AD9929BBCZ [ADI]

CCD Signal Processor with Precision Timing Generator; CCD信号处理器,带有精密计时发生器
AD9929BBCZ
型号: AD9929BBCZ
厂家: ADI    ADI
描述:

CCD Signal Processor with Precision Timing Generator
CCD信号处理器,带有精密计时发生器

CD
文件: 总64页 (文件大小:553K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CCD Signal Processor with  
Precision Timing™ Generator  
AD9929  
PRODUCT DESCRIPTION  
FEATURES  
36 MSPS correlated double sampler (CDS)  
12-bit 36 MHz A/D converter  
The AD9929 is a highly integrated CCD signal processor for  
digital still camera and digital video camera applications. It  
includes a complete analog front end with A/D conversion,  
combined with a full-function, programmable timing generator.  
The AD9929 also includes horizontal and vertical clock drivers,  
which allow direct connection to the CCD image sensor.  
On-chip vertical driver for CCD image sensor  
On-chip horizontal driver for CCD image sensor  
6 dB to 40 dB variable gain amplifier (VGA)  
Black level clamp with variable level control  
Complete on-chip timing generator  
Precision Timing core with 0.58 ns resolution  
2-phase H-clock modes  
The AD9929 is specified at pixel rates of up to 36 MHz. The  
analog front end includes black level clamping, a CDS, a VGA,  
and a 12-bit A/D converter. The timing generator provides all  
the necessary CCD clocks: RG-clock, H-clocks, V-clocks, sensor  
gate pulses, a substrate clock, and a substrate bias pulse. Oper-  
ation is programmed using a 3-wire serial interface.  
4-phase vertical transfer clocks  
Electronic and mechanical shutter modes  
On-chip sync generator with external sync option  
64-lead, plastic ball, 9 × 9 grid array Pb-free package  
The AD9929 is packaged in a 64-lead CSPBGA. It is specified  
over an operating temperature range of 25°C to +85°C.  
APPLICATION  
Digital still cameras  
Digital video camcorders  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
AD9929  
6dB TO 40dB  
VGA  
VREF  
12  
CCDIN  
CDS  
ADC  
DOUT  
CLAMP  
INTERNAL CLOCKS  
DCLK1  
VSUB  
RG  
FD/DCLK2  
MSHUT  
HORIZONTAL  
DRIVERS  
PRECISION  
TIMING  
GENERATOR  
2
4
H1, H2  
STROBE  
V1, V2,  
V3, V4  
VERTICAL  
DRIVERS  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
SUBCK  
HD VD SYNC  
CLI  
SL SCKS  
DI  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD9929  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Digital Specifications ................................................................... 4  
Analog Specifications................................................................... 4  
Timing Specifications .................................................................. 5  
Vertical Driver Specifications ..................................................... 5  
Terminology ...................................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
Pin Configuration and Functional Descriptions.......................... 9  
Equivalent Input Circuits .............................................................. 10  
System Overview ............................................................................ 18  
Theory of Operation ...................................................................... 19  
Modes of Operation................................................................... 19  
Horizontal and Vertical Counters ............................................ 19  
CLI Input Clock Divider............................................................ 19  
Gray Code Registers................................................................... 19  
Serial Interface Timing .............................................................. 20  
Analog Front End Description and Operation....................... 22  
Precision Timing, High Speed Timing Generation ............... 23  
H Driver and RG Outputs......................................................... 23  
Digital Data Outputs.................................................................. 26  
External Synchronization (Master Mode)................................... 27  
Horizontal and Vertical Synchronous Timing............................ 28  
Special Note about the HDLEN Register ................................ 28  
Horizontal Clamping and Blanking............................................. 29  
Controlling CLPOB Clamp Pulse Timing .............................. 29  
Controlling CLPOB Clamp Pulse Outputs............................. 30  
H1 and H2 Blanking .................................................................. 31  
VGATE Masking of XV1 to XV4 and CLPOB Outputs............ 33  
Vertical Timing Generation.......................................................... 34  
Creating Vertical Sequences...................................................... 34  
Special Vertical Sweep Mode Operation ................................. 39  
Special Vertical Timing (SPATS).............................................. 40  
V1 to V4 and SUBCK Output Polarities ..................................... 43  
Timing Control............................................................................... 46  
Electronic Shutter Timing Control.......................................... 46  
VSG Timing ................................................................................ 48  
VSUB Timing.............................................................................. 49  
MSHUT Timing ......................................................................... 50  
Strobe Timing ............................................................................. 52  
Digital I/O States for Different Operating Conditions.............. 53  
Power Supply Sequencing ............................................................. 54  
Recommended Power-Up Supply Sequencing....................... 54  
Recommended Power-Down Supply Sequencing ................. 54  
Initial Start-Up Sequence .......................................................... 55  
Standby Mode Operation.......................................................... 56  
Shut-Down Mode Operation.................................................... 57  
Applications Where the CLI Clock Frequency Changes  
During Operation....................................................................... 58  
Circuit Layout Information........................................................... 60  
Outline Dimensions....................................................................... 62  
Ordering Guide .......................................................................... 62  
REVISION HISTORY  
Revision A  
2/04—Data Sheet Changed from Rev. 0 to Rev. A  
Replaced Figure....................................................................................21  
1/04—Revision 0: Initial Version  
Rev. A | Page 2 of 64  
AD9929  
SPECIFICATIONS  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
−25  
−65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
AVDD (AFE Analog Supply)  
TCVDD (Timing Core Analog Supply)  
RGVDD (RG Driver)  
HVDD (H1 to H2 Drivers)  
DRVDD (Data Output Drivers)  
DVDD (Digital)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
VERTICAL DRIVER SUPPLY VOLTAGE  
VDD (Vertical Driver Input Logic Supply)  
VH1, VH2 (Vertical Driver High Supply)  
VM1, VM2 (Vertical Driver Mid Supply)  
VL (Vertical Driver Low Supply for 3 Level and 2 Level)  
AFETG POWER DISSIPATION  
36 MHz, Typ Supply Levels, 100 pF H1 to H2 Loading  
Power from HVDD Only1  
Power-down Mode (AFE and Digital in Standby Operation)  
VERTICAL DRIVER POWER DISSIPATION2 (6000 pF V1 to V4 Loading, 1000 pF SUBCK Loading)  
Power from VDD  
Power from VH1  
Power from VH2  
2.7  
3.0  
15.0  
0.0  
3.6  
16.0  
1.0  
V
V
V
V
11.5  
−1.0  
−9.0  
−7.5  
−5.0  
180  
36  
1
mW  
mW  
mW  
<1.0  
23.0  
15.0  
42.0  
mW  
mW  
mW  
mW  
MHz  
Power from VL  
MAXIMUM CLOCK RATE (CLI) AD9929  
36  
1 The total power dissipated by the HVDD supply may be approximated by using the equation:  
Total HVDD Power = [CLOAD × HVDD × Pixel Frequency] × HVDD × Number of H-Outputs Used.  
Actual HVDD power may be slightly different than the calculated value because of the stray capacitance inherent in the PCB layout/routing.  
2 Vertical driver loads used when characterizing power consumption. Note: actual power depends on the V1 to V4 timing and number of SUBCKs.  
SUBCK  
V1, V2, V3, V4  
1000 pF  
6000 pF  
INPUT SIGNAL CHARACTERISTICS DEFINED AS FOLLOWS:  
500mV TYP  
RESET  
TRANSIENT  
100mV MAX  
OPTICAL  
1V MAX  
INPUT  
BLACK PIXEL  
SIGNAL RANGE  
Rev. A | Page 3 of 64  
 
 
AD9929  
DIGITAL SPECIFICATIONS  
Table 2. RGVDD = HVDD = 2.7 V to 3.6 V, DVDD = DRVDD = 2.7 V to 3.6 V, CL = 20 pF, TMIN to TMAX, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
10  
10  
10  
Input Capacitance  
LOGIC OUTPUTS (Except H and RG)  
High Level Output Voltage @ IOH = 2 mA  
Low Level Output Voltage @ IOL = 2 mA  
RG and H-DRIVER OUTPUTS (H1 to H2)  
High Level Output Voltage @ Max Current  
Low Level Output Voltage @ Max Current  
RG Maximum Output Current (Programmable)  
H1 and H2 Maximum Output Current (Programmable)  
Maximum Load Capacitance  
VOH  
VOL  
2.2  
V
V
0.5  
VOH  
VOL  
VDD − 0.5  
V
V
mA  
mA  
pF  
0.5  
15  
30  
100  
ANALOG SPECIFICATIONS  
Table 3. AVDD = 3.0 V, fCLI = 36 MHz, TMIN to TMAX, unless otherwise noted.  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Allowable CCD Reset Transient  
Max Input Range before Saturation  
Max CCD Black Pixel Amplitude  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Output Range  
500  
mV  
See input signal characteristics in Table 1.  
1.0  
V p–p  
mV  
100  
2.0  
V p–p  
Steps  
Gain Control Resolution  
Gain Monotonicity  
1024  
Guaranteed  
Gain Range  
Low Gain  
Max Gain  
6
40  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
255  
Steps  
LSB  
LSB measured at ADC output.  
Min Clamp Level  
0
LSB  
Max Clamp Level  
255  
LSB  
A/D CONVERTER  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
VOLTAGE REFERENCE  
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
SYSTEM PERFORMANCE  
Gain Accuracy  
10  
Bits  
LSB  
0.5  
Guaranteed  
2.0  
V
2.0  
1.0  
V
V
Includes entire signal chain.  
Low Gain (VGA Code = 22)  
Max Gain (VGA Code = 994)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
6
dB  
dB  
%
LSB rms  
dB  
Gain = (0.035 × Code) + 5.2 dB.  
40  
0.1  
0.3  
40  
12 dB gain applied.  
AC grounded input, 6 dB gain applied.  
Measured with step change on supply.  
Power Supply Rejection (PSR)  
Rev. A | Page 4 of 64  
AD9929  
TIMING SPECIFICATIONS  
Table 4. CL = 20 pF, AVDD = DVDD = DRVDD = 3.0 V, fCLI = 36 MHz, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK, CLI  
CLI Clock Period  
CLI High/Low Pulse Width  
Delay from CLI Rising Edge to Internal Pixel Position 0  
AFE CLAMP PULSES1  
tCONV  
27.8  
ns  
ns  
ns  
13.9  
6
tCLIDLY  
CLPOB Pulse Width  
4
10  
25  
9
Pixels  
Pixels  
AFE SAMPLE LOCATION1 (See Figure 17)  
SHP Sample Edge to SHD Sample Edge  
DATA OUTPUTS  
TS1  
tOD  
20  
Output Delay from DCLK1 Rising Edge (See Figure 19)  
Pipeline Delay from SHP/SHD Sampling (See Figure 70)  
SERIAL INTERFACE (See Figure 10 and Figure 11)  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDATA Valid Hold  
SCK Falling Edge to SDATA Valid Read  
ns  
9
Cycles  
tDV  
fSCLK  
tLS  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
tLH  
tDS  
tDH  
tOD  
ns  
1 Parameter is programmable.  
VERTICAL DRIVER SPECIFICATIONS  
Table 5. V1 to V4 load = no load, SUBCK load = no load, VDD = 3.0 V, VL = −7.5 V, VH1 = VH2 = +15.0 V, VM1 = VM2 = GND,  
fCLI = 36 MHz, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
Propagation Delays, Rise/Fall Times and Output Currents  
V1 and V3 Outputs (See Figure 43)  
Delay Times  
VIH  
VIL  
0.8 (VDD)  
0
VDD  
V
V
0.3 (VDD)  
VL to VM1  
VM1 to VH1  
VH1 to VM1  
VM1 to VL  
tPLM1  
tPMH  
tPHM  
tPML1  
100  
100  
50  
ns  
ns  
ns  
ns  
50  
Rise Times  
VL to VM1  
VM1 to VH1  
tR1  
tR2  
500  
500  
ns  
ns  
Fall Times  
VH1 to VM1  
VM1 to VL  
tF1  
tF2  
500  
500  
ns  
ns  
Output Currents  
V1 or V3 @ VL = −7.25 V  
V1 or V3 @ VM1 = −0.25 V  
V1 or V3 @ VM1 = +0.25 V  
V1 or V3 @ VH1 = +14.75 V  
10.0  
−5.0  
5.0  
mA  
mA  
mA  
mA  
−7.2  
Rev. A | Page 5 of 64  
 
 
AD9929  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
V2 and V4 Outputs (See Figure 43)  
Delay Times  
VL to VM2  
tPLM2  
tPML2  
100  
50  
ns  
ns  
VM2 to VL  
Rise Times  
VL to VM2  
Fall Times  
VM2 to VL  
tR3  
tF3  
500  
500  
ns  
ns  
Output Currents  
V2 or V2 @ VL =−7.25 V  
V2 or V4 @ VM2 = −0.25 V  
SUBCK Output (See Figure 44)  
Delay Times  
10.0  
−5.0  
mA  
mA  
VL to VH2  
VH2 to VL  
tPLH  
tPHL  
100  
50  
ns  
ns  
Rise Times  
VL to VH2  
Fall Times  
VH2 to VL  
tR4  
tF4  
90  
90  
ns  
ns  
Output Currents  
SUBCK @ VL = −7.25 V  
SUBCK @ VH2 = 14.75 V  
5.4  
−4.0  
mA  
mA  
Rev. A | Page 6 of 64  
AD9929  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Total Output Noise  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus every  
code must have a finite width.No missing codes guaranteed to  
12-bit resolution” indicates that all 4096 codes, respectively,  
must be present over all operating conditions.  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSBs, and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship  
1 LSB = (ADC full scale/2N codes) when N is the bit resolution  
of the ADC. For the AD9929, 1 LSB is 0.5 mV.  
Peak Nonlinearity  
Peak nonlinearity, a full signal-chain specification, refers to the  
peak deviation of the output of the AD9929 from a true straight  
line. The point used as zero scale occurs 1/2 LSB before the first  
code transition.Positive full scale” is defined as a level 1 and  
1/2 LSB beyond the last code transition. The deviation is mea-  
sured from the middle of each particular output code to the  
true straight line. The error is then expressed as a percentage of  
the 2 V ADC full-scale signal. The input signal is always appro-  
priately gained up to fill the ADCs full-scale range.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
Rev. A | Page 7 of 64  
AD9929  
ABSOLUTE MAXIMUM RATINGS  
Table 6.  
Parameter  
With Respect To  
Min  
Max  
Unit  
V
V
V
V
VDD  
VL  
VH1, VH2  
VM1, VM2  
AVDD  
VDVSS  
VDVSS  
VDVSS  
VDVSS  
AVSS  
VDVSS − 0.3  
VDVSS − 10.0  
VL –0.3  
VL – 0.3  
−0.3  
VDVSS + 4.0  
VDVSS + 0.3  
VL + 27.0  
VL + 27.0  
+3.9  
V
TCVDD  
HVDD  
TCVSS  
HVSS  
−0.3  
−0.3  
+3.9  
+3.9  
V
V
RGVDD  
DVDD  
RGVSS  
DVSS  
−0.3  
−0.3  
+3.9  
+3.9  
V
V
DRVDD  
DRVSS  
RGVSS  
HVSS  
DVSS  
DVSS  
DVSS  
AVSS  
AVSS  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
+3.9  
V
V
V
V
V
V
V
V
RG Output  
H1 to H2 Output  
Digital Outputs  
Digital Inputs  
SCK, SL, SDATA  
REFT, REFB  
CCDIN  
RGVDD + 0.3  
HVDD + 0.3  
DVDD + 0.3  
DVDD + 0.3  
DVDD + 0.3  
AVDD + 0.3  
AVDD + 0.3  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Package Thermal Resistance  
θJA = 61.0 °C/W  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulates on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 8 of 64  
AD9929  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
A 1 CORNER  
INDEX AREA  
1 2  
3 4 5 6 7 8 9 10  
A
B
C
D
E
F
G
H
J
AD9929  
TOP VIEW  
(Not to Scale)  
K
Figure 2. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin Mnemonic Type1 Description  
Pin Mnemonic Type1 Description  
Vertical Sync Pulse (Input for Slave  
Mode, Output for Master Mode)  
Horizontal Sync Pulse (Input for  
Slave Mode, Output for Master  
Mode)  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
Data Clock Output  
Data Output Driver Ground  
Data Output Driver Supply  
CCD Substrate Clock  
(2 Level: VH2, VL)  
CCD Vertical Transfer Clock  
(3 Level: VH1, VM1, VL)  
CCD Vertical Transfer Clock  
(2 Level: VM2, VL)  
CCD Vertical Transfer Clock  
(3 Level: VH1, VM1, VL)  
CCD Vertical Transfer Clock  
(2 Level: VM2, VL)  
Vertical Driver High Supply  
(High Supply for V1 and V3)  
Vertical Driver Midsupply  
(Midsupply for V1 and V3)  
B10 VDD  
P
P
DO  
DO  
DO  
P
P
P
P
DO  
P
Vertical Driver Input Logic Supply  
Vertical Driver Ground  
CCD Substrate Bias  
D1  
VD  
DIO  
J9  
VDVSS  
A9  
G1  
F1  
E1  
E2  
F2  
G2  
H1  
J1  
VSUB  
H1  
H2  
HVDD  
HVSS  
HVSS  
HVSS  
RG  
D2  
HD  
DIO  
CCD Horizontal Clock  
CCD Horizontal Clock  
H1 and H2 Driver Supply  
H1 and H2 Driver Ground  
H1 and H2 Driver Ground  
H1 and H2 Driver Ground  
CCD Reset Gate Clock  
RG Driver Supply  
B8  
A8  
A7  
B7  
A6  
B6  
B5  
A4  
B3  
A3  
B2  
A2  
A1  
B4  
A5  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
RGVDD  
RGVSS  
H2  
P
RG Driver Ground  
DI  
DI  
DO  
DO  
P
P
P
P
P
P
P
P
P
DI  
P
P
AI  
AO  
AO  
DI  
DI  
DI  
DI  
DO  
DO  
P
SYNC or  
VGATE  
External System Sync Input  
VGATE Input  
D8  
D9  
C9  
C1  
FD or  
DCLK2  
Field Designator Output  
DCLK2 Output  
D10  
D11  
DCLK1  
DRVSS  
DRVDD  
K3  
J3  
J4  
J5  
J6  
J7  
J8  
K4  
K6  
J2  
AVDD  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
AVSS  
CLI  
Analog Supply for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Analog Ground for AFE  
Reference Clock Input  
Analog Supply for Timing Core  
Analog Ground for Timing Core  
CCD Input Signal  
Voltage Reference Top Bypass  
Voltage Reference Bottom Bypass  
3-Wire Serial Data Input  
3-Wire Serial Load Pulse  
3-Wire Serial Clock  
Output Control  
Mechanical Shutter Pulse  
Strobe Pulse  
P
G9  
SUBCK  
DO  
DO  
DO  
DO  
DO  
P
D10 V1  
E9 V2  
G10 V3  
H9 V4  
K2  
K1  
K5  
K7  
K8  
K9  
TCVDD  
TCVSS  
CCDIN  
REFT  
REFB  
SDATA  
H10 VH1  
C10 VM1  
F10 VM2  
P
K10 SL  
J10 SCK  
Vertical Driver Midsupply  
(Midsupply for V2 and V4)  
Vertical Driver Low Supply  
Vertical Driver High Supply for  
SUBCK  
P
P
P
D9  
B1  
C2  
OUTCONT  
MSHUT  
STROBE  
F9  
VL  
E10 VH2  
A10 DVDD  
Digital Supply  
B9  
DVSS  
P
Digital Ground  
1 AI = Analog Input, AO = Analog Output, DI = Digital Input,  
DO = Digital Output, DIO = Digital Input/Output, P = Power.  
Rev. A | Page 9 of 64  
 
AD9929  
EQUIVALENT INPUT CIRCUITS  
DVDD  
AVDD  
R
330  
AVSS  
AVSS  
DVSS  
Figure 5. Circuit 3. Digital Inputs  
Figure 3. Circuit 1. CCDIN  
HVDD OR  
RGVDD  
DVDD  
DRVDD  
DATA  
RG, H1 H2  
DOUT  
THREE-  
STATE  
OUTPUT  
ENABLE  
DVSS  
DRVSS  
HVSS OR  
RGVSS  
Figure 4. Circuit 2. Digital Data Output  
Figure 6. Circuit 4. H1 to H2, RG Drivers  
Rev. A | Page 10 of 64  
AD9929  
Table 8. Control Register Address Map  
Bit  
Default  
Value  
Address  
0x00  
Content Width  
Register Name  
SW_RESET  
Unused  
Register Description  
(23:0)  
23  
24  
1
000000  
0
Software Reset = 000000 (Reset All Registers to Default )  
0x01  
Suppress XSUBCK (00 = No Suppression, 01 = Suppress First XSUBCK  
After Last VSG Line Pulse, 10 = Suppress All XSUBCKs, Except Final  
XSUBCK, 11 = No Suppression)  
(22:21)  
2
XSUBCKSUPPRESS  
(20:18)  
17  
16  
3
1
1
2
0
1
0
0
Unused  
Test Mode. Should Be Set = 0  
Masking Polarity for H1 During Blanking Period (0 = Low, 1 = High)  
External SYNC Active Polarity (0 = Active Low)  
HBLKMASK  
SYNCPOL  
Unused  
(15:14)  
High Precision Shutter Mode Operation  
(0 = Single Pulse, 1 = Multiple Pulse)  
13  
1
3
2
0
0
0
XSUBCKMODE_HP  
Unused  
(12:10)  
(9:8)  
Selects MSHUT Pattern. (See Figure 51)  
(0 = Mshutpat0,1 = Mshutpat1,2 = Mshutpat2, 3 = Mshutpat3)  
MSHUTPAT  
MSHUT Masking of VGATE Input (0 = MSHUT Does Not Mask VGATE,  
1 = MSHUT Does Mask VGATE)  
7
1
0
MSHUT/VGATE_EN  
6
5
4
(3:1)  
1
1
1
3
0
1
1
0
Unused  
CLPOB_CONT  
CLPOB_MODE  
Unused  
CLPOB Control (0 = CLPOB Off, 1 = CLPOB On)  
CLPOB CCD Region Control (See Table 19)  
VD Synchronous/Asynchronous Mode Setting  
(0 = VD Synchronous, 1 = VD Asynchronous )  
0
1
0
VDMODE  
0x02  
0x03  
0x04  
(23:22)  
(21:16)  
(15:14)  
(13:8)  
(7:6)  
2
6
2
6
2
6
7
1
2
6
2
6
8
1
0
0x34  
0
0x18  
0
0x0B  
0x00  
0
0
0x00  
0
0x10  
0x80  
Unused  
SHDLOC  
Unused  
SHPLOC  
SHD Sample Location  
SHP Sample Location  
DCLK Pulse Adjustment  
Data Output [11:0] Phase Adjustment  
DCLKPHASE  
DOUTPHASE  
Unused  
H1BLKRETIME  
Unused  
H1POSLOC  
Unused  
RGNEGLOC  
REFBLACK  
Unused  
(5:0)  
(23:17)  
16  
(15:14)  
(13:8)  
(7:6)  
Retimes the H1 HBLK to Internal Clock  
H1 Positive Edge Location  
(5:0)  
RG Negative Edge Location  
Black Level Clamp  
(23:16)  
15  
H2 Drive Strength (0 = Off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA,  
4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA)  
(14:12)  
11  
3
1
3
5
3
5
H2DRV  
Unused  
H1DRV  
Unused  
RGDRV  
0
H1 Drive Strength (0 = Off, 1 = 4.3 mA, 2 = 8.6 mA, 3 = 12.9 mA,  
4 = 17.2 mA, 5 = 21.5 mA, 6 = 25.8 mA, 7 = 30.1 mA)  
(10:8)  
(7:3)  
(2:0)  
5
0x00  
2
RG Drive Strength (0 = Off, 1 = 2.15 mA, 2 = 4.2 mA, 3 = 6.45 mA,  
4 = 8.6 mA, 5 = 10.75 mA, 6 = 12.9 mA, 7 = 15.05 mA)  
0x05  
(23:10)  
9
8
(7:2)  
14  
1
1
0x0000  
0
0
00  
Unused  
AFESTBY  
DIGSTBY  
Unused  
AFE Standby (0 = Standby, 1 = Normal Operation)  
Digital Standby (0 = Standby, 1 = Normal Operation)  
6
Internal OUTCONT Signal Control  
(0 = Digital Outputs Held at Fixed DC Level, 1 = Normal Operation)  
External OUTCONT Signal Input Pin 43 Control (0 = Pin Enabled,  
1 = Pin Disabled)  
1
0
1
1
0
1
OUTCONT_REG  
OUTCONT_ENB  
Rev. A | Page 11 of 64  
 
 
AD9929  
Bit  
Default  
Value  
Address  
Content Width  
Register Name  
Unused  
FDPOL  
XVSGMASK  
SYNCCNT  
SVREP_MODE  
HBLKEXT  
HPULSECNT  
SPATLOGIC  
SVOS  
Register Description  
0x0A  
23  
22  
(21:16)  
(15:12)  
1
1
6
4
2
1
1
4
2
1
1
2
1
1
3
1
0
0
0x00  
0
0
0
0
C
3
0
FD Polarity Control (0 = Low, 1 = High)  
XVSG Masking (See Table 25)  
External SYNC Setting  
Super Vertical Repetition Mode  
H Pulse Blanking Extend Control  
(VD  
SyncReg)1 (11:10)  
9
8
(7:4)  
(3:2)  
1
H Pulse Control During Blanking  
SPAT Logic Setting (See Table 27)  
Second V Output Setting (10 = Ouput Repetition 1)  
SPAT Control (0 = SPAT Disable, 1 = SPAT Enable)  
Mode Control Bit (0 = Mode_A, 1 = Mode_B)  
SPAT_EN  
MODE  
0
0
0x0B  
(VD  
(23:22)  
21  
20  
0
1
1
0
Unused  
XSUBCK_EN  
XVSG_EN  
Unused  
XSUBCK Output Enable Control (0 = Disable, 1 = Enable)  
XVSG Output Enable Control (0 = Disable, 1 = Enable)  
(19:17)  
SyncReg)1 16  
0
STROBE_EN  
STROBE Output Control (0 = STROBE Output Held Low,  
1 = STROBE Output Enabled)  
15  
1
0
Unused  
(14:12)  
11  
3
1
11  
3
1
0
0
XSUBCKNUM_HP  
Unused  
XSUBCKNUM  
Unused  
MSHUTINIT  
Unused  
Unused  
High Precision Shutter XSUBCLK Pulse Position/Number  
Total Number of XSUBCKs Per Field  
(10:0)  
(23:21)  
20  
(19:18)  
17  
0x7FF  
0x0C  
(VD  
0
0
0
0
MSHUT Initialize (1 = Forces MSHUT Low)  
2
1
SyncReg)1 16  
1
1
3
1
11  
7
1
5
11  
2
0
0
0
0
MSHUTEN  
Unused  
MSHUTPOS_HP  
Unused  
MSHUTPOS  
Unused  
VSUBPOL  
Unused  
VSUBTOG  
Unused  
TESTMODE1  
Unused  
TESTMODE2  
TESTMODE3  
Unused  
MSHUT Control (0 = MSHUT Held at Last State, 1 = MSHUT Output)  
MSHUT Position during High Precision Operation  
MSHUT Position during Normal Operation  
15  
(14:12)  
11  
(10:0)  
(23:17)  
16  
0x000  
0x0D  
(VD  
0
VSUB Active Polarity (0 = Low, 1 = High)  
(15:11)  
SyncReg)1 (10:0)  
0x000  
VSUB Toggle Position. Active Starting Line in any Field.  
This Register Should Always Be Set = 0.  
0x0E  
(23:22)  
(21:20)  
(19:18)  
17  
0
0
0
0
0
0x00  
2
2
1
1
(VD  
This Register Should Always Be Set = 0.  
This Register Should Always Be Set = 0.  
SyncReg)1 16  
(15:10)  
6
(9:0)  
10  
16  
8
0x000  
VGAGAIN  
Unused  
XVSGLEN_1  
Unused  
XV1SPAT_TOG1  
Unused  
XV1SPAT_TOG2  
Unused  
VGA Gain  
0x0F  
0x17  
0x18  
0x19  
0x1A  
(23:8)  
(7:0)  
0
60  
XVSGTOG_1 Pulse Width  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
11  
13  
11  
13  
11  
13  
11  
13  
0x1FFF  
0x1FFF  
0x1FFF  
0x1FFF  
XV1SPAT Toggle Position #1 (Mode_A Active)  
XV1SPAT Toggle Position #2 (Mode_A Active)  
XV2SPAT Toggle Position #1 (Mode_A Active)  
XV2SPAT Toggle Position #2 (Mode_A active)  
XV2SPAT_TOG1  
Unused  
XV2SPAT_TOG2  
Rev. A | Page 12 of 64  
AD9929  
Bit  
Default  
Value  
Address  
Content Width  
Register Name  
Unused  
XV3SPAT_TOG1  
Unused  
XV3SPAT_TOG2  
Unused  
XV4SPAT_TOG1  
Unused  
XV4SPAT_TOG2  
Unused  
XV1SPAT_TOG1  
Unused  
XV1SPAT_TOG2  
Unused  
XV2SPAT_TOG1  
Unused  
XV2SPAT_TOG2  
Unused  
XV3SPAT_TOG1  
Unused  
XV3SPAT_TOG2  
Unused  
XV4SPAT_TOG1  
Unused  
Register Description  
0x1B  
(23:13)  
(12:0)  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
11  
13  
20  
0x1FFF  
XV3SPAT Toggle Position #1 (Mode_A active)  
XV3SPAT Toggle Position #2 (Mode_A active)  
XV4SPAT Toggle Position #1 (Mode_A active)  
XV4SPAT Toggle Position #2 (Mode_A Active)  
XV1SPAT Toggle Position #1 (Mode_A Active)  
XV1SPAT Toggle Position #2 (Mode_B Active)  
XV2SPAT Toggle Position #1 (Mode_B Active)  
XV2SPAT Toggle Position #2 (Mode_B Active)  
XV3SPAT Toggle Position #1 (Mode_B Active)  
XV3SPAT Toggle Position #2 (Mode_B Active)  
XV4SPAT Toggle Position #1 (Mode_B Active)  
XV4SPAT Toggle Position #2 (Mode_B Active)  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0xD5  
(23:13))  
(12:0  
0x1FFF  
(23:13)  
(12:0)  
0x1FFF  
(23:13)  
(12:0)  
0x1FFF  
(23:13)  
(12:0)  
0x1FFF  
(23:13)  
(12:0)  
0x1FFF  
0x1FFF  
0x1FFF  
0x1FFF  
0x1FFF  
0x1FFF  
0x1FFF  
0x00000  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
(23:13)  
(12:0)  
XV4SPAT_TOG2  
Unused  
(23:4)  
DCLK2 Selector (0 = Select Internal FD Signal To Be Output on  
FD/DCLK2 Pin 16, 1 = Select CLI To Be Output on FD/DCLK2 Pin 16)  
DCLK1 Selector (0 = Select DLL Version for DCLK1 Output, 1 = Select  
CLI for DCLK1 Output)  
3
2
1
1
1
0
DCLK2SEL  
DCLK1SEL  
(1:0)  
(23:1)  
0
2
0
CLKDIV  
Input Clock Divider (0 = No Division, 1 = 1/2, 2 = 1/3, 3 = 1/4)  
0xD6  
23  
1
0x000000  
1
Unused  
SLAVE_MODE  
Operating Mode ( 0 = Master Mode, 1 = Slave Mode)  
1 This register defaults to VD synchronous mode type at power-up. VD sync type registers do not get updated until the first falling edge of VD is asserted after the  
register has been programmed. VD sync type registers can be programmed to be asynchronous registers by setting VDMODE = 1 (Address 0x01).  
Rev. A | Page 13 of 64  
 
AD9929  
Table 9. System Register Address Map (Address 0x14)  
Bit  
Default  
Register  
Content Width (Decimal) Register Name  
Register Description  
Sys_Reg(0)  
(31:24)  
(23:0)  
8
NA  
NA  
System_Reg_addr  
System_Number_N  
System Register Address is (Address 0x14)  
Number N Register Writes (0x000000 = Write All  
Registers)  
24  
Sys_Reg(1)  
(31:23)  
22  
21  
20  
19  
9
1
1
1
1
9
37  
0
0
1
1
VTPLEN0  
Vertical Sequence #0: Length Between Repetitions  
Vertical Sequence #0: XV1 Start Polarity  
Vertical Sequence #0: XV2 Start Polarity  
Vertical Sequence #0: XV3 Start Polarity  
Vertical Sequence #0: XV4 Start Polarity  
Vertical Sequence #0: XV1 Toggle Position 1  
XV1STARTPOL0  
XV2STARTPOL0  
XV3STARTPOL0  
XV4STARTPOL0  
XV1TOG1POS0  
(18:10)  
0
XV1TOG2POS0 Vertical  
Sequence  
(9:1)  
9
19  
#0: XV1 Toggle Position 2  
0
1
8
9
9
6
3
9
9
9
1
1
1
1
9
9
9
3
6
9
9
8
1
9
9
1
1
1
1
9
9
9
9
5
4
9
9
9
1
0
XV2TOG1POS0 [8]  
XV2TOG1POS0 [7:0]  
XV2TOG2POS0  
XV3TOG1POS0  
XV3TOG2POS0 [8:3]  
XV3TOG2POS0 [2:0]  
XV4TOG1POS0  
XV4TOG2POS0  
VTPLEN1  
XV1STARTPOL1  
XV2STARTPOL1  
XV3STARTPOL1  
XV4STARTPOL1  
XV1TOG1POS1  
XV1TOG2POS1  
XV2TOG1POS1  
XV2TOG2POS1 [8:6]  
XV2TOG2POS1 [5:0]  
XV3TOG1POS1  
XV3TOG2POS1  
XV4TOG1POS1 [8:1]  
XV4TOG1POS1 [0]  
XV4TOG2POS1  
VTPLEN2  
XV1STARTPOL2  
XV2STARTPOL2  
XV3STARTPOL2  
XV4STARTPOL2  
XV1TOG1POS2  
XV1TOG2POS2  
XV2TOG1POS2  
XV2TOG2POS2  
XV3TOG1POS2 [8:4]  
XV3TOG1POS2 [3:0]  
XV3TOG2POS2  
XV4TOG1POS2  
XV4TOG2POS2  
Unused  
Sys_Reg(2)  
Sys_Reg(3)  
(31:24)  
(23:15)  
(14:6)  
(5:0)  
12  
31  
0
Vertical Sequence #0: XV2 Toggle Position 1  
Vertical Sequence #0: XV2 Toggle Position 2  
Vertical Sequence #0: XV3 Toggle Position 1  
(31:29)  
(28:20)  
(19:11)  
(10:2)  
1
19  
12  
31  
104  
0
Vertical Sequence #0: XV3 Toggle Position 2  
Vertical Sequence #0: XV4 Toggle Position 1  
Vertical Sequence #0: XV4 Toggle Position 2  
Vertical Sequence #1: Length Between Repetitions  
Vertical Sequence #1: XV1 Start Polarity  
Vertical Sequence #1: XV2 Start Polarity  
Vertical Sequence #1: XV3 Start Polarity  
Vertical Sequence #1: XV4 Start Polarity  
Vertical Sequence #1: XV1 Toggle Position 1  
Vertical Sequence #1: XV1 Toggle Position 2  
Vertical Sequence #1: XV2 Toggle Position 1  
0
0
Sys_Reg(4)  
31  
30  
(29:21)  
(20:12)  
(11:3)  
(2:0)  
1
1
18  
58  
47  
Sys_Reg(5)  
Sys_Reg(6)  
(31:26)  
(25:17)  
(16:8)  
(7:0)  
96  
0
76  
Vertical Sequence #1: XV2Toggle Position 2  
Vertical Sequence #1: XV3 Toggle Position 1  
Vertical Sequence #1: XV3 Toggle Position 2  
31  
38  
105  
57  
0
0
1
Vertical Sequence #1: XV4 Toggle Position 1  
Vertical Sequence #1: XV4 Toggle Position 2  
Vertical Sequence #2: Length between Repetitions  
Vertical Sequence #2: XV1 Start Polarity  
Vertical Sequence #2: XV2 Start Polarity  
Vertical Sequence #2: XV3 Start Polarity  
Vertical Sequence #2: XV4 Start Polarity  
Vertical Sequence #2: XV1 Toggle Position 1  
Vertical Sequence #2: XV1 Toggle Position 2  
Vertical Sequence #2: XV2 Toggle Position 1  
Vertical Sequence #2: XV2 Toggle Position 2  
(30:22)  
(21:13)  
12  
11  
10  
9
(8:0)  
1
0
Sys_Reg(7)  
Sys_Reg(8)  
(31:23)  
(22:14)  
(13:5)  
(4:0)  
29  
19  
48  
(31:28)  
(27:19)  
(18:10)  
(9:1)  
0
Vertical Sequence #2: XV3 Toggle Position 1  
Vertical Sequence #2: XV3 Toggle Position 2  
Vertical Sequence #2: XV4 Toggle Position 1  
Vertical Sequence #2: XV4 Toggle Position 2  
29  
19  
48  
0
Rev. A | Page 14 of 64  
 
AD9929  
Bit  
Default  
Register  
Content Width (Decimal) Register Name  
Register Description  
Sys_Reg(9)  
(31:23)  
22  
21  
20  
19  
(18:10)  
(9:1)  
0
9
1
1
1
1
9
9
1
8
9
9
6
3
9
9
10  
1
89  
0
0
1
1
VTPLEN3  
Vertical Sequence #3: Length Between Repetitions  
Vertical Sequence #3: XV1 Start Polarity  
Vertical Sequence #3: XV2 Start Polarity  
Vertical Sequence #3: XV3 Start Polarity  
Vertical Sequence #3: XV4 Start Polarity  
Vertical Sequence #3: XV1 Toggle Position 1  
Vertical Sequence #3: XV1 Toggle Position 2  
XV1STARTPOL3  
XV2STARTPOL3  
XV3STARTPOL3  
XV4STARTPOL3  
XV1TOG1POS3  
XV1TOG2POS3  
XV2TOG1POS3 [8]  
XV2TOG1POS3 [7:0]  
XV2TOG2POS3  
XV3TOG1POS3  
XV3TOG2POS3 [8:3]  
XV3TOG2POS3 [2:0]  
XV4TOG1POS3  
XV4TOG2POS3  
HBLKHPOS  
0
60  
Sys_Reg(10) (31:24)  
30  
90  
0
Vertical Sequence #3: XV2 Toggle Position 1  
Vertical Sequence #3: XV2 Toggle Position 2  
Vertical Sequence #3: XV3 Toggle Position 1  
(23:15)  
(14:6)  
(5:0)  
Sys_Reg(11) (31:29)  
60  
30  
90  
0
Vertical Sequence #3: XV3 Toggle Position 2  
Vertical Sequence #3: XV4 Toggle Position 1  
Vertical Sequence #3: XV4 Toggle Position 2  
H1 Pulse ON Position during Blanking Period  
(28:20)  
(19:11)  
(10:1)  
0
Unused  
12-bit Gray Code HD Counter Value  
(Gray Code Number)  
Sys_Reg(12) (31:20)  
12  
2283  
HDLEN1  
(19:10)  
(9:1)  
10  
9
130  
100  
HLEN  
OLEN  
10-Bit HL Counter Values  
9-Bit OL Counter Value  
0
1
BLLEN [8]  
Sys_Reg(13) (31:24)  
8
0
BLLEN [7:0]  
MSHUTLEN  
XVSGTOG_0  
XVSGTOG_1 [10:6]  
XVSGTOG_1 [5:0]  
XVSGLEN_0  
XSUBCK1TOG1  
XSUBCK1TOG2  
XSUBCK2TOG1  
XSUBCK2TOG2  
CLPTOG11  
9-bit BL Counter Value  
(23:16)  
8
118  
1048  
MSHUT Sequence Length  
XVSGTOG_0 Toggle Position  
(15:5)  
(4:0)  
11  
5
Sys_Reg(14) (31:26)  
6
8
9
9
1198  
60  
19  
XVSG TOG_1 Toggle Position  
XVSGTOG_0 Pulse Width  
(25:18)  
(17:9)  
(8:0)  
XSUBCK1 1st Toggle Position  
XSUBCK1 2nd Toggle Position  
XSUBCK2 1st Toggle Position  
XSUBCK2 2nd Toggle Position  
CLPOB Toggle Position 1 (Gray Code Number)  
88  
Sys_Reg(15) (31:23)  
9
9
12  
2
19  
88  
2243  
(22:14:)  
(13:2)  
(1:0)  
Sys_Reg(16) (31:22)  
(21:18)  
CLPTOG2 [11]1  
CLPTOG2 [10:0] 1  
VDRISE  
10  
4
2278  
9
CLPOB Toggle Position 2 (Gray Code Number)  
VD Toggle Position 1  
(17:8)  
(7:0)  
10  
8
120  
HDRISE  
Unused  
HD Toggle Position 2  
1 Register value must be a gray code number (see Gray Code Registers section).  
Rev. A | Page 15 of 64  
 
AD9929  
Table 10. Mode_A Register Map (Address 0x15)  
Bit  
Width  
Default  
(Decimal)  
Register  
Content  
(31:24)  
(23:0)  
(31:21)  
(20:9)  
8
Register Name  
Mode_A_addr  
Mode_A_Number_N  
VDLEN  
Register Description  
Mode_Reg(0)  
8
NA  
NA  
262  
1139  
1
Mode_A Address Is (Address 0x15)  
Number N Register Writes (0x000000 = Write All Registers )  
VD Counter Value  
Number of Pixels in Last Line (Gray Code Number)  
XVSG1 Sequence Selector (See Table 35)  
XVSG2 Sequence Selector (See Table 35)  
XVSG Active Line  
24  
11  
12  
1
Mode_Reg(1)  
Mode_Reg(2)  
HDLASTLEN1  
XVSGSEL1  
XVSGSEL2  
XVSGACTLINE  
SUBCKSEL  
VTPSEQPTR0  
VTPSEQPTR1  
VTPSEQPTR2  
VTPSEQPTR3  
VTPSEQPTR4  
CLPEN0  
7
1
0
(6:0)  
7
0
31  
1
3
3
3
3
3
1
0
0
0
0
0
0
1
Select one of two SUBCK patterns  
Vertical Transfer Sequence Region 0  
Vertical Transfer Sequence Region 1  
Vertical Transfer Sequence Region 2  
Vertical Transfer Sequence Region 3  
Vertical Transfer Sequence Region 4  
CLPOB Output Control 1  
(30:28)  
(27:25)  
(24:22)  
(21:19)  
(18:16)  
15  
14  
1
0
CLPEN1  
CLPOB Output Control 2  
13  
1
0
CLPEN2  
CLPOB Output Control 3  
12  
1
0
CLPEN3  
CLPOB Output Control 4  
11  
1
0
CLPEN4  
CLPOB Output Control 5  
(10:3)  
(2:0)  
8
3
0
SCP1  
SCP2  
Sequence Change Position 1  
Mode_Reg(3)  
(31:27)  
(26:19)  
(18:11)  
(10:9)  
(8:7)  
5
8
8
2
0
0
0
0
SCP2  
SCP3  
SCP4  
VTPSEL0  
Sequence Change Position 2  
Sequence Change Position 3  
Sequence Change Position 4  
Vertical Pattern Selection 0  
2
0
VTPSEL1  
Vertical Pattern Selection 1  
(6:5)  
2
0
VTPSEL2  
Vertical Pattern Selection 2  
(4:3)  
2
0
VTPSEL3  
Vertical Pattern Selection 3  
(2:0)  
3
3
VTPREP0  
Number of Vertical Pulse Repetitions for Pattern 0  
Number of Vertical Pulse Repetitions for Pattern 1  
Number of Vertical Pulse Repetitions for Pattern 2  
Number of Vertical Pulse Repetitions for Pattern 3  
Vertical Sweep Repetition Number for CCD Region 0  
Vertical Sweep Repetition Number for CCD Region 3  
Mode_Reg(4)  
(31:29)  
(28:26)  
(25:23)  
(22:12)  
(11:1)  
0
3
3
3
11  
11  
1
0
0
0
0
0
VTPREP1  
VTPREP2  
VTPREP3  
SVREP0  
SVREP3  
Unused  
Mode_Reg(5)  
Mode_Reg(6)  
Mode_Reg(7)  
(31:19)  
(18:6)  
(5:0)  
13  
13  
6
988  
1138  
XV1SPAT_TOG3  
XV1SPAT_TOG4  
XV2SPAT_TOG3  
XV2SPAT_TOG3  
XV2SPAT_TOG  
XV3SPAT_TOG3  
XV3SPAT_TOG3  
XV3SPAT_TOG4  
XV4SPAT_TOG3  
XV4SPAT_TOG4  
XV4SPAT_TOG4  
SECONDVPOS  
VPATSECOND  
Unused  
XV1SPAT Toggle Position 3  
XV1SPAT Toggle Position 4  
(31:25)  
(24:12)  
(11:0)  
31  
(30:18)  
(17:5)  
(4:0)  
7
1078  
1168  
XV2SPAT Toggle Position 3  
XV2SPAT Toggle Position 4  
13  
12  
1
13  
13  
5
958  
1138  
988  
XV3SPAT Toggle Position 3  
XV3SPAT Toggle Position 4  
XV4SPAT Toggle Position 3  
Mode_Reg(8)  
(31:24)  
(23:11)  
(10:9)  
(8:0)  
8
13  
2
1228  
1392  
3
XV4SPAT Toggle Position 4  
Second V Pattern Output Position  
Selected Second V-Pattern Group for VSG Active Line  
9
1 Register value must be a gray code number (see Gray Code Registers section).  
Rev. A | Page 16 of 64  
 
AD9929  
Table 11. Mode_B Register Map (Address 0x16)  
Bit  
Default  
(Decimal)  
Register  
Content Width  
Register Name  
Register Description  
Mode_Reg(0) (31:24)  
8
NA  
NA  
262  
1139  
1
Mode_B_addr  
Mode_B Address is (Address 0x16)  
(23:0)  
24  
11  
12  
1
1
7
Mode_B_Number_N Number N Register Writes (0x000000 = Write All Registers)  
Mode_Reg(1) (31:21)  
VDLEN  
VD Counter Value  
(20:9)  
8
7
(6:0)  
HDLASTLEN1  
XVSGSEL1  
XVSGSEL2  
XVSGACTLINE  
SUBCKSEL  
VTPSEQPTR0  
VTPSEQPTR1  
VTPSEQPTR2  
VTPSEQPTR3  
VTPSEQPTR4  
CLPEN0  
Number of Pixels in Last Line (Gray Code Number)  
XVSG1 Sequence Selector (See Table 35)  
XVSG2 Sequence Selector (See Table 35)  
XVSG Active Line  
0
0
Mode_Reg(2) 31  
1
3
3
3
3
3
1
0
0
0
0
0
0
1
Select One of Two SUBCK Patterns  
Vertical Transfer Sequence Region 0  
Vertical Transfer Sequence Region 1  
Vertical Transfer Sequence Region 2  
Vertical Transfer Sequence Region 3  
Vertical Transfer Sequence Region 4  
CLPOB Output Control 1  
(30:28)  
(27:25)  
(24:22)  
(21:19)  
(18:16)  
15  
14  
1
0
CLPEN1  
CLPOB Output Control 2  
13  
1
0
CLPEN2  
CLPOB Output Control 3  
12  
1
0
CLPEN3  
CLPOB Output Control 4  
11  
1
0
CLPEN4  
CLPOB Output Control 5  
(10:3)  
8
0
SCP1  
Sequence Change Position 1  
(2:0)  
3
SCP2  
Mode_Reg(3) (31:27)  
5
0
SCP2  
Sequence Change Position 2  
(26:19)  
8
0
SCP3  
Sequence Change Position 3  
(18:11)  
8
0
SCP4  
Sequence Change Position 4  
(10:9)  
2
0
VTPSEL0  
Vertical Pattern Selection 0  
(8:7)  
2
0
VTPSEL1  
Vertical Pattern Selection 1  
(6:5)  
2
0
VTPSEL2  
Vertical Pattern Selection 2  
(4:3)  
2
0
VTPSEL3  
Vertical Pattern Selection 3  
(2:0)  
3
3
VTPREP0  
Number of VTP0 Pulse Repetitions for Pattern 0  
Number of VTP1 Pulse Repetitions for Pattern 1  
Number of VTP2 Pulse Repetitions for Pattern 2  
Number of VTP0 Pulse Repetitions for Pattern 3  
Vertical Sweep Repetition Number for CCD Region 0  
Vertical Sweep Repetition Number for CCD Region 3  
Mode_Reg(4) (31:29)  
3
3
3
11  
11  
1
0
0
0
0
0
VTPREP1  
VTPREP2  
VTPREP3  
SVREP0  
SVREP3  
Unused  
(28:26)  
(25:23)  
(22:12)  
(11:1)  
0
Mode_Reg(5) (31:19)  
13  
13  
6
988  
1138  
XV1SPAT_TOG3  
XV1SPAT_TOG4  
XV2SPAT_TOG3  
XV2SPAT_TOG3  
XV2SPAT_TOG4  
XV3SPAT_TOG3  
XV3SPAT_TOG3  
XV3SPAT_TOG4  
XV4SPAT_TOG3  
XV4SPAT_TOG4  
XV4SPAT_TOG4  
SECONDVPOS  
VPATSECOND  
Unused  
XV1SPAT Toggle Position 3  
XV1SPAT Toggle Position 4  
(18:6)  
(5:0)  
Mode_Reg(6) (31:25)  
7
1078  
XV2SPAT Toggle Position 3  
XV2SPAT Toggle Position 4  
(24:12)  
(11:0)  
13  
12  
1
13  
13  
5
Mode_Reg(7) 31  
958  
1138  
988  
XV3SPAT Toggle Position 3  
XV3SPAT Toggle Position 4  
XV4SPAT Toggle Position 3  
(30:18)  
(17:5)  
(4:0)  
Mode_Reg(8) (31:24)  
8
13  
2
1228  
1392  
3
XV4SPAT Toggle Position 4  
Second V Pattern Output Position  
Selected Second V-Pattern Group for VSG Active Line  
(23:11)  
(10:9)  
(8:0)  
9
1 Register value must be a gray code number (See Gray Code Registers section).  
Rev. A | Page 17 of 64  
 
AD9929  
SYSTEM OVERVIEW  
microprocessor, which resets internal counters and resyn-  
chronizes the VD and HD outputs.  
Figure 7 shows the typical system block diagram for the  
AD9929. The CCD output is processed by the AD9929s AFE  
circuitry, which consists of a CDS, VGA, black level clamp, and  
an A/D converter. The digitized pixel information is sent to the  
digital image processor chip, which performs post-processing  
and compression. To operate the CCD, all CCD timing para-  
meters are programmed into the AD9929 from the system  
microprocessor through the 3-wire serial interface. From the  
system master clock, CLI, provided by the image processor or  
external crystal, the AD9929 generates all of the CCDs hori-  
zontal and vertical clocks and all internal AFE clocks. External  
synchronization is provided by a SYNC pulse from the  
The H-drivers for H1 to H2, and RG are included in the  
AD9929, allowing these clocks to be directly connected to the  
CCD. An H-drive voltage of up to 3.6 V is supported. The  
AD9929 also includes the CCD vertical driver circuits for  
creating the V1 to V4, and SUBCK outputs that allow direct  
connection to the CCD. The AD9929 also provides program-  
mable MSHUT and STROBE outputs, which may be used to  
trigger mechanical shutter and strobe (flash) circuitry.  
CCDIN  
CCD  
AD9929  
DOUT [11:0]  
V1  
V2  
XV1  
DCLK1  
FD  
DIGITAL  
IMAGE  
PROCESSING  
ASIC  
XV2  
XV3  
VERTICAL  
V3  
DRIVER  
HD, VD  
VGATE  
CLI  
XV4  
V4  
XVSG1  
XVSG2  
TIMING  
GENERATOR  
SUBCK  
XSUBCK  
H1  
H2  
RG  
VSUB  
µP  
Figure 7. Typical System Block Diagram, Master Mode  
Rev. A | Page 18 of 64  
 
AD9929  
MAXIMUM FIELD DIMENSIONS  
THEORY OF OPERATION  
MODES OF OPERATION  
12-BIT HORIZONTAL COUNTER = 4096 PIXELS MAX  
Slave and Master Mode Operation  
The AD9929 can be operated in either slave or master mode.  
It defaults to slave mode operation at power-up. The  
SLAVE_MODE register (Address 0xD6) can be used to  
configure the AD9929 into master mode by setting  
SLAVE_MODE = 0.  
Slave Mode Operation  
While operating in slave mode, VD, HD, and VGATE are pro-  
vided externally from the image processor. VGATE is input  
active high on Pin 45.  
Unlike master mode operation, there is a 7 CLI clock cycle delay  
from the falling edge of HD to when the 12-bit gray code H  
counter is reset to 0 (See Figure 62).  
Figure 8. Horizontal and Vertical Counters  
GRAY CODE REGISTERS  
Master Mode Operation  
See Table 12 for a list of the AD9929 registers requiring gray  
code values. The following is an example of applying a gray  
code number for HDLEN using a line length of 1560 pixels:  
While operating in master mode, VD and HD are outputs  
and the SYNC/VGATE pin is configured for an external  
SYNC input. Master mode is selected by setting register  
SLAVE_MODE (Address 0x06) = 0.  
HDLEN = (1560–4) = 155610 (see Special Note about the  
HDLEN Register section).  
HORIZONTAL AND VERTICAL COUNTERS  
Where 155610 = Address 0x51E  
Figure 8 and Figure 9 show the horizontal and vertical counter  
dimensions for the AD9929. All internal horizontal and vertical  
clocking is programmed using these dimensions to specify line  
and pixel locations.  
The gray code value of Address 0x51E would be programmed in  
the 12-bit HDLEN register.  
Table 12. AD9929 Gray Code Registers  
CLI INPUT CLOCK DIVIDER  
Register Name  
Register Type  
System_Reg(12)  
System_Reg(15)  
System_Reg(16)  
Mode_Reg(1)  
HDLEN  
The AD9929 provides the capability of dividing the CLI input  
clock using Register CLKDIV (Address 0xD5). The following  
procedure must be followed to reset the AFE and digital circuits  
when CLKDIV is reprogrammed back to 0 from CLKDIV = 1,  
2, or 3. The DCLK1 output becomes unstable if this procedure  
isn’t followed.  
CLPOBTOG1  
CLPOBTOG2  
HDLASTLEN  
Step 1: CLKDIV = 1, 2, or 3 (CLI divided by setting value)  
Step 2: CLKDIV = 0 (CLI reprogrammed for no division)  
Step 3: DIGSTBY = AFESTBY = 0  
Step 4: DIGSTBY = AFESTBY = 1  
MAX VD LENGTH IS 2048 LINES  
VD  
MAX HD LENGTH IS 4095 PIXELS  
HD  
CLI  
Figure 9. Maximum VD/HD Dimensions  
Rev. A | Page 19 of 64  
 
 
 
AD9929  
SERIAL INTERFACE TIMING  
writing to the system registers, SDATA contains the 8-bit  
Address 0x14, followed by Number Writes N [23:0], followed by  
the Sys_Reg [31:0] data, as shown in Figure 5. The system  
register map is listed in Table 9.  
All of the internal registers of the AD9929 are accessed through  
a 3-wire serial interface. The 3-wire interface consists of a clock  
(SCK), serial load (SL), and serial data (SDATA).  
The AD9929 has three different register types that are confi-  
gured by the 3-wire serial interface. As described in Table 13,  
the three register types are control registers, system registers,  
and mode registers.  
The value of the Number Writes N [23:0] word determines one  
of two options when writing to the system registers. If Number  
Writes N[23:0] = 0x000000, the device enters a mode where it  
expects all 17 Sys_Reg [31:0] data-words to be clocked in before  
SL is asserted high. If the Number Writes N [23:0] is decoded as  
some number N other than 0x000000, then the device expects  
N number of registers to be programmed, where N equals the  
value of Number Writes N [23:0]. For example: if Number  
Writes N[23:0] = 0x000004, the device would expect data to be  
provided for Sys_Reg [3:0]. In all cases, the system registers are  
written beginning with Sys_Reg [0], regardless of the value of  
Number Writes N [23:0]. Note that SL can be brought high or  
low during access to system registers, as shown in Figure 11.  
Table 13. Types of Serial Interface Registers  
Register Address Number of Registers  
0x00 to  
0xD6  
24-Bit Registers at Each Address. Not All  
Addresses Are Used. See Table 8.  
Seventeen 32-Bit System Registers at  
Address 0x14. See Table 9.  
Control  
System  
0x14  
Eight 32-bit Mode_A Registers at Address  
0x15. See Table 10.  
Eight 32-Bit Mode_B Registers at Address  
0x16. See Table 11.  
Mode_A 0x15  
Mode_B 0x16  
Mode_A and Mode_B Register Serial Interface  
Registers  
There are eight 32-bit Mode_A and eight 32-bit Mode_B  
registers that get accessed sequentially at Address 0x15 and  
Address 0x16, respectively. Mode_A and Mode_B registers are  
written to in exactly the same way as the system registers, as  
explained previously. The mode registers are listed in Table 10  
and Table 11.  
Control Register Serial Interface  
The control register 3-wire interface timing requirements are  
shown in Figure 10. Control data must be written into the  
device one address at a time due to the noncontiguous address  
spacing for the control registers. This requires writing 8 bits of  
address data followed by 24 bits of configuration data between  
each active low period of SL for each address. The SL signal  
must be kept high for at least one full SCK cycle between  
successive writes to control registers.  
To change operation between Mode_A and Mode_B, set the  
1-bit mode register (Address 0x0A). The desired Mode_A  
(Address 0x15) or Mode_B (Address 0x16) data must be  
programmed into the Mode_A or Mode_B registers before  
changing the mode bit.  
System Register Serial Interface  
There are seventeen 32-bit system registers that are accessed  
sequentially at Address 0x14, beginning with Sys_Reg [0]. When  
....  
....  
SDATA  
SCK  
A7  
A6  
tDH  
A5  
3
A4  
4
A3  
5
A2  
A1  
A0  
D23  
D22  
10  
D21  
11  
D3  
D2  
D1  
D0  
tDS  
1
2
6
7
8
9
29  
30  
31  
tLH  
32  
tLS  
SL  
NOTES  
1. SDATA BITS ARE INTERNALLY LATCHED ON THE RISING EDGES OF SCK.  
2. SYSTEM UPDATE OF LOADED REGISTERS OCCURS ON SL RISING EDGE.  
3. THIS TIMING PATTERN MUST BE WRITTEN FOR EACH REGISTER WRITE WITH SL REMAINING HIGH FOR AT  
LEAST ONE FULL SCK PERIOD BEFORE ASSERTING SL LOW AGAIN FOR THE NEXT REGISTER WRITE.  
Figure 10. 3-Wire Serial Interface Timing for Control Registers  
Rev. A | Page 20 of 64  
 
 
AD9929  
ADDRESS [7:0]  
8 BIT ADDRESS  
NUMBER WRITES N [23:0]  
DATA 1 [31:0]  
DATA 1 [31:0]  
1
DATA 2 [31:0]  
DATA 2 [31:0]  
DATA N [31:0]  
DATA N [31:0]  
SDATA  
NUMBER OF 32 BIT  
DATA WRITES (N)  
SCK  
SL  
12  
1
NOTES  
1. SL PULSES ARE IGNORED UNTIL THE LSB BIT OF THE LAST DATA N WORD IS CLOCKED IN.  
2. VALID SL PULSE. SL MUST BE ASSERTED HIGH WHEN ALL SDI DATA TRANSMISSIONS HAVE BEEN FINISHED.  
Figure 11. System and Mode Register Writes  
OPERATION OF VD SYNCHRONOUS  
TYPE REGISTER WRITES BEGIN AT  
THE NEXT VD FALLING EDGE.  
VD  
HD  
CLI  
PROGRAMMING VD SYNCHRONOUS  
TYPE REGISTERS MUST BE  
COMPLETED AT LEAST 4 CLI  
CYCLES BEFORE THE FALLING  
EDGE OF VD  
Figure 12. VD Synchronous Type Register Writes  
VD Synchronous and Asynchronous Register Operation  
VD Synchronous Register Operation  
There are two types of control registers, VD synchronous and  
VD asynchronous, as indicated in the address column of  
Table 8. Register writes to synchronous and asynchronous  
registers operate differently, as described in the following  
sections. All writes to system Mode_A and Mode_B registers  
occur asynchronously.  
For VD synchronous registers, SDATA data is temporarily  
stored in a buffer register at the rising edge of SL. This data is  
held in the buffer register until the next falling edge of VD is  
applied. Once the next falling edge of VD occurs, the buffered  
SDATA data is loaded into the serial register, at which time the  
register operation begins. See Figure 12.  
All control registers at the following addresses are VD synchro-  
nous type registers: Addresses 0x0A, 0x0B, 0x0C, 0x0D, and  
0x0E. Also see Table 8, the Control Register Address Map.  
Asynchronous Register Operation  
For VD asynchronous register writes, SDATA data is stored  
directly into the serial register at the rising edge of SL. As a  
result, register operation begins immediately after the rising  
edge of SL.  
Rev. A | Page 21 of 64  
 
AD9929  
DC Restore  
ANALOG FRONT END DESCRIPTION AND  
OPERATION  
To reduce the large dc offset of the CCD output signal, a dc-  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to  
approximately 1.5 V, to be compatible with the 3 V analog  
supply of the AD9929.  
The AD9929 AFE signal processing chain is shown in Figure 13.  
Each processing step is essential in achieving a high quality  
image from the raw CCD pixel data. Registers for the AD9929  
AFE section are listed in Table 14.  
Correlated Double Sampler  
Table 14. AFE Registers  
Register  
Name  
Bit  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
shown in Figure 16 illustrates how the two internally generated  
CDS clocks, SHP and SHD, are used to sample the reference and  
data levels, respectively, of the CCD signal. The placement of the  
SHP and SHD sampling edges is determined by the setting of  
the SHPLOC (Address 0x02) and SHDLOC (Address 0x02)  
registers. Placement of these two clock edges is critical in  
achieving the best performance from the CCD.  
Width Register Type  
Description  
VGAGAIN  
REFBLACK  
AFESTBY  
10  
Control (Address 0x0E)  
VGA Gain  
Black Clamp  
Level  
6
Control (Address 0x04)  
Control (Address 0x05)  
1
AFE Standby  
1.0µF  
1.0µF  
REFT  
2.0V  
REFB  
1.0V  
DC RESTORE  
1.5V  
INTERNAL  
V
REF  
DOUT  
PHASE  
SHP  
SHD  
2V FULL  
SCALE  
6dB TO 40dB  
0.1µF  
12  
OUTPUT  
DATA  
CCDIN  
CDS  
VGA  
ADC  
DOUT  
LATCH  
10  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
VGA GAIN  
REGISTER  
CLPOB  
DIGITAL  
FILTER  
8
DOUT  
PHASE  
CLAMP LEVEL  
REGISTER  
SHP  
SHD  
CLPOB  
PRECISION  
V-H  
TIMING  
TIMING  
GENERATION  
GENERATION  
Figure 13. AFE Block Diagram  
Rev. A | Page 22 of 64  
 
 
AD9929  
Variable Gain Amplifier  
A/D Converter  
The VGA provides a gain range of 6 dB to 40 dB, programmable  
with 10-bit resolution through the serial digital interface. The  
minimum gain of 6 dB is needed to match a 1 V input signal  
with the ADC full-scale range of 2 V.  
The AD9929 uses high-performance 12-bit ADC architecture,  
optimized for high speed and low power. Differential Non-  
linearity (DNL) performance is typically better than 0.5 LSB.  
The ADC uses a 2 V input range. Better noise performance  
results from using a larger ADC full-scale range.  
The VGA gain curve follows a “linear-in-dB” characteristic. The  
exact VGA gain can be calculated for any gain register value by  
using the equation  
PRECISION TIMING, HIGH SPEED TIMING  
GENERATION  
The AD9929 generates flexible, high speed timing signals using  
the precision timing core. This core is the foundation for gener-  
ating the timing used for both the CCD and the AFE: the reset  
gate RG, horizontal drivers H1 to H2, and the CDS sample  
clocks. A unique architecture makes it routine for the system  
designer to optimize image quality by providing precise control  
over the horizontal CCD readout and the AFE correlated  
double sampling.  
Gain = (0.035 × Code) + 5.2  
where the code range is 0 to 1023. Figure 14 shows a typical  
AD9929 VGA gain curve.  
42  
36  
30  
24  
18  
Timing Resolution  
The precision timing core uses the master clock input (CLI) as a  
reference. This clock should be the same as the CCD pixel clock  
frequency. Figure 15 illustrates how the internal timing core  
divides the master clock period into 48 steps or edge positions.  
Using a 36 MHz CLI frequency, the edge resolution of the  
precision timing core is 0.58 ns. A 72 MHz CLI frequency can  
be applied to the AD9929, where the AD9929 will internally  
divide the CLI frequency by two. Division by 1/3 and 1/4 are  
also provided. CLI frequency division is controlled by using  
CLKDIV (Address 0x05) register.  
12  
6
0
127  
255  
383  
511  
639  
767  
895  
1023  
VGA GAIN REGISTER CODE  
Figure 14. VGA Gain Curve  
Optical Black Clamp  
High Speed Clock Programmability  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
CCD’s black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with a fixed  
black level reference selected by the user in the clamp level  
register. Any value between 0 LSB and 255 LSB may be pro-  
grammed with 8-bit resolution. The resulting error signal is  
filtered to reduce noise, and the correction value is applied to  
the ADC input through a D/A converter. Normally, the optical  
black clamp loop is turned on once per horizontal line, but this  
loop can be updated more slowly to suit a particular application.  
Figure 17 shows how the high speed clocks RG, H1 to H2, SHP,  
and SHD are generated. The RG pulse has a fixed rising edge  
and a programmable falling edge. The horizontal clock H1 has a  
programmable rising and a fixed falling edge occurring at  
H1POSLOC + 24 steps. The H2 clock is always the inverse of  
H1. Table 14 summarizes the high speed timing registers and  
the parameters for the high speed clocks. Each register is 6 bits  
wide with the 2 MSB bits used to select the quadrant region, as  
outlined in Table 16. Figure 17 shows the range and default  
locations of the high speed clock signals.  
H DRIVER AND RG OUTPUTS  
The optical black clamp is controlled by the CLPOB signal,  
which is fully programmable (see Horizontal Clamping and  
Blanking section). System timing examples are shown in the  
Horizontal and Vertical Synchronous Timing section. The  
CLPOB pulse should be placed during the CCDs optical black  
pixels. It is recommended that the CLPOB pulse duration be at  
least 20 pixels wide. Shorter pulse widths may be used, but the  
ability to track low frequency variations in the black level is  
reduced.  
In addition to the programmable timing positions, the AD9929  
features on-chip output drivers for the RG and H1 to H2 out-  
puts. These drivers are powerful enough to directly drive the  
CCD inputs. The H-driver current can be adjusted for optimum  
rise/fall time into a particular load by using the H1DRV and  
H2DRV registers (Address 0x04). The RG drive current is  
adjustable using the RGDRV register (Address 0x04). The  
H1DRV and H2DRV register is adjustable in 4.3 mA incre-  
ments. The RGDRV register is adjustable in 2.15 mA incre-  
ments. All DRV registers have settings of 0 equal to OFF or  
three-state, and a maximum setting of 7.  
Rev. A | Page 23 of 64  
 
AD9929  
As shown in Figure 17, the H2 output is the inverse of H1. The  
internal propagation delay resulting from the signal inversion is  
less than 1 ns, which is significantly less than the typical rise  
time driving the CCD load. This results in a H1/H2 crossover  
voltage at approximately 50% of the output swing. The  
crossover voltage is not programmable.  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
CLI  
tCLIDLY  
1 PIXEL  
PERIOD  
NOTES  
1. PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
2. THERE IS A FIXED DELAY FROM THE CLI INPUT TO THE INTERNAL PIXEL PERIOD POSITIONS (tCLIDLY = 6ns TYP).  
Figure 15. High Speed Clock Resolution from CLI Master Clock Input  
3
CCD  
SIGNAL  
4
CDS  
(INTERNAL)  
1
5
2
RG  
6
H1  
H2  
PROGRAMMABLE CLOCK POSITIONS  
1. RG RISING EDGE (FIXED EDGE AT 000000)  
2. RG FALLING EDGE (RGNEGLOC (ADDRESS 0x03))  
3. SHP SAMPLE LOCATION (SHPLOC (ADDRESS 0x02))  
4. SHD SAMPLE LOCATION (SHDLOC (ADDRESS 0x02))  
5. H1 RISING EDGE LOCATION (H1POSLOC (ADDRESS 0x03))  
6. H1 NEGATIVE EDGE LOCATION (FIXED AT (H1POSLOC + 24 STEPS))  
7. H2 IS ALWAYS THE INVERSE OF H1  
Figure 16. High Speed Clock Programmable Locations  
Table 15. RG, H1, SHP, SHD, DCLK, and DOUTPHASE Timing Parameters  
Register Name  
RGNEGLOC1  
H1POSLOC1  
SHPLOC1  
Bit Width  
Register Type  
Range  
Description  
6b  
6b  
6b  
6b  
6b  
6b  
Control (Address 0x03)  
Control (Address 0x03)  
Control (Address 0x02)  
Control (Address 0x02)  
Control (Address 0x02)  
Control (Address 0x02)  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Edge Location  
0 to 47 Edge Location  
Falling Edge Location for RG  
Positive Edge Location for H1  
Sample Location for SHP  
Sample Location for SHD  
Phase Location of Data Output [9:0]  
Positive Edge of DCLK 1  
SHDLOC1  
DOUTPHASE1  
DCLKPHASE  
1 The two MSB bits are used to select the quadrant  
Rev. A | Page 24 of 64  
 
AD9929  
Table 16. Precision Timing Edge Locations for RG, H1, SHP, SHD, DCLK, and DOUTPHASE  
RG Rising Edge  
(Not Programmable)  
fixed at 000000  
fixed at 000000  
fixed at 000000  
fixed at 000000  
RG Falling Edge  
Signal Name  
Quadrant  
RGNEGLOC  
Quadrant Range  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
RG  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
H1 Rising Edge  
H1 Falling Edge  
Signal Name  
Quadrant  
H1POSLOC  
Quadrant Range  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
(Not Programmable)  
H1POSLOC + 24 Steps  
H1POSLOC + 24 Steps  
H1POSLOC + 24 Steps  
H1POSLOC + 24 Steps  
H1  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
CDS Rising Edge  
Quadrant Range  
CDS Falling Edge  
Signal Name  
Quadrant  
SHPLOC  
SHDLOC  
Quadrant Range  
CDS  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
Data Output[9:0] Rising Edge  
Data Output[9:0] Falling Edge  
(Not Programmable)  
Signal Name  
Quadrant  
DOUTPHASE  
Quadrant Range  
Data Output [9:0]  
I
II  
III  
IV  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[0] to P[11]  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
Signal Name  
DCLKPHASE Value  
DCLK PHASE Rising Edge  
DCLKPHASE Falling Edge  
DCLK1  
00  
01  
10  
11  
P[6]  
P[26]  
P[36]  
P[06]  
P[16]  
P[16]  
P[26]  
P[36]  
Rev. A | Page 25 of 64  
AD9929  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
PIXEL  
PERIOD  
RGr[0]  
RGf[12]  
RG  
H1  
Hr[0]  
Hf[24]  
CDS  
(INTERNAL)  
tS1  
SHP[20]  
SHD[40]  
CCD  
SIGNAL  
NOTES  
1. ALL SIGNAL EDGES ARE FULLY PROGRAMMABLE TO ANY OF THE 48 POSITIONS WITHIN ONE PIXEL PERIOD.  
2. DEFAULT POSITIONS FOR EACH SIGNAL ARE SHOWN.  
Figure 17. High Speed Clock Default and Programmable Locations  
tRISE  
H1  
H2  
tPD < tRISE  
tPD  
H1  
H2  
FIXED CROSSOVER VOLTAGE  
Figure 18. H-Clock Inverse Phase Relationship  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
PIXEL  
PERIOD  
DCLK1  
DOUT  
tOD  
NOTES  
1. DCLK1 PHASE IS ADJUSTED BY SETTING THE DCLKPHASE REGISTER (ADDRESS 0x02)  
2. DOUT PHASE CAN BE ADJUSTED BY SETTING THE DOUTPHASE REGISTER (ADDRESS 0x02)  
Figure 19. Digital Output Phase Adjustment  
DIGITAL DATA OUTPUTS  
and DCLKPHASE register (Address 0x02). Refer to Figure 19.  
The AD9929 DOUT[11:0] and DCLK phases are independently  
programmable using the DOUTPHASE register (Address 0x02)  
Rev. A | Page 26 of 64  
 
AD9929  
EXTERNAL SYNCHRONIZATION (MASTER MODE)  
Table 17. External Synchronization (Master Mode)  
External synchronization can be applied to synchronize the VD  
and HD signals by applying an external pulse on the  
SYNC/GATE (Pin 45) pin for master mode operation. The  
SYNC/GATE pin is configured as an external SYNC input for  
master mode operation by setting the SLAVE_MODE register  
(Address 0xD6) = 0 (the AD9929 defaults to slave mode at  
power-up).  
SYNCCNT  
External Synchronization Options  
0
Disable External Synchronization  
1
VD Sync at every SYNC Pulse  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VD Sync after 2nd Applied SYNC Pulse  
VD Sync after 3rd Applied SYNC Pulse  
VD Sync after 4th Applied SYNC Pulse  
VD Sync after 5th Applied SYNC Pulse  
VD Sync after 6th Applied SYNC Pulse  
VD Sync after 7th Applied SYNC Pulse  
VD Sync after 8th Applied SYNC Pulse  
VD Sync after 9th Applied SYNC Pulse  
VD Sync after 10th Applied SYNC Pulse  
VD Sync after 11th Applied SYNC Pulse  
VD Sync after 12th Applied SYNC Pulse  
VD Sync after 13th Applied SYNC Pulse  
VD Sync after 14th Applied SYNC Pulse  
SYNCCNT (Address 0x0A) and SYNCPOL (Address 0x01) are  
the only two registers used for configuring the AD9929 for  
external synchronization. The SYNCPOL is a 1-bit register used  
for configuring the SYNC input as either active low or active  
high. The AD9929 defaults to active low at power-up. The  
function of the SYNCCNT register is described in Table 17.  
Figure 20 and Figure 21 provide two examples of external  
synchronization with SYNCPOL = 0.  
VD Sync after 1st Applied SYNC Pulse Only  
4 CLI  
4 CLI  
4 CLI  
VD  
SYNC  
2 CLI  
MIN  
CHANGE TO MODE B  
SERIAL  
WRITES  
OPERATION  
MODE  
MODE A  
MODE B  
Figure 20. Example of Synchronization with SYNCPOL = 0 and SYNCCNT = 1  
4 CLI  
4 CLI  
4 CLI  
VD  
SYNC  
2 CLI  
MIN  
Figure 21. Example of Synchronization with SYNCPOL = 0 and CYNCCNT = 3  
Rev. A | Page 27 of 64  
 
 
 
AD9929  
HORIZONTAL AND VERTICAL SYNCHRONOUS TIMING  
The HD and VD output pulses are programmable using the  
registers listed in Table 18. The HD output is asserted low at the  
start of the horizontal line shift. The VD output is asserted low  
at the start of each line. As shown in Figure 22, the 11-bit VD  
counter is used to count the number of lines set by the VDLEN  
register. The 12-bit HD counter is used to count the number of  
pixels in each line set by the HDLEN register. For example, if  
the CCD array size is 2000 lines by 2100 pixels per line,  
VDLEN = 2000 and HDLEN = 0xC28. The HDLEN register  
sets HL as a reference for the rising edge of the HD pulse.  
SPECIAL NOTE ABOUT THE HDLEN REGISTER  
The 12-bit HD counter value must be programmed using a gray  
code number. There is also a 4-clock cycle, set up period that  
must be considered when determining the HDLEN register  
value, as shown in Figure 22. As a result of the 4-clock cycle,  
setup period, the value of HDLEN is always equal to the actual  
number of pixels per line minus 4. For example, if there are  
2100 pixels per line, HDLEN equals (2100 – 4) = 2096. The gray  
code value of 2096 is 0xC28, which is what would be program-  
med in the HDLEN register.  
Table 18. HD and VD Registers  
Bit  
Width  
Reference  
Counter  
Register Name  
HDLEN1  
HLEN  
HDRISE  
HDLASTLEN1  
Register Type  
Sys_Reg(12)  
Sys_Reg(12)  
Sys_Reg(16)  
Mode_Reg(1)  
Mode_Reg(1)  
Sys_Reg(16)  
Range  
Description  
12  
10  
10  
12  
11  
4
HL  
HD  
0–4095 Pixels  
0–1023 Pixels  
0–1023 Pixels  
0–4095 Pixels  
0–2047 Lines  
0–15 Lines  
12-Bit Gray Code Counter Value  
10-Bit HL-Counter Value  
HD Rise Position  
HD Last Line Length  
VD Counter Value  
VDLEN  
VDRISE  
VD  
VD Rise Position  
1 Register value must be a gray code number (see Gray Code Registers section).  
VDLEN  
11-BIT  
VD COUNTER  
_
000  
001  
002  
N< 2048  
HDLEN  
HDLASTLEN  
12-BIT  
GRAY COUNTER  
+ SET- UP  
HLEN  
10-BIT  
HL COUNTER  
VD  
HD  
2
1
LINE LENGTH =  
HDLEN + 4  
NOTES  
1. THE SET-UP DELAY IS 4 CLI CYCLES. THE ACTUAL LENGTH OF ONE LINE IS 4 MORE CYCLES  
THAN VALUE SET IN HDLEN AND HDLASTLEN DUE TO SET-UP DELAY.  
2. VDRISE REFERENCES THE 11-BIT VD-COUNTER.  
3. HDRISE REFERENCES THE 10-BIT HL-CONTER.  
PROGRAMMABLE CLOCK POSITIONS  
1. HDRISE (SYS_REG(16))  
2. VDRISE (SYS_REG(16))  
Figure 22. VD and HD Horizontal Timing  
Rev. A | Page 28 of 64  
 
 
 
AD9929  
HORIZONTAL CLAMPING AND BLANKING  
The AD9929s horizontal clamping and blanking pulses are  
programmable to suit a variety of applications. As with the  
vertical timing generation, individual sequences are defined for  
each signal, which are then organized into multiple regions  
during image readout. This allows the dark pixel clamping and  
blanking patterns to be changed at each stage of the readout, in  
order to accommodate different image transfer timing and high  
speed line shifts.  
The length of the last HD line is set using the HDLASTLEN  
register (Sys_Reg(1)). Figure 23 shows how no CLPOB pulse is  
asserted when the last HD length set by HDLASTLEN is shorter  
than the regular HD length set by HDLEN. Figure 24 shows  
how no CLPOB pulse is applied when the last HD length set by  
HDLASTLEN is longer than the regular HD length. Note that  
the CLPOB pulse is applied in the last line only when  
HDLASTLEN = HDLEN.  
HD  
CONTROLLING CLPOB CLAMP PULSE TIMING  
The AFE horizontal CLPOB pulse is generated based on the  
12-bit gray code counter. Once the length of the 12-bit gray  
code counter is set using the HDLEN register (Sys_Reg(12)),  
the CLPTOG1 and CLPTOG2 registers (Sys_Reg(15 and 16))  
can be used to place the CLPOB pulse location, as shown in  
Figure 25. Table 19 lists all CLPOB registers that are used to  
configure and control the placement and output of the  
CLPOB pulse.  
CLPOB  
LAST LINE  
Figure 23. Last HD Shorter than Regular HD  
HD  
CLPOB  
LAST LINE  
Figure 24. Last HD Longer than Regular HD  
Table 19. CLPOB Registers  
Register  
Name  
Bit  
Width  
Counter  
Reference  
Register Type  
Control (0x01)  
Control (0x01)  
Range  
Description  
CLPOB_CONT  
CLPOB_MODE  
1
1
CLPOB Control (0=CLPOB off, 1 =CLPOB On)  
CLPOB CCD Region Control  
(0 = Enable CLPENx Register Settings, 1 = Disable  
CLPENx Register Settings)  
0 to 4095 pixel  
locations  
0 to 4095 pixel  
locations  
CLPTOG1  
12  
Sys_Reg (15)  
HD  
CLPOB Toggle Position 1 (Gray Code Number)  
CLPOB Toggle Position 2 (Gray Code Number)  
Sys_Reg  
(15 and 16)  
CLPTOG2  
CLPEN0  
12  
1
HD  
Mode_Reg (2)  
Mode_Reg (2)  
Mode_Reg (2)  
Mode_Reg (2)  
Mode_Reg (2)  
CLPOB Control for CCD Region 0  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 1  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 2  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 3  
CLPEN1  
CLPEN2  
CLPEN3  
CLPEN4  
1
1
1
1
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
CLPOB Control for CCD Region 4  
(0 = CLPOB Disabled, 1 = CLPOB Enabled)  
Rev. A | Page 29 of 64  
 
 
 
AD9929  
VD  
HD  
12-BIT  
GRAY COUNTER  
+ SET-UP  
1
2
CLPOB  
PROGRAMMABLE CLOCK POSITIONS  
1. CLPTOG1 (SYS_REG (15))  
2. CLPTOG2 (SYS_REG (15 AND 16))  
Figure 25. Location of CLPOB using CLPTOG1 and CLPTOG2 Registers.  
VD  
HD  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLPOB  
CLPMASK  
(INTERNAL)  
A
B
1
2
3
4
5
PROGRAMMING POSITIONS  
1. SCP0 = 0 (FIXED), CLPEN0 = 1  
2. SCP1 = 3, CLPEN1 = 0  
3. SCP2 = 4, CLPEN2 = 1  
4. SCP3 = 5, CLPEN3 = 0  
5. SCP4 = 1, CLPEN4 = 1  
NOTES  
1. THE INTERNAL CLPMASK SIGNAL EXTENDS ONE EXTRA HD CYCLE FROM WHEN THE CLPMASK PERIOD CHANGES FROM LOW TO HIGH.  
AS A RESULT, ONE ADDITIONAL CLPOB PULSE IS MASKED AS SHOWN AT POSITIONS A AND B.  
Figure 26. CLPOB Outputs with CLPMODE = 0  
Table 20. SCP and CLPEN  
CONTROLLING CLPOB CLAMP PULSE OUTPUTS  
SCP[4:1]1  
SCP0  
CLPEN[4:0]  
CLPEN0  
CLPEN1  
CLPEN2  
CLPEN3  
CLPEN4  
The registers in Table 19 are used for programming the CLPOB  
pulse. The CLPOB pulse is disabled in all CCD regions by  
setting CLPCNT = 0. The CLPTOGx (x = 0, 1) are used to set  
the CLPOB toggle positions. The CLPENx (x = 0, 1, 2, 3, and 4)  
are used to enable or disable the CLPOB pulse separately in  
each CCD region when CLPMODE = 0. The CLPEN registers  
have no effect if CLPMODE = 1. In this case, the CLPOB pulse  
is asserted in all CCD regions, regardless of the value set in the  
CLPENx registers.  
SCP1  
SCP2  
SCP3  
SCP4  
1 SCP0 is not a programmable register and therefore not listed in the register  
map tables. SCP0 is a fixed sequence and always starts at the falling edge of  
VD. Although this register is not programmable, the CLPEN0 register is still  
used to set whether the CLPOB pulse is enabled or disabled for this SCP0  
region.  
Figure 26 shows an example of the CLPOB pulse being disabled  
in CCD Regions 1 and 3 by setting CLPEN1 = 1 and  
CLPEN3 =1. Note that the CLPOB pulse remains disabled in  
the first line of the following CCD region.  
Rev. A | Page 30 of 64  
 
AD9929  
Selective Positioning for Two H1 and H2 Outputs  
H1 AND H2 BLANKING  
For selective positioning operation, HPULSECNT = 1 and  
HBLKMASK = 0 or 1. In this mode, two H1 pulses are output  
during the blanking period. The location of these two pulse is  
set using the HBLKPOS register, as shown in Figure 28.  
The AD9929 provides three options for controlling the period  
where H1 and H2 pulses get blanked. These options are normal  
H blanking, selective positioning for 2 H1 and H2 outputs, and  
extended blanking. In all cases, HBLKMASK is used to set the  
polarity of H1 during the blanking period. Table 21 describes  
the registers used to control H blanking.  
Extended Blanking  
Extended blanking is enabled by setting HBLKEXT = 1. The  
HBLKEXT register uses the 9-bit BL counter to suspend  
operation of the HD and HL counters. This delays the blanking  
period by the length set in the BLLEN register, as shown in  
Figure 29.  
Normal H-Blanking  
For normal H-blanking operation, HPULSECNT = 0 and  
BLKMASK = 0 or 1. The HBLKPOS register isn’t used in this  
mode. Figure 27 shows one example where HBLKMASK = 0  
and H1 and H2 are blanked while HD is low.  
Table 21. H1 Blanking Registers  
Register  
Name  
Bit  
Width  
Register Type  
Description  
Control (0x01)  
Masking Polarity for H1 during Blanking Period1  
(0 = Low, 1 = High)  
H Pulse Control during Blanking Period  
HBLKMASK  
HPULSECNT  
1
1
Control (0x0A)  
Control (0x0A)  
(0 = No Output during Blanking,1 = Output during Blanking ) H Pulse Blanking Extends  
HBLKEXT  
1
Control2  
(0 = Extended Blanking Disabled, 1 = Extended Blanking Enabled)  
Control (0x03)  
Sys_Reg(11)  
Retimes the H1 HBLK to Internal Clock  
(0 = Retiming Disabled, 1 = Retiming Enabled)  
H1 Pulse ON Position during Blanking Period  
H1BLKRETIME  
HBLKHPOS  
1
10  
1 H2 is always the opposite polarity of H1.  
2 The HBLKEXT extend control extends the blanking period by the number of counts set in the BLLEN register for the 9-bit BL counter.  
HD  
HDRISE  
HBLK  
(INTERNAL)  
1
H1  
H2  
RG  
NOTES  
1. THE RISING EDGE OF HBLK IS ALWAYS THE SAME AS HDRISE  
Figure 27. Normal H-Blanking Operation HBLKMASK = 0, HPULSECNT = 0, HBLKHPOS = XXX  
Rev. A | Page 31 of 64  
 
 
 
AD9929  
HD  
HBLK  
(INTERNAL)  
H12  
(INTERNAL)  
RG  
H1  
NOTES  
1. H2 IS THE OPPOSITE POLARITY OF H1  
Figure 28. Selective H-Blanking Operation HBLKMASK = 0, HPULSECNT = 1, HBLKHPOS = 003.  
BLLEN  
9-BIT  
BL COUNTER  
VD  
HD  
H1  
1
2
3
4
CLPOB  
NOTES  
1. POSITIONS 1, 2, 3 AND 4 ARE DELAYED BY THE VALUE OF BL COUNTER  
2. VSG1, VSG2, V1-4 AND SUBCK PULSES ARE NOT DELAYED BY BL COUNTER  
Figure 29. VD, HD, H1 and H2 Extended Blanking Operation HBLKEXT = 1.  
Rev. A | Page 32 of 64  
AD9929  
VGATE MASKING OF XV1 TO XV4 AND CLPOB OUTPUTS  
edge of HD, resulting with the XV1 to XV4 and CLPOB outputs  
being masked when the internally latched VGATE signal is  
high.  
During slave mode operation, the SYNC/VGATE Pin 45 is  
configured as an input for an external VGATE signal. While  
operating in this mode, the external VGATE signal can be used  
to mask the XV1 to XV4 and CLPOB outputs. There are two  
options available for masking the XV1 to XV4 and CLPOB  
outputs. These options are determined by the setting of the  
MSHUT/VGATE_EN register located at Control Address 0x01.  
Examples of these two options are shown in Figure 30 and  
Figure 31. Figure 30 shows MSHUT/VGATE_EN = 0. In this  
Figure 31 shows MSHUT/VGATE_EN = 1. In this example, the  
preprogrammed MSHUT signal blocks the VGATE input from  
masking XV1 to XV4 and CLPOB outputs while MSHUT is low.  
The internally latched VGATE signal only masks XV1 to XV4  
and CLPOB when MSHUT is high, while operating in this  
mode.  
example, the VGATE signal is internally latched on the falling  
VD  
HD  
VGATE  
(PIN #45)  
VGATE  
(INTERNAL)  
XV1–XV4  
CLPOB  
XV1–XV4 AND CLPOB MASKED  
XV1–XV4 AND CLPOB MASKED  
Figure 30. Example of VGATE Input Masking V1 to V4 and CLPOB Outputs with MSHUT/VGATE_EN = 0  
VD  
HD  
VGATE  
(PIN #45)  
VGATE  
(INTERNAL)  
MSHUT  
XV1–XV4  
CLPOB  
XV1–XV4 AND CLPOB MASKED  
Figure 31. Example of VGATE Input Masking V1to V4 and CLPOB Outputs with MSHUT/VGATE_EN = 1  
Rev. A | Page 33 of 64  
 
 
AD9929  
VERTICAL TIMING GENERATION  
The AD9929 provides a very flexible solution for generating  
vertical CCD timing and can support multiple CCDs and  
different system architectures. The 4-phase vertical transfer  
clocks XV1 to XV4 are used to shift each line of pixels into the  
horizontal output register of the CCD. The AD9929 vertical  
outputs can be individually programmed into four different  
vertical pulse patterns identified as VTP0, VTP1, VTP2, and  
VTP3. Each vertical pulse pattern is a unique set of precon-  
figured XV1 to XV4 sequences. Once the vertical patterns have  
been configured using the registers shown in Table 24, pointer  
registers are used to select in which region of the CCD a  
particular vertical pattern is output. The pointer registers are  
described in Table 22.  
Step 2: Create the individual vertical sequences (see Figure 33).  
Create the individual vertical sequences by assigning pulse  
repetitions to patterns VTP0, VTP1, VTP2, and VTP3 using the  
VTPREPx registers as shown in Table 25. The number of repeti-  
tions (VTPREPx) determines the number of pulse repetitions  
desired within a single line. Programming 1 for VTPREPx gives  
a single pulse, and setting to 0 provides a fixed dc output based  
on the start polarity value. Figure 33 shows an example of a  
VTPx sequence of two VTPx patterns by setting VTPREPx = 2.  
Step 3: Output Vertical Sequences into CCD Regions (see  
Figure 34).  
The AD9929 arranges individual sequences into CCD regions  
through the use of sequence pointers (VTPSEQPTRx) and  
vertical transfer pattern select (VTPSELx) registers, as described  
in Table 23. The VTPSEQPTRx registers are used to point to a  
desired VTPSELx register whose value determines what VTPx  
pattern is output on the XV1 to XV4 signals. For example, if  
VTPSEQPTR0 = 1 and VTPSEL1 = 2, the VTP2 pulse pattern  
would output while operating in Region 0 of the CCD.  
Up to five unique CCD regions may be specified. Finally, the  
readout of the entire field is constructed by combining one or  
more of the individual regions sequentially. With up to five  
regions available, different steps of the readout such as high  
speed line shifts and vertical image transfer can be supported.  
CREATING VERTICAL SEQUENCES  
Figure 32 through Figure 34 provide an overview of how the  
vertical timing is generated in four basic steps.  
Step 4: Combining CCD Regions (see Figure 34).  
Step 1: Create the individual pulses for patterns VTP0, VTP1,  
VTP2, and VTP3 (see Figure 32).  
Build the entire field readout by combining multiple regions by  
using mode registers SCP0, SCP1, SCP2, SCP3, and SCP4.  
The registers shown in Table 22 are used to generate the  
individual vertical timing pulses, as shown in Figure 32.  
The individual CCD regions are combined into a complete field  
readout by using sequence change position (SCPx) pointers as  
described in Table 23. Figure 34 shows how each field is divided  
into multiple regions. This allows the user to change vertical  
timing during various stages of the image readout. The boun-  
daries of each region are defined by the sequence change  
position (SCP). Each SCP is a 8-bit value representing the line  
number boundary region. A total of four SCPs allow up to five  
different region areas in the field to be defined. The first SCP0 is  
always hard-coded to line 0, and the remaining four SCPs are  
register programmable.  
The VTPLENx determines the number of pixels between pulse  
repetitions. The start polarity (XVxSTARTPOLx) sets the  
starting polarity of the vertical sequence and can be program-  
med high or low. The first toggle position (XVxTOG1POSx)  
and second toggle position (XVxTOG2POSx) are the pixel  
locations within the line where the pulse transitions.  
Rev. A | Page 34 of 64  
AD9929  
0
50  
100  
150  
200  
250  
300  
350  
400  
HD  
XV1  
XV2  
1
4
2
3
5
6
7
8
9
XV3  
XV4  
10  
11  
12  
VTPLENx [8:0] = 210  
1. XV1STARTPOLx = 0 2. XV1TOG1x [8:0] = 50 3. XV1TOG2x [8:0] = 130  
4. XV2STARTPOLx = 1 5. XV2TOG1x [8:0] = 30 6. XV2TOG2x [8:0] = 150  
7. XV3STARTPOLx = 1 8. XV3TOG1x [8:0] = 110 9. XV3TOG2x [8:0] = 180  
10. XV4STARTPOLx = 0 11. XV4TOG1x [8:0] = 20 12. XV4TOG2x [8:0] = 160  
Figure 32. Step 1: Create Individual Vertical Pulses for VTP0, VTP1, VTP2, and VTP3 Patterns.  
0
50  
100  
150  
200  
250  
300  
350  
400  
HD  
XV1  
XV2  
1
4
2
3
5
6
7
8
9
XV3  
XV4  
10  
11  
12  
VTPLENx [8:0] = 210  
Figure 33. Step 2: Create Individual Sequences for XV1 to XV4 Outputs by Assigning Pulse Repetitions to VTP0, VTP1, VTP2 and VTP3 Patterns.  
This Example Shows VTPREPx = 2  
Rev. A | Page 35 of 64  
 
AD9929  
SCP0  
(FIXED AT LINE 0)  
CCD REGION 0  
CCD REGION 1  
CCD REGION 2  
VERTICAL TRANSFERPULSES  
SCP1 [7:0]  
SCP2 [7:0]  
XV1  
XV2  
XV3  
XV4  
XV1  
XV2  
XV3  
XV4  
VTP0  
VTP2  
VTP1  
VTP3  
{
{
{
{
XV1  
XV2  
XV3  
XV4  
XV1  
XV2  
XV3  
XV4  
SCP3 [7:0]  
SCP4 [7:0]  
CCD REGION 3  
CCD REGION 4  
SCP 0  
SCP 1  
SCP 2  
SCP 4  
REGION 0  
(FIXED AT LINE 0)  
REGION 1  
(LINE #4)  
REGION 2  
(LINE #7)  
REGION 4  
(LINE # (N + 7))  
VD  
HD  
XV1  
XV2  
XV3  
XV4  
VTP0  
VTP0  
VTP2  
VTP1  
VTPREP0 = 2  
VTPREP0 = 1  
VTPREP2 = 2  
VTPREP1 = 1  
Figure 34. Steps 3 and 4: An Example of Building an Entire Field Readout by Assigning Sequences to Multiple CCD Regions  
Rev. A | Page 36 of 64  
 
AD9929  
Table 22. XV1 to XV4 Registers to Configure XXV1 to XXV4 Pulses for each VTP Pattern  
Bit  
Width  
Reference  
Counter  
Range  
VTP  
Pattern  
Register Name  
Register Type  
Description  
VTPLEN0  
9
Sys_Reg(1)  
V Counter  
0–511  
Length between Repetitions  
High/Low  
XV1 Starting Polarity for VTP0  
(0 = Low, 1 = High)  
XV2 Starting Polarity for VTP0  
(0 = Low, 1 = High)  
XV3 Starting Polarity for VTP0  
(0 = Low, 1 = High)  
XV4 Starting Polarity for VTP0  
(0 = Low, 1 = High)  
XV1STARTPOL0  
XV2STARTPOL0  
XV3STARTPOL0  
XV4STARTPOL0  
1
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1)  
High/Low  
High/Low  
High/Low  
1
1
1
VTP0  
XV1TOG1POS0  
XV1TOG2POS0  
XV2TOG1POS0  
XV2TOG2POS0  
XV3TOG1POS0  
XV3TOG2POS0  
XV4TOG1POS0  
XV4TOG2POS0  
VTPLEN1  
9
9
9
9
9
9
9
9
9
Sys_Reg(1)  
Sys_Reg(1)  
Sys_Reg(1 & 2)  
Sys_Reg(2)  
Sys_Reg(2)  
Sys_Reg(2 & 3)  
Sys_Reg(3)  
Sys_Reg(3)  
Sys_Reg(3)  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–512  
High/Low  
XV1 Toggle Position 1 for VTP0  
XV1 Toggle Position 2 for VTP0  
XV2 Toggle Position 1 for VTP0  
XV2 Toggle Position 2 for VTP0  
XV3 Toggle Position 1 for VTP0  
XV3 Toggle Position 2 for VTP0  
XV3 Toggle Position 1 for VTP0  
XV3 Toggle Position 2 for VTP0  
Length between Repetitions  
XV1 Starting Polarity for VTP1  
(0 = Low, 1 = High)  
XV2 Starting Polarity for VTP1  
(0 = Low, 1 = High)  
XV3 Starting Polarity for VTP1  
(0 = Low, 1 = High)  
XV4 Starting Polarity for VTP1  
(0 = Low, 1 = High)  
XV1STARTPOL1  
XV2STARTPOL1  
XV3STARTPOL1  
XV4STARTPOL1  
1
1
1
1
Sys_Reg(3)  
Sys_Reg(3)  
Sys_Reg(4)  
Sys_Reg(4)  
High/Low  
High/Low  
High/Low  
VTP1  
XV1TOG1POS1  
XV1TOG2POS1  
XV2TOG1POS1  
XV2TOG2POS1  
XV3TOG1POS1  
XV3TOG2POS1  
XV4TOG1POS1  
XV4TOG2POS1  
VTPLEN2  
9
9
9
9
9
9
9
9
9
Sys_Reg(4)  
Sys_Reg(4)  
Sys_Reg(4  
Sys_Reg(4 & 5)  
Sys_Reg(5)  
Sys_Reg(5)  
Sys_Reg(5 & 6)  
Sys_Reg(6)  
Sys_Reg(6)  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–512  
High/Low  
XV1 Toggle Position 1 for VTP1  
XV1 Toggle Position 2 for VTP1  
XV2 Toggle Position 1 for VTP1  
XV2 Toggle Position 2 for VTP1  
XV3 Toggle Position 1 for VTP1  
XV3 Toggle Position 2 for VTP1  
XV3 Toggle Position 1 for VTP1  
XV3 Toggle Position 2 for VTP1  
Length between Repetitions  
XV1 Starting Polarity for VTP2  
(0 = Low, 1 = High)  
XV1STARTPOL2  
XV2STARTPOL2  
XV3STARTPOL2  
XV4STARTPOL2  
1
1
1
1
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(6)  
Sys_Reg(6)  
High/Low  
High/Low  
High/Low  
XV2 Starting Polarity for VTP2  
(0 = Low, 1 = High)  
XV3 Starting Polarity for VTP2  
(0 = Low, 1 = High)  
XV4 Starting Polarity for VTP2  
(0 = Low, 1 = High)  
VTP2  
XV1TOG1POS2  
XV1TOG1POS2  
XV1TOG2POS2  
XV2TOG1POS2  
XV3TOG1POS2  
XV3TOG2POS2  
XV4TOG1POS2  
XV4TOG2POS2  
9
9
9
9
9
9
9
9
Sys_Reg(6)  
Sys_Reg(7)  
Sys_Reg(7)  
Sys_Reg(7)  
Sys_Reg(7 & 8)  
Sys_Reg(8)  
Sys_Reg(8)  
Sys_Reg(8)  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
V Counter  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
XV1 Toggle Position 1 for VTP2  
XV1 Toggle Position 1 for VTP2  
XV1 Toggle Position 2 for VTP2  
XV2 Toggle Position 1 for VTP2  
XV3 Toggle Position 1 for VTP2  
XV3 Toggle Position 2 for VTP2  
XV3 Toggle Position 1 for VTP2  
XV3 Toggle Position 2 for VTP2  
Rev. A | Page 37 of 64  
AD9929  
Bit  
Width  
Reference  
Counter  
Range  
VTP  
Pattern  
Register Name  
Register Type  
Description  
VTPLEN3  
9
1
Sys_Reg(9)  
Sys_Reg(9)  
V Counter  
0–512  
High/Low  
Length between Repetitions  
XV1 Starting Polarity for VTP3  
(0 = Low, 1 = High)  
XV1STARTPOL3  
High/Low  
High/Low  
High/Low  
XV1 Starting Polarity for VTP3  
(0 = Low, 1 = High)  
XV1 Starting Polarity for VTP3  
(0 = Low, 1 = High)  
XV1 Starting Polarity for VTP3  
(0 = Low, 1 = High)  
XV2STARTPOL3  
XV3STARTPOL3  
XV4STARTPOL3  
1
1
1
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9)  
VTP3  
XV1TOG1POS3  
XV1TOG2POS3  
XV2TOG1POS3  
XV2TOG2POS3  
XV3TOG1POS3  
XV3TOG2POS3  
XV4TOG1POS3  
XV4TOG2POS3  
9
9
9
9
9
9
9
9
Sys_Reg(9)  
Sys_Reg(9)  
Sys_Reg(9 &10) V Counter  
Sys_Reg(10)  
Sys_Reg(10)  
Sys_Reg(10&11) V Counter  
V Counter  
V Counter  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
0–511  
XV1 Toggle Position 1 for VTP3  
XV1 Toggle Position 2 for VTP3  
XV2 Toggle Position 1 for VTP3  
XV2 Toggle Position 2 for VTP3  
XV3 Toggle Position 1 for VTP3  
XV3 Toggle Position 2 for VTP3  
XV3 Toggle Position 1 for VTP3  
XV3 Toggle Position 2 for VTP3  
V Counter  
V Counter  
Sys_Reg(11)  
Sys_Reg(11)  
V Counter  
V Counter  
Table 23. Mode_A and Mode_B Registers for VTPx Selection  
Register  
Name  
Bit  
Width  
Register  
Type  
Range Description  
Vertical Transfer Pulse Pointer used in CCD Region 0 (0 = VTPSEL0, 1 = VTPSEL1,  
2 = VTPSEL2, 3 = VTPSEL3, 4 = VTPSEL0 for Even Line and VTPSEL1 for  
Odd Line, 5 = VTPSEL2 for Even Line and VTPSEL3 for Odd Line)  
VTPSEQPTR01  
VTPSEQPTR11  
VTPSEQPTR21  
VTPSEQPTR31  
VTPSEQPTR41  
3
3
3
3
3
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Vertical Transfer Pulse Pointer used in CCD Region 1 (0 = VTPSEL0, 1 = VTPSEL1,  
2 = VTPSEL2, 3 = VTPSEL3, 4 = VTPSEL0 for Even Line and VTPSEL1 for  
Odd Line, 5 = VTPSEL2 for Even Line and VTPSEL3 for Odd Line)  
Vertical Transfer Pulse Pointer used in CCD Region 2 (0 = VTPSEL0, 1 = VTPSEL1,  
2 = VTPSEL2, 3 = VTPSEL3, 4 = VTPSEL0 for Even Line and VTPSEL1 for  
Odd Line, 5 = VTPSEL2 for Even Line and VTPSEL3 for Odd Line)  
Vertical Transfer Pulse Pointer used in CCD Region 3 (0 = VTPSEL0, 1 = VTPSEL1,  
2 = VTPSEL2, 3 = VTPSEL3, 4 = VTPSEL0 for Even Line and VTPSEL1 for  
Odd Line, 5 = VTPSEL2 for Even Line and VTPSEL3 for Odd Line)  
Vertical Transfer Pulse Pointer used in CCD Region 4 (0 = VTPSEL0, 1 = VTPSEL1,  
2 = VTPSEL2, 3 = VTPSEL3, 4 = VTPSEL0 for Even Line and VTPSEL1 for  
Odd Line, 5 = VTPSEL2 for Even Line and VTPSEL3 for Odd Line)  
VTPSEL0  
VTPSEL1  
VTPSEL2  
VTPSEL3  
VTPREP0  
VTPREP1  
VTPREP2  
VTPREP3  
2
2
2
2
3
3
3
3
Mode_Reg(3)  
0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3  
Mode_Reg(3)  
0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3  
Mode_Reg(3)  
0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3  
Mode_Reg(3)  
0 = VTP0, 1 = VTP1, 2 = VTP2, 3 = VTP3  
Mode_Reg(3) 0–7  
Mode_Reg(4) 0–7  
Mode_Reg(4) 0–7  
Mode_Reg(4) 0–7  
Number of VTP0 Pulse Repetitions within a Line  
Number of VTP1 Pulse Repetitions within a Line  
Number of VTP2 Pulse Repetitions within a Line  
Number of VTP3 Pulse Repetitions within a Line  
1 Register settings 6 and 7 are not used.  
Table 24. Mode_A and Mode_B Registers for CCD Region Selection  
Register Name  
Bit Width  
Register Type  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(2)  
Range  
Description  
SCP1  
8
8
8
8
0–255 lines  
0–255 lines  
0–255 lines  
0–255 lines  
Sequence Change Position 1  
Sequence Change Position 2  
Sequence Change Position 3  
Sequence Change Position 4  
SCP2  
SCP3  
SCP4  
Rev. A | Page 38 of 64  
 
AD9929  
SPECIAL VERTICAL SWEEP MODE OPERATION  
Control Address 0x0A is used to enable and configure the  
special sweep mode operation, as described in Table 25.  
The AD9929 contains a special mode of vertical timing oper-  
ation called sweep mode. This mode is used to generate a  
continuous number of repetitive vertical pulses that span  
multiple HD lines. One example of where this mode may be  
needed is at the start of the CCD readout operation. At the end  
of the image exposure, but before the image is transferred by the  
sensor gate pulses, the vertical interline CCD registers should be  
clean of all charge. This can be accomplished by quickly shifting  
out any charge with a long series of pulses on the V1 to V4  
outputs. This operation spans multiple HD line lengths.  
The maximum number of repeats in each region is 2048 while  
operating in this mode using the SVREP0 and SVREP3  
Mode_Reg(4) registers.  
Table 25. Description of SVREP_MODE Register  
SVREP_MODE Description of Sweep Mode Operation  
0
0
1
1
0
1
0
1
Normal Vertical Timing Operation in  
all CCD Regions  
Special Vertical Sweep Mode Timing  
Output in CCD Region 0 Only  
Special Vertical Sweep Mode Timing  
Output in CCD Region 3 Only  
Special Vertical Sweep Mode Timing  
Output in CCD Region0 and CCD  
Region 3  
Normally the sequences are contained within one HD line  
length but with the sweep mode enabled, the HD boundaries  
will be ignored until the region is finished.  
The special vertical sweep mode operation is only output in  
CCD Region 0 and CCD Region 3 (see Figure 34), as shown in  
Figure 37 and Figure 38. The SVREP_MODE register located at  
HD  
XV1–XV4  
Figure 35. Nonoverlapping Example while Operating in Normal Vertical Timing Operation SVREP_MODE = 0 and VTPREPx = 4  
HD  
NOT OUTPUT BECAUSE THE 8TH  
REPETITION OVERLAPS WITH HD  
XV1–XV4  
Figure 36. Overlapping Example while Operating in Normal Vertical Timing Operation SVREP_MODE = 0 and VTPREPx = 8  
SCP0  
SCP1 = 3  
CCD REGION 0  
HD  
0
1
2
0
XV1–XV4  
Figure 37. Sweep Mode Timing Example with SVREP_MODE = 1 and SVREP0 = 28  
SCP3  
0
SCP4 = 3  
0
CCD REGION 3  
HD  
1
2
XV1–XV4  
Figure 38. Sweep Mode Timing Example with SVREP_MODE = 2 and SVREP3 = 28  
Rev. A | Page 39 of 64  
 
 
 
AD9929  
SPECIAL VERTICAL TIMING (SPATS)  
Figure 39 and Figure 40 show AND and OR SPAT pulse  
examples using four SPAT toggle positions. As shown in these  
figures, the internal SPAT timing for the AND case initially  
starts high and then goes low at the first XVxSPAT_TOG1  
position. In the OR case, the internal SPAT timing initially starts  
low and then toggles high at the first XVxSPAT_TOG1 position.  
This provides the ability to output the second vertical pulse  
when the internal XVx pulse is in both high and low states. Note  
that although Figure 39 and Figure 40 show four SPAT toggle  
positions, two SPAT toggle positions can be applied by setting  
XVxSPAT_TOG3 = XVxSPAT_TOG4 = 0x1FFF.  
The AD9929 provides additional special vertical timing gen-  
eration (SPATs), which is applied in the same line as the VSG  
pulse. The SPAT timing allows for an additional vertical output  
pulse in the VSG line. The additional vertical output pulse can  
be applied to either XV1, XV2, XV3 or XV4, according to the  
value of the SPATLOGIC register. Table 26 lists the registers  
used to generate the SPATs, and Table 27 describes the  
SPATLOGIC settings and operation.  
Table 26. HD and VD Registers  
Bit  
Reference  
Counter  
Register Name Width Register Type  
Range (Pixels)  
Description  
SPAT_EN  
1
Control (Address 0x01)  
SPAT Enable Control  
(0 = SPAT Disabled, 1 = SPAT Enabled)  
SPAT Logic Setting  
XV1SPAT Toggle Position #1  
(Mode_A Active)  
SPATLOGIC  
4
Control (Address 0x0A)  
Control (Address 0x17)  
XV1SPAT_TOG1 13  
XV1SPAT_TOG2 13  
XV1SPAT_TOG3 13  
XV1SPAT_TOG4 13  
XV2SPAT_TOG1 13  
XV2SPAT_TOG2 13  
XV2SPAT_TOG3 13  
XV2SPAT_TOG4 13  
XV3SPAT_TOG1 13  
XV3SPAT_TOG2 13  
XV3SPAT_TOG3 13  
XV3SPAT_TOG4 13  
XV4SPAT_TOG1 13  
XV4SPAT_TOG2 13  
XV4SPAT_TOG3 13  
XV4SPAT_TOG4 13  
XV1SPAT_TOG1 13  
XV1SPAT_TOG2 13  
XV1SPAT_TOG3 13  
XV1SPAT_TOG4 13  
ST  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
XV1SPAT Toggle Position #2  
(Mode_A Active)  
XV1SPAT Toggle Position #3  
(Mode_A Active)  
XV1SPAT Toggle Position #4  
(Mode_A Active)  
XV2SPAT Toggle Position #1  
(Mode_A Active)  
XV2SPAT Toggle Position #2  
(Mode_A Active)  
XV2SPAT Toggle Position #3  
(Mode_A Active)  
XV2SPAT Toggle Position #4  
(Mode_A Active)  
XV3SPAT Toggle Position #1  
(Mode_A Active)  
XV3SPAT Toggle Position #2  
(Mode_A Active)  
XV3SPAT Toggle Position #3  
(Mode_A Active)  
XV3SPAT Toggle Position #4  
(Mode_A Active)  
XV4SPAT Toggle Position #1  
(Mode_A Active)  
XV4SPAT Toggle Position #2  
(Mode_A Active)  
XV4SPAT Toggle Position #3  
(Mode_A Active)  
XV4SPAT Toggle Position #4  
(Mode_A Active)  
XV1SPAT Toggle Position #1  
(Mode_B Active)  
Control (Address 0x18)  
Mode_A_Reg(5)  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Mode_A_Reg(5)  
Control (Address 0x19)  
Control (Address 0x1A)  
Mode_A_Reg(5)  
Mode_A_Reg(5)  
Control (Address 0x1B)  
Control (Address 0x1C)  
Mode_A_Reg(5)  
Mode_A_Reg(5)  
Control (Address 0x1D)  
Control (Address 0x1E)  
Mode_A_Reg(5)  
Mode_A_Reg(5)  
Control (Address 0x1F)  
Control (Address 0x20)  
Mode_B_Reg(5)  
XV1SPAT Toggle Position #2  
(Mode_B Active)  
XV1SPAT Toggle Position #3  
(Mode_B Active)  
XV1SPAT Toggle Position #4  
(Mode_B Active)  
Mode_B_Reg(5)  
Rev. A | Page 40 of 64  
 
AD9929  
Bit  
Reference  
Counter  
Register Name Width Register Type  
Range (Pixels)  
Description  
XV2SPAT Toggle Position #1  
(Mode_B Active)  
XV2SPAT Toggle Position #2  
(Mode_B Active)  
XV2SPAT Toggle Position #3  
(Mode_B Active)  
XV2SPAT Toggle Position #4  
(Mode_B Active)  
XV3SPAT Toggle Position #1  
(Mode_B Active)  
XV3SPAT Toggle Position #2  
(Mode_B Active)  
XV3SPAT Toggle Position #3  
(Mode_B Active)  
XV3SPAT Toggle Position #4  
(Mode_B Active)  
XV4SPAT Toggle Position #1  
(Mode_B Active)  
XV4SPAT Toggle Position #2  
(Mode_B Active)  
XV4SPAT Toggle Position #3  
(Mode_B Active)  
XV4SPAT Toggle Position #4  
(Mode_B Active)  
XV2SPAT_TOG1 13  
XV2SPAT_TOG2 13  
XV2SPAT_TOG3 13  
XV2SPAT_TOG4 13  
XV3SPAT_TOG1 13  
XV3SPAT_TOG2 13  
XV3SPAT_TOG3 13  
XV3SPAT_TOG4 13  
XV4SPAT_TOG1 13  
XV4SPAT_TOG2 13  
XV4SPAT_TOG3 13  
XV4SPAT_TOG4 13  
Control (Address 0x21)  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
0–8192  
Control (Address 0x22)  
Mode_B_Reg(5)  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
0–8192  
Mode_B_Reg(5)  
Control (Address 0x23)  
Control (Address 0x24)  
Mode_B_Reg(5)  
Mode_B_Reg(5)  
Control (Address 0x25)  
Control (Address 0x26)  
Mode_B_Reg(5)  
Mode_B_Reg(5)  
Table 27. SPATLOCIC Register (Address 0x0A)  
SPATLOGIC[3:0]  
SPAT Description  
3
2
1
0
XV4  
XV3  
XV2  
XV1  
0 = OR, 1 = AND  
Rev. A | Page 41 of 64  
AD9929  
500 540  
600 640  
VD  
HD  
13-BIT  
ST COUNTER  
(FIXED)  
INTERNAL XV2 WITHOUT  
SPAT APPLIED  
INTERNAL SPAT  
TIMING FOR XV2 WITH  
SPATLOGIC = 1  
1
2
3
4
XV2 OUTPUT WITH  
SPAT APPLIED  
XVSGx  
VSG LINE  
NOTES  
1. THE XVxSPAT_TOG1 AND XVxSPAT_TOG2 REGISTERS REFERENCE THE 13-BIT ST COUNTER.  
2. THE INTERNAL SPAT TIMING IS APPLIED IN THE SAME LINE AS THE XVSGx PULSE.  
PROGRAMMABLE CLOCK POSITIONS  
1. XVXSPAT_TOG1 (PROGRAMMABLE AT CONTROL REGS) 2. XVXSPAT_TOG2 (PROGRAMMABLE AT CONTROL REGS)  
3. XVXSPAT_TOG3 (PROGRAMMABLE AT MODE_REGS)  
4. XVXSPAT_TOG4 (PROGRAMMABLE AT MODE_REGS)  
Figure 39. SPAT Example for XV2 with XV2SPAT_TOG1 = 500, XV2SPAT_TOG2 = 540, XV2SPAT_TOG3 = 600, XV2SPAT_TOG4 = 640, and SPATLOGIC = XX1X  
500 540  
600 640  
VD  
HD  
13-BIT  
ST COUNTER  
(FIXED)  
INTERNAL XV1 WITHOUT  
SPAT APPLIED  
INTERNAL SPAT  
TIMING FOR XV1 WITH  
SPATLOGIC = 0  
1
2
3
4
XV1 OUTPUT WITH  
SPAT APPLIED  
XVSGx  
VSG LINE  
NOTES  
1. THE XVxSPAT_TOG1 AND XVxSPAT_TOG2 REGISTERS REFERENCE THE 13-BIT ST COUNTER.  
2. THE INTERNAL SPAT TIMING IS APPLIED IN THE SAME LINE AS THE XVSGx PULSE.  
PROGRAMMABLE CLOCK POSITIONS  
1. XVXSPAT_TOG1 (PROGRAMMABLE AT CONTROL REGS) 2. XVXSPAT_TOG2 (PROGRAMMABLE AT CONTROL REGS)  
3. XVXSPAT_TOG3 (PROGRAMMABLE AT MODE_REGS)  
4. XVXSPAT_TOG4 (PROGRAMMABLE AT MODE_REGS)  
Figure 40. SPAT (OR) Example for XV1 with XV1SPAT_TOG1 = 500, XV1SPAT_TOG2 = 540, XV1SPAT_TOG3 = 600, XV1SPAT_TOG4 = 640, and SPATLOGIC = XXX0  
Rev. A | Page 42 of 64  
AD9929  
V1 TO V4 AND SUBCK OUTPUT POLARITIES  
V-DRIVER  
As shown in Figure 41, the XV1 to XV4 and XSUBCK are  
output signals from the AD9929 timing generator, whereas the  
V1 to V1 and SUBCK are output signals from the AD9929  
vertical driver. The V1 to V4 and SUBCK polarities are not the  
same as the internal XV1 to XV4 and XSUBCK polarities  
configured by the AD9929 registers. Table 28 through Table 32  
describe the output polarities for these signals versus their input  
levels. These tables must be referred to when determining the  
register settings for the desired output levels. Figure 46 shows an  
example of the V3 output.  
XV1  
V1  
XVSG1  
XV2  
V2  
TIMING  
GENERATOR  
XV3  
V3  
XVSG2  
V4  
XV4  
XSUBCK  
SUBCK  
Table 28. V1 Output Polarity  
V-DRIVER  
LOGIC  
V-DRIVER  
BUFFERS  
V-Driver Input  
V1 Output  
XV1  
L
L
H
H
XVSG1  
Figure 41. Internal XV1 to XV4 and XSUBCK Signals  
L
H
L
VH1  
VM1  
VL  
Table 31. V3 Output Polarity  
V-Driver Input  
V3 Output  
H
VL  
XV3  
L
L
H
H
XVSG2  
L
H
L
VH1  
VM1  
VL  
Table 29. V2 Output Polarity  
V-Driver Input  
V2 Output  
XV2  
L
H
H
VL  
VM2  
VL  
Table 32. V4 Output Polarity  
V-Driver Input  
V4 Output  
Table 30. SUBCK Output Polarity  
XV4  
L
H
V-Driver Input  
SUBCK Output  
VM2  
VL  
XSUBCK  
L
H
VH2  
VL  
XV1  
XV3  
50%  
50%  
XVSG1  
XVSG3  
50%  
50%  
tPLM1  
tPMH  
tPHM  
90%  
tPML1  
VH1  
90%  
10%  
90%  
10%  
VM1  
VL  
90%  
tR2  
tF1  
10%  
10%  
V1  
V3  
tR1  
tF2  
Figure 42. V1 and V3 Transmission Delays and Rise Times  
Rev. A | Page 43 of 64  
 
 
 
AD9929  
50%  
50%  
XV2  
XV4  
tPML2  
90%  
tPLM2  
V2  
V4  
VM2  
VL  
90%  
10%  
10%  
tF3  
Figure 43. V2 and V4 Transmission Delays and Rise Times  
tR3  
XSUBCK  
50%  
tPLH  
50%  
tPHL  
90%  
VH2  
90%  
10%  
10%  
VL  
SUBCK  
tR4  
Figure 44. SUBCK Transmission Delays and Rise Times  
tF4  
XV1  
XVSG1  
VH1  
V1  
VM1  
VL  
Figure 45. Example Showing V1 Output versus XV1 and XVSG1 Signals  
XV3  
XVSG2  
VH1  
V3  
VM1  
VL  
Figure 46. Example Showing V3 Output versus XV3 and XVSG2 Signals  
Rev. A | Page 44 of 64  
AD9929  
XV2  
XV4  
VM2  
VL  
V2  
V4  
Figure 47. Example Showing V2 and V4 Outputs versus XV2 and XV4 Signals  
XSUBCK  
VH2  
VL  
SUBCK  
Figure 48. Example Showing SUBCK Output versus XSUBCK Signal  
Rev. A | Page 45 of 64  
AD9929  
TIMING CONTROL  
Single Pulse Mode  
ELECTRONIC SHUTTER TIMING CONTROL  
CCD image exposure time is controlled through the use of the  
CCD substrate clock signal (XSUBCK), which pulses the CCD  
substrate to clear out accumulated charges prior to the exposure  
period. The AD9929 supports three types of electronic shut-  
tering: normal shutter mode, suppression shutter mode, and  
high speed shutter mode. Table 34 contains the registers  
required for programming of XSUBCK pulses for each mode.  
Normal Shutter Mode  
In addition to the normal operating XSUBCK pulse, one addi-  
tional XSUBCK pulse can be applied within the HD line while  
operating in this mode. As shown in Figure 49, the location of  
the additional XSUBCK pulse is adjustable by setting the  
XSUBCK_HPNUM register as described in Table 33. Finer  
resolution of the exposure time is possible using this mode by  
adding an additional XSUBCK pulse in the line, as shown in  
Figure 54.  
Figure 49 shows the VD and XSUBCK output for normal  
shutter mode. The XSUBCK pulses once per line. The number  
of XSUBCK pulses per field can be programmed by setting  
register XSUBCKNUM (Address 0x0B). As shown in Figure 49,  
the XSUBCK pulses always begin on the line after the sensor  
gate, as specified by XVSGACTLINE (Mode_Reg(1)).  
SUBCK Suppression Mode  
Normally, the XSUBCKs begin to pulse on the line following  
the last sensor gate line (VSG). With some CCDs, the first  
XSUBCK following the VSG line needs to be suppressed. The  
XSUBCKSUPPRESS register allows for this suppression. The  
first XSUBCK following the last VSG pulse is suppressed when  
XSUBCKSUPPRESS = 1, as shown in Figure 50.  
Multiple Pulse Mode  
In addition to the normal operating XSUBCK pulse, up to seven  
sequential XSUBCK pulses can be applied within the same line  
while operating in this mode. As shown in Figure 54, the num-  
ber of additional XSUBCK pulses is selectable by setting  
XSUBCKMODE_HP = 1, and the XSUBCK_HPNUM registers  
as described in Table 33.  
Table 33. Single and Multiple Pulse Mode  
XSUBCKNUM_HP  
XSUBCKMODE_HP  
0
1
Multiple  
Pulse Mode  
Single Pulse Mode  
High Precision Shutter Mode  
Normal Shutter  
Mode Operation  
Normal Shutter  
Mode Operation  
0
1
2
3
4
5
6
7
The high speed shutter mode can be operated in two different  
modes, known as single pulse mode and multiple pulse mode.  
These modes are set up by programming the  
XSUBCKNUM_HP register and XSUBCKMODE_HP register,  
as described in Table 28, Table 33, and shown in Figure 52 and  
Figure 54.  
Position #1  
Position #2  
Position #3  
Position #4  
Position #5  
Position #6  
Position #7  
1 additional pulse  
2 additional pulses  
3 additional pulses  
4 additional pulses  
5 additional pulses  
6 additional pulses  
7 additional pulses  
Table 34. XSUBCK Registers  
Bit  
Reference  
Counter  
Register Name  
Width Register Type  
Range  
Description  
0–2047 Number of  
Pulses  
XSUBCKNUM  
11  
Control (Address 0x0B)  
Number of XSUBCK Pulses per Field.  
Suppress First XSUBCK after Last XVSG  
Line Pulse  
XSUBCK Output Enable Control  
(0 = Disable, 1 = Enable)  
XSUBCKSUPPRESS  
XSUBCK_EN  
1
1
Control (Address 0x01)  
Control (Address 0x0B)  
0–1 Number of Pulses  
XSUBCKMODE_HP  
XSUBCKNUM_HP  
1
3
Control (Address 0x01)  
Control (Address 0x0B)  
High Speed Shutter Mode Operation  
High Speed Shutter XSUBCLK  
Position/Number  
0–7 Number of Pulses  
XSUBCK1TOG1  
XSUBCK1TOG2  
XSUBCK2TOG1  
XSUBCK2TOG2  
XSUBCKSEL  
9
9
9
9
1
System_Reg(14)  
System_Reg(14)  
System_Reg(15)  
System_Reg(15)  
Mode_Reg(2)  
OL Counter  
OL Counter  
OL Counter  
OL Counter  
0–511 Pixel Location  
0–511 Pixel Location  
0–511 Pixel Location  
0–511 Pixel Location  
XSUBCLK1 1st Toggle Position  
XSUBCLK1 2nd Toggle Position  
XSUBCLK2 1st Toggle Position  
XSUBCLK2 2nd Toggle Position  
(0 = XSUBCK1, 1 = XSUBCK2)  
Rev. A | Page 46 of 64  
 
 
AD9929  
VD  
HD  
XVSG1-  
XVSG2  
tEXP  
tEXP  
XSUBCK  
1
2
3
SUBCK PROGRAMMABLE SETTINGS  
1. XSUBCK STARTING POLARITY IS ALWAYS HIGH.  
2. FALLING EDGE OF XSUBCK IS SET USING THE XSUBCK1TOG1 OR XSUBCK2TOG1 REGISTERS.  
3. RISING EDGE OF XSUBCK IS SET USING THE XSUBCK1TOG2 OR XSUBCK2TOG2 REGISTERS.  
NUMBER OF XSUBCK PULSES WITHIN THE FIELD IS SET BY USING THE XSUBCKNUM REGISTER. IN THIS EXAMPLE, XSUBCKNUM = 2.  
Figure 49. Normal Shutter Mode  
VD  
HD  
XVSG1-  
XVSG2  
tEXP  
tEXP  
XSUBCK  
1
XSUBCK PROGRAMMABLE SETTINGS  
1. SETTING XSUBCKSUPPRESS REGISTER = 1 SUPRESSES THIS FIRST XSUBCK FOLLOWING XVSG PULSE.  
Figure 50. XSUBCK Suppression Mode  
HD  
OLEN  
9-BIT  
0L-COUNTER  
XSUBCK  
1
2
3
4
5
6
7
NORMAL SHUTTER MODE PULSE  
ALWAYS OUTPUT  
Figure 51. Electronic Shutter Timing  
HD  
9-BIT  
OL-COUNTER  
XSUBCK  
1
Figure 52. Electronic Shutter Timing Example with XSUBCKMODE_HP = 0 and XSUBCKNUM_HP = 1  
Rev. A | Page 47 of 64  
AD9929  
VSG TIMING  
XVSGTOG_0  
XVSGTOG_1  
The VSG Timing is controlled using the registers in Table 35.  
Two unique preprogrammed VSG pulses can be configured  
using the XVSGTOG_x (x = 0, 1) registers. As shown in  
Figure 55, the period of the VSG pulse is set by programming  
the XVSGLEN_x registers. The XVSGSELx (x = 1, 2) can then  
be used to select the XVSGTOG_0 or XVSGTOG_1 pulse.  
Figure 55 also shows an example of the XVSG pulse being  
output in the fourth line by setting the XVSGACTLINE = 3.  
The XVSG pulses references the 13-bit fixed ST counter, which  
starts counting from the line set in the XVSGACTLINE register.  
The 13-bit counter allows for overlapping of the XVSG pulse  
into the next line if needed.  
XVSG1  
(APPLIED TO XV1)  
XVSGSEL1  
XVSGTOG_0  
XVSGTOG_1  
XVSG2  
(APPLIED TO XV3)  
XVSGSEL2  
Figure 53. XVSGSELx Registers  
Figure 53 describes the XVSG1 and XVSG2 MUX operation  
using the XVSGSELx registers.  
HD  
9-BIT  
OL-COUNTER  
XSUBCK  
1
2
3
Figure 54. Electronic Shutter Timing Example with XSUBCKMODE_HP = 1 and XSUBCKNUM_HP = 3.  
Table 35. VSG Registers  
Register  
Name  
Bit  
Reference  
Counter  
Range  
Width Register Type  
Description  
XVSGMASK  
6
Control (Address 0x0A)  
VSG Mask Control  
(00 = XVSG1 Masked, XVSG2 Masked)  
(02 = XVSG1 Not Masked, XVSG2 Masked)  
(08 = XVSG1 Masked, XVSG2 Not Masked)  
(0A= XVSG1 Not Masked, XVSG2 Not Masked)  
XVSG Output Enable Control (0 = Disable  
XVSG Outputs, 1 = Enable XVSG Outputs)  
XVSGTOG_0 Toggle Position  
XVSG TOG_1 Toggle Position  
XVSGTOG_0 Pulse Width  
XVSGTOG_1 Pulse Width  
XVSG1 Selector  
XVSG_EN  
1
Control (Address 0x0B)  
High/Low  
XVSGTOG_0  
XVSGTOG_1  
XVSGLEN_0  
XVSGLEN_1  
11  
11  
8
Sys_Reg(13)  
Sys_Reg(13)  
Sys_Reg(14)  
Control (Address 0x0F)  
ST  
ST  
ST  
ST  
0–8191 Pixels  
0–8191 Pixels  
0–255 Pixels  
0–255 Pixels  
High/Low  
8
XVSGSEL1  
1
Mode_Reg(1)  
(0 = XVSGTOG_0 Applied on XVSG1,  
1 = XVSGTOG_1 Applied on XVSG1)  
XVSG2 Selector  
(0 = XVSGTOG_0 Applied on XVSG2,  
1 = XVSGTOG_1 Applied on XVSG2 )  
VSG Active Line  
High/Low  
XVSGSEL2  
1
7
Mode_Reg(1)  
Mode_Reg(1)  
XVSGACTLINE  
0–128 Lines  
Rev. A | Page 48 of 64  
 
 
AD9929  
VD  
HD  
0
1
2
3
13-BIT  
ST COUNTER  
(FIXED)  
XVSGACTLINE  
XVSGLEN_0  
1
XVSGTOG_0  
XVSGTOG_1  
XVSGLEN_1  
2
NOTES  
1. XVSGTOG_x (x = 0, 1) REFERENCES THE 13-BIT ST COUNTER  
2. XVSGACTLINE (PROGRAMMABLE AT MODE_REG(1))  
3. XVSGLEN (PROGRAMMABLE AT SYS_REG(14))  
PROGRAMMABLE CLOCK POSITIONS  
1. XVSGTOG_0 (PROGRAMMABLE AT SYS_REG(13))  
2. XVSGTOG_1 (PROGRAMMABLE AT SYS_REG(13))  
Figure 55. Example of VSG Pulse  
1
4
SERIAL  
WRITES  
2
5
VD  
HD  
3
6
VSUB  
2 LINES  
3 LINES  
Figure 56. VSUB Timing Example  
VSUB TIMING  
VSUB Placement and Polarity  
The CCD readout bias (VSUB) can be programmed to accom-  
modate different CCDs. VSUB on and off toggle positions and  
polarity are controlled using VSUBTOG (Address 0x0D) and  
VSUBPOL (Address 0x0D) registers, respectively, as described  
in Table 36. Since the VSUBTOG is an 11-bit register, the VSUB  
on position is programmable within any line. Figure 56 shows  
an example of controlling VSUB using these registers.  
Figure 56 shows the sequence of events for programming the  
VSUB on and off toggle positions and polarity.  
1. Program VSUBTOG = 2 and VSUBPOL = 1.  
2. Since the VSUBTOG and VSUBPOL are VD synchronous  
type registers, the falling edge of VD updates the serial  
writes from Step 1.  
Table 36. VSUB Registers  
3. VSUB is asserted high after two HD cycles.  
Register  
Name  
Bit  
Register  
Range  
(Lines)  
Width Type  
Description  
4. Program VSUBTOG = 3 and VSUBPOL = 0.  
VSUBPOL  
1
Control  
Control  
(0 = Low,  
1 = High)  
VSUB toggle  
position  
5. Since the VSUBTOG and VSUBPOL are VD synchronous  
type registers, the falling edge of VD updates the serial  
writes from Step 4.  
VSUBTOG  
11  
0–2048  
6. VSUB is asserted low after three HD cycles.  
Rev. A | Page 49 of 64  
 
 
AD9929  
MSHUT TIMING  
is controlled by using the MSHUTLEN register. The AD9929  
offers four preprogrammed MSHUT patterns that are selectable  
using the MSHUTPAT register.  
MSHUT Basic Operation  
The AD9929 provides an MSHUT output pulse that can be con-  
figured to control the mechanical shutter of the camera. The  
registers used to control the MSHUT pulse are listed in  
Table 37.  
The preprogrammed length is the same for all patterns set by  
the MSHUTLEN register, but the active on period of the  
MSHUT pulse is different for each pattern, as shown in  
Figure 57. Figure 58 shows an example of selecting  
MSHUTPAT0 positioned to start 3 lines after the falling edge of  
VD, with MSHUTLEN = 5.  
The MSHUT pulse can be placed at the start of any line by  
using the 11-bit MSHUTPOS register. The MSHUT pulse width  
Table 37. MSHUT and STROBE Registers  
Bit  
Width  
Register Type  
Register Name  
Description  
Control (Address 0x01)  
Control (Address 0x0C)  
Control (Address 0x0C)  
Selects MSHUT Pattern.  
(0 = MSHUTPAT0, 1 = MSHUTPAT1, 2 = MSHUTPAT2, 3 = MSHUTPAT3)  
MSHUT Initialize  
(1 = MSHUT Output Held Low, 0 = Normal Operation Resumes)  
MSHUT Control (0 = MSHUT Held at Last State,  
1 = MSHUT Output Enabled for Normal Operation)  
MSHUTPAT  
2
1
1
MSHUTINIT  
MSHUTEN  
MSHUTPOS  
MSHUTPOS_HP  
MSHUTLEN  
11  
3
8
Control (Address 0x0C)  
Control (Address 0x0C)  
Sys_Reg(13)  
MSHUT Position during Normal Operation  
MSHUT Position during High Precision Operation  
MSHUT Pattern Length.  
Control (Address 0x0B)  
STROBE Output Enable Control  
(0 = STROBE Output Held Low, 1 = Enable STROBE Output)  
STROBE_EN  
1
HD  
MSHUTPAT0  
MSHUTPAT1  
MSHUTPAT2  
MSHUTPAT3  
MSHUTLEN + 1  
Figure 57. MSHUT Patterns Available by Setting MSHUTPAT Register  
VD  
HD  
1
2
3
1
2
3
4
5
XVSG1-  
XVSG2  
tEXP  
XSUBCK  
MSHUT  
MSHUTPOS = 3  
MSHUTPAT = 0, MSHUTLEN = 5  
Figure 58. Example of MSHUT Timing with MSHUTEN = 1 and MSHUTPOS_HP = 0  
Rev. A | Page 50 of 64  
 
 
 
AD9929  
MSHUT High Precision Operation  
MSHUT rising and falling edges are delayed by three OL  
counter cycles after the falling edge of HD, as shown in  
Figure 56.  
The MSHUTPOS_HP register allows fine precision control of  
the MSHUT position within a line. Under normal MSHUT  
operation when MSHUTPOS_HP = 0, the MSHUT polarity  
changes from high to low on the negative edge of the HD pulse,  
as shown in Figure 53. By using the MSHUTPOS_HP register,  
the rising and falling edges of MSHUT can be delayed by  
multiples of the OL counter length that has been set in the  
OLEN register. For example, if MSHUTPOS_HP = 3, the  
Figure 56 provides an example of high precision MSHUT and  
SUBCK timing. In this example, the length of the OL counter is  
shorter. This provides finer precision control of the placement  
of the MSHUT pulse within a line.  
VD  
HD  
1
2
3
1
2
3
4
5
XVSG1-  
XVSG2  
tEXP  
XSUBCK  
OL  
COUNTER  
OL  
OL  
OL  
COUNTER COUNTER COUNTER  
MSHUT  
MSHUTPOS = 3  
MSHUTPAT = 0, MSHUTLEN = 5  
Figure 59. Example of MSHUT High Precision Timing MSHUTEN = 1 and MSHUTPOS_HP = 3  
VD  
HD  
1
2
3
1
2
3
4
5
XVSG1-  
XVSG2  
tEXP  
XSUBCK  
MSHUT¹  
MSHUT²  
DELAY = 3 OL  
COUNTER LENGTHS  
MSHUTPOS = 3  
MSHUTPAT = 0, MSHUTLEN = 5  
NOTES  
1
MSHUT OUTPUT IN NORMAL OPERATION WITH MSHUTPOS_HP = 0  
MSHUT OUTPUT IN HIGH PRECISION OPERATION WITH MSHUTPOS_HP = 3  
2
Figure 60. Example of MSHUT High Precision Timing MSHUTEN = 1, MSHUTPOS_HP = 3, with XSUBCKMODE_HP = 1, XSUBCKNUM_HP = 3  
Rev. A | Page 51 of 64  
AD9929  
STROBE TIMING  
output pulse is asserted high on the rising edge of the last  
XSUBCK pulse in the field, as shown in Figure 61. Also shown  
in Figure 61, the STROBE pulse is asserted low again on the  
rising edge of VSG.  
The AD9929 provides a STROBE output pulse that can be used  
to trigger the camera flash circuit. STROBE operation is set by  
only one register, as described in Table 32. The STROBE output  
is held low when STROBE_EN (Address 0x0B) is set to 0 and  
enabled when set to 1. Providing STROBE_EN = 1, the STROBE  
SET STROBE_EN (ADDRESS 0x0B) = 1  
VD  
XVSG1-  
XVSG2  
tEXP  
XSUBCK  
STROBE  
2
1
NOTES  
1. STROBE OUTPUT ASSERTED HIGH ON RISING EDGE OF LAST XSUBCK PULSE  
2. STROBE OUTPUT ASSERTED LOW ON NEGATIVE EDGE OF XVSG PULSE  
Figure 61. STROBE Output Timing  
VD  
H-COUNTER  
RESET  
H-COUNTER  
RESET  
HD  
3ns MIN  
CLI  
H-GRAY CODE  
COUNTER  
(PIXEL COUNTER)  
X
X
X
X
X
X
X
X
X
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0
1
2
3
4
NOTES  
1. INTERNAL 12-BIT H-GRAY CODE COUNTER IS RESET 7 CLOCK CYCLES AFTER THE HD FALLING EDGE.  
Figure 62. External VD/HD and Internal 12-Bit H-Gray Code Counter Synchronization, Slave Mode  
Rev. A | Page 52 of 64  
 
AD9929  
DIGITAL I/O STATES FOR DIFFERENT OPERATING CONDITIONS  
Table 38 describes the state of the digital I/Os for different operating conditions.  
Table 38. I/O Levels  
I/O  
OCONT_REG1 = 0 DIGSTBY  
DCLK1  
DCLK2  
VD2  
ACTIVE  
H
ACTIVE  
ACTIVE  
H
H
HD2  
H
H
RG  
L
L
H1  
H
H
H2  
L
L
V1  
VL  
VL  
VL  
VL  
VL  
VL  
L
V2  
VL  
V3  
VL  
V4  
VL  
SUBCK  
STROBE  
MSHUT  
FD  
SUBVDD  
L
L
L
H
L
1 OUTCONT_REG is a register setting located at Address 0x05. It defaults to 0 at power-up.  
2 VD and HD operate in master mode.  
Rev. A | Page 53 of 64  
 
 
 
 
AD9929  
POWER SUPPLY SEQUENCING  
The recommended power-up and power-down sequences are  
shown in Figure 64 and Figure 65, respectively. As shown, the  
VM1 and VM2 voltage level should never exceed the VH1 and  
VH2 voltage level during power-up or power-down. Excessive  
current results if this requirement is not met due to a PN  
junction diode turning on between the VM1/2 and VH supply  
pins.  
RECOMMENDED POWER-UP SUPPLY  
SEQUENCING  
When the AD9929 is powered up, the following power supply  
sequence is recommended. Refer to Figure 64.  
1. Turn ON: VDD, DVDD, DRVDD, HVDD, RGVDD,  
TCVDD, and AVDD.  
Figure 63 describes the AD9929 AFETG and V-driver supplies  
associated with vertical driver outputs.  
2. Turn ON: VH1 VH2, VM1,VM2, and VL.  
Caution:  
There is a PN junction diode from VM1 and VM2 to VH.  
Excessive current occurs if the VM1 and VM2 supply level is  
greater than VH1 and VH2 supplies.  
RECOMMENDED POWER-DOWN SUPPLY  
SEQUENCING  
XV1  
V1 (VH1, VM1, VL)  
V2 (VM2, VL)  
XV2  
XV3  
When the AD9929 is powered down, the following power  
supply sequence is recommended. Refer to Figure 65.  
TIMING  
V-DRIVER  
LOGIC  
V3 (VH1, VM1, VL)  
V4 (VM2, VL)  
GENERATOR XV4  
XVSG1  
XVSG2  
1. Turn OFF: VH1, VH2, VM1, VM2, and VL.  
SUBCK (VH2, VL)  
XSUBCK  
2. Turn OFF: VDD, DVDD, DRVDD, HVDD, RGVDD,  
TCVDD, and AVDD.  
Figure 63. Block Diagram of AD9929 Showing  
Timing Generator and Vertical Driver  
VH1 = VH2 = 15.0V  
VDD = DVDD = DRVDD = HVDD = RGVDD = TCVDD = AVDD = 3V  
1
2
0V  
VM1 = VM2 = –0.5V  
VL = –7.5V  
SAME TIME AS VM AND VH OR EARLIER, BUT NOT BEFORE VDD REACHES 3V.  
Figure 64. Power-Up Supply Sequencing  
VH1 = VH2 = 15.0V  
VDD = DVDD = DRVDD = HVDD = RGVDD = TCVDD = AVDD = 3V  
1
2
0V  
VM1 = VM2 = –0.5V  
VL = –7.5V  
SAME TIME AS VM AND VH OR EARLIER, BUT NOT AFTER VDD.  
Figure 65. Power-Down Supply Sequencing  
Rev. A | Page 54 of 64  
 
 
 
 
AD9929  
INITIAL START-UP SEQUENCE  
Recommended Start-Up Sequence for Master Mode  
5. Program system registers (Address 0x20).  
6. Program Mode_A registers (Address 0x21).  
7. Program Mode_B registers (Address 0x22).  
When the AD9929 is powered up, the following sequence is  
recommended (refer to Figure 66 for each step).  
1. Turn on power supplies as described in the Power Supply  
Sequencing section.  
8. Program OUTCONT_REG register (Address 0x05) = 1.  
(The internal OUTCONT signal is asserted high at this  
time. This enables the digital outputs.)  
2. Apply the CLI master clock input.  
CLI is output on DCLK2 Pin 16 at this time.  
9. Program control register MODE (Address 0x0A) = 0. This  
selects Mode_A operation. (This step is optional because  
the AD9929 defaults to Mode_A at power-up.)  
3. Reset the internal AD9929 registers. Write a 0x000000 to  
the SW_RESET register (Address 0x00). This sets all  
internal register values to their default values. (This step is  
optional because there is an internal power-on reset circuit  
that is applied at power-up.)  
10. Program control register MODE (Address 0x0A) = 1. This  
selects Mode_B operation. Note: Complete this write at  
least 4 CLI cycles before the start of the next field.  
4. Program DIGSTBY and AFESTBY registers (Address 0x05)  
= 1 and all other necessary control registers.  
AD9929  
POWER-UP  
SEQUENCE  
CLI  
(INPUT)  
1
OUTCONT  
(INTERNAL SIGNAL)  
tPWR  
5
7
3
SERIAL  
WRITES  
1 V  
ODD FIELD  
1 H  
EVEN FIELD  
ODD FIELD  
VD  
(OUTPUT)  
HD  
(OUTPUT)  
H1, VSUB, FD  
H2, RG, MSHUT, STROBE  
DIGITAL  
(OUTPUTS)  
3
tDELAY  
2
DCLK2  
(OUTPUT)  
DCLK1  
(OUTPUT)  
4
tSETTLING  
NOTES  
1
OUTCONT IS AN INTERNAL SIGNAL THAT IS CONTROLLED USING REGISTER OUTCONT_REG (ADDRESS 0x05).  
DCLK2 WILL BE OUTPUT ON THE FD/DCLK2 PIN 16 PROVIDING REGISTER DCLK2SEL (ADDRESS 0xD5) = 1.  
THE DCLK2SEL REGISTER DEFAULTS TO 1 AT POWER-UP.  
IT TAKES 11 CLI CLOCKS FROM WHEN OCONT GOES HIGH UNTIL VD, HD, AND DIGITAL OUTPUT DATA IS VALID.  
THERE IS A 500µS SETTLING TIME FROM WHEN THE DIGSTBY REGISTER IS SET TO WHEN THE DCLK1 IS STABLE.  
2
3
4
Figure 66. Recommended Start-Up Sequence and Synchronization, Master Mode  
Rev. A | Page 55 of 64  
 
AD9929  
STANDBY MODE OPERATION  
Recommended Standby Mode Sequence  
3. When ready to come out of standby operation, program  
register DIGSTBY (Address 0x05) = 1 and register  
AFESTBY (Address 0x05) = 1.  
When the AD9929 is going into standby operation, the follow-  
ing sequence is recommended (refer to Figure 67 for each step).  
1. Program OUTCONT_REG (Address 0x05) = 0. This  
asserts the internal OUTCONT signal low, causing all  
digital outputs to become disabled.  
4. Program necessary control registers.  
5. Program control register MODE (Address 0x0A) = 0. This  
selects Mode_A operation.  
2. Program registers AFESTBY (Address 0x05) = 0 and  
DIGSTBY (Address 0x05) = 0. The AD9929 is now in  
standby operation.  
6. Program register OUTCONT_REG (Address 0x05) = 1.  
This asserts the internal OUTCONT signal high, causing  
all digital outputs to become active.  
AD9929  
SUPPLIES  
CLI  
(INPUT)  
OUTCONT  
(INTERNAL SIGNAL)  
6
1
2
3
5
SERIAL  
WRITES  
VD  
(OUTPUT)  
HD  
(OUTPUT)  
H1, VSUB  
DIGITAL  
OUTPUTS  
H2, RG, MSHUT, STROBE, FD  
2
tDELAY  
DCLK1  
AND  
1
DCLK2  
AFESTBY  
(REGISTER)  
DIGSTBY  
(REGISTER)  
NOTES  
1
DCLK2 WILL BE OUTPUT ON THE FD/DCLK2 PIN 16 PROVIDING REGISTER DCLK2SEL (ADDRESS 0xD5) = 1.  
IT TAKES 11 CLI CLOCKS FROM WHEN OCONT GOES HIGH UNTIL VD, HD, AND DIGITAL OUTPUT DATA IS VALID.  
2
Figure 67. Recommended Standby Sequence  
Rev. A | Page 56 of 64  
 
AD9929  
SHUT-DOWN MODE OPERATION  
Recommended Power-Down Sequence  
1. Program OUTCONT_REG (Address 0x05) = 0.  
When the AD9929 is going to be powered down, the following  
sequence is recommended (refer to Figure 68 for each step).  
2. Program registers AFESTBY (Address 0x05) = 0 and  
DIGSTBY (Address 0x05) = 0.  
3. Remove power from AD9929.  
4
VDD  
(INPUT)  
CLI  
(INPUT)  
OUTCONT  
(INTERNAL)  
SERIAL  
WRITES  
VD  
ODD FIELD  
EVEN FIELD  
ODD FIELD  
(OUTPUT)  
HD  
(OUTPUT)  
H1, VSUB  
DIGITAL  
OUTPUTS  
H2, RG, MSHUT, STROBE  
DCLK1  
1
DCLK2  
AFESTBY  
(REGISTER)  
DIGSTBY  
(REGISTER)  
NOTE  
1
DCLK2 WILL BE OUTPUT ON THE FD/DCLK2 PIN 16 PROVIDING REGISTER DCLK2SEL (ADDRESS 0xD5) = 1.  
Figure 68. Recommended Shut-Down Sequence  
Rev. A | Page 57 of 64  
 
AD9929  
APPLICATIONS WHERE THE CLI CLOCK FREQUENCY CHANGES DURING OPERATION  
The AD9929 must be reset, as described in Figure 69, if the CLI  
clock frequency is changed during operation. The DCLK1  
output can become unstable if this reset sequence is not applied  
after any changes in the CLI clock frequency.  
SLOW  
FAST  
FAST  
CL  
t1  
1
2
3
4
SERIAL  
WRITES  
OUTCONT  
(INTERNAL  
SIGNAL)  
VD  
(OUTPUT)  
HD  
(OUTPUT)  
HD, VD, H1, (SUBCK = VH2)  
(V1, V2, V3, V4 = VL), H2, STROBE, MSHUT  
REGION B  
OUTPUTS  
REGION A  
tDELAY*  
DCLK1I  
REGION C  
DIG_STBY  
(REGISTER)  
SERIAL PROGRAMMING STEPS MUST BE FOLLOWED WHEN THE CLI CLOCK FREQUENCY CHANGES  
1. OUTCONT_REG = 0  
2. DIG_STBY = 0  
3. DIG_STBY = 1  
4. OUTCONT_REG = 1  
NOTES ABOUT REGIONS A, B, AND C  
1
DIGITAL OUTPUTS MAY BECOME INVALID IN REGION  
A
2
3
4
DIGITAL OUTPUTS ARE OUTPUT AS SHOWN IN REGION  
DCLK1 OUTPUT MAY BECOME INVALID IN REGION  
APPLICATIONS SHOULD NOT USE OUTPUT SIGNALS IN REGION C  
B
C
t1 = MINIMUM OF 2 CLI CLOCK CYCLES  
*IT TAKES 4 CLI CLOCK CYCLES FROM WHEN OUTCONT GOES HIGH UNTIL VD, HD AND DIGITAL OUTPUT DATA IS VALID.  
Figure 69. Reset Sequence That Must Be Applied when Changing the CLI Clock Frequency During Operation  
Rev. A | Page 58 of 64  
 
AD9929  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 7  
N + 8  
N + 9  
N + 10  
N + 11  
CCD  
SIGNAL  
tID  
tID  
SHP  
SHD  
tS1  
CYCLE 1  
CYCLE 2 CYCLE 3  
CYCLE 4  
CYCLE 5  
CYCLE 6  
CYCLE 7  
CYCLE 8  
CYCLE 9  
CLI  
(tOD  
+
tVCLIDLY  
)
OUTPUT  
DATA  
N – 10  
N – 9  
N – 8  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
NOTES  
1. RECOMMENDED PLACEMENT FOR CLI RISING EDGE IS BETWEEN THE SHD RISING EDGE AND NEXT SHP FALLING EDGE.  
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.  
3. OUTPUT DATA LATENCY IS NINE CYCLES.  
Figure 70. Output Data Pipeline Delay  
Rev. A | Page 59 of 64  
AD9929  
CIRCUIT LAYOUT INFORMATION  
The AD9929 typical circuit connection is shown in Figure 71.  
The PCB layout is critical in achieving good image quality from  
the AD9929 product. All of the supply pins must be decoupled  
to ground with good quality, high frequency chip capacitors.  
The 0.1 µF decoupling capacitors should be located as close as  
possible to the supply pins, and should have a very low induc-  
tance path to a continuous ground plane. There should also be a  
4.7 µF or larger capacitor for each main supply, although it is  
not necessary for each individual pin.  
The analog bypass pins, REFB, REFT, should also be carefully  
decoupled to ground as close as possible to their respective pins.  
The analog input, CCDIN, capacitor should also be located  
close to the pin.  
The H1, H2, and RG printed circuit board traces should be  
designed to have low inductance to avoid excessive distortion of  
the signals. Heavier traces are recommended because of the  
large transient current demand by the CCD on H1 and H2. If  
possible, physically locate the AD9929 close to the CCD to  
reduce the inductance on these lines. As always, the routing  
path should be as direct as possible from the AD9929 to the  
CCD. Careful trace impedance considerations must also be  
made with applications using a flex printed circuit (FPC) con-  
necting the CCD to the AD9929. FPC trace impedances can be  
controlled by applying a solid uniform ground plane under the  
H1, H2, and RG traces. This helps minimize the amount of  
overshoot and ringing on these signals at the CCD inputs.  
In most applications it is easier and recommended to share the  
same supply for AVDD, DVDD, TCVDD, RGVDD, and HVDD,  
as long as the individual supply pins are separately bypassed at  
each supply pin. A separate 3 V supply should be used for  
DRVDD with this supply pin decoupled to the same ground  
plane as the rest of the chip. A separate ground for DRVSS is not  
recommended.  
The vertical driver VM supply pins can be connected to indi-  
vidual supplies or to the same supply, depending on the appli-  
cation requirement for the mid-level voltage on the vertical  
outputs. These pins may also be directly connected to the  
common ground plane, as shown in Figure 71.  
Rev. A | Page 60 of 64  
AD9929  
3V  
DRIVER  
SUPPLY  
4.7µF  
12  
DATA  
OUTPUTS  
DCLK1  
VSUB TO CCD  
3V ANALOG SUPPLY  
TO MECHANICAL  
SHUTTER CIRCUIT  
DVDD  
MSHUT  
A10  
B10  
B9  
B1  
C2  
C1  
D1  
D2  
E1  
E2  
F2  
G2  
PIN 1  
IDENTIFIER  
STROBE  
FD/DCLK2  
VD  
VDD  
TO STROBE CIRCUIT  
FD/DCLK2  
DVSS  
10k  
0.1µ  
F
0.1µF  
SYNC/VGATE  
VM1  
VD TO ASIC/DSP  
HD TO ASIC/DSP  
3V ANALOG SUPPLY  
C9  
SYNC/VGATE  
OUTCONT  
HD  
C10  
D9  
HVDD  
HVSS  
HVSS  
HVSS  
OUTCONT  
V1  
0.1  
µ
F
D10  
E9  
V2  
AD9929  
TOP VIEW  
(Not to Scale)  
VH2  
E10  
F9  
H2  
H1  
VL  
F1  
G1  
H1  
H2  
J1  
VL SUPPLY  
VM2  
SUBCK  
V3  
F10  
G9  
RG  
3
0.1µF  
4.7µF  
H1, H2 AND  
RG TO CCD  
RGVSS  
RGVDD  
CLI  
G10  
H9  
V4  
V1-V4, SUBCK  
TO CCD  
5
3V ANALOG SUPPLY  
VH1  
SCK  
H10  
J10  
MASTER CLOCK INPUT  
J2  
TCVSS  
K1  
0.1µF  
VH SUPPLY  
0.1µ  
F
4.7µF  
3V ANALOG SUPPLY  
3
4.7  
µ
F
0.1µF  
SERIAL  
INTERFACE  
0.1µF  
CCD SIGNAL  
Figure 71. AD9929 Typical Circuit Configuration  
Rev. A | Page 61 of 64  
AD9929  
OUTLINE DIMENSIONS  
A1 CORNER  
INDEX AREA  
9.00 BSC SQ  
10  
9
8
7
6
5
4
3
2 1  
A
B
C
D
E
F
BALL A1  
INDICATOR  
BOTTOM  
VIEW  
TOP VIEW  
G
H
J
0.90  
REF SQ  
K
7.20 BSC  
DETAIL A  
DETAIL A  
1.00  
0.85  
0.25 MIN  
0.12 MAX  
COPLANARITY  
1.40  
MAX  
0.55  
0.50  
0.45  
0.80  
BSC  
SEATING  
PLANE  
BALL DIAMETER  
COMPLIANT TO JEDEC STANDARDS MO-205-AB  
Figure 72. 64-Lead Chip Scale Ball Grid Array [CSPBGA]  
(BC-64)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD9929BBCZ1  
Temperature Range  
Package Description  
Package Option  
−25°C to +85°C  
64-Lead Plastic Ball Grid Array  
BC-64  
1 Z = Pb-free part.  
Rev. A | Page 62 of 64  
 
AD9929  
NOTES  
Rev. A | Page 63 of 64  
AD9929  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04593-0-1/04(A)  
Rev. A | Page 64 of 64  

相关型号:

AD9929BBCZRL

SPECIALTY CONSUMER CIRCUIT, PBGA64, 9 X 9 MM, LEAD FREE, PLASTIC, MO-205-AB, CSBGA-64
ROCHESTER

AD9937

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9937KCP

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9937KCPRL

CCD Signal Processor with Precision Timing⑩ Generator
ADI

AD9937KCPZ

IC SPECIALTY CONSUMER CIRCUIT, QCC56, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other
ADI

AD9937KCPZRL

IC SPECIALTY CONSUMER CIRCUIT, QCC56, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other
ADI

AD9938

Tape and Reel Packaging
ADI

AD9940BCPZ

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BCPZRL

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BSTZ

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BSTZ

SPECIALTY CONSUMER CIRCUIT, PQFP48, LEAD FREE, MS-026-BBC, LQFP-48
ROCHESTER

AD9940BSTZRL

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI