD falling edge will automatically start the first  
readout field.  
7. The next VD falling edge will automatically start the sec-  
ond readout field.  
Write to the TRIGGER register (Addr x60) to enable the  
STROBE, MSHUT, and VSUB signals and to start the ex-  
posure/readout operation. To trigger these events (as in  
Figure 56), set the register TRIGGER = 31. Readout will  
automatically occur after the exposure period is finished.  
8. The next VD falling edge will automatically start the third  
readout field.  
9. Write to the MODE register to reconfigure the single draft  
mode field timing. Write to the MSHUTON register  
(Addr x6A) to open the mechanical shutter.  
Write to the MODE register (x1B) to configure the next  
five fields. The first two fields during exposure are the  
same as the current draft mode fields, and the following  
three fields are the still frame readout fields. The registers  
for the draft mode field and the three readout fields have  
already been programmed.  
10. VD/HD falling edge will update the serial writes from 9.  
VSG outputs return to draft mode timing.  
SUBCK output resumes operation.  
MSHUT output returns to the on position (active or open).  
VSUB output returns to the off position (inactive).  
2. The VD/HD falling edge will update the serial writes from 1.  
3. If VSUB mode = 0 (Addr x67), VSUB output will turn on at  
the line specified in the VSUBON register (Addr x68).  
Rev. A | Page 42 of 96  
AD9925  
One final application for the FG_TRIG signal is to combine it  
with the existing VSUB signal to generate additional toggle  
positions. By setting the SHUT_EXTRA Bit 8 to a 1, the VSUB  
toggles and FG_TRIG toggles are XORd together and sent to the  
VSUB output. Figure 52 and Figure 54 show this application in  
more detail.  
FG_TRIG OPERATION  
The AD9925 contains an additional signal that may be used in  
conjunction with shutter operation or general system operation.  
The FG_TRIG signal is an internally generated pulse that can be  
output on the VSUB or SYNC pins for system use or combined  
with the VSUB registers to create a four-toggle VSUB signal.  
The FG_TRIG signal is generated using the start polarity and  
first and second toggle position registers, programmable with  
line and pixel resolution. The field placement of the FG_TRIG  
pulse is matched to the field count specified by the MODE reg-  
ister operation. The FG_TRIGEN register contains a 3-bit value  
to specify which field count will contain the FG_TRIG pulse.  
Figure 53 shows how the FG_TRIG pulse is generated using  
these registers.  
FG_TRIG  
INTERNAL  
1
VSUB  
OUTPUT  
XOR  
1
2:1  
0
2:1  
VSUB  
INTERNAL  
0
SHUT_EXTRA[3]  
SHUT_EXTRA[8]  
Figure 52. Combining the Internal FG_TRIG and Internal VSUB Signals  
After the FG_TRIG signal is specified, it is enabled using Bit 3  
of the FG_TRIGEN register. By default, the FG_TRIG will be  
mapped to the SYNC output, as long as the SYNC pin is config-  
ured as an output (SYNCENABLE = 1). Alternatively, the  
FG_TRIG pulse may be mapped to the VSUB output by  
writing a 1 to the SHUT_EXTRA Register Bit 3.  
Table 21. FG_TRIG Operation Registers  
Register  
Address  
Bit Width  
Description  
SYNCENABLE  
VSUBON  
0x12  
0x68  
[0]  
[12:0]  
1: Configures SYNC Pin as an Output. By default, the FG_TRIG signal outputs on the SYNC pin.  
Controls VSUB On Position and Polarity. When SHUT_Extra [8] = 1, FG_TRIG toggles are combined  
with VSUB signal.  
SHUT_EXTRA  
0xE7  
[8:0]  
Selects Whether FG_TRIG Signal Is Used with VSUB.  
[2:0] Set to 0.  
[3] Set = 1 to send FG_TRIG signal to VSUB pin.  
[7:4] Set to 0.  
[8] Set = 1 to combine FG_TRIG and VSUB signals.  
FG_TRIGEN  
0xEB  
0xF2  
[3:0]  
FG_TRIG Enable.  
[2:0] Selects field count for pulse (based on mode field counter).  
[3] Set = 1 to enable FG_TRIG signal output.  
FG_TRIGPOL  
[0]  
FG_TRIG Start Polarity.  
FG_TRIGLINE1 0xF3  
FG_TRIGPIX1 0xF4  
FG_TRIGLINE2 0xF5  
FG_TRIGPIX2 0xF6  
[11:0]  
[12:0]  
[11:0]  
[12:0]  
FG_TRIG First Toggle Position, Line Location.  
FG_TRIG First Toggle Position, Pixel Location.  
FG_TRIG Second Toggle Position, Line Location.  
FG_TRIG Second Toggle Position, Pixel Location.  
Rev. A | Page 43 of 96  
 
 
 
AD9925  
VD  
MODE REGISTER  
FIELD COUNT  
FIELD 0  
FIELD 1  
FIELD 2  
FIELD 0  
FIELD 1  
4
4
FG_TRIG  
1
2
3
FG_TRIG PROGRAMMABLE SETTINGS:  
1. ACTIVE POLARITY.  
2. FIRST TOGGLE POSITION, LINE AND PIXEL LOCATION.  
3. SECOND TOGGLE POSITION, LINE AND PIXEL LOCATION.  
4. FIELD PLACEMENT BASED ON MODE REGISTER FIELD COUNT.  
Figure 53. Generating the FG_TRIG Signal  
VD  
VSUB  
INTERNAL  
FG_TRIG  
INTERNAL  
VSUB OUT  
SHUT_XTRA[8] = 0  
VSUB OUT  
SHUT_XTRA[8] = 1  
Figure 54. Combining FG_TRIG and VSUB to Create Four Toggle Positions for VSUB Output  
Rev. A | Page 44 of 96  
AD9925  
1.0µF 1.0µF  
REFB REFT  
1.0V 2.0V  
FIXED  
DELAY  
DC RESTORE  
1.3V  
CLI  
1
0
DCLK  
DOUT  
INTERNAL  
DOUT PHASE  
V
REF  
DOUT  
DLY  
SHP  
DCLK  
MODE  
SHD  
2V FULL SCALE  
6dB ~ 42dB  
VGA  
0.1µF  
CCDIN  
12  
12-BIT  
ADC  
OUTPUT  
DATA  
CDS  
LATCH  
OPTICAL BLACK  
CLAMP  
VGA GAIN  
REGISTER  
DAC  
CLPOB PBLK  
DIGITAL  
FILTER  
8
DOUT  
SHP SHD PHASE  
CLAMP LEVEL  
REGISTER  
CLPOB PBLK  
PRECISION  
TIMING  
V-H  
TIMING  
CLI  
GENERATION  
GENERATION  
AD9925  
Figure 55. Analog Front End Functional Block Diagram  
Variable Gain Amplifier  
ANALOG FRONT END DESCRIPTION  
AND OPERATION  
The VGA stage provides a gain range of 6 dB to 42 dB, program-  
mable with 10-bit resolution through the serial digital interface.  
The minimum gain of 6 dB is needed to match a 1 V input signal  
with the ADC full-scale range of 2 V. When compared to 1 V full-  
scale systems, the equivalent gain range is 0 dB to 36 dB.  
The AD9925 signal processing chain is shown in Figure 55.  
Each processing step is essential in achieving a high quality  
image from the raw CCD pixel data.  
DC Restore  
The VGA gain curve follows a linear-in-dB characteristic. The  
exact VGA gain can be calculated for any gain register value by  
using the equation  
To reduce the large dc offset of the CCD output signal, a dc-  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to ap-  
proximately 1.3 V, which allows it to be compatible with the  
3 V supply voltage of the AD9925.  
Gain (dB) = (0.0351 × Code) + 6 dB  
where the Code range is 0 to 1023.  
Correlated Double Sampler  
42  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject the low frequency noise. The timing  
shown in Figure 19 illustrates how the two internally generated  
CDS clocks, SHP and SHD, are used to sample the reference level  
and data level of the CCD signal, respectively. The placement of  
the SHP and SHD sampling edges is determined by setting the  
SAMPCONTROL register located at Addr 0x36. Placement of  
these two clock signals is critical in achieving the best perform-  
ance from the CCD.  
36  
30  
24  
18  
12  
6
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 56. VGA Gain Curve  
Rev. A | Page 45 of 96  
 
 
AD9925  
ADC  
Digital Data Outputs  
The AD9925 uses high performance ADC architecture, opti-  
mized for high speed and low power. Differential nonlinearity  
(DNL) performance is typically better than 0.5 LSB. The ADC  
uses a 2 V input range. See Figure 10, Figure 12, and Figure 13  
for typical linearity and noise performance plots for the  
AD9925.  
The AD9925 digital output data is latched using the DOUT  
PHASE register value, as shown in Figure 55. Output data tim-  
ing is shown in Figure 21 and Figure 22. It is also possible to  
leave the output latches transparent, so that the data outputs are  
valid immediately from the ADC. Programming the AFE  
CONTROL Register Bit D4 to a 1 will set the output latches  
transparent. The data outputs can also be disabled (three stated)  
by setting the AFE CONTROL Register Bit D3 to a 1.  
Optical Black Clamp  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel in-  
terval on each line, the ADC output is compared with a fixed  
black level reference, selected by the user in the clamp level  
register. The value can be programmed between 0 LSB and  
255 LSB in 256 steps. The resulting error signal is filtered to  
reduce noise, and the correction value is applied to the ADC  
input through a DAC. Normally, the optical black clamp loop is  
turned on once per horizontal line, but this loop can be updated  
more slowly to suit a particular application. If external digital  
clamping is used during the postprocessing, the AD9925 optical  
black clamping may be disabled using Bit D2 in the OPRMODE  
register. When the loop is disabled, the clamp level register may  
still be used to provide programmable offset adjustment.  
The switching of the data outputs can couple noise back to the  
analog signal path. To minimize any switching noise, it is rec-  
ommended that the DOUT PHASE register be set to the same  
edge as the SHP sampling location, or up to 12 edges after the  
SHP sampling location. Other settings can produce good results,  
but experimentation is necessary. It is recommended that the  
DOUT PHASE location not occur between the SHD sampling  
location and 12 edges after the SHD location. For example, if  
SHDLOC = 0, then DOUT PHASE should be set to an edge  
location of 12 or greater. If adjustable phase is not required for  
the data outputs, the output latch can be left transparent using  
register 0x03, Bit [4].  
The data output coding is normally straight binary, but the  
coding may be changed to gray coding by setting the AFE  
CONTROL Register Bit D5 to a 1.  
The CLPOB pulse should be placed during the CCDs optical  
black pixels. It is recommended that the CLPOB pulse duration  
be at least 20 pixels wide. Shorter pulse widths may be used, but  
the ability to track low frequency variations in the black level  
will be reduced. See the Horizontal Clamping and Blanking  
section for timing examples.  
Rev. A | Page 46 of 96  
AD9925  
Table 22 to Table 32 describe the output polarities for these  
VERTICAL DRIVER SIGNAL CONFIGURATION  
signals vs. their input levels. Refer to these tables when deter-  
mining the register settings for the desired output levels.  
Figure 58 to Figure 64 show graphically the relationship between  
the polarities of the XV and XSG signals and the inverted verti-  
cal driver output signals.  
As shown in Figure 57, XV1 to XV8, XSG1 to XSG6, and  
XSUBCK are outputs from the internal AD9925 timing genera-  
tor, while V1 to V8 and SUBCK are the resulting outputs from  
the AD9925 vertical driver. The vertical driver performs the  
mixing of the XV and XSG pulses and amplifies them to the  
high voltages required for driving the CCD. Additionally, the  
vertical driver outputs are inverted from the internal XV, XSG,  
and SUBCK polarities configured by the AD9925 registers.  
AD9925  
VERTICAL DRIVER  
+3V +15V, –7.5V  
XV1  
XSG1  
XV2  
B8  
V1  
V2  
G11  
XSG6  
XSG2  
XV3  
B9  
C9  
D9  
V3A  
V3B  
3-LEVEL OUTPUTS  
XSG3  
INTERNAL  
XSG4  
TIMING  
V5A  
V5B  
V4  
GENERATOR  
XV5  
E9  
XSG5  
XV4  
G10  
H10  
K10  
XV6  
XV7  
V6  
2-LEVEL OUTPUTS  
V7  
J9  
J8  
XV8  
V8  
XSUBCK  
SUBCK  
Figure 57. AD9925 Internal V-Driver Input Signals  
Rev. A | Page 47 of 96  
 
 
AD9925  
Table 22. V1 Output Polarity  
Table 27. V5A Output Polarity  
V-Driver Input  
V-Driver Input  
V1 Output  
V5A Output  
XV1  
L
L
XSG1  
XV5  
L
L
XSG4  
L
H
L
VH  
VM  
VL  
L
H
L
VH  
VM  
VL  
H
H
H
H
VL  
H
H
VL  
Table 23. V2 Output Polarity  
Table 28. V5B Output Polarity  
V-Driver Input  
V-Driver Input  
V2 Output  
V5B Output  
XV2  
L
L
XSG6  
XV5  
L
L
XSG5  
L
H
L
VH  
VM  
VL  
L
H
L
VH  
VM  
VL  
H
H
H
H
VL  
H
H
VL  
Table 24. V3A Output Polarity  
Table 29. V6 Output Polarity  
V-Driver Input  
V-Driver Input  
V3A Output  
V6 Output  
XV3  
L
L
XSG2  
XV6  
L
H
L
H
L
VH  
VM  
VL  
VM  
VL  
H
H
H
VL  
Table 30. V7 Output Polarity  
V-Driver Input  
Table 25. V3B Output Polarity  
V7 Output  
XV7  
L
H
V-Driver Input  
VM  
VL  
V3B Output  
XV3  
L
XSG3  
L
VH  
VM  
VL  
L
H
H
L
Table 31. V8 Output Polarity  
V-Driver Input  
H
H
VL  
V8 Output  
XV8  
L
H
VM  
VL  
Table 26. V4 Output Polarity  
V-Driver Input  
V4 Output  
XV4  
L
H
Table 32. SUBCK Output Polarity  
V-Driver Input  
VM  
VL  
SUBCK Output  
XSUBCK  
L
H
VH  
VL  
Rev. A | Page 48 of 96  
AD9925  
XV1  
XSG1  
VH  
VM  
VL  
V1  
Figure 58. XV1, XSG1, and V1 Output Polarities  
Figure 59. XV2, XSG6, and V2 Output Polarities  
Figure 60. XV3, XSG2, and V3A Output Polarities  
XV2  
XSG6  
VH  
VM  
VL  
V2  
XV3  
XSG2  
VH  
V3A  
VM  
VL  
XV3  
XSG3  
VH  
VM  
VL  
V3B  
Figure 61. XV3, XSG3, and V3B Output Polarities  
Rev. A | Page 49 of 96  
AD9925  
XV5  
XSG4  
VH  
VM  
VL  
V5A  
Figure 62. XV5, XSG4, and V5A Output Polarities  
XV5  
XSG5  
VH  
VM  
VL  
V5B  
Figure 63. XV5, XSG5, and V5B Output Polarities  
XV4, XV6,  
XV7, XV8  
VM  
V4, V6,  
V7, V8  
VL  
Figure 64. XV4, XV6, XV7, XV8 and V4, V6, V7, V8 Output Polarities  
Rev. A | Page 50 of 96  
AD9925  
POWER-UP AND SYNCHRONIZATION  
Vertical Driver Power Supply Sequencing  
The recommended Power-Up and Power-Down sequences are  
shown in Figure 65 and Figure 66, respectively. As shown, the  
VM1 and VM2 voltage levels should never exceed the VH1 and  
VH2 voltage levels during power-up or power-down. Excessive  
current will result if this requirement is not met due to a PN  
junction diode turning on between the VM1/VM2 and VH  
supply pins.  
VH1 = VH2 = 12.0V TO 15.0V  
VDVDD = DVDD = DRVDD = HVDD = RGVDD = TCVDD = AVDD = 3.0V  
1
2
0V  
VM1 = VM2 = –1.0V TO –0.5V  
VL = –7.5V  
SAME TIME AS VM AND VH; LATER OR EARLIER IS OK, BUT NOT BEFORE VDD REACHES 3.0V.  
Figure 65. Power-Up Sequence  
VH1 = VH2  
VDVDD = DVDD = DRVDD = HVDD = RGVDD = TCVDD = AVDD = 3V  
1
2
0V  
VM1 = VM2  
VL  
SAME TIME AS VM AND VH OR EARLIER, BUT NOT AFTER VDD.  
Figure 66. Power-Down Sequence  
Rev. A | Page 51 of 96  
 
 
 
AD9925  
VH1 = VH2 = 15.0V  
VDVDD = DVDD = DRVDD = HVDD = RGVDD = TCVDD = AVDD = 3V  
0V  
POWER  
SUPPLIES  
1
4
VL = –7.5V  
CLI  
(INPUT)  
2
3
5
6
7
8
9
10  
11  
SERIAL  
WRITES  
12  
SYNC  
(INPUT)  
tSYNC  
1V  
VD  
(OUTPUT)  
1ST FIELD  
1H  
HD  
(OUTPUT)  
H2/H4  
H1/H3, RG, DCLK  
DIGITAL  
OUTPUTS  
CLOCKS ACTIVE WHEN OUT_CONTROL  
REGISTER IS UPDATED AT VD/HD EDGE  
Figure 67. Recommended Power-Up Sequence and Synchronization, Master Mode  
Recommended Power-Up Sequence for Master Mode  
7. Write a 0 to the BANKSELECT register to select Bank 1.  
When the AD9925 is powered up, the following sequence is  
recommended (refer to Figure 67 for each step). Note that a  
SYNC signal is required for master mode operation. If an exter-  
nal SYNC pulse is not available, it is also possible to generate an  
internal SYNC pulse by writing to the SYNCPOL register, as  
described in the next section.  
8. By default, the internal timing core is held in a reset state  
with TGCORE_RSTB register = 0. Write a 1 to the  
TGCORE_RSTB register (Addr 0x15 in Bank 1) to start the  
internal timing core operation. Note: If a 2x clock is used  
for the CLI input, the CLIDIVIDE register (Addr 0x30)  
should be set to 1 before resetting the timing core.  
1. Turn on power supplies for the AD9925 and apply master  
clock CLI.  
9. Load the required registers to configure the high speed  
timing, horizontal timing, and shutter timing information.  
2. Reset the internal AD9925 registers by writing a 1 to the  
SW_RESET register (Addr 0x10 in Bank 1).  
10. Configure the AD9925 for master mode timing by writing  
a 1 to the MASTER register (Addr 0x20 in Bank 1).  
3. Write to the standby mode polarity registers 0x0A to 0x0D  
to set the proper polarities for the V-driver inputs, in order  
to avoid damage to the CCD. See Table 35 for settings.  
11. Write a 1 to the OUT_CONTROL register (Addr 0x11 in  
Bank 1).This will allow the outputs to become active after  
the next SYNC rising edge.  
4. The V-driver supplies, VH and VL, can then be powered up  
anytime after completing Step 3 to set the proper polarities.  
12. Generate a SYNC event: If SYNC is high at power-up,  
bring the SYNC input low for a minimum of 100 ns. Then  
bring SYNC back to high. This will cause the internal  
counters to reset and will start the VD/HD operation. The  
first VD/HD edge allows most Bank 1 register updates to  
occur, including OUT_CONTROL to enable all outputs.  
5. By default, the AD9925 is in standby 3 mode. To place the  
part into normal power operation, write 0x004 to the AFE  
OPRMODE register (Addr 0x00 in Bank 1).  
6. Write a 1 to the BANKSELECT register (Addr 0×7F)). This  
will select Register Bank 2. Load Bank 2 registers with the  
required VPAT group, vertical sequence, and field timing  
information.  
Rev. A | Page 52 of 96  
 
AD9925  
Table 33. Power-Up Register Write Sequence  
When the AD9925 is used in slave mode, the VD and HD in-  
puts are used to synchronize the internal counters. Following a  
falling edge of VD, there will be a latency of 23 master clock edges  
(CLI) after the falling edge of HD until the internal H-Counter is  
reset. The reset operation is shown in Figure 69.  
Address  
Data Description  
0x10  
0x01 Reset All Registers to Default Values  
0x0A to 0x0D TBD  
0x00  
0x7F  
0x00 to 0xFF  
Standby V-Driver Input Signal Polarities  
Power-Up the AFE and CLO Oscillator  
Select Register Bank 2  
VPAT, Vertical Sequence, and Field  
Timing  
0x04  
0x01  
TBD  
Vertical Toggle Position Placement near Counter Reset  
One additional consideration during the reset of the internal  
counters is the vertical toggle position placement. Before the in-  
ternal counters are reset, there is an area of 18 pixels where no  
toggle positions should be programmed.  
0x7F  
0x15  
0x31 to 0x71  
0x20  
0x11  
0x00  
0x01  
TBD  
0x01  
0x01  
0x01  
Select Register Bank 1  
Reset Internal Timing Core  
Horizontal and Shutter Timing  
Configure for Master Mode  
Enable All Outputs after SYNC  
SYNCPOL (for Software SYNC Only)  
For master mode, the last 18 pixels before the HD falling edge  
should not be used for toggle position placement of the XV, XSG,  
SUBCK, HBLK, PBLK, or CLPOB pulses (see Figure 70).  
0x13  
Figure 71 shows the same example for slave mode. The same  
restriction applies: the last 18 pixels before the counters are reset  
and cannot be used. However, in slave mode, the counter reset is  
delayed with respect to VD/HD placement; therefore, the inhib-  
ited area is different than it is in master mode.  
Generating Software SYNC without External SYNC Signal  
If an external SYNC pulse is not available, it is possible to gener-  
ate an internal SYNC in the AD9925 by writing to the SYNCPOL  
register (Addr 0x13). If the software SYNC option is used, the  
SYNC input (Pin J5) should be tied to ground (VSS).  
Additional Considerations for Toggle Positions  
After power-up, follow the same procedure as before, for Steps 1  
through 11. Then, for Step 12, instead of using the external  
SYNC pulse, write a 1 to the SYNCPOL register. This will gen-  
erate the SYNC internally, and the timing operation will begin.  
In addition to avoiding toggle position placement near the counter-  
reset location, there are a couple of other recommendations.  
Pixel location 0 should not be used for any of the toggle positions  
for the XSG and SUBCK pulses.  
SYNC during Master Mode Operation  
The SYNC input may be used any time during operation to  
resync the AD9925 counters with external timing, as shown in  
Figure 68. The operation of the digital outputs may be suspended  
during the SYNC operation by setting the SYNCSUSPEND regis-  
ter (Addr 0x14) to a 1.  
Also, the propagation delay of the V-driver circuit should be con-  
sidered when programming the toggle positions for the XV, XSG,  
and SUBCK pulses. The delay of the V-driver circuit is specified  
in Table 3 and is a maximum of 200 ns.  
Power-Up and Synchronization in Slave Mode  
The power-up procedure for slave mode operation is the same  
as the procedure described for master mode operation, with  
two exceptions:  
1. Eliminate Step 10. Do not write the part into master mode.  
2. No SYNC pulse is required in slave mode. Substitute Step  
12 with starting the external VD and HD signals. This will  
synchronize the part, allow the Bank 1 register updates,  
and start the timing operation.  
Rev. A | Page 53 of 96  
AD9925  
SYNC  
VD  
SUSPEND  
HD  
H124, RG, V1 TO 4,  
VSG, SUBCK  
NOTES  
1. SYNC RISING EDGE RESETS VD/HD AND COUNTERS TO ZERO.  
2. SYNC POLARITY IS PROGRAMMABLE USING SYNCPOL REGISTER (ADDR 0x13).  
3. DURING SYNC LOW, ALL INTERNAL COUNTERS ARE RESET AND VD/HD CAN BE SUSPENDED USING THE SYNCSUSPEND REGISTER (ADDR 0x14).  
4. IF SYNCSUSPEND = 1, VERTICAL CLOCKS, H1 TO H2, AND RG ARE HELD AT THEIR DEFAULT POLARITIES.  
5. IF SYNCSUSPEND = 0, CLOCK OUTPUTS CONTINUE TO OPERATE NORMALLY UNTIL SYNC RESET EDGE.  
Figure 68. SYNC Timing to Synchronize AD9925 with External Timing  
VD  
HD  
H-COUNTER  
RESET  
3ns MIN  
CLI  
H-COUNTER  
(PIXEL COUNTER)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
2
3
4
NOTE  
INTERNAL H-COUNTER IS RESET 23 CLOCK EDGES AFTER THE HD FALLING EDGE.  
Figure 69. External VD/HD and Internal H-Counter Synchronization, Slave Mode  
VD  
HD  
H-COUNTER  
RESET  
NO TOGGLE POSITIONS ALLOWED IN THIS AREA  
H-COUNTER  
(PIXEL COUNTER)  
N-22 N-21 N-20 N-19 N-18 N-17 N-16 N-15 N-14 N-13 N-12 N-11 N-10 N-9 N-8 N-7 N-6 N-5 N-4 N-3 N-2 N-1  
N
0
1
2
3
4
NOTE  
TOGGLE POSITIONS CANNOT BE PROGRAMMED WITHIN 18 PIXELS OF PIXEL 0 LOCATION.  
Figure 70. Toggle Position Inhibit Area, Master Mode  
VD  
HD  
H-COUNTER  
RESET  
NO TOGGLE POSITIONS ALLOWED IN THIS AREA  
H-COUNTER  
(PIXEL COUNTER)  
N-22 N-21 N-20 N-19 N-18 N-17 N-16 N-15 N-14 N-13 N-12 N-11 N-10 N-9 N-8 N-7 N-6 N-5 N-4 N-3 N-2 N-1  
N
0
1
2
3
4
NOTE  
TOGGLE POSITIONS CANNOT BE PROGRAMMED WITHIN 18 PIXELS OF PIXEL 0 LOCATION.  
Figure 71. Toggle Position Inhibit Area, Slave Mode  
Rev. A | Page 54 of 96  
AD9925  
the digital output states, but the standby 3 mode takes priority  
over OUT_CONTROL. Standby 3 mode has the lowest power  
consumption and even shuts down the crystal oscillator circuit  
between CLI and CLO. Thus, if CLI and CLO are being used  
with a crystal to generate the master clock, this circuit will be  
powered down and there will be no clock signal. When return-  
ing from standby 3 mode to normal operation, the timing core  
must be reset at least 500 µs after the OPRMODE register is  
written to. This will allow sufficient time for the crystal circuit  
to settle.  
STANDBY MODE OPERATION  
The AD9925 contains three different standby modes to optimize  
the overall power dissipation in a particular application. Bits [1:0]  
of the OPRMODE register control the power-down state of the  
device:  
OPRMODE[1:0] = 00 = Normal Operation (Full Power)  
OPRMODE[1:0] = 01 = Standby 1 Mode  
OPRMODE[1:0] = 10 = Standby 2 Mode  
OPRMODE[1:0] = 11 = Standby 3 Mode (Lowest Overall Power)  
The XV and shutter outputs can also be programmed to hold a  
specific value during any of the standby modes, as detailed in  
Table 35.  
Table 34 and Table 35 summarize the operation of each power-  
down mode. Note that the OUT_CONTROL register takes  
priority over the standby 1 and standby 2 modes in determining  
Table 34. Standby Mode Operation  
I/O Block  
Standby 3 (Default)1, 2  
OUT_CONT= LO2  
No Change  
No Change  
No Change  
Running  
Low  
High  
Low  
High  
Low  
Standby 23, 4  
Off  
Off  
On  
Standby 13, 4  
Off  
Off  
On  
AFE  
Off  
Timing Core  
Off  
CLO Oscillator  
Off  
CLO  
H1  
H2  
H3  
H4  
RG  
VD  
HD  
DCLK  
DOUT  
High  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Low  
Low  
Low  
Low  
Running  
Running  
Low (4.3 mA)  
High (4.3 mA)  
Low (4.3 mA)  
High (4.3 mA)  
Low (4.3 mA)  
VDHDPOL Value  
VDHDPOL Value  
Low  
Low (4.3 mA)  
High (4.3 mA)  
Low (4.3 mA)  
High (4.3 mA)  
Low (4.3 mA)  
Undefined in Master Mode  
Undefined in Master Mode  
Running if DCLK MODE =1  
Low  
VDHDPOL Value  
VDHDPOL Value  
Low  
Low  
Low  
1 To exit standby 3 mode, first write a 00 to OPRMODE[1:0], then reset the timing core after ~500 µs to guarantee proper settling of the oscillator.  
2 Standby 3 mode takes priority over OUT_CONTROL for determining the output polarities.  
3 These polarities assume OUT_CONT = High., because OUT_CONTROL = Low takes priority over standby 1 and standby 2 modes.  
4 Standby 1 and standby 2 modes will set H and RG drive strength to minimum value (4.3 mA).  
Rev. A | Page 55 of 96  
 
 
 
 
 
 
 
 
AD9925  
Table 35. Standby Mode Operation—Vertical and Shutter Outputs (Programmable Polarities Available)  
I/O Block  
Standby 3 (Default)1, 2  
OUT_CONT = Low2, 3  
Standby 23  
Low  
Standby 13  
Low  
XV1  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
XV8  
XV3  
XV7  
XV6  
XSG6  
XV5  
XV4  
XSG5  
XSG4  
XV2  
XSG3  
XSG1  
XSG2  
SUBCK  
VSUB  
MSHUT  
STROBE  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
1 Polarities for vertical and shutter outputs are programmable for each standby mode, using the STBYPOL registers.  
2 Default register values are:  
STBY3POL = Bin 00000000000000000 = 0x00  
OCONTPOL = STBY2POL = STBY1POL = Bin 000011111111111000 = 0x3FF8  
3 Bit assignments for programming polarity registers: (MSB) XV1, XV8, XV3, XV7, XV6, XSG6, XV5, XV4, XSG5, XSG4, XV2, XSG3, XSG1, XSG2, SUBCK, VSUB, MSHUT, and  
STROBE (LSB).  
Rev. A | Page 56 of 96  
 
 
 
 
AD9925  
The H1 to H4 and RG traces should be designed to have low  
CIRCUIT LAYOUT INFORMATION  
inductance to avoid excessive distortion of the signals. Heavier  
traces are recommended because of the large transient current  
demand on H1 to H4 by the CCD. If possible, physically locat-  
ing the AD9925 closer to the CCD will reduce the inductance  
on these lines. As always, the routing path should be as direct as  
possible from the AD9925 to the CCD.  
The AD9925 typical circuit connections are shown in Figure 73.  
The PCB layout is critical in achieving good image quality from  
the AD9925. All of the supply pins, particularly the AVDD,  
TCVDD, RGVDD, and HVDD supplies, must be decoupled to  
ground with good quality, high frequency chip capacitors. The  
decoupling capacitors should be located as close as possible to  
the supply pins and should have a very low impedance path to a  
continuous ground plane. There should also be a 4.7 µF or larger  
value bypass capacitor near each main supply—AVDD, HVDD,  
DRVDD, VL, and VH—although this is not necessary for each  
individual pin. In most applications, it is easier to share the  
supply for RGVDD and HVDD, which may be done as long as  
the individual supply pins are separately bypassed. A separate  
3 V supply may also be used for DRVDD, but this supply pin  
should still be decoupled to the same ground plane as the rest of  
the chip. A separate ground for DRVSS is not recommended.  
The AD9925 also contains an on-chip oscillator for driving an  
external crystal. Figure 72 shows an example of an application  
using a typical 24 MHz crystal. For the exact values of the exter-  
nal resistors and capacitors, it is best to consult with the crystal  
manufacturers data sheet.  
AD9925  
J4  
J6  
The analog bypass pins (REFT and REFB) should also be care-  
fully decoupled to ground as close as possible to their respective  
pins. The analog input (CCDIN) capacitor should also be located  
close to the pin.  
CLI  
CLO  
1M  
500Ω  
20pF  
20pF  
24MHz  
XTAL  
Figure 72. Crystal Driver Application  
Rev. A | Page 57 of 96  
 
 
AD9925  
HORIZONTAL SYNC TO/FROM ASIC/DSP  
VERTICAL SYNC TO/FROM ASIC/DSP  
10  
+3V ANALOG SUPPLY  
0.1µF  
VERTICAL CLOCK OUTPUTS  
(TO CCD)  
TO STROBE CIRCUIT  
–7.5V SUPPLY  
+15V SUPPLY  
3
SERIAL INTERFACE  
(FROM ASIC/DSP)  
0.1µF  
0.1µF  
EXTERNAL RESET INPUT  
(NORMALLY HIGH,  
PULSE LOW TO RESET)  
DCLK  
SL  
+15V SUPPLY  
–7.5V SUPPLY  
E10  
D11  
C10  
K11  
L11  
L10  
K9  
K8  
J8  
DCLK TO ASIC/DSP  
D0 (LSB)  
D1  
NC  
0.1µF 0.1µF  
RSTB  
VH2  
VL  
D2  
C11  
B10  
B11  
A10  
A9  
SUBCK OUTPUT TO CCD  
TO SHUTTER CIRCUIT  
D3  
D4  
D5  
D6  
SUBCK  
MSHUT  
REFB  
J7  
+3V ANALOG  
1µF  
1µF  
L9  
L8  
K7  
L6  
L7  
K6  
J6  
SUPPLY  
+
D7  
D8  
REFT  
AVDD  
CCDIN  
AVSS  
AVSS  
CLI  
A8  
4.7µF  
B7  
0.1µF  
0.1µF  
D9  
ANALOG OUTPUT  
FROM CCD  
A7  
AD9925  
D10  
B6  
12  
+
D11 (MSB)  
DRVDD  
DRVSS  
VSUB  
NOT DRAWN TO SCALE  
DATA  
OUTPUTS  
A6  
C5  
TCVSS  
TCVSS  
SYNC  
CLO  
B5  
L5  
K5  
J5  
+3V DRIVER  
MASTER CLOCK INPUT  
EXTERNAL SYNC INPUT  
A5  
4.7µF  
0.1µF  
VDVDD  
A4  
VDVSS  
NC  
B4  
J4  
0.1µF  
0.1µF  
TCVDD  
TCVDD  
RGVDD  
RG  
C4  
K4  
+3V ANALOG SUPPLY  
+3V H, RG SUPPLY  
NC  
NC  
NC  
NC  
NC  
B3  
A3  
K3  
L4  
L3  
L2  
K2  
B2  
VSUB TO CCD  
0.1µF  
RGVSS  
RGVSS  
A2  
A1  
3
H1 TO H4, RG OUTPUTS  
(TO CCD)  
+3V H, RG SUPPLY  
+
0.1µF  
4.7µF  
Figure 73. AD9925 Typical Circuit Configuration  
Rev. A | Page 58 of 96  
AD9925  
Figure 75 shows a more efficient way to write to the registers,  
SERIAL INTERFACE TIMING  
using the AD9925s address automatic increment capability.  
Using this method, the lowest desired address is written first,  
followed by multiple 24-bit data-words. Each new 24-bit data-  
word will automatically be written to the next highest register  
address. By eliminating the need to write each 8-bit address,  
faster register loading is achieved. Continuous write operations  
may be used starting with any register location and may be used  
to write to as few as two registers or to as many as the entire  
register space.  
All of the internal registers of the AD9925 are accessed through  
a 3-wire serial interface. Each register consists of an 8-bit address  
and a 24-bit data-word. Both the 8-bit address and 24-bit data-  
word are written starting with the LSB. To write to each register,  
a 32-bit operation is required, as shown in Figure 74. Although  
many registers are fewer than 24 bits wide, all 24 bits must be  
written for each register. For example, if the register is only 10  
bits wide, then the upper 14 bits are Don’t Cares and may be  
filled with 0s during the serial write operation. If fewer than 24  
bits are written, the register will not be updated with new data.  
8-BIT ADDRESS  
24-BIT DATA  
SDATA  
SCK  
A0  
A1  
tDS  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D2  
D3  
D21 D22 D23  
A3  
tDH  
1
2
3
4
5
6
7
8
9
10  
11  
12  
30  
31  
tLH  
32  
tLS  
SL  
NOTES  
1. SDATA BITS ARE LATCHED ON SCK RISING EDGES. SCK MAY IDLE HIGH OR LOW IN BETWEEN WRITE OPERATIONS.  
2. ALL 32 BITS MUST BE WRITTEN: 8 BITS FOR ADDRESS AND 24 BITS FOR DATA.  
3. IFTHE REGISTER LENGTH IS < 24 BITS,THEN DON’T CARE BITS MUST BE USED TO COMPLETE THE 24-BIT DATA LENGTH.  
4. NEW DATA VALUES ARE UPDATED IN THE SPECIFIED REGISTER LOCATION AT DIFFERENT TIMES, DEPENDING ON THE  
PARTICULAR REGISTER WRITTEN TO. SEE THE REGISTER UPDATES SECTION FOR MORE INFORMATION.  
Figure 74. Serial Write Operation  
DATA FOR STARTING  
REGISTER ADDRESS  
DATA FOR NEXT  
REGISTER ADDRESS  
SDATA  
A0  
A1  
A2  
A4  
A5  
A6  
A7  
D0  
D1  
D22 D23 D0  
D1  
D22 D23 D0  
A3  
D1  
D2  
SCK  
SL  
58  
59  
1
2
3
4
5
6
7
8
9
10  
31  
32  
33  
34  
55  
56  
57  
NOTES  
1. MULTIPLE SEQUENTIAL REGISTERS MAY BE LOADED CONTINUOUSLY.  
2. THE FIRST (LOWEST ADDRESS) REGISTER ADDRESS IS WRITTEN, FOLLOWED BY MULTIPLE 24-BIT DATA-WORDS.  
3. THE ADDRESS WILL AUTOMATICALLY INCREMENT WITH EACH 24-BIT DATA-WORD (ALL 24 BITS MUST BE WRITTEN).  
4. SL IS HELD LOW UNTIL THE LAST DESIRED REGISTER HAS BEEN LOADED.  
Figure 75. Continuous Serial Write Operation  
Rev. A | Page 59 of 96  
 
 
 
AD9925  
Note that Register Bank 1 contains many unused addresses.  
Undefined addresses between Addr 0x00 and Addr 0x7F are  
considered Don’t Cares, and it is acceptable if these addresses  
are filled in with all 0s during a continuous register write opera-  
tion. However, the undefined addresses above 0x7F must not be  
written to, or the AD9925 may not operate properly. The excep-  
tions are the FG_TRIG registers 0xE7, 0xEB, and 0xF2 through  
0xF6, which may be written as specified on Page 43.  
Register Address BANK 1, BANK 2, and BANK 3  
The AD9925 address space is divided into three different regis-  
ter banks, referred to as Register Bank 1, Register Bank 2, and  
Register Bank 3. Figure 76 illustrates how the three banks are  
divided. Register Bank 1 and Bank 2 are backward compatible  
with the AD9995 registers. Register Bank 1 contains the regis-  
ters for the AFE, miscellaneous functions, VD/HD parameters,  
timing core, CLPOB masking, VSG patterns, and shutter func-  
tions. Register Bank 2 contains all of the information for the  
vertical pattern groups, vertical sequences, and field information.  
Default values for Register Bank 2 and Bank 3 are undefined after  
power-up. Appropriate values should be written into these regis-  
ter banks to ensure proper operation. In applications where the  
XV7 and XV8 signals are not used, the Bank 3 registers should  
still be programmed with known values to prevent unpredict-  
able behavior in the V-driver circuit.  
Register Bank 3 contains new registers for accessing the XV7 and  
XV8 functionality. These additional outputs allow the AD9925 to  
support newer CCDs that require 8-phases of vertical clocking.  
When writing to the AD9925, Addr 0x7F is used to specify  
which address bank is being written to. To write to Bank 1, a  
data value of 0 is written. To write to Bank 2, a data value of 1 is  
written. To write to Bank 3, a data value of 2 is written.  
REGISTER BANK 2  
REGISTER BANK 3  
REGISTER BANK 1  
ADDR 0x00  
ADDR 0x00  
ADDR 0x00  
ADDR 0x10  
AFE REGISTERS  
VPAT0 TO VPAT9 REGISTERS  
FOR  
XV7, XV8 SIGNALS  
MISCELLANEOUS REGISTERS  
VPAT0 TO VPAT9 REGISTERS  
FOR  
ADDR 0x4F  
ADDR 0x50  
ADDR 0x20  
ADDR 0x30  
VD/HD REGISTERS  
XV1 TO XV6 SIGNALS  
VSEQ0 TO VSEQ9 REGISTERS  
FOR  
TIMING CORE REGISTERS  
ADDR 0x7E  
ADDR 0x7F  
ADDR 0x80  
XV7, XV8 SIGNALS  
ADDR 0x77  
ADDR 0x7F  
ADDR 0x40  
ADDR 0x50  
CLPOB MASK REGISTERS  
VSG PATTERN REGISTERS  
SWITCH TO  
REGISTER BANK 1, BANK 3  
SWITCH TO  
REGISTER BANK 2, BANK 3  
VSEQ0 TO VSEQ9 REGISTERS  
FOR  
ADDR 0x60  
XV1 TO XV6 SIGNALS  
INVALID, DO NOT ACCESS  
SHUTTER REGISTERS  
ADDR 0xCF  
ADDR 0xD0  
ADDR 0x7F  
ADDR 0x8F  
SWITCH TO  
REGISTER BANK 2, BANK 3  
FIELD 0 TO FIELD 5 REGISTERS  
INVALID, DO NOT ACCESS  
ADDR 0xFF  
ADDR 0xFF  
ADDR 0xFF  
WRITE TO ADDRESS 0x7F TO SWITCH REGISTER BANKS  
Figure 76. Layout of Internal Register Bank 1, Bank 2, and Bank 3  
Rev. A | Page 60 of 96  
 
AD9925  
3. SG Line Updated: A few of the registers in Bank 1 are up-  
dated at the end of the SG active line, at the HD falling  
edge. These registers control the SUBCK signal, so that the  
SUBCK output will not update until after the SG line has  
been completed. These registers are crosshatched in the  
Bank 1 register list.  
Updating New Register Values  
The AD9925s internal registers are updated at different times,  
depending on the particular register. Table 36 summarizes the  
four different types of register updates:  
1. SCK Updated: Some of the registers in Bank 1 are updated  
as soon as the 24th data bit (D23) is written. These regis-  
ters, shaded in gray in the Bank 1 register list, are used for  
functions that do not require gating with the next VD  
boundary, such as power-up and reset functions. The bank  
select register (Addr 0x7F in Bank 1 and Bank 2) is also  
SCK updated.  
4. SCP Updated: In Bank 2 and Bank 3, all of the vertical  
pattern group and vertical sequence registers (Addr 0x00  
through Addr 0xCF, excluding Addr 0×7F) are updated at  
the next SCP, where they will be used. For example, in  
Figure 77, this field has selected Region 1 to use Vertical  
Sequence 3 for the vertical outputs. This means that a write  
to any of the Vertical Sequence 3 registers, or any of the ver-  
tical pattern group registers that are referenced by Vertical  
Sequence 3, will be updated at SCP1. If multiple writes are  
done to the same register, the last one done before SCP1  
will be the one that is updated. Likewise, register writes to  
any Vertical Sequence 5 registers will be updated at SCP2,  
and register writes to any Vertical Sequence 8 registers will  
be updated at SCP3.  
2. VD Updated: Most of the registers in Bank 1, as well as the  
field registers in Bank 2, are updated at the next VD falling  
edge. By updating these values at the next VD edge, the  
current field will not be corrupted, and the new register  
values will be applied to the next field. Bank 1 register up-  
dates may be further delayed past the VD falling edge by  
using the UPDATE register (Addr 0x19). This will delay  
VD updates to any HD line in the field. Note that the Bank 2  
field registers are not affected by the UPDATE register.  
Table 36. Register Update Locations  
Update Type  
SCK Updated  
VD Updated  
Register Bank  
Description  
Bank 1 Only  
Bank 1, Bank 2  
Register is immediately updated when the 24th data bit (D23) is clocked in.  
Register is updated at the VD falling edge. VD updated registers in Bank 1 may be delayed further  
by using the UPDATE register at Addr 0x19 in Bank 1. Bank 2 updates will not be affected by the  
UPDATE register.  
SG Line Updated Bank 1 Only  
SCP Updated Bank 2, Bank 3  
Register is updated at the HD falling edge at the end of the SG active line.  
Register is updated at the next SCP when the register will be used.  
SCK  
VD  
SG  
SCP  
UPDATED UPDATED  
UPDATED  
UPDATED  
SERIAL  
WRITE  
VD  
HD  
SGLINE  
XSG  
USE VSEQ2  
USE VSEQ3  
REGION 1  
USE VSEQ5  
REGION 2  
USE VSEQ8  
REGION 3  
XV1 TO XV6  
REGION 0  
SCP 0  
SCP 0  
SCP 1  
SCP 2  
SCP 3  
Figure 77. Register Update Locations (See Table 40 for Definitions)  
Rev. A | Page 61 of 96  
 
 
AD9925  
COMPLETE LISTING FOR REGISTER BANK 1  
All registers are VD updated, except where noted. Light gray cells = SCK updated, and dark gray cells = SG line updated.  
Table 37. AFE Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
00  
01  
02  
03  
[11:0]  
[9:0]  
7
OPRMODE  
AFE Operation Modes (See Table 45 for detail)  
VGA Gain  
0
VGAGAIN  
[7:0]  
80  
4
CLAMPLEVEL  
CTLMODE  
Optical Black Clamp Leve  
[11:0]  
AFE Control Modes (See Table 46 for detail)  
Table 38. Miscellaneous Register Map  
Address Data Bit Content Default Value  
Register Name  
STBY1POL  
STBY2POL  
STBY3POL  
OCONTPOL  
SW_RST  
Register Description  
0A  
0B  
0C  
0D  
10  
[17:0]  
[17:0]  
[17:0]  
[17:0]  
[0]  
3FF8  
3FF8  
0
Polarities for Output Signals during Standby 1 Mode.  
Polarities for Output Signals during Standby 2 Mode.  
Polarities for Output Signals during Standby 3 Mode.  
Polarities for Output Signals When OUTCONTROL = 0.  
3FF8  
0
Software Reset. 1: Reset all registers to default, then self clear back  
to 0.  
11  
12  
13  
14  
15  
16  
[0]  
[0]  
[0]  
[0]  
[0]  
[0]  
0
1
0
0
0
1
OUTCONTROL  
SYNCENABLE  
SYNCPOL  
Output Control. 0: Make all outputs dc inactive.  
Configures Pin 52 as a SYNC Input (= 1) or CLPOB/PBLK Output (= 0).  
SYNC Active Polarity (0: Active Low).  
SYNCSUSPEND  
TGCORE_RSTB  
Suspend Clocks during SYNC Active (1: Suspend).  
Timing Core Reset Bar. 0: Reset TG Core, 1: Resume Operation.  
CLO Oscillator Power-Down (0: Oscillator Is Powered Down).  
OSC_PWRDOW  
N
17  
18  
19  
1A  
UNUSED  
TEST  
Set to 0.  
[0]  
0
0
0
Internal Use Only. Must be set to 0.  
[11:0]  
[0]  
UPDATE  
Serial Update. Line (HD) in the field to update VD updated registers.  
Prevents the update of the VD updated registers. 1: Prevent Update.  
PREVENTUP-  
DATE  
1B  
1C  
1D  
[23:0]  
[0]  
0
0
0
MODE  
MODE Register.  
UNUSED  
OUTPUTPBLK  
Set to 0.  
Assigns Output for Pin 52 When Configured as Output.  
0: CLPOB, 1: PBLK.  
1E  
[0]  
DVCMODE  
1: Enable DVC Mode. VD counter will reset every 2 fields, instead of  
every field. VDLEN register should be programmed to the total num-  
ber of lines contained in 2 fields, e.g., VDLEN = 525 lines will results  
in 262.5 lines in each field.  
1F  
E7  
[0]  
0
0
INVERT_DCLK  
SHUT_EXTRA  
1: Invert the DCLK Output.  
[2:0]  
[3]  
Set to 0.  
Selects FG_TRIG Signal to VSUB Pin (See Page 43).  
[5:4]  
[6]  
Set to 0.  
H3HBLKOFF, Set to 1 to Enable H3/H4 Outputs during HBLK (See  
Page 19).  
Set to 0.  
[7]  
[8]  
Combines FG_TRIG and VSUB Signals (See Page 43).  
EB  
F2  
F3  
F4  
F5  
F6  
[3:0]  
0
0
0
0
0
0
FG_TRIGEN  
FG_TRIG Signal Enable (See Page 43).  
[0]  
FG_TRIGPOL  
FG_TRIGLIN1  
FG_TRIGPIX1  
FG_TRIGLIN2  
FG_TRIGPIX2  
FG_TRIG Start Polarity.  
[11:0]  
[12:0]  
[11:0]  
[12:0]  
FG_TRIG First Toggle Position, Line Location.  
FG_TRIG First Toggle Position, Pixel Location.  
FG_TRIG Second Toggle Position, Line Location.  
FG_TRIG Second Toggle Position, Pixel Location.  
Rev. A | Page 62 of 96  
 
AD9925  
Table 39. VD/HD Register Map  
Address Data Bit Content Default Value  
Register Name  
MASTER  
Register Description  
20  
21  
22  
[0]  
[0]  
0
0
VD/HD Master or Slave Timing (0 = Slave Mode).  
VD/HD Active Polarity. 0 = Low and 1 = High.  
VDHDPOL  
[11:0]  
0
0
HDRISE  
VDRISE  
Rising Edge Location for HD.  
Rising Edge Location for VD.  
[17:12]  
23  
[11:0]  
0
SCP0  
SCP0. Used for All Fields.  
Table 40. Timing Core Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
30  
31  
[0]  
0
CLIDIVIDE  
Divide CLI Input Clock by 2. 1 = Divide by 2.  
[0]  
[6:1]  
[12:7]  
1
0
20  
H1POL  
H1POSLOC  
H1NEGLOC  
H1 Polarity. 0: Inversion, 1: No Inversion.  
H1 Positive Edge Location.  
H1 Negative Edge Location.  
32  
33  
34  
35  
[0]  
[6:1]  
[12:7]  
1
0
20  
H3POL  
H3POSLOC  
H3NEGLOC  
H3 Polarity. 0: Inversion, 1: No Inversion.  
H3 Positive Edge Location.  
H3 Negative Edge Location.  
[0]  
[6:1]  
[12:7]  
1
0
20  
RGPOL  
RGPOSLOC  
RGNEGLOC  
RG Polarity. 0: Inversion, 1: No Inversion.  
RG Positive Edge Location.  
RG Negative Edge Location.  
[0]  
[1]  
0
0
H1RETIME  
H3RETIME  
Retime H1/H3 HBLK to Internal H1/H3 Clocks. Preferred setting is 1  
for each bit, which adds one cycle of delay to the programmed HBLK  
toggle positions.  
[2:0]  
1
H1DRV  
Drive Strength Control for H1.  
0: Off.  
1: 4.3 mA.  
2: 8.6 mA.  
3: 12.9 mA.  
4: 17.2 mA.  
5: 21.5 mA.  
6: 25.8 mA.  
7: 30.1 mA.  
[5:3]  
[8:6]  
[11:9]  
[14:12]  
1
1
1
1
H2DRV  
H3DRV  
H4DRV  
RGDRV  
Drive Strength Control for H2 (Same Values as H1DRV).  
Drive Strength Control for H3 (Same Values as H1DRV).  
Drive Strength Control for H4 (Same Values as H1DRV).  
Drive Strength Control for RG (Same Values as H1DRV).  
36  
37  
[5:0]  
[11:6]  
24  
0
SHPLOC  
SHDLOC  
SHP Sampling Location.  
SHD Sampling Location.  
[5:0]  
[6]  
0
0
DOUTPHASE  
DCLKMODE  
DOUT Phase Control.  
0: DCLK Tracks DOUTPHASE.  
1: DCLK Does Not Track DOUTPHASE, Remains Fixed with Regards to  
CLI  
Data Output Delay (tOD) with Respect to DCLK.  
0: No Delay, 1: ~4 ns, 2: ~8 ns, and 3: ~12 ns.  
[8:7]  
[2:0]  
2
0
DOUTDLY  
38  
HBLKWIDTH  
Controls HBLK Width as a Fraction of H1 to H4 Frequency.  
0: same, 1: 1/2, 2: 1/4, 3: 1/6, 4: 1/8, 5: 1/10, 6: 1/12, and 7: 1/14.  
Table 41. CLPOB Masking Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
40  
[11:0]  
[23:12]  
FFF  
FFF  
CLPMASK0  
CLPMASK1  
CLPOB Line Masking Line No. 0, or Mask0 Range, Start Line  
CLPOB Line Masking Line No. 1, or Mask0 Range, End Line  
41  
[11:0]  
[23:12]  
FFF  
FFF  
CLPMASK2  
CLPMASK3  
CLPOB Line Masking Line No. 2, or Mask1 Range, Start Line  
CLPOB Line Masking Line No. 3, or Mask1 Range, End Line  
42  
43  
[11:0]  
FFF  
CLPMASK4  
CLPOB Line Masking Line No. 4, or Mask2 Range, Start Line  
[11:0]  
[12]  
FFF  
0
CLPMASK5  
CLPMASKTYPE  
CLPOB Line Masking Line No. 5, or Mask2 Range, End Line  
0: CLPOB Line Masking, 1: Enable CLPOB Range Masking  
Rev. A | Page 63 of 96  
AD9925  
Table 42. SG Pattern Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
50  
[0]  
[1]  
[2]  
[3]  
1
1
1
1
SGPOL_0  
SGPOL_1  
SGPOL_2  
SGPOL_3  
Start Polarity for SG Pattern No. 0.  
Start Polarity for SG Pattern No. 1.  
Start Polarity for SG Pattern No. 2.  
Start Polarity for SG Pattern No. 3.  
51  
52  
53  
54  
55  
[11:0]  
[23:12]  
FFF  
FFF  
SGTOG1_0  
SGTOG2_0  
Pattern No. 0 Toggle Position 1.  
Pattern No. 0 Toggle Position 2.  
[11:0]  
[23:12]  
FFF  
FFF  
SGTOG1_1  
SGTOG2_1  
Pattern No. 1 Toggle Position 1.  
Pattern No. 1 Toggle Position 2.  
[11:0]  
[23:12]  
FFF  
FFF  
SGTOG1_2  
SGTOG2_2  
Pattern No. 2 Toggle Position 1.  
Pattern No. 2 Toggle Position 2.  
[11:0]  
[23:12]  
FFF  
FFF  
SGTOG1_3  
SGTOG2_3  
Pattern No. 3 Toggle Position 1.  
Pattern No. 3 Toggle Position 2.  
[5:0]  
0
SGMASK_OVR  
SGMASK Override. These values will immediately override the SG  
masking values located in the field registers.  
[6]  
0
SGMASKOVR_EN  
0: Use SG Masking in Field Registers, 1: Enable SGMASK Override.  
Table 43. Shutter Control Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
60  
[4:0]  
0
TRIGGER  
Trigger for VSUB [0], MSHUT [1], STROBE [2], Exposure [3], and  
Readout [4]. Note that to trigger the readout to automatically  
occur after the exposure period, both exposure and readout  
should be triggered together.  
61  
62  
[2:0]  
2
READOUT  
Number of Fields to Suppress the SUBCK Pulses after the VSG  
Line.  
[11:0]  
[12]  
0
0
EXPOSURE  
VDHDOFF  
Number of Fields to Suppress the SUBCK and VSG Pulses.  
Set = 1 to disable the VD/HD outputs during exposure (when >1  
field).  
63  
[11:0]  
[23:12]  
0
0
SUBCKSUPPRESS  
SUBCKNUM  
Number of SUBCK Pulses to Suppress after VSG Line.  
Number of SUBCK Pulses per Field.  
64  
65  
[0]  
1
SUBCKPOL  
SUBCK Pulse Start Polarity.  
[11:0]  
[23:12]  
FFF  
FFF  
SUBCK1TOG1  
SUBCK1TOG2  
First SUBCK Pulse. Toggle Position 1.  
First SUBCK Pulse. Toggle Position 2.  
66  
67  
68  
69  
6A  
[11:0]  
[23:12]  
FFF  
FFF  
SUBCK2TOG1  
SUBCK2TOG2  
Second SUBCK Pulse. Toggle Position 1.  
Second SUBCK Pulse. Toggle Position 2.  
[0]  
[1]  
0
0
VSUBMODE  
VSUBKEEPON  
VSUB Readout Mode. 0: Mode 0, 1: Mode 1.  
0: Turn Off VSUB after Readout, 1: Keep VSUB On after Readout.  
[11:0]  
[12]  
0
1
VSUBON  
VSUBPOL  
VSUB Online Position.  
VSUB Active Polarity.  
[0]  
[1]  
1
0
MSHUTPOL  
MSHUTON  
MSHUT Active Polarity.  
MSHUT Manual Enable (Opens Shutter at Next VD Edge).  
[11:0]  
[23:12]  
0
0
MSHUTON_LN  
MSHUTON_PX  
MSHUT On Position—Line.  
MSHUT On Position—Pixel.  
6B  
6C  
[11:0]  
0
MSHUTOFF_FD  
MSHUT Off Position—Field.  
[11:0]  
[23:12]  
0
0
MSHUTOFF_LN  
MSHUTOFF_PX  
MSHUT Off Position—Line.  
MSHUT Off Position—Pixel.  
6D  
6E  
6F  
[0]  
1
0
STROBPOL  
STROBE Active Polarity.  
[11:0]  
STROBON_FD  
STROBE On Position—Field.  
[11:0]  
[23:12]  
0
0
STROBON_LN  
STROBON_PX  
STROBE On Position—Line.  
STROBE On Position—Pixel.  
70  
71  
[11:0]  
0
STROBOFF_FD  
STROBE Off Position—Field.  
[11:0]  
[23:12]  
0
0
STROBOFF_LN  
STROBOFF_PX  
STROBE Off Position—Line.  
STROBE Off Position—Pixel.  
72  
[3:0]  
0
SUBCKTOG13  
13th Bit for SUBCK Toggle Position Placement.  
Rev. A | Page 64 of 96  
AD9925  
Table 44. Register Map Selection  
Address Data Bit Content Default Value  
Register Name  
Register Description  
7F  
[1:0]  
0
BANKSELECT  
Register Bank Access for Bank 1, Bank 2, and Bank 3.  
0: Bank 1, 1: Bank 2, 2: Bank 3, and 3: Bank 1.  
Table 45. AFE Operation Register Detail  
Address Data Bit Content Default Value  
Name  
Description  
00  
[1:0]  
[2]  
3
1
0
PWRDOWN  
CLPENABLE  
CLPSPEED  
0: Normal Operation, 1: Standby 1, 2: Standby 2, 3: Standby 3.  
0: Disable OB Clamp, 1: Enable OB Clamp.  
[3]  
0: Select Normal OB Clamp Settling, 1: Select Fast OB Clamp  
Settling.  
[4]  
[5]  
0
0
FASTUPDATE  
PBLK_LVL  
1: Select Temporary Fast Clamping When VGA Gain Is Up-  
dated.  
DOUT Value during PBLK: 0: Blank to 0, 1: Blank to Clamp  
Level.  
[7:6]  
[8]  
0
0
TEST  
Test Operation Only. Set to 0.  
DCBYP  
0: Enable DC Restore Circuit, 1: Bypass DC Restore Circuit dur-  
ing PBLK.  
[9]  
0
0
TEST  
Test Use Only. Set to 0.  
[11:10]  
CDSGAIN  
0: 0 dB, 1: 2 dB, 2: 4 dB, and 3: 0 dB.  
Table 46. AFE Control Register Detail  
Address Data Bit Content Default Value  
Name  
Description  
03  
[1:0]  
[2]  
0
1
0
TEST  
Test Use Only. Set to 0.  
TEST  
Test Use Only. Recommended setting is 0.  
[3]  
DOUTDISABLE  
0 = Data Outputs Are Driven,  
1 = Data Outputs Are Three-Stated.  
[4]  
[5]  
0
0
DOUTLATCH  
0 = Latch Data Outputs with DOUT Phase,  
1 = Output Latch Transparent.  
GRAYENCODE  
0 = Binary Encode Data Outputs,  
1 = Gray Encode Data Outputs.  
Rev. A | Page 65 of 96  
AD9925  
COMPLETE LISTING FOR REGISTER BANK 2  
All vertical pattern group and vertical sequence registers are SCP updated, and all field registers are VD updated. Default register values  
are undefined.  
Table 47. Vertical Pattern Group 0 (VPAT0) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
00  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_0  
UNUSED  
VPATLEN_0  
VPAT0 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT0. Note: If using VPAT0 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
[11:0]  
[23:12]  
X
X
XV1TOG1_0  
XV1TOG2_0  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_0  
XV2TOG1_0  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_0  
XV2TOG3_0  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_0  
XV3TOG2_0  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_0  
XV4TOG1_0  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_0  
XV4TOG3_0  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_0  
XV5TOG2_0  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_0  
XV6TOG1_0  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_0  
XV6TOG3_0  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_0  
RESUME1_0  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_0  
RESUME2_0  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 66 of 96  
 
AD9925  
Table 48. Vertical Pattern Group 1 (VPAT1) Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
0C  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_1  
UNUSED  
VPATLEN_1  
VPAT1 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT1. Note: If using VPAT1 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
[11:0]  
[23:12]  
X
X
XV1TOG1_1  
XV1TOG2_1  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_1  
XV2TOG1_1  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_1  
XV2TOG3_1  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_1  
XV3TOG2_1  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_1  
XV4TOG1_1  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_1  
XV4TOG3_1  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_1  
XV5TOG2_1  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_1  
XV6TOG1_1  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_1  
XV6TOG3_1  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_1  
RESUME1_1  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_1  
RESUME2_1  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 67 of 96  
AD9925  
Table 49. Vertical Pattern Group 2 (VPAT2) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
18  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_2  
UNUSED  
VPATLEN_2  
VPAT2 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT2. Note: If using VPAT2 as a second vertical  
sequence in the VSG active line, this value is the start position for  
second vertical sequence.  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
[11:0]  
[23:12]  
X
X
XV1TOG1_2  
XV1TOG2_2  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_2  
XV2TOG1_2  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_2  
XV2TOG3_2  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_2  
XV3TOG2_2  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_2  
XV4TOG1_2  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_2  
XV4TOG3_2  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_2  
XV5TOG2_2  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_2  
XV6TOG1_2  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_2  
XV6TOG3_2  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_2  
RESUME1_2  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_2  
RESUME2_2  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 68 of 96  
AD9925  
Table 50. Vertical Pattern Group 3 (VPAT3) Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
24  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_3  
UNUSED  
VPATLEN_3  
VPAT3 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT3. Note: If using VPAT3 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
[11:0]  
[23:12]  
X
X
XV1TOG1_3  
XV1TOG2_3  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_3  
XV2TOG1_3  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_3  
XV2TOG3_3  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_3  
XV3TOG2_3  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_3  
XV4TOG1_3  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_3  
XV4TOG3_3  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_3  
XV5TOG2_3  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_3  
XV6TOG1_3  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_3  
XV6TOG3_3  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_3  
RESUME1_3  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_3  
RESUME2_3  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 69 of 96  
AD9925  
Table 51. Vertical Pattern Group 4 (VPAT4) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
30  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_4  
UNUSED  
VPATLEN_4  
VPAT4 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused .  
Total Length of VPAT4. Note: If using VPAT4 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
31  
32  
33  
34  
35  
36  
37  
38  
[11:0]  
[23:12]  
X
X
XV1TOG1_4  
XV1TOG2_4  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_4  
XV2TOG1_4  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_4  
XV2TOG3_4  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_4  
XV3TOG2_4  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_4  
XV4TOG1_4  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_4  
XV4TOG3_4  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_4  
XV5TOG2_4  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_4  
XV6TOG1_4  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
39  
3A  
3B  
[11:0]  
[23:12]  
X
X
XV6TOG2_4  
XV6TOG3_4  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_4  
RESUME1_4  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_4  
RESUME2_4  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 70 of 96  
AD9925  
Table 52. Vertical Pattern Group 5 (VPAT5) Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
3C  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_5  
UNUSED  
VPATLEN_5  
VPAT5 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT5. Note: If using VPAT5 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
[11:0]  
[23:12]  
X
X
XV1TOG1_5  
XV1TOG2_5  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_5  
XV2TOG1_5  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_5  
XV2TOG3_5  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_5  
XV3TOG2_5  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_5  
XV4TOG1_5  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_5  
XV4TOG3_5  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_5  
XV5TOG2_5  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_5  
XV6TOG1_5  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_5  
XV6TOG3_5  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_5  
RESUME1_5  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_5  
RESUME2_5  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 71 of 96  
AD9925  
Table 53. Vertical Pattern Group 6 (VPAT6) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
48  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_6  
UNUSED  
VPATLEN_6  
VPAT6 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT6. Note: If using VPAT6 as a second vertical  
sequence in the VSG Active line, this value is the start position for  
the second vertical sequence.  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
[11:0]  
[23:12]  
X
X
XV1TOG1_6  
XV1TOG2_6  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_6  
XV2TOG1_6  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_6  
XV2TOG3_6  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_6  
XV3TOG2_6  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_6  
XV4TOG1_6  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_6  
XV4TOG3_6  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_6  
XV5TOG2_6  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_6  
XV6TOG1_6  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_6  
XV6TOG3_6  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_6  
RESUME1_6  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_6  
RESUME2_6  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 72 of 96  
AD9925  
Table 54. Vertical Pattern Group 7 (VPAT7) Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
54  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_7  
UNUSED  
VPATLEN_7  
VPAT7 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT7. Note: If using VPAT7 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
[11:0]  
[23:12]  
X
X
XV1TOG1_7  
XV1TOG2_7  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_7  
XV2TOG1_7  
XV1 Toggle Position 3.  
XV2 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV2TOG2_7  
XV2TOG3_7  
XV2 Toggle Position 2.  
XV2 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV3TOG1_7  
XV3TOG2_7  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_7  
XV4TOG1_7  
XV3 Toggle Position 3.  
XV4 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV4TOG2_7  
XV4TOG3_7  
XV4 Toggle Position 2.  
XV4 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
XV5TOG1_7  
XV5TOG2_7  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_7  
XV6TOG1_7  
XV5 Toggle Position 3.  
XV6 Toggle Position 1.  
[11:0]  
[23:12]  
X
X
XV6TOG2_7  
XV6TOG3_7  
XV6 Toggle Position 2.  
XV6 Toggle Position 3.  
[11:0]  
[23:12]  
X
X
FREEZE1_7  
RESUME1_7  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_7  
RESUME2_7  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Rev. A | Page 73 of 96  
AD9925  
Table 55. Vertical Pattern Group 8 (VPAT8) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
60  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_8  
UNUSED  
VPATLEN_8  
VPAT8 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT8. Note: If using VPAT8 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
[11:0]  
[23:12]  
X
X
XV1TOG1_8  
XV1TOG2_8  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_8  
XV1TOG4_8  
XV1 Toggle Position 3.  
XV1 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV2TOG1_8  
XV2TOG2_8  
XV2 Toggle Position 1.  
XV2 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV2TOG3_8  
XV2TOG4_8  
XV2 Toggle Position 3.  
XV2 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV3TOG1_8  
XV3TOG2_8  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_8  
XV3TOG4_8  
XV3 Toggle Position 3.  
XV3 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV4TOG1_8  
XV4TOG2_8  
XV4 Toggle Position 1.  
XV4 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV4TOG3_8  
XV4TOG4_8  
XV4 Toggle Position 3.  
XV4 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV5TOG1_8  
XV5TOG2_8  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_8  
XV5TOG4_8  
XV5 Toggle Position 3.  
XV5 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV6TOG1_8  
XV6TOG2_8  
XV6 Toggle Position 1.  
XV6 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV6TOG3_8  
XV6TOG4_8  
XV6 Toggle Position 3.  
XV6 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
FREEZE1_8  
RESUME1_8  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_8  
RESUME2_8  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
UNUSED  
Unused.  
Rev. A | Page 74 of 96  
AD9925  
Table 56. Vertical Pattern Group 9 (VPAT9) Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
70  
[5:0]  
[11:6]  
[23:12]  
X
X
X
VPOL_9  
UNUSED  
VPATLEN_9  
VPAT9 Start Polarity. XV1[0], XV2[1], XV3[2], XV4[3], XV5[4], XV6[5].  
Unused.  
Total Length of VPAT9. Note: If using VPAT9 as a second vertical  
sequence in the VSG active line, this value is the start position for  
the second vertical sequence.  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
[11:0]  
[23:12]  
X
X
XV1TOG1_9  
XV1TOG2_9  
XV1 Toggle Position 1.  
XV1 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV1TOG3_9  
XV1TOG4_9  
XV1 Toggle Position 3.  
XV1 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV2TOG1_9  
XV2TOG2_9  
XV2 Toggle Position 1.  
XV2 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV3TOG3_9  
XV3TOG4_9  
XV2 Toggle Position 3.  
XV2 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV3TOG1_9  
XV4TOG2_9  
XV3 Toggle Position 1.  
XV3 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV4TOG3_9  
XV4TOG4_9  
XV3 Toggle Position 3.  
XV3 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV5TOG1_9  
XV5TOG2_9  
XV4 Toggle Position 1.  
XV4 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV5TOG3_9  
XV6TOG4_9  
XV4 Toggle Position 3.  
XV4 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV6TOG1_9  
XV6TOG2_9  
XV5 Toggle Position 1.  
XV5 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV6TOG3_9  
XV6TOG4_9  
XV5 Toggle Position 3.  
XV5 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
XV6TOG1_9  
XV6TOG2_9  
XV6 Toggle Position 1.  
XV6 Toggle Position 2.  
[11:0]  
[23:12]  
X
X
XV6TOG3_9  
XV6TOG4_9  
XV6 Toggle Position 3.  
XV6 Toggle Position 4.  
[11:0]  
[23:12]  
X
X
FREEZE1_9  
RESUME1_9  
XV1 to XV6 Freeze Position 1.  
XV1 to XV6 Resume Position 1.  
[11:0]  
[23:12]  
X
X
FREEZE2_9  
RESUME2_9  
XV1 to XV6 Freeze Position 2.  
XV1 to XV6 Resume Position 2.  
Table 57. Register Map Selection (SCK Updated Register)  
Address Data Bit Content Default Value Register Name  
7F [1:0] BANKSELECT  
Register Description  
0
Register Bank Access for Bank 1, Bank 2, and Bank 3.  
Rev. A | Page 75 of 96  
AD9925  
Table 58. Vertical Sequence 0 (VSEQ0) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
80  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_0  
CLPOBPOL_0  
PBLKPOL_0  
VPATSEL_0  
VMASK_0  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 0.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME  
Registers).  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_0  
HDLEN13_0  
UNUSED  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
81  
[11:0]  
[23:12]  
X
X
VPATREPO_0  
VPATREPE_0  
Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even  
Lines.  
82  
83  
84  
85  
86  
87  
[11:0]  
[23:12]  
X
X
VPATSTART_0  
HDLEN_0  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 0.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_0  
PBLKTOG2_0  
PBLK Toggle Position 1 for Vertical Sequence 0.  
PBLK Toggle Position 2 for Vertical Sequence 0.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_0  
HBLKTOG2_0  
HBLK Toggle Position 1 for Vertical Sequence 0.  
HBLK Toggle Position 2 for Vertical Sequence 0.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_0  
HBLKTOG4_0  
HBLK Toggle Position 3 for Vertical Sequence 0.  
HBLK Toggle Position 4 for Vertical Sequence 0.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_0  
HBLKTOG6_0  
HBLK Toggle Position 5 for Vertical Sequence 0.  
HBLK Toggle Position 6 for Vertical Sequence 0.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_0  
CLPOBTOG2_0  
CLPOB Toggle Position 1 for Vertical Sequence 0.  
CLPOB Toggle Position 2 for Vertical Sequence 0.  
Table 59. Vertical Sequence 1 (VSEQ1) Register Map  
Address Data Bit Content Default Value Register Name Register Description  
88  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_1  
CLPOBPOL_1  
PBLKPOL_1  
VPATSEL_1  
VMASK_1  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 1.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME  
Registers).  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_1  
HDLEN13_1  
UNUSED  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
89  
8A  
8B  
8C  
8D  
8E  
8F  
[11:0]  
[23:12]  
X
X
VPATREPO_1  
VPATREPE_1  
Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even Lines.  
[11:0]  
[23:12]  
X
X
VPATSTART_1  
HDLEN_1  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 1.  
[11:0]|  
[23:12]  
X
X
PBLKTOG1_1  
PBLKTOG2_1  
PBLK Toggle Position 1 for Vertical Sequence 1.  
PBLK Toggle Position 2 for Vertical Sequence 1.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_1  
HBLKTOG2_1  
HBLK Toggle Position 1 for Vertical Sequence 1.  
HBLK Toggle Position 2 for Vertical Sequence 1.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_1  
HBLKTOG4_1  
HBLK Toggle Position 3 for Vertical Sequence 1.  
HBLK Toggle Position 4 for Vertical Sequence 1.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_1  
HBLKTOG6_1  
HBLK Toggle Position 5 for Vertical Sequence 1.  
HBLK Toggle Position 6 for Vertical Sequence 1.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_1  
CLPOBTOG2_1  
CLPOB Toggle Position 1 for Vertical Sequence 1.  
CLPOB Toggle Position 2 for Vertical Sequence 1.  
Rev. A | Page 76 of 96  
AD9925  
Table 60. Vertical Sequence 2 (VSEQ2) Register Map  
Address Data Bit Content Default Value Register Name Register Description  
90  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[12]  
X
X
X
X
X
X
X
HBLKMASK_2  
CLPOBPOL_2  
PBLKPOL_2  
VPATSEL_2  
VMASK_2  
HBLKALT_2  
HDLEN13_2  
UNUSED  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 2.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME Registers).  
Enable HBLK Alternation .  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
[23:12]  
91  
92  
93  
94  
95  
96  
97  
[11:0]  
[23:12]  
X
X
VPATREPO_2  
VPATREPE_2  
Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even Lines.  
[11:0]  
[23:12]  
X
X
VPATSTART_2  
HDLEN_2  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 2.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_2  
PBLKTOG2_2  
PBLK Toggle Position 1 for Vertical Sequence 2.  
PBLK Toggle Position 2 for Vertical Sequence 2.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_2  
HBLKTOG2_2  
HBLK Toggle Position 1 for Vertical Sequence 2.  
HBLK Toggle Position 2 for Vertical Sequence 2.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_2  
HBLKTOG4_2  
HBLK Toggle Position 3 for Vertical Sequence 2.  
HBLK Toggle Position 4 for Vertical Sequence 2.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_2  
HBLKTOG6_2  
HBLK Toggle Position 5 for Vertical Sequence 2.  
HBLK Toggle Position 6 for Vertical Sequence 2.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_2  
CLPOBTOG2_2  
CLPOB Toggle Position 1 for Vertical Sequence 2.  
CLPOB Toggle Position 2 for Vertical Sequence 2.  
Table 61. Vertical Sequence 3 (VSEQ3) Register Map  
Address Data Bit Content Default Value Register Name Register Description  
98  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[12]  
X
X
X
X
X
X
X
HBLKMASK_3  
CLPOBPOL_3  
PBLKPOL_3  
VPATSEL_3  
VMASK_3  
HBLKALT_3  
HDLEN13_3  
UNUSED  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 3.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME Registers).  
Enable HBLK Alternation  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
[23:12]  
99  
9A  
9B  
9C  
9D  
9E  
9F  
[11:0]  
[23:12]  
X
X
VPATREPO_3  
VPATREPE_3  
Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even Lines.  
[11:0]  
[23:12]  
X
X
VPATSTART_3  
HDLEN_3  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 3.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_3  
PBLKTOG2_3  
PBLK Toggle Position 1 for Vertical Sequence 3.  
PBLK Toggle Position 2 for Vertical Sequence 3.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_3  
HBLKTOG2_3  
HBLK Toggle Position 1 for Vertical Sequence 3.  
HBLK Toggle Position 2 for Vertical Sequence 3.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_3  
HBLKTOG4_3  
HBLK Toggle Position 3 for Vertical Sequence 3.  
HBLK Toggle Position 4 for Vertical Sequence 3.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_3  
HBLKTOG6_3  
HBLK Toggle Position 5 for Vertical Sequence 3.  
HBLK Toggle Position 6 for Vertical Sequence 3.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_3  
CLPOBTOG2_3  
CLPOB Toggle Position 1 for Vertical Sequence 3.  
CLPOB Toggle Position 2 for Vertical Sequence 3.  
Rev. A | Page 77 of 96  
AD9925  
Table 62. Vertical Sequence 4 (VSEQ4) Register Map  
Address Data Bit Content  
Default Value  
Register Name  
Register Description  
A0  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_4  
CLPOBPOL_4  
PBLKPOL_4  
VPATSEL_4  
VMASK_4  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 4.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME  
Registers).  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_4  
HDLEN13_4  
UNUSED  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
A1  
[11:0]  
X
X
VPATREPO_4  
Number of Selected Vertical Pattern Group Repetitions for Odd  
Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even  
Lines.  
[23:12]  
VPATREPE_4  
A2  
A3  
A4  
A5  
A6  
A7  
[11:0]  
[23:12]  
X
X
VPATSTART_4  
HDLEN_4  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 4.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_4  
PBLKTOG2_4  
PBLK Toggle Position 1 for Vertical Sequence 4.  
PBLK Toggle Position 2 for Vertical Sequence 4.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_4  
HBLKTOG2_4  
HBLK Toggle Position 1 for Vertical Sequence 4.  
HBLK Toggle Position 2 for Vertical Sequence 4.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_4  
HBLKTOG4_4  
HBLK Toggle Position 3 for Vertical Sequence 4.  
HBLK Toggle Position 4 for Vertical Sequence 4.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_4  
HBLKTOG6_4  
HBLK Toggle Position 5 for Vertical Sequence 4.  
HBLK Toggle Position 6 for Vertical Sequence 4.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_4  
CLPOBTOG2_4  
CLPOB Toggle Position 1 for Vertical Sequence 4.  
CLPOB Toggle Position 2 for Vertical Sequence 4.  
Table 63. Vertical Sequence 5 (VSEQ5)Register Map  
Address Data Bit Content  
Default Value  
Register Name  
Register Description  
A8  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_5  
CLPOBPOL_5  
PBLKPOL_5  
VPATSEL_5  
VMASK_5  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 5.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME  
registers).  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_5  
HDLEN13_5  
UNUSED  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
A9  
[11:0]  
X
X
VPATREPO_5  
Number of Selected Vertical Pattern Group Repetitions for Odd  
Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even  
Lines.  
[23:12]  
VPATREPE_5  
AA  
AB  
AC  
AD  
AE  
AF  
[11:0]  
[23:12]  
X
X
VPATSTART_5  
HDLEN_5  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 5.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_5  
PBLKTOG2_5  
PBLK Toggle Position 1 for Vertical Sequence 5.  
PBLK Toggle Position 2 for Vertical Sequence 5.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_5  
HBLKTOG2_5  
HBLK Toggle Position 1 for Vertical Sequence 5.  
HBLK Toggle Position 2 for Vertical Sequence 5.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_5  
HBLKTOG4_5  
HBLK Toggle Position 3 for Vertical Sequence 5.  
HBLK Toggle Position 4 for Vertical Sequence 5.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_5  
HBLKTOG6_5  
HBLK Toggle Position 5 for Vertical Sequence 5.  
HBLK Toggle Position 6 for Vertical Sequence 5.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_5  
CLPOBTOG2_5  
CLPOB Toggle Position 1 for Vertical Sequence 5.  
CLPOB Toggle Position 2 for Vertical Sequence 5.  
Rev. A | Page 78 of 96  
AD9925  
Table 64. Vertical Sequence 6 (VSEQ6) Register Map  
Address Data Bit Content Default Value Register Name Register Description  
B0  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_6  
CLPOBPOL_6  
PBLKPOL_6  
VPATSEL_6  
VMASK_6  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 6.  
Enable Masking of Vertical outputs (specified by FREEZE/RESUME  
registers).  
Enable HBLK Alternation.  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_6  
HDLEN13_6  
UNUSED  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
[11:0]  
[23:12]  
X
X
VPATREPO_6 V Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
PATREPE_6  
Number of Selected Vertical Pattern Group Repetitions for Even Lines.  
[11:0]  
[23:12]  
X
X
VPATSTART_6  
HDLEN_6  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 6.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_6  
PBLKTOG2_6  
PBLK Toggle Position 1 for Vertical Sequence 6.  
PBLK Toggle Position 2 for Vertical Sequence 6.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_6  
HBLKTOG2_6  
HBLK Toggle Position 1 for Vertical Sequence 6.  
HBLK Toggle Position 2 for Vertical Sequence 6.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_6  
HBLKTOG4_6  
HBLK Toggle Position 3 for Vertical Sequence 6.  
HBLK Toggle Position 4 for Vertical Sequence 6.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_6  
HBLKTOG6_6  
HBLK Toggle Position 5 for Vertical Sequence 6.  
HBLK Toggle Position 6 for Vertical Sequence 6.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_6  
CLPOBTOG2_6  
CLPOB Toggle Position 1 for Vertical Sequence 6.  
CLPOB Toggle Position 2 for Vertical Sequence 6.  
Table 65. Vertical Sequence 7 (VSEQ7) Register Map  
Address Data Bit Content Default Value Register Name Register Description  
B8  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
[11:10]  
[12]  
X
X
X
X
X
X
X
HBLKMASK_7  
CLPOBPOL_7  
PBLKPOL_7  
VPATSEL_7  
VMASK_7  
HBLKALT_7  
HDLEN13_7  
UNUSED  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 7.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME Registers).  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
[23:12]  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
[11:0]  
[23:12]  
X
X
VPATREPO_7  
VPATREPE_7  
Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even Lines.  
[11:0]  
[23:12]  
X
X
VPATSTART_7  
HDLEN_7  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 7.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_7  
PBLKTOG2_7  
PBLK Toggle Position 1 for Vertical Sequence 7.  
PBLK Toggle Position 2 for Vertical Sequence 7.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_7  
HBLKTOG2_7  
HBLK Toggle Position 1 for Vertical Sequence 7.  
HBLK Toggle Position 2 for Vertical Sequence 7.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_7  
HBLKTOG4_7  
HBLK Toggle Position 3 for Vertical Sequence 7.  
HBLK Toggle Position 4 for Vertical Sequence 7.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_7  
HBLKTOG6_7  
HBLK Toggle Position 5 for Vertical Sequence 7.  
HBLK Toggle Position 6 for Vertical Sequence 7.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_7  
CLPOBTOG2_7  
CLPOB Toggle Position 1 for Vertical Sequence 7.  
CLPOB Toggle Position 2 for Vertical Sequence 7.  
Rev. A | Page 79 of 96  
AD9925  
Table 66. Vertical Sequence 8 (VSEQ8) Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
C0  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_8  
CLPOBPOL_8  
PBLKPOL_8  
VPATSEL_8  
VMASK_8  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 8.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME  
Registers).  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_8  
HDLEN13_8  
UNUSED  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
C1  
C2  
[11:0]  
[23:12]  
X
X
VPATREPO_8  
VPATREPE_8  
Number of Selected Vertical Pattern Group Repetitions for Odd Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even Lines.  
[11:0]  
[23:12]  
X
X
VPATSTART_8  
HDLEN_8  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 8.  
C3  
C4  
C5  
C6  
C7  
[11:0]  
[23:12]  
X
X
PBLKTOG1_8  
PBLKTOG2_8  
PBLK Toggle Position 1 for Vertical Sequence 8.  
PBLK Toggle Position 2 for Vertical Sequence 8.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_8  
HBLKTOG2_8  
HBLK Toggle Position 1 for Vertical Sequence 8.  
HBLK Toggle Position 2 for Vertical Sequence 8.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_8  
HBLKTOG4_8  
HBLK Toggle Position 3 for Vertical Sequence 8.  
HBLK Toggle Position 4 for Vertical Sequence 8.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_8  
HBLKTOG6_8  
HBLK Toggle Position 5 for Vertical Sequence 8.  
HBLK Toggle Position 6 for Vertical Sequence 8.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_8  
CLPOBTOG2_8  
CLPOB Toggle Position 1 for Vertical Sequence 8.  
CLPOB Toggle Position 2 for Vertical Sequence 8.  
Table 67. Vertical Sequence 9 (VSEQ9) Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
C8  
[1:0]  
[2]  
[3]  
[7:4]  
[9:8]  
X
X
X
X
X
HBLKMASK_9  
CLPOBPOL_9  
PBLKPOL_9  
VPATSEL_9  
VMASK_9  
Masking Polarity during HBLK. H1 [0], H3 [1].  
CLPOB Start Polarity.  
PBLK Start Polarity.  
Selected Vertical Pattern Group for Vertical Sequence 9.  
Enable Masking of Vertical Outputs (Specified by FREEZE/RESUME  
registers).  
[11:10]  
[12]  
[23:12]  
X
X
HBLKALT_9  
HDLEN13_9  
UNUSED  
Enable HBLK Alternation.  
13th Bit for HD Length Counter Allows HD Length up to 8191 Pixels.  
Unused.  
C9  
[11:0]  
X
X
VPATREPO_9  
Number of Selected Vertical Pattern Group Repetitions for Odd  
Lines.  
Number of Selected Vertical Pattern Group Repetitions for Even  
Lines.  
[23:12]  
VPATREPE_9  
CA  
CB  
CC  
CD  
CE  
CF  
[11:0]  
[23:12]  
X
X
VPATSTART_9  
HDLEN_9  
Start Position in the Line for the Selected Vertical Pattern Group.  
HD Line Length (Number of Pixels) for Vertical Sequence 9.  
[11:0]  
[23:12]  
X
X
PBLKTOG1_9  
PBLKTOG2_9  
PBLK Toggle Position 1 for Vertical Sequence 9.  
PBLK Toggle Position 2 for Vertical Sequence 9.  
[11:0]  
[23:12]  
X
X
HBLKTOG1_9  
HBLKTOG2_9  
HBLK Toggle Position 1 for Vertical Sequence 9.  
HBLK Toggle Position 2 for Vertical Sequence 9.  
[11:0]  
[23:12]  
X
X
HBLKTOG3_9  
HBLKTOG4_9  
HBLK Toggle Position 3 for Vertical Sequence 9.  
HBLK Toggle Position 4 for Vertical Sequence 9.  
[11:0]  
[23:12]  
X
X
HBLKTOG5_9  
HBLKTOG6_9  
HBLK Toggle Position 5 for Vertical Sequence 9.  
HBLK Toggle Position 6 for Vertical Sequence 9.  
[11:0]  
[23:12]  
X
X
CLPOBTOG1_9  
CLPOBTOG2_9  
CLPOB Toggle Position 1 for Vertical Sequence 9.  
CLPOB Toggle Position 2 for Vertical Sequence 9.  
Rev. A | Page 80 of 96  
AD9925  
Table 68. Field 0 Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
D0  
[3:0]  
[4]  
[5]  
X
X
X
X
X
X
X
X
X
X
X
X
VSEQSEL0_0  
SWEEP0_0  
MULTI0_0  
VSEQSEL1_0  
SWEEP1_0  
MULTI1_0  
VSEQSEL2_0  
SWEEP2_0  
MULTI2_0  
VSEQSEL3_0  
SWEEP3_0  
MULTI3_0  
Selected Vertical Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
D1  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
X
X
X
X
X
X
X
X
X
VSEQSEL4_0  
SWEEP4_0  
MULTI4_0  
VSEQSEL5_0  
SWEEP5_0  
MULTI5_0  
VSEQSEL6_0  
SWEEP6_0  
MULTI6_0  
UNUSED  
Selected Vertical Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
D2  
D3  
D4  
D5  
[11:0]  
[23:12]  
X
X
SCP1_0  
SCP2_0  
Vertical Sequence Change Position No. 1 for Field 0.  
Vertical Sequence Change Position No. 2 for Field 0.  
[11:0]  
[23:12]  
X
X
SCP3_0  
SCP4_0  
Vertical Sequence Change Position No. 3 for Field 0.  
Vertical Sequence Change Position No. 4 for Field 0.  
[11:0]  
[23:12]  
X
X
VDLEN_0  
HDLAST_0  
VD Field Length (Number of Lines) for Field 0.  
HD Line Length (Number of Pixels) for Last Line in Field 0.  
[3:0]  
[9:4]  
[21:10]  
[22]  
X
X
VPATSECOND_0 Selected Second Vertical Pattern Group for VSG Active Line.  
SGMASK_0  
SGPATSEL_0  
HDLAST13_0  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
MSB for 13-Bit Last Line Length  
D6  
D7  
[11:0]  
[23:12]  
X
X
SGLINE1_0  
SGLINE2_0  
VSG Active Line 1.  
VSG Active Line 2  
(If No Second Line Is Needed, Set to Same as Line 1 or Maximum).  
[11:0]  
[23:12]  
X
X
SCP5_0  
SCP6_0  
Vertical Sequence Change Position No. 5 for Field 0.  
Vertical Sequence Change Position No. 6 for Field 0.  
Rev. A | Page 81 of 96  
AD9925  
Table 69. Field 1 Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
D8  
[3:0]  
[4]  
[5]  
X
X
X
X
X
X
X
X
X
X
X
X
VSEQSEL0_1  
SWEEP0_1  
MULTI0_1  
VSEQSEL1_1  
SWEEP1_1  
MULTI1_1  
VSEQSEL2_1  
SWEEP2_1  
MULTI2_1  
VSEQSEL3_1  
SWEEP3_1  
MULTI3_1  
Selected Vertical Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
D9  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
X
X
X
X
X
X
X
X
X
VSEQSEL4_1  
SWEEP4_1  
MULTI4_1  
VSEQSEL5_1  
SWEEP5_1  
MULTI5_1  
VSEQSEL6_1  
SWEEP6_1  
MULTI6_1  
UNUSED  
Selected Vertical Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multi-  
plier. Unused.  
[23:18]  
DA  
DB  
DC  
DD  
[11:0]  
[23:12]  
X
X
SCP1_1  
SCP2_1  
Vertical Sequence Change Position No. 1 for Field 1.  
Vertical Sequence Change Position No. 2 for Field 1.  
[11:0]  
[23:12]  
X
X
SCP3_1  
SCP4_1  
Vertical Sequence Change Position No. 3 for Field 1.  
Vertical Sequence Change Position No. 4 for Field 1.  
[11:0]  
[23:12]  
X
X
VDLEN_1  
HDLAST_1  
VD Field Length (Number of Lines) for Field 1.  
HD Line Length (Number of Pixels) for Last Line in Field 1.  
[3:0]  
[9:4]  
[21:10]  
[22]  
X
X
X
X
VPATSECOND_1 Selected Second Vertical Pattern Group for VSG Active Line.  
SGMASK_1  
SGPATSEL_1  
HDLAST13_1  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
MSB for 13-Bit Last Line Length  
DE  
DF  
[11:0]  
[23:12]  
X
X
SGLINE1_1  
SGLINE2_1  
VSG Active Line 1.  
VSG Active Line 2.  
(If No Second Line Is Needed, Set to Same as Line 1 or Maximum).  
[11:0]  
[23:12]  
X
X
SCP5_1  
SCP6_1  
Vertical Sequence Change Position No. 5 for Field 1.  
Vertical Sequence Change Position No. 6 for Field 1.  
Rev. A | Page 82 of 96  
AD9925  
Table 70. Field 2 Register Map  
Address Data Bit Content Default Value  
Register Name  
Register Description  
E0  
[3:0]  
[4]  
[5]  
X
X
X
X
X
X
X
X
X
X
X
X
VSEQSEL_2  
SWEEP0_2  
MULTI0_2  
VSEQSEL1_2  
SWEEP1_2  
MULTI1_2  
VSEQSEL2_2  
SWEEP2_2  
MULTI2_2  
VSEQSEL3_2  
SWEEP3_2  
MULTI3_2  
Selected Vertical Sequence for Region 0 Sequence for Region 1.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 2.  
Vertical Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
E1  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
X
X
X
X
X
X
X
X
X
VSEQSEL4_2  
SWEEP4_2  
MULTI4_2  
VSEQSEL5_2  
SWEEP5_2  
MULTI5_2  
VSEQSEL6_2  
SWEEP6_2  
MULTI6_2  
UNUSED  
Selected Vertical Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multi-  
plier. Unused.  
[23:18]  
E2  
E3  
E4  
E5  
[11:0]  
[23:12]  
X
X
SCP1_2  
SCP2_2  
Vertical Sequence Change Position No. 1 for Field 2.  
Vertical Sequence Change Position No. 2 for Field 2.  
[11:0]  
[23:12]  
X
X
SCP3_2  
SCP4_2  
Vertical Sequence Change Position No. 3 for Field 2.  
Vertical Sequence Change Position No. 4 for Field 2.  
[11:0]  
[23:12]  
X
X
VDLEN0_2  
HDLAST_2  
VD Field Length (Number of Lines) for Field 2.  
HD Line Length (Number of Pixels) for Last Line in Field 2.  
[3:0]  
[9:4]  
[21:10]  
[22]  
X
X
X
X
VPATSECOND_2 Selected Second Vertical Pattern Group for VSG Active Line.  
SGMASK_2  
SGPATSEL_2  
HDLAST13_2  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
MSB for 13-Bit Last Line Length  
E6  
E7  
[11:0]  
[23:12]  
X
X
SGLINE1_2  
SGLINE2_2  
VSG Active Line 1.  
VSG Active Line 2.  
(If No Second Line Is Needed, Set to Same as Line 1 or Maximum).  
[11:0]  
[23:12]  
X
X
SCP5_2  
SCP6_2  
Vertical Sequence Change Position No. 5 for Field 2.  
Vertical Sequence Change Position No. 6 for Field 2.  
Rev. A | Page 83 of 96  
AD9925  
Table 71. Field 3 Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
E8  
[3:0]  
[4]  
[5]  
X
X
X
X
X
X
X
X
X
X
X
X
VSEQSEL_3  
SWEEP0_3  
MULTI0_3  
VSEQSEL1_3  
SWEEP1_3  
MULTI1_3  
VSEQSEL2_3  
SWEEP2_3  
MULTI2_3  
VSEQSEL3_3  
SWEEP3_3  
MULTI3_3  
Selected Vertical Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
E9  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
X
X
X
X
X
X
X
X
X
VSEQSEL4_3  
SWEEP4_3  
MULTI4_3  
VSEQSEL5_3  
SWEEP5_3  
MULTI5_3  
VSEQSEL6_3  
SWEEP6_3  
MULTI6_3  
UNUSED  
Selected Vertical Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused .  
[23:18]  
EA  
EB  
EC  
ED  
[11:0]  
[23:12]  
X
X
SCP1_3  
SCP2_3  
Vertical Sequence Change Position No. 1 for Field 3.  
Vertical Sequence Change Position No. 2 for Field 3.  
[11:0]  
[23:12]  
X
X
SCP3_3  
SCP4_3  
Vertical Sequence Change Position No. 3 for Field 3.  
Vertical Sequence Change Position No. 4 for Field 3.  
[11:0]  
[23:12]  
X
X
VDLEN_3  
HDLAST_3  
VD Field Length (Number of Lines) for Field 3.  
HD Line Length (Number of Pixels) for Last Line in Field 3.  
[3:0]  
[9:4]  
[21:10]  
[22]  
X
X
X
X
VPATSECOND_3 Selected Second Vertical Pattern Group for VSG Active Line.  
SGMASK_3  
SGPATSEL_3  
HDLAST13_3  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
MSB for 13-Bit Last Line Length  
EE  
EF  
[11:0]  
[23:12]  
X
X
SGLINE1_3  
SGLINE2_3  
VSG Active Line 1.  
VSG Active Line 2.  
(If No Second Line Is Needed, Set to Same as Line 1 or Maximum).  
[11:0]  
[23:12]  
X
X
SCP5_3  
SCP6_3  
Vertical Sequence Change Position No. 5 for Field 3.  
Vertical Sequence Change Position No. 6 for Field 3.  
Rev. A | Page 84 of 96  
AD9925  
Table 72. Field 4 Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
F0  
[3:0]  
[4]  
[5]  
X
X
X
X
X
X
X
X
X
X
X
X
VSEQSEL0_4  
SWEEP0_4  
MULTI0_4  
VSEQSEL1_4  
SWEEP1_4  
MULTI1_4  
VSEQSEL2_4  
SWEEP2_4  
MULTI2_4  
VSEQSEL3_4  
SWEEP3_4  
MULTI3_4  
Selected Vertical Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
F1  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
X
X
X
X
X
X
X
X
X
VSEQSEL4_4  
SWEEP4_4  
MULTI4_4  
VSEQSEL5_4  
SWEEP5_4  
MULTI5_4  
VSEQSEL6_4  
SWEEP6_4  
MULTI6_4  
UNUSED  
Selected Vertical Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
F2  
F3  
F4  
F5  
[11:0]  
[23:12]  
X
X
SCP1_4  
SCP2_4  
Vertical Sequence Change Position No. 1 for Field 4.  
Vertical Sequence Change Position No. 2 for Field 4.  
[11:0]  
[23:12]  
X
X
SCP3_4  
SCP4_4  
Vertical Sequence Change Position No. 3 for Field 4.  
Vertical Sequence Change Position No. 4 for Field 4.  
[11:0]  
[23:12]  
X
X
VDLEN_4  
HDLAST_4  
VD Field Length (Number of Lines) for Field 4.  
HD Line Length (Number of Pixels) for Last Line in Field 4.  
[3:0]  
[9:4]  
[21:10]  
[22]  
X
X
X
X
VPATSECOND_4 Selected Second Vertical Pattern Group for VSG Active Line.  
SGMASK_4  
SGPATSEL_4  
HDLAST13_4  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
MSB for 13-Bit Last Line Length  
F6  
F7  
[11:0]  
[23:12]  
X
X
SGLINE1_4  
SGLINE2_4  
VSG Active Line 1.  
VSG Active Line 2.  
(If No Second Line Is Needed, Set to Same as Line 1 or Maximum).  
[11:0]  
[23:12]  
X
X
SCP5_4  
SCP6_4  
Vertical Sequence Change Position No. 5 for Field 4.  
Vertical Sequence Change Position No. 6 for Field 4.  
Rev. A | Page 85 of 96  
AD9925  
Table 73. Field 5 Register Map  
Address Data Bit Content Default Value Register Name  
Register Description  
F8  
[3:0]  
[4]  
[5]  
X
X
X
X
X
X
X
X
X
X
X
X
VSEQSEL0_5  
SWEEP0_5  
MULTI0_5  
VSEQSEL1_5  
SWEEP1_5  
MULTI1_5  
VSEQSEL2_5  
SWEEP2_5  
MULTI2_5  
VSEQSEL3_5  
SWEEP3_5  
MULTI3_5  
Selected Vertical Sequence for Region 0.  
Select Sweep Region for Region 0. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 0. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 1.  
Select Sweep Region for Region 1. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 1. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 2.  
Select Sweep Region for Region 2. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 2. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 3.  
Select Sweep Region for Region 3. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 3. 0 = No Multiplier, 1 = Multiplier.  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
[21:18]  
[22]  
[23]  
F9  
[3:0]  
[4]  
[5]  
[9:6]  
[10]  
[11]  
[15:12]  
[16]  
[17]  
X
X
X
X
X
X
X
X
X
VSEQSEL4_5  
SWEEP4_5  
MULTI4_5  
VSEQSEL5_5  
SWEEP5_5  
MULTI5_5  
VSEQSEL6_5  
SWEEP6_5  
MULTI6_5  
UNUSED  
Selected Vertical Sequence for Region 4.  
Select Sweep Region for Region 4. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 4. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 5.  
Select Sweep Region for Region 5. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 5. 0 = No Multiplier, 1 = Multiplier.  
Selected Vertical Sequence for Region 6.  
Select Sweep Region for Region 6. 0 = No Sweep, 1 = Sweep.  
Select Multiplier Region for Region 6. 0 = No Multiplier, 1 = Multiplier.  
Unused.  
[23:18]  
FA  
FB  
FC  
FD  
[11:0]  
[23:12]  
X
X
SCP1_5  
SCP2_5  
Vertical Sequence Change Position No.1 for Field 5.  
Vertical Sequence Change Position No.2 for Field 5.  
[11:0]  
[23:12]  
X
X
SCP3_5  
SCP4_5  
Vertical Sequence Change Position No.3 for Field 5.  
Vertical Sequence Change Position No.4 for Field 5.  
[11:0]  
[23:12]  
X
X
VDLEN_5  
HDLAST_5  
VD Field Length (Number of Lines) for Field 5.  
HD Line Length (Number of Pixels) for Last Line in Field 5.  
[3:0]  
[9:4]  
[21:10]  
[22]  
X
X
X
X
VPATSECOND_5 Selected Second Vertical Pattern Group for VSG Active Line.  
SGMASK_5  
SGPATSEL_5  
HDLAST13_5  
Masking of VSG Outputs during VSG Active Line.  
Selection of VSG Patterns for Each VSG Output.  
MSB for 13-Bit Last Line Length  
FE  
FF  
[11:0]  
[23:12]  
X
X
SGLINE1_5  
SGLINE2_5  
VSG Active Line 1.  
VSG Active Line 2.  
(If No Second Line Is Needed, Set to Same as Line 1 or Maximum).  
[11:0]  
[23:12]  
X
X
SCP5_5  
SCP6_5  
Vertical Sequence Change Position No.5 for Field 5.  
Vertical Sequence Change Position No.6 for Field 5.  
Rev. A | Page 86 of 96  
AD9925  
COMPLETE LISTING FOR REGISTER BANK 3  
All vertical pattern group and vertical sequence registers are SCP updated. Default register values are undefined.  
Table 74. XV7 and XV8 Pattern Group 0 (VPAT0) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
00  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_0  
XV8POL_0  
UNUSED  
VPAT0 XV7 Start Polarity  
VPAT0 XV8 Start Polarity  
Unused  
XV78LEN_0  
Total Length of XV7 and XV8 Pattern for VPAT0  
01  
02  
03  
04  
[11:0]  
[23:12]  
X
X
XV7TOG1_0  
XV7TOG2_0  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_0  
XV8TOG1_0  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_0  
XV8TOG3_0  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_0  
XV8TOG4_0  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
05  
06  
07  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 75. XV7 and XV8 Pattern Group 1 (VPAT1) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
08  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_1  
XV8POL_1  
UNUSED  
VPAT1 XV7 Start Polarity  
VPAT1 XV8 Start Polarity  
Unused  
XV78LEN_1  
Total Length of XV7 and XV8 Pattern for VPAT2  
09  
0A  
0B  
0C  
[11:0]  
[23:12]  
X
X
XV7TOG1_1  
XV7TOG2_1  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_1  
XV8TOG1_1  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_1  
XV8TOG3_1  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_1  
XV8TOG4_1  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
0D  
0E  
0F  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Rev. A | Page 87 of 96  
 
AD9925  
Table 76. XV7 and XV8 Pattern Group 2 (VPAT2) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
10  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_2  
XV8POL_2  
UNUSED  
VPAT2 XV7 Start Polarity  
VPAT2 XV8 Start Polarity  
Unused  
XV78LEN_2  
Total Length of XV7 and XV8 Pattern for VPAT2  
11  
12  
13  
14  
[11:0]  
[23:12]  
X
X
XV7TOG1_2  
XV7TOG2_2  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_2  
XV8TOG1_2  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_2  
XV8TOG3_2  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_2  
XV8TOG4_2  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
15  
16  
17  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 77. XV7 and XV8 Pattern Group 3 (VPAT3) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
18  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_3  
XV8POL_3  
UNUSED  
VPAT3 XV7 Start Polarity  
VPAT3 XV8 Start Polarity  
Unused  
XV78LEN_3  
Total Length of XV7 and XV8 Pattern for VPAT3  
19  
1A  
1B  
1C  
[11:0]  
[23:12]  
X
X
XV7TOG1_3  
XV7TOG2_3  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_3  
XV8TOG1_3  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_3  
XV8TOG3_3  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_3  
XV8TOG4_3  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
1D  
1E  
1F  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 78. XV7 and XV8 Pattern Group 4 (VPAT4) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
20  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_4  
XV8POL_4  
UNUSED  
VPAT4 XV7 Start Polarity  
VPAT4 XV8 Start Polarity  
Unused  
XV78LEN_4  
Total Length of XV7 and XV8 Pattern for VPAT4  
21  
22  
23  
24  
[11:0]  
[23:12]  
X
X
XV7TOG1_4  
XV7TOG2_4  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_4  
XV8TOG1_4  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_4  
XV8TOG3_4  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_4  
XV8TOG4_4  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
25  
26  
27  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Rev. A | Page 88 of 96  
AD9925  
Table 79. XV7 and XV8 Pattern Group 5 (VPAT5) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
28  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_5  
XV8POL_5  
UNUSED  
VPAT5 XV7 Start Polarity  
VPAT5 XV8 Start Polarity  
Unused  
XV78LEN_5  
Total Length of XV7 and XV8 Pattern for VPAT5  
29  
2A  
2B  
2C  
[11:0]  
[23:12]  
X
X
XV7TOG1_5  
XV7TOG2_5  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_5  
XV8TOG1_5  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_5  
XV8TOG3_5  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_5  
XV8TOG4_5  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
2D  
2E  
2F  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 80. XV7 and XV8 Pattern Group 6 (VPAT6) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
30  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_6  
XV8POL_6  
UNUSED  
VPAT6 XV7 Start Polarity  
VPAT6 XV8 Start Polarity  
Unused  
XV78LEN_6  
Total Length of XV7 and XV8 Pattern for VPAT6  
31  
32  
33  
34  
[11:0]  
[23:12]  
X
X
XV7TOG1_6  
XV7TOG2_6  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_6  
XV8TOG1_6  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_6  
XV8TOG3_6  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_6  
XV8TOG4_6  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
35  
36  
37  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 81. XV7 and XV8 Pattern Group 7 (VPAT7) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
38  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_7  
XV8POL_7  
UNUSED  
VPAT7 XV7 Start Polarity  
VPAT7 XV8 Start Polarity  
Unused  
XV78LEN_7  
Total Length of XV7 and XV8 Pattern for VPAT7  
39  
3A  
3B  
3C  
[11:0]  
[23:12]  
X
X
XV7TOG1_7  
XV7TOG2_7  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_7  
XV8TOG1_7  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_7  
XV8TOG3_7  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_7  
XV8TOG4_7  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
3D  
3E  
3F  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Rev. A | Page 89 of 96  
AD9925  
Table 82. XV7 and XV8 Pattern Group 8 (VPAT8) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
40  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_8  
XV8POL_8  
UNUSED  
VPAT8 XV7 Start Polarity  
VPAT8 XV8 Start Polarity  
Unused  
XV78LEN_8  
Total Length of XV7 and XV8 Pattern for VPAT8  
41  
42  
43  
44  
[11:0]  
[23:12]  
X
X
XV7TOG1_8  
XV7TOG2_8  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_8  
XV8TOG1_8  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_8  
XV8TOG3_8  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_8  
XV8TOG4_8  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
45  
46  
47  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 83. XV7 and XV8 Pattern Group 9 (VPAT9) Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
48  
[0]  
[1]  
[11:2]  
[23:12]  
X
X
X
X
XV7POL_9  
XV8POL_9  
UNUSED  
VPAT9 XV7 Start Polarity  
VPAT9 XV8 Start Polarity  
Unused  
XV78LEN_9  
Total Length of XV7 and XV8 Pattern for VPAT9  
49  
4A  
4B  
4C  
[11:0]  
[23:12]  
X
X
XV7TOG1_9  
XV7TOG2_9  
XV7 Toggle Position 1  
XV7 Toggle Position 2  
[11:0]  
[23:12]  
X
X
XV7TOG3_9  
XV8TOG1_9  
XV7 Toggle Position 3  
XV8 Toggle Position 1  
[11:0]  
[23:12]  
X
X
XV8TOG2_9  
XV8TOG3_9  
XV8 Toggle Position 2  
XV8 Toggle Position 3  
[11:0]  
[23:12]  
X
X
XV7TOG4_9  
XV8TOG4_9  
XV7 Toggle Position 4  
XV8 Toggle Position 4  
4D  
4E  
4F  
[23:0]  
[23:0]  
[23:0]  
X
X
X
UNUSED  
UNUSED  
UNUSED  
Unused  
Unused  
Unused  
Table 84. XV7 and XV8 Vertical Sequence 0 Registers  
Address  
Data Bit Content  
Default Value  
Register Name  
Register Description  
50  
[0]  
X
HOLD_0  
0: Vertical Masking Operation, 1: Hold Area instead of  
Vertical Masking  
[11:1]  
[23:12]  
X
X
UNUSED  
XV78START_0  
Unused  
Start Position for XV7 and XV8  
51  
52  
[11:0]  
[23:12]  
X
X
XV78REPO_0  
XV78REPE_0  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
X
XV78HOLDEN_0  
0: No Hold Area for XV7 and XV8,1: Enable Hold Area for  
XV7 and XV8  
Unused  
[23:1]  
[23:0]  
X
X
UNUSED  
UNUSED  
53  
Unused  
Rev. A | Page 90 of 96  
AD9925  
Table 85. XV7 and XV8 Vertical Sequence 1 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
54  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_1  
UNUSED  
XV78START_1  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
55  
56  
57  
[11:0]  
[23:12]  
X
X
XV78REPO_1  
XV78REPE_1  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_1 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Table 86. XV7 and XV8 Vertical Sequence 2 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
58  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_2  
UNUSED  
XV78START_2  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
59  
5A  
5B  
[11:0]  
[23:12]  
X
X
XV78REPO_2  
XV78REPE_2  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_2 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Table 87. XV7 and XV8 Vertical Sequence 3 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
5C  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_3  
UNUSED  
XV78START_3  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
5D  
5E  
5F  
[11:0]  
[23:12]  
X
X
XV78REPO_3  
XV78REPE_3  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_3 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Table 88. XV7 and XV8 Vertical Sequence 4 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
60  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_4  
UNUSED  
XV78START_4  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
61  
62  
63  
[11:0]  
[23:12]  
X
X
XV78REPO_4  
XV78REPE_4  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_4 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Rev. A | Page 91 of 96  
AD9925  
Table 89. XV7 and XV8 Vertical Sequence 5 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
64  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_5  
UNUSED  
XV78START_5  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
65  
66  
67  
[11:0]  
[23:12]  
X
X
XV78REPO_5  
XV78REPE_5  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_5 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Table 90. XV7 and XV8 Vertical Sequence 6 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
68  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_6  
UNUSED  
XV78START_6  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
69  
6A  
6B  
[11:0]  
[23:12]  
X
X
XV78REPO_6  
XV78REPE_6  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_6 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Table 91. XV7 and XV8 Vertical Sequence 7 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
6C  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_7  
UNUSED  
XV78START_7  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
6D  
6E  
6F  
[11:0]  
[23:12]  
X
X
XV78REPO_7  
XV78REPE_7  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_7 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Table 92. XV7 and XV8 Vertical Sequence 8 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
70  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_8  
UNUSED  
XV78START_8  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
71  
72  
73  
[11:0]  
[23:12]  
X
X
XV78REPO_8  
XV78REPE_8  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_8 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Rev. A | Page 92 of 96  
AD9925  
Table 93. XV7 and XV8 Vertical Sequence 9 Registers  
Address Data Bit Content Default Value Register Name  
Register Description  
74  
[0]  
[11:1]  
[23:12]  
X
X
X
HOLD_9  
UNUSED  
XV78START_9  
0: Vertical Masking Operation, 1: Hold Area instead of Vertical Masking  
Unused  
Start Position for XV7 and XV8  
75  
76  
77  
[11:0]  
[23:12]  
X
X
XV78REPO_9  
XV78REPE_9  
Number of Selected XV7, XV8 Repetitions for Odd Lines  
Number of Selected XV7, XV8 Repetitions for Even Lines  
[0]  
[23:1]  
X
X
XV78HOLDEN_9 0: No Hold Area for XV7 and XV8, 1: Enable Hold Area for XV7 and XV8  
UNUSED  
Unused  
[23:0]  
X
UNUSED  
Unused  
Rev. A | Page 93 of 96  
AD9925  
OUTLINE DIMENSIONS  
A1 CORNER  
INDEX AREA  
8.00  
BSC SQ  
11 10  
9
8
7
6
5
3
4
2
1
A
B
C
D
E
F
BALL A1  
INDICATOR  
6.50  
BSC SQ  
BOTTOM  
VIEW  
TOP VIEW  
G
H
J
K
L
0.75 REF  
0.65 BSC  
DETAIL A  
1.40 MAX  
DETAILA  
1.00  
0.85  
0.40  
0.25  
0.10 MAX  
COPLANARITY  
0.45  
0.40  
0.35  
SEATING  
PLANE  
BALL DIAMETER  
Figure 78. 96-Lead Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-96)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Models  
AD9925BBCZ1  
AD9925BBCZRL1  
Temperature Range  
Package Description  
CSP_BGA  
CSP_BGA Tape and Reel  
Option  
BC-96  
BC-96  
–25°C to +85°C  
–25°C to +85°C  
1 Z = Pb-free part.  
Rev. A | Page 94 of 96  
 
 
 
AD9925  
NOTES  
Rev. A | Page 95 of 96  
AD9925  
NOTES  
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04637–0–10/04(A)  
Rev. A | Page 96 of 96  

相关型号:

AD9925BBCZRL

CCD Signal Processor with Vertical Driver and Precision Timing Generator
ADI

AD9927

14-Bit CCD Signal Processor with V-Driver and Precision TimingTM Generator
ADI

AD9927BBCZ

14-Bit CCD Signal Processor with V-Driver and Precision TimingTM Generator
ADI

AD9927BBCZRL

14-Bit CCD Signal Processor with V-Driver and Precision TimingTM Generator
ADI

AD9928

Dual Channel 14-Bit CCD Signal Processor with V-Driver and Precision Timing Generator
ADI

AD9928BBCZ

Dual-Channel, 14-Bit CCD Signal Processor with V-Driver and Precision Timing Generator
ADI

AD9928BBCZRL

Dual-Channel, 14-Bit CCD Signal ocessor with V-Driver and Precision Timing Generator
ADI

AD9929

CCD Signal Processor with Precision Timing Generator
ADI

AD9929BBCZ

CCD Signal Processor with Precision Timing Generator
ADI

AD9929BBCZRL

SPECIALTY CONSUMER CIRCUIT, PBGA64, 9 X 9 MM, LEAD FREE, PLASTIC, MO-205-AB, CSBGA-64
ROCHESTER

AD9937

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9937KCP

CCD Signal Processor with Precision Timing⑩ Generator
ADI