AD9937KCPRL [ADI]

CCD Signal Processor with Precision Timing⑩ Generator; CCD信号处理器具有精密Timing⑩发生器
AD9937KCPRL
型号: AD9937KCPRL
厂家: ADI    ADI
描述:

CCD Signal Processor with Precision Timing⑩ Generator
CCD信号处理器具有精密Timing⑩发生器

CD
文件: 总44页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CCD Signal Processor with  
Precision TimingGenerator  
AD9937  
FEATURES  
GENERAL DESCRIPTION  
12 MSPS Correlated Double Sampler (CDS)  
10-Bit 12 MHz A/D Converter  
No Missing Codes Guaranteed  
6 dB to 40 dB Variable Gain Amplifier (VGA)  
Black Level Clamp with Variable Level Control  
Complete On-Chip Timing Generator  
Precision Timing Core with 1.7 ns Resolution  
On-Chip: 6-Channel Horizontal and 1-Channel RS Drivers  
4-Phase Vertical Transfer Clocks  
The AD9937 is a highly integrated CCD signal processor. It  
includes a complete analog front end with A/D conversion,  
combined with a full-function programmable timing generator.  
A Precision Timing core allows adjustment of high speed clocks  
with 1.7 ns resolution at 12 MHz operation.  
The AD9937 is specified at pixel rates of up to 12 MHz. The  
analog front end includes black level clamping, CDS, VGA, and  
a 10-bit A/D converter. The timing generator provides all the  
necessary CCD clocks: RS, H-clocks, V-clocks, sensor gate pulses,  
and substrate charge reset pulse. Operation is programmed using a  
3-wire serial interface.  
Electronic and Mechanical Shutter Modes  
On-Chip Sync Generator with External Sync Option  
APPLICATIONS  
Digital Still Cameras  
Industrial Imaging  
The AD9937 is packaged in a 56-lead LFCSP and specified over  
an operating temperature range of 25°C to +85°C.  
FUNCTIONAL BLOCK DIAGRAM  
REFT REFB  
AD9937  
6dBTO 40dB  
VGA  
VREF  
10  
ADC  
CDS  
DOUT  
VCLK  
CLAMP  
INTERNAL CLOCKS  
RS  
HORIZONTAL  
DRIVERS  
PRECISION  
TIMING  
GENERATOR  
6
4
4
H1 A–D  
H2 A, B  
V1 A/B  
V2  
V3 A/B  
V4  
V-H  
CONTROL  
SYNC  
GENERATOR  
INTERNAL  
REGISTERS  
TG1A  
TG1B  
TG3A  
TG3B  
LM  
OFD  
HD VD  
VCKM  
SLD SCK SDA  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD9937  
TABLE OF CONTENTS  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . 1  
FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . 1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
DIGITAL SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 3  
ANALOG SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 4  
TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 5  
ABSOLUTION MAXIMUM RATINGS . . . . . . . . . . . . . . . 5  
PACKAGE THERMAL CHARACTERISTICS . . . . . . . . . 5  
ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . . 6  
TERMINOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Differential Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Peak Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Total Output Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
EQUIVALENT CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . 7  
TYPICAL PERFORMANCE CHARACTERISTICS . . . . . 8  
REGISTER MAPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SERIAL INTERFACE TIMING . . . . . . . . . . . . . . . . . . . . 18  
Control Register Serial Interface . . . . . . . . . . . . . . . . . . . 18  
System and Mode Register Serial Interface . . . . . . . . . . . 18  
Page/Burst Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Random Access Option . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Internal Power-On Reset Circuitry . . . . . . . . . . . . . . . . . . 19  
VD Synchronous and Asynchronous Register Operation . 19  
Asynchronous Register Operation . . . . . . . . . . . . . . . . . . 19  
VD Synchronous Register Operation . . . . . . . . . . . . . . . . 19  
SYSTEM OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
ANALOG FRONT END DESCRIPTION AND  
HORIZONTAL AND VERTICAL TIMING . . . . . . . . . . . 25  
Individual HMASK Sequence . . . . . . . . . . . . . . . . . . . . . 25  
Individual PBLK Sequences . . . . . . . . . . . . . . . . . . . . . . 25  
Controlling CLPOB Clamp Pulse Timing . . . . . . . . . . . . 28  
Vertical Sensor Transfer Gate Timing . . . . . . . . . . . . . . . 29  
SHUTTER TIMING CONTROL . . . . . . . . . . . . . . . . . . . 29  
Normal Shutter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
High Precision Shutter Mode . . . . . . . . . . . . . . . . . . . . . . 29  
Controlling LM Pulse Timing . . . . . . . . . . . . . . . . . . . . . 31  
SPECIAL HORIZONTAL PATTERN TIMING . . . . . . . . 32  
MASKING H1 AND H2 OUTPUTS . . . . . . . . . . . . . . . . . 33  
Horizontal Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Vertical Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
VERTICAL TIMING GENERATION . . . . . . . . . . . . . . . 35  
CCD REGIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
POWER-UP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
STANDBY SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
POWER-DOWN SEQUENCE . . . . . . . . . . . . . . . . . . . . . . 41  
CIRCUIT LAYOUT INFORMATION . . . . . . . . . . . . . . . 42  
OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . 44  
TABLES  
Table I. Control Register Map . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table II. VTP Sequence System Register Map . . . . . . . . . . 10  
Table III. H/LM System Register Map . . . . . . . . . . . . . . . . 12  
Table IV. Shutter System Register Map . . . . . . . . . . . . . . . . 13  
Table V. Mode_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table VI. Mode_B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table VII. Serial Interface Registers . . . . . . . . . . . . . . . . . . 18  
Table VIII. RS, H1, SHP, SHD, and DOUTPHASE  
Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table IX. Precision Timing Edge Locations for RS, H1,  
SHP, SHD, and DOUTPHASE . . . . . . . . . . . . . . . . . . . . . 23  
Table X. HD and VD Registers . . . . . . . . . . . . . . . . . . . . . . 25  
Table XI. PBLK Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table XII. CLPOB Registers . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table XIII. TG Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table XIV. OFD Registers . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table XV. LM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table XVI. Special H Pattern Registers . . . . . . . . . . . . . . . . 33  
Table XVII. Sequence Change Positions Registers . . . . . . . 35  
Table XVIII. Start-Up Polarities . . . . . . . . . . . . . . . . . . . . . 39  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DC Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Correlated Double Sampler . . . . . . . . . . . . . . . . . . . . . . . 21  
PRECISION TIMING HIGH SPEED TIMING  
GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Timing Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
High Speed Clock Programmability . . . . . . . . . . . . . . . . . 22  
H-Driver and RS Outputs . . . . . . . . . . . . . . . . . . . . . . . . 22  
MASTER AND SLAVE MODE OPERATION . . . . . . . . . 25  
–2–  
REV. 0  
AD9937–SPECIFICATIONS  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
25  
65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
AVDD (AFE Analog Supply)  
TCVDD (Timing Core Analog Supply)  
RSVDD (RS Driver)  
HVDD1 (H1A, H2A, and H1C Drivers)  
HVDD2 (H1B, H2B, and H1D Drivers)  
DRVDD (Data Output Drivers)  
DVDD (Digital)  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
V
V
V
POWER CONSUMPTION @ 10 MHz  
Power from (AVDD + TCVDD + DRVDD + DVDD)  
Power from (HVDD1 + HVDD2)1  
100  
25  
3
mW  
mW  
mW  
mW  
Power from (RSVDD)2  
Standby Mode (AFE_STBY and DIG_STBY = 0)  
1.5  
VCKM MAX CLOCK RATE  
12  
MHz  
NOTES  
H1A  
H2A  
H1B  
H2B  
H1C  
H1D  
30ꢁ  
30ꢁ  
30ꢁ  
30ꢁ  
30ꢁ  
30ꢁ  
10pF  
30pF  
10pF  
50pF  
10pF  
30pF  
10pF  
50pF  
10pF 10pF  
30pF  
10pF  
30pF  
RS  
30ꢁ  
10pF  
10pF  
2RS Load  
1H1 (A–D) and H2 (A, B) Loads  
(RSVDD = HVDD = 2.7 V to 3.6 V, –25C to +85C, unless otherwise noted.)  
DIGITAL SPECIFICATIONS  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS (VCKM, SLD, SDA, and SCK)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
µA  
µA  
pF  
0.6  
40  
40  
Input Capacitance  
10  
LOGIC OUTPUTS (Except H1(AD), H2(A, B), and RS)  
High Level Output Voltage @ IOH = 2 mA  
Low Level Output Voltage @ IOL = 2 mA  
VOH  
VOL  
DRVDD 0.5  
DVDD 0.5  
V
V
0.5  
0.5  
H-DRIVER OUTPUTS (H1(AD), H2(A, B))  
High Level Output Voltage @ Max Current  
Low Level Output Voltage @ Max Current  
H1(AD) Maximum Output Current (Programmable)  
H2(A, B) Maximum Output Current (Programmable)  
Maximum Load Current  
VOH  
VOL  
V
V
mA  
mA  
pF  
12.25  
12.25  
100  
RS-DRIVER OUTPUTS  
High Level Output Voltage @ Max Current  
Low Level Output Voltage @ Max Current  
RS Maximum Output Current (Programmable)  
Maximum Load Current  
VOH  
VOL  
RSVDD 0.5  
V
V
mA  
pF  
0.5  
12.25  
100  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD9937  
ANALOG SPECIFICATIONS (AVDD = 3 V, fCLI = 12 MHz, –25C to +85C, unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
CDS  
Allowable CCD Reset Transient  
Max Input Range before Saturation  
Max CCD Black Pixel Amplitude  
500  
mV  
V p-p  
mV  
Input signal characteristics.*  
1.0  
100  
VARIABLE GAIN AMPLIFIER (VGA)  
Max Output Range  
Gain Control Resolution  
Gain Monotonicity  
2.0  
V p-p  
Bits  
10  
Guaranteed  
Gain Range  
Low Gain (VGA Code 0)  
Max Gain (VGA Code 1023)  
5.3  
41.1  
dB  
dB  
40  
10  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
255  
Steps  
LSB measured at ADC output.  
Min Clamp Level  
Max Clamp Level  
0
LSB  
LSB  
63.75  
A/D CONVERTER  
Resolution  
Bits  
Differential Nonlinearity (DNL)  
No Missing Codes  
Full-Scale Input Voltage  
0.4  
Guaranteed  
2.0  
1.0  
LSB  
V
VOLTAGE REFERENCE  
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
2.0  
1.0  
V
V
SYSTEM PERFORMANCE  
Gain Accuracy  
Includes entire signal chain.  
Low Gain (VGA Code 17)  
Max Gain (VGA Code 1023)  
Peak Nonlinearity, 500 mV Input Signal  
Total Output Noise  
5
40.2  
6
7
42.2  
dB  
dB  
%
LSB rms  
dB  
Gain = (0.035 × Code) + 5.4 dB  
41.2  
0.1  
0.3  
40  
12 dB gain applied.  
AC ground input, 6 dB gain applied.  
Measured with step change on supply.  
Power Supply Rejection (PSR)  
*Input signal characteristics defined as follows:  
500mV TYP  
RESET  
TRANSIENT  
1V MAX  
INPUT  
SIGNAL RANGE  
100mV MAX  
OPTICAL  
BLACK PIXEL  
Specifications subject to change without notice.  
–4–  
REV. 0  
AD9937  
TIMING SPECIFICATIONS (CL = 20 pF, AVDD = DVDD = DRVDD = 3 V, fCLI = 12 MHz, unless otherwise noted.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
MASTER CLOCK, VCKM  
VCKM Clock Period  
VCKM High/Low Pulsewidth  
Delay from VCKM Rising Edge to Internal Pixel Position 0  
tCONV  
83.33  
ns  
ns  
ns  
41.67  
9
tVCKMDLY  
AFE CLAMP PULSES1  
CLPOB Pulsewidth2  
AFE SAMPLE LOCATION1 (See Figure 13)  
SHP Sample Edge to SHD Sample Edge  
2
20  
Pixels  
ns  
tS1  
33.34  
41.67  
DATA OUTPUTS  
Output Delay from VCLK Rising Edge  
Pipeline Delay from SHP/SHD Sampling (See Figure 40)  
tOD  
9
9
ns  
Cycles  
SERIAL INTERFACE  
Maximum SCK Frequency  
SLD to SCK Setup Time  
SCK to SLD Hold Time  
SDA Valid to SCK Rising Edge Setup  
SCK Falling Edge to SDA Valid Hold  
SCK Falling Edge to SDA Valid Read  
fSCLK  
tLS  
tLH  
tDS  
tDH  
tDV  
10  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
NOTES  
1Parameter is programmable.  
2Minimum CLPOB pulsewidth is for functional operation only. Wider typical pulses are recommended to achieve good clamp performance.  
Specifications subject to change without notice.  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE THERMAL CHARACTERISTICS  
Thermal Resistance  
With  
Respect  
JA = 24.9°C/W  
Parameter  
To  
Min Max  
Unit  
AVDD  
TCVDD  
HVDD  
RSVDD  
DVDD  
DRVDD  
RS Output  
AVSS  
0.3 +3.9  
V
V
V
V
V
V
TCVSS 0.3 +3.9  
HVSS 0.3 +3.9  
RSVSS 0.3 +3.9  
DVSS 0.3 +3.9  
DRVSS 0.3 +3.9  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description Option  
Package  
Model  
AD9937KCP  
25°C to +85°C Lead Frame CP-56  
RSVSS 0.3 RSVDD + 0.3 V  
Chip Scale  
Package  
H1(AD), H2(A, B)Output HVSS  
0.3 HVDD + 0.3  
0.3 DVDD + 0.3  
0.3 DVDD + 0.3  
0.3 DVDD + 0.3  
0.3 AVDD + 0.3  
0.3 AVDD + 0.3  
150  
V
V
V
V
V
V
°C  
°C  
Digital Outputs  
Digital Inputs  
SCK, SLD, SDA  
VRT, VRB  
DVSS  
DVSS  
DVSS  
AVSS  
AVSS  
(LFCSP)  
AD9937KCPRL 25°C to +85°C Lead Frame CP-56  
Chip Scale  
Package  
(LFCSP)  
CCDIN  
Junction Temperature  
Lead Temperature, 10 sec  
350  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD9937 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–5–  
AD9937  
PIN CONFIGURATION  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
1
2
NC  
NC  
42  
41  
40  
39  
38  
TG1B  
V1A/B  
TG1A  
REFB  
REFT  
PIN 1  
IDENTIFIER  
3
D0  
4
D1  
5
D2  
6
D3  
37 AVSS  
AD9937  
7
DRVSS  
DRVDD  
D4  
36  
CCDIN  
8
35  
34  
33  
32  
31  
30  
AVDD  
VCKM  
TCVDD  
TCVSS  
NC  
TOP VIEW  
(Not to Scale)  
9
10  
11  
12  
13  
14  
D5  
D6  
D7  
D8  
NC  
D9  
29 NC  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
NC = NO CONNECT  
PIN FUNCTION DESCRIPTIONS1  
Pin  
Pin  
No. Mnemonic Type2 Description  
No. Mnemonic Type2 Description  
1
2
3
4
5
6
7
8
NC  
NC  
D0  
D1  
D2  
D3  
DRVSS  
DRVDD  
D4  
D5  
D6  
D7  
D8  
D9  
VCLK  
HVDD2  
NC  
NC  
DO  
DO  
DO  
DO  
P
No Connect  
No Connect  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output Driver Ground  
Data Output Driver Supply  
Data Output  
Data Output  
Data Output  
Data Output  
Data Output  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
NC  
NC  
P
No Connect  
TCVSS  
TCVDD  
VCKM  
AVDD  
CCDIN  
AVSS  
REFT  
REFB  
TG1A  
V1A/B  
TG1B  
V2  
Analog Ground for Timing Core  
Analog Supply for Timing Core  
Reference Clock Input  
Analog Supply for AFE  
CCD Input Signal  
P
DI3  
P
AI  
P
Analog Ground for AFE  
Voltage Reference Top Bypass  
Voltage Reference Bottom Bypass  
CCD Sensor Gate Pulse 1  
CCD Vertical Transfer Clock 1  
CCD Sensor Gate Pulse 2  
CCD Vertical Transfer Clock 2  
CCD Sensor Gate Pulse 3  
CCD Vertical Transfer Clock 3  
CCD Sensor Gate Pulse 4  
CCD Vertical Transfer Clock 4  
Line Memory Control Pulse  
Digital Supply  
Digital Ground  
CCD Substrate Reset Pulse  
Horizontal Sync Pulse  
Vertical Sync Pulse  
3-Wire Serial Load Pulse  
3-Wire Serial Data  
P
AO  
AO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
9
DO  
DO  
DO  
DO  
DO  
DO  
DO  
P
10  
11  
12  
13  
14  
15  
16  
Data Output  
TG3A  
V3A/B  
TG3B  
V4  
Data Output Clock  
Horizontal Driver Supply 2  
for H1D, H2B, and H1B  
Horizontal Driver Ground 2  
CCD Horizontal Clock 4  
CCD Horizontal Clock 6  
CCD Horizontal Clock 2  
Horizontal Driver Supply 1  
for H1C, H2A, and H1A  
Horizontal Driver Ground 1  
CCD Horizontal Clock 3  
CCD Horizontal Clock 5  
CCD Horizontal Clock 1  
RS Driver Ground  
CCD Reset Gate Clock  
RS Driver Supply  
17  
18  
19  
20  
21  
HVSS2  
H1D  
H2B  
H1B  
HVDD1  
P
LM  
DO  
DO  
DO  
P
DVDD  
DVSS  
OFD  
HD  
VD  
SLD  
SDA  
SCK  
P
DO  
DO  
DO  
DI3  
DI3  
DI3  
22  
23  
24  
25  
26  
27  
28  
29  
30  
HVSS1  
H1C  
H2A  
H1A  
RSVSS  
RS  
RSVDD  
NC  
NC  
P
DO  
DO  
DO  
P
DO  
P
3-Wire Serial Clock  
NOTES  
1See Figure 41 for circuit configuration.  
2AI = Analog Input, AO = Analog Output, DI = Digital Input,  
DO = Digital Output, DIO = Digital Input/Output, P = Power,  
NC = No Connection.  
NC  
NC  
No Connect  
No Connect  
3Schmitt trigger type input.  
–6–  
REV. 0  
AD9937  
TERMINOLOGY  
Total Output Noise  
Differential Nonlinearity (DNL)  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value. Thus, every  
code must have a finite width. No missing codes guaranteed to  
10-bit resolution indicates that all 1024 codes must be present  
over all operating conditions.  
1LSB = ADC Full Scale 2N codes  
(
)
Peak Nonlinearity  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9937 from a true straight  
line. The point used as zero scale occurs 1/2 LSB before the first  
code transition. Positive full scale is defined as a level 1 1/2 LSB  
beyond the last code transition. The deviation is measured from  
the middle of each particular output code to the true straight line.  
The error is then expressed as a percentage of the 2 V ADC full-  
scale signal. The input signal is always appropriately gained up  
to fill the ADCs full-scale range.  
where N is the bit resolution of the ADC. For the AD9937, 1 LSB  
is 1.95 mV.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. This represents a very high frequency disturbance on the  
AD9937s power supply. The PSR specification is calculated  
from the change in the data outputs for a given step change in  
the supply voltage.  
EQUIVALENT CIRCUITS  
DVDD  
AVDD  
330ꢁ  
R
AVSS  
AVSS  
DVSS  
Figure 1. CCDIN  
Figure 3. Digital Inputs  
HVDD1, HVDD2,  
OR RSVDD  
DRVDD  
DVDD  
RS,  
H1 (A–D),  
H2 (A, B)  
DATA  
ENABLE  
OUTPUT  
DOUT  
TRISTATEOUT  
HVSS1, HVSS2,  
OR RSVSS  
DVSS  
DRVSS  
Figure 2. Digital Data Outputs  
Figure 4. H1(A–D), H2(A, B), and RS Drivers  
REV. 0  
–7–  
AD9937–Typical Performance Characteristics  
0.50  
0.25  
160  
150  
V
= 3.3V  
DD  
140  
130  
120  
110  
100  
V = 3.0V  
DD  
V
= 3.0V  
= 2.7V  
0
–0.25  
–0.50  
DD  
V
DD  
0
200  
400  
600  
800  
1000  
8
10  
12  
CODE  
SAMPLE RATE – MHz  
TPC 2. Typical DNL Performance  
TPC 1. Power vs. Sample Rate  
–8–  
REV. 0  
AD9937  
Table I. Control Register Map  
Register  
Bit  
Bit  
Addr Breakdown Width Default  
Name  
Function  
0
1
(23:0)  
0
24  
1
0
0
SW_RESET  
Software Reset = 000000 (Reset All Registers to Default).  
OUTCONT_REG Internal OUTCONT Signal Control (0 = Digital Outputs held  
at fixed dc level, 1 = Normal Operation).  
Unused  
(23:1)  
(1:0)  
23  
2
2
3
0
0
AFE_STBY  
AFE Standby (0 = Full Standby, 1 = Normal Operation,  
2/3 = Reference Standby).  
2
1
21  
DIG_STBY  
Unused  
Digital Standby (0 = Full Standby, 1 = Normal Operation).  
(23:3)  
(7:0)  
8
9
10  
11  
12  
13  
14  
(16:15)  
17  
8
1
1
1
1
1
1
1
2
1
1
5
0x80  
REFBLACK  
BC_EN  
TESTMODE  
TESTMODE  
PBLK_LEVEL  
TRISTATEOUT  
Black Clamp Level.  
1 = Black Clamp Enable.  
This register should always be set to 0.  
This register should always be set to 0.  
0 = Blank to 0, 1 = Blank to Clamp Level (REFBLACK).  
0 = Data Outputs are Driven, 1 = Data Outputs are Three-Stated.  
1
0
0
0
0
0
0
0
0
1
RETIMEOUT_BAR 0 = Retime Data Outputs, 1 = Do Not Retime Data Outputs.  
GRAY_ENCODE  
TESTMODE  
TESTMODE  
TESTMODE  
Unused  
1 = Gray Encode ADC Outputs.  
This register should always be set to 0.  
This register should always be set to 0.  
This register should always be set to 1.  
18  
(23:19)  
4
0
1
2
3
1
1
1
1
0
0
0
0
VCKM_DIVIDE  
H1BLKRETIME  
LM_INVERT  
VCKM Input Clock Divider (0 = VCKM, 1 = VCKM/2).  
Retimes the H1 HBLK to Internal Clock.  
LM Inversion Control (1 = Invert Programmed LM).  
TGOFD_INVERT TG and OFD Inversion Control (1 = Invert Programmed TG  
and ODF).  
4
1
0
0
VDHD_INVERT  
VD and HD Inversion Control (1 = Invert Programmed VD  
and HD; Note that Internal VD/HD Are HI Active).  
Operating Mode (0 = Slave Mode, 1 = Master Mode).  
5
1
18  
MASTER  
Unused  
(23:6)  
5
(5:0)  
6
6
6
2
0x00  
0x24  
0x00  
0x00  
SHDLOC  
SHPLOC  
DOUTPHASE  
DOUT_DELAY  
SHD Sample Location.  
SHP Sample Location.  
Data Output [9:0] and VCLK Phase Adjustment.  
Data Output Clock Selection (0 = No Delay, 1 = ~4 ns, 2 = ~8 ns,  
3 = ~12 ns).  
(11:6)  
(17:12)  
(19:18)  
20  
21  
22  
23  
1
1
1
1
0
1
0
VCLKMASK  
VCLK_INVERT  
DTEST  
VCLK Masking Control (1 = Mask).  
1 = Invert VCLK.  
1 = Internal Digital Signal Test Mode.  
Unused  
6
7
(5:0)  
6
6
6
6
0x00  
0x20  
0x00  
0x10  
H1POSLOC  
H1NEGLOC  
RSPOSLOC  
RSNEGLOC  
H1 Positive Edge Location.  
H1 Negative Edge Location.  
RS Positive Edge Location.  
RS Negative Edge Location.  
(11:6)  
(17:12)  
(23:18)  
(2:0)  
3
4
H1DRV  
H1A/B/C/D Drive Strength (0 = OFF, 1 = 1.75 mA, 2 = 3.5 mA,  
3 = 5.25 mA, 4 = 7 mA, 5 = 8.75 mA, 6 = 10.5 mA, 7 = 12.25 mA).  
H2A/B Drive Strength (see H1DRV).  
(5:3)  
(8:6)  
(23:9)  
(23:1)  
3
3
15  
23  
4
4
H2DRV  
RSDRV  
Unused  
Unused  
RS Drive Strength (see H1DRV).  
REV. 0  
–9–  
AD9937  
Table I. Control Register Map (continued)  
Register  
Bit  
Bit  
Addr Breakdown Width Default  
Name  
Function  
8
0
1
23  
0
MODE  
Unused  
Mode Control Bit. (0 = Mode A, 1 = Mode B)  
(23:1)  
9
0
1
4
19  
1
0x9  
SPEN  
SPLOGIC  
Unused  
Single Pulse (SP) Output Enable.  
Single Pulse Logic Setting (0 = OR, 1 = AND).  
(4:1)  
(23:5)  
10  
0
1
11  
1
1
OFDEN  
OFDNUM  
TGEN  
OFD Output Enable Control (0 = Disable, 1 = Enable).  
Total Number of OFD Pulses per Field.  
TG Output Enable Control (0 = Disable, 1 = Enable).  
(11:1)  
12  
0x7FF  
1
(23:13)  
11  
Unused  
11  
12  
(11:0)  
(23:12)  
12  
12  
4095  
4095  
OFDHPTOG1  
OFDHPTOG2  
High Precision OFD Toggle Position 1.  
High Precision OFD Toggle Position 2.  
(9:0)  
(23:10)  
10  
14  
0x000  
VGAGAIN  
Unused  
VGA Gain Control.  
Denotes VD synchronous registers (control addresses 8, 9, 10, 11, and 12).  
Table II. VTP Sequence System Register Map (Addr 0x14)  
Bit  
Bit  
Register  
Name  
Addr  
Breakdown Width  
Default  
Function  
VTP_Reg(0)  
(11:0)  
(23:12)  
(31:24)  
12  
12  
8
ENDADDRESS  
STARTADDRESS  
VTP_Reg_Addr  
Sub Word End Address  
Sub Word Start Address  
System Register Address 0x14  
VTP_Reg(1)  
(8:0)  
(17:9)  
(26:18)  
27  
28  
29  
9
9
9
1
1
1
1
1
279  
75  
250  
1
0
0
VTPLEN_0  
V1TOG1_0  
V1TOG2_0  
V1POL_0  
V2POL_0  
V3POL_0  
V4POL_0  
Unused  
VTP0: Length between Repetitions  
VTP0: V1 Toggle Position 1  
VTP0: V1 Toggle Position 2  
VTP0: V1 Start Polarity  
VTP0: V2 Start Polarity  
VTP0: V3 Start Polarity  
30  
31  
1
VTP0: V4 Start Polarity  
VTP_Reg(2)  
VTP_Reg(3)  
VTP_Reg(4)  
(8:0)  
9
9
9
5
40  
145  
110  
V2TOG1_0  
V2TOG2_0  
V3TOG1_0  
Unused  
VTP0: V2 Toggle Position 1  
VTP0: V2 Toggle Position 2  
VTP0: V3 Toggle Position 1  
(17:9)  
(26:18)  
(31:27)  
(8:0)  
9
9
9
5
215  
5
180  
V3TOG2_0  
V4TOG1_0  
V4TOG2_0  
Unused  
VTP0: V3 Toggle Position 2  
VTP0: V4 Toggle Position 1  
VTP0: V4 Toggle Position 2  
(17:9)  
(26:18)  
(31:27)  
(8:0)  
(17:9)  
(26:18)  
27  
28  
29  
9
9
9
1
1
1
1
1
99  
29  
99  
1
0
0
VTPLEN_1  
V1TOG1_1  
V1TOG2_1  
V1POL_1  
V2POL_1  
V3POL_1  
V4POL_1  
Unused  
VTP1: Length between Repetitions  
VTP1: V1 Toggle Position 1  
VTP1: V1 Toggle Position 2  
VTP1: V1 Start Polarity  
VTP1: V2 Start Polarity  
VTP1: V3 Start Polarity  
30  
31  
1
VTP1: V4 Start Polarity  
VTP_Reg(5)  
(8:0)  
9
9
9
5
15  
57  
43  
V2TOG1_1  
V2TOG2_1  
V3TOG1_1  
Unused  
VTP1: V2 Toggle Position 1  
VTP1: V2 Toggle Position 2  
VTP1: V3 Toggle Position 1  
(17:9)  
(26:18)  
(31:27)  
–10–  
REV. 0  
AD9937  
Table II. VTP Sequence System Register Map (Addr 0x14) (continued)  
Bit  
Bit  
Register  
Name  
Addr  
Breakdown Width  
Default  
Function  
VTP_Reg(6)  
(8:0)  
9
9
9
5
85  
1
71  
V3TOG2_1  
V4TOG1_1  
V4TOG2_1  
Unused  
VTP1: V3 Toggle Position 2  
VTP1: V4 Toggle Position 1  
VTP1: V4 Toggle Position 2  
(17:9)  
(26:18)  
(31:27)  
VTP_Reg(7)  
(8:0)  
(17:9)  
(26:18)  
27  
28  
29  
9
9
9
1
1
1
1
1
99  
29  
99  
1
0
0
VTPLEN_2  
V1TOG1_2  
V1TOG2_2  
V1POL_2  
V2POL_2  
V3POL_2  
V4POL_2  
Unused  
VTP2: Length between Repetitions  
VTP2: V1 Toggle Position 1  
VTP2: V1 Toggle Position 2  
VTP2: V1 Start Polarity  
VTP2: V2 Start Polarity  
VTP2: V3 Start Polarity  
30  
31  
1
VTP2: V4 Start Polarity  
VTP_Reg(8)  
VTP_Reg(9)  
(8:0)  
9
9
9
5
15  
57  
43  
V2TOG1_2  
V2TOG2_2  
V3TOG1_2  
Unused  
VTP2: V2 Toggle Position 1  
VTP2: V2 Toggle Position 2  
VTP2: V3 Toggle Position 1  
(17:9)  
(26:18)  
(31:27)  
(8:0)  
9
9
9
5
85  
1
71  
V3TOG2_2  
V4TOG1_2  
V4TOG2_2  
Unused  
VTP2: V3 Toggle Position 2  
VTP2: V4 Toggle Position 1  
VTP2: V4 Toggle Position 2  
(17:9)  
(26:18)  
(31:27)  
VTP_Reg(10) (11:0)  
(23:12)  
12  
12  
8
40  
410  
SP1TOG1  
SP1TOG2  
Unused  
SP1 Toggle Position 1 (V1A/V1B)  
SP1 Toggle Position 2 (V1A/V1B)  
(31:24)  
VTP_Reg(11) (11:0)  
(23:12)  
12  
12  
8
490  
780  
SP2TOG1  
SP2TOG2  
Unused  
SP2 Toggle Position 1 (V2)  
SP2 Toggle Position 2 (V2)  
(31:24)  
VTP_Reg(12) (11:0)  
(23:12)  
12  
12  
8
80  
360  
SP3TOG1  
SP3TOG2  
Unused  
SP3 Toggle Position 1 (V3A/V3B)  
SP3 Toggle Position 2 (V3A/V3B)  
(31:24)  
VTP_Reg(13) (11:0)  
(23:12)  
12  
12  
8
450  
820  
SP4TOG1  
SP4TOG2  
Unused  
SP4 Toggle Position 1 (V4)  
SP4 Toggle Position 2 (V4)  
(31:24)  
REV. 0  
–11–  
AD9937  
Table III. H/LM System Register Map (Addr 0x15)  
Register  
Bit  
Bit  
Addr  
Breakdown Width  
Default  
Name  
Function  
HLM_Reg(0) (11:0)  
(23:12)  
12  
12  
8
ENDADDRESS  
STARTADDRESS Sub Word Start Address  
HLM_Reg_Addr  
Sub Word End Address  
(31:24)  
System Register Address 0x15  
HLM_Reg(1)  
0
1
2
3
4
5
1
1
1
1
1
1
26  
0
0
1
1
0
0
H1APOL  
H1BPOL  
H1CPOL  
H1DPOL  
H2APOL  
H2BPOL  
Unused  
H1A Special H-Pattern Start Polarity  
H1B Special H-Pattern Start Polarity  
H1C Special H-Pattern Start Polarity  
H1D Special H-Pattern Start Polarity  
H2A Special H-Pattern Start Polarity  
H2B Special H-Pattern Start Polarity  
(31:6)  
HLM_Reg(2) (5:0)  
(11:6)  
6
6
6
14  
0x00  
0x04  
0x01  
SPH1A1  
SPH1B1  
SPH1C1  
Unused  
H1A Special H-Pattern during LM Repetition 1  
H1B Special H-Pattern during LM Repetition 1  
H1C Special H-Pattern during LM Repetition 1  
(17:12)  
(31:18)  
HLM_Reg(3) (5:0)  
(11:6)  
6
6
6
14  
0x07  
0x08  
0x22  
SPH1D1  
SPH2A1  
SPH2B1  
Unused  
H1D Special H-Pattern during LM Repetition 1  
H2A Special H-Pattern during LM Repetition 1  
H2B Special H-Pattern during LM Repetition 1  
(17:12)  
(31:18)  
HLM_Reg(4) (5:0)  
(11:6)  
6
6
6
14  
0x34  
0x34  
0x04  
SPH1A2  
SPH1B2  
SPH1C2  
Unused  
H1A Special H-Pattern during LM Repetition 2  
H1B Special H-Pattern during LM Repetition 2  
H1C Special H-Pattern during LM Repetition 2  
(17:12)  
(31:18)  
HLM_Reg(5) (5:0)  
(11:6)  
6
6
6
14  
0x04  
0x3A  
0x0B  
SPH1D2  
SPH2A2  
SPH2B2  
Unused  
H1D Special H-Pattern during LM Repetition 2  
H2A Special H-Pattern during LM Repetition 2  
H2B Special H-Pattern during LM Repetition 2  
(17:12)  
(31:18)  
HLM_Reg(6) (5:0)  
(11:6)  
6
6
6
14  
0x3D  
0x3F  
0x3C  
SPH1A3  
SPH1B3  
SPH1C3  
Unused  
H1A Special H-Pattern during LM Repetition 3  
H1B Special H-Pattern during LM Repetition 3  
H1C Special H-Pattern during LM Repetition 3  
(17:12)  
(31:18)  
HLM_Reg(7) (5:0)  
(11:6)  
6
6
6
14  
0x3C  
0x03  
0x02  
SPH1D3  
SPH2A2  
SPH2B3  
Unused  
H1D Special H-Pattern during LM Repetition 3  
H2A Special H-Pattern during LM Repetition 3  
H2B Special H-Pattern during LM Repetition 3  
(17:12)  
(31:18)  
HLM_Reg(8) (7:0)  
(15:8)  
8
8
8
8
99  
5
55  
87  
LMLEN0  
LM Pattern 0 (LM0): LM Counter Length  
LM Pattern 0 (LM0): Toggle Position 1  
LM Pattern 0 (LM0): Toggle Position 2  
LM Pattern 0 (LM0): Special H Pulse Start Position  
LMTOG1_0  
LMTOG2_0  
SPHSTART0  
(23:16)  
(31:24)  
HLM_Reg(9) (7:0)  
(15:8)  
8
8
8
8
29  
2
26  
0
LMLEN1  
LM Pattern 1 (LM1): LM Counter Length  
LM Pattern 1 (LM1): Toggle Position 1  
LM Pattern 1 (LM1): Toggle Position 2  
LM Pattern 1 (LM1): Special H Pulse Start Position  
LMTOG1_1  
LMTOG2_1  
SPHSTART1  
(23:16)  
(31:24)  
–12–  
REV. 0  
AD9937  
Table IV. Shutter System Register Map (Addr 0x16)  
Register  
Bit  
Bit  
Addr  
Breakdown Width  
Default  
Name  
Function  
Shut_Reg(0)  
(11:0)  
(23:12)  
(31:24)  
12  
12  
8
ENDADDRESS  
STARTADDRESS Sub Word Start Address  
SHUT_Reg_Addr System Register Address 0x16  
Sub Word End Address  
Shut_Reg(1)  
Shut_Reg(2)  
Shut_Reg(3)  
Shut_Reg(4)  
(11:0)  
(23:12)  
(31:24)  
12  
12  
8
80  
370  
TGTOG1_0  
TGTOG2_0  
Unused  
TG0 Pulse Toggle Position 1  
TG0 Pulse Toggle Position 2  
(11:0)  
(23:12)  
(31:24)  
12  
12  
8
490  
780  
TGTOG1_1  
TGTOG2_1  
Unused  
TG1 Pulse Toggle Position 1  
TG1 Pulse Toggle Position 2  
(11:0)  
(23:12)  
(31:24)  
12  
12  
8
540  
720  
OFDTOG1_0  
OFDTOG2_0  
Unused  
OFD0 Pulse Toggle Position 1  
OFD0 Pulse Toggle Position 2  
(11:0)  
(23:12)  
(31:24)  
12  
12  
8
830  
860  
OFDTOG1_1  
OFDTOG2_1  
Unused  
OFD1 Pulse Toggle Position 1  
OFD1 Pulse Toggle Position 2  
REV. 0  
–13–  
AD9937  
Table V. Mode_A (Addr 0x17)  
Register  
Bit  
Bit  
Addr  
Breakdown Width  
Default Name  
Function  
Mode_Reg(0) (11:0)  
(23:12)  
12  
12  
8
ENDADDRESS  
STARTADDRESS  
MODE_Reg_Addr  
Sub Word End Address  
Sub Word Start Address  
Mode Register Address (Mode A = Addr 0x17)  
(31:24)  
Mode_Reg(1) (6:0)  
7
1
1
4
1
18  
0
0
1
0xA  
0
TGACTLINE  
TGPATSEL0  
TGPATSEL1  
TGMASK  
OFDPATSEL  
Unused  
TG Active Line  
7
8
TG1A/B Pattern Selector (0 = TG0, 1 = TG1)  
TG3A/B Pattern Selector (0 = TG0, 1 = TG1)  
TG Masking Control (1 = Mask)  
(12:9)  
13  
(31:14)  
OFD Pattern Selection (0 = OFD0, 1 = OFD1)  
Mode_Reg(2) (11:0)  
(23:12)  
12  
12  
8
831  
866  
HDTOG1  
HDTOG2  
Unused  
HD Toggle Position 1  
HD Toggle Position 2  
(31:24)  
Mode_Reg(3) (11:0)  
(23:12)  
12  
12  
8
4095  
4095  
HDTOG3  
HDTOG4  
Unused  
HD Toggle Position 3  
HD Toggle Position 4  
(31:24)  
Mode_Reg(4) (11:0)  
12  
11  
4
4
1
2339  
262  
0
HDLASTLEN  
VDLEN  
VDTOG1  
VDTOG2  
Unused  
HD Last Line Length  
VD Field Length  
VD Toggle Position 1  
VD Toggle Position 2  
(22:12)  
(26:23)  
(30:27)  
31  
4
Mode_Reg(5) (11:0)  
(23:12)  
12  
12  
8
1543  
1557  
CLPOBTOG1  
CLPOBTOG2  
Unused  
CLPOB Toggle Position 1  
CLPOB Toggle Position 2  
(31:24)  
Mode_Reg(6) (11:0)  
(23:12)  
12  
12  
8
4095  
4095  
CLPOBTOG3  
CLPOBTOG4  
Unused  
CLPOB Toggle Position 3  
CLPOB Toggle Position 4  
(31:24)  
Mode_Reg(7) (11:0)  
12  
12  
1
0
869  
0
HBLKTOG1  
HBLKTOG2  
H1TOG12POL  
Unused  
HBLK Toggle Position 1  
HBLK Toggle Position 2  
H1 Polarity between Toggle Positions 1 and 2  
(23:12)  
24  
(31:25)  
7
Mode_Reg(8) (11:0)  
12  
12  
1
4095  
4095  
0
HBLKTOG3  
HBLKTOG4  
H1TOG34POL  
Unused  
HBLK Toggle Position 3  
HBLK Toggle Position 4  
H1 Polarity between Toggle Positions 3 and 4  
(23:12)  
24  
(31:25)  
7
Mode_Reg(9) (11:0)  
(23:12)  
12  
12  
8
6
878  
PBLKTOG1  
PBLKTOG2  
Unused  
PBLK Toggle Position 1  
PBLK Toggle Position 2  
(31:24)  
Mode_Reg(10) (11:0)  
(23:12)  
12  
12  
8
4095  
4095  
PBLKTOG3  
PBLKTOG4  
Unused  
PBLK Toggle Position 3  
PBLK Toggle Position 4  
(31:24)  
Mode_Reg(11) (10:0)  
(21:11)  
11  
11  
10  
255  
3
PBLKSTART  
PBLKSTOP  
Unused  
PBLK Start Position  
PBLK Stop Position  
(31:22)  
Mode_Reg(12) (10:0)  
11  
11  
1
0
1
0
HMASKSTART  
HMASKSTOP  
H1MASKPOL  
Unused  
Vertical H Masking Start Position  
Vertical H Masking Stop Position  
Masking Polarity for H1 during Vertical Blanking Period  
(21:11)  
22  
(31:23)  
9
Mode_Reg(13) (11:0)  
(23:12)  
12  
12  
8
550  
4095  
LMSTART0  
LMSTART1  
Unused  
LM Counter Start Position 1  
LM Counter Start Position 2  
(31:24)  
–14–  
REV. 0  
AD9937  
Table V. Mode_A (Addr 0x17) (continued)  
Register  
Bit  
Bit  
Addr  
Breakdown Width  
Default  
Name  
Function  
Mode_Reg(14) (7:0)  
(15:8)  
8
8
8
8
1
0
0
0
SCP1  
SCP2  
SCP3  
SCP4  
Sequence Change Position 1  
Sequence Change Position 2  
Sequence Change Position 3  
Sequence Change Position 4  
(23:16)  
(31:24)  
Mode_Reg(15) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN0  
HD Counter Length Value for Region 0  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 0  
LM Pattern Select for Region 0 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 0  
Special H-Pattern Enable in Region 0  
CLPOB Enable in Region 0  
(13:12)  
(16:14)  
17  
(19:18)  
20  
0
0
0
0
0
1
VTPPATSEL0  
VTPREP0  
LMPATSEL0  
LMREP0  
SPHEN0  
CLPOBEN0  
Unused  
21  
(31:22)  
Mode_Reg(16) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN1  
HD Counter Length Value for Region 1  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 1  
LM Pattern Select for Region 1 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 1  
Special H-Pattern Enable in Region 1  
CLPOB Enable in Region 1  
(13:12)  
(16:14)  
17  
(19:18)  
20  
0
2
0
3
1
1
VTPPATSEL1  
VTPREP1  
LMPATSEL1  
LMREP1  
SPHEN1  
CLPOBEN1  
Unused  
21  
(31:22)  
Mode_Reg(17) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN2  
HD Counter Length Value for Region 2  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 2  
LM Pattern Select for Region 2 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 2  
(13:12)  
(16:14)  
17  
(19:18)  
20  
21  
(31:22)  
0
2
0
3
1
1
VTPPATSEL2  
VTPREP2  
LMPATSEL2  
LMREP2  
SPHEN2  
CLPOBEN2  
Unused  
Special H-Pattern Enable in Region 2  
CLPOB Enable in Region 2  
Mode_Reg(18) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN3  
HD Counter Length Value for Region 3  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 3  
LM Pattern Select for Region 3 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 3  
(13:12)  
(16:14)  
17  
(19:18)  
20  
0
2
0
3
1
1
VTPPATSEL3  
VTPREP3  
LMPATSEL3  
LMREP3  
SPHEN3  
CLPOBEN3  
Unused  
Special H-Pattern Enable in Region 3  
CLPOB Enable in Region 3  
21  
(31:22)  
Mode_Reg(19) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN4  
HD Counter Length Value for Region 4  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 4  
LM Pattern Select for Region 4 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 4  
(13:12)  
(16:14)  
17  
(19:18)  
20  
0
2
0
3
1
1
VTPPATSEL4  
VTPREP4  
LMPATSEL4  
LMREP4  
SPHEN4  
CLPOBEN4  
Unused  
Special H-Pattern Enable in Region 4  
CLPOB Enable in Region 4  
21  
(31:22)  
REV. 0  
–15–  
AD9937  
Table VI. Mode_B (Addr 0x18)  
Register  
Bit  
Bit  
Addr  
Breakdown Width  
Default Name  
Function  
Mode_Reg(0) (11:0)  
(23:12)  
12  
12  
8
ENDADDRESS  
STARTADDRESS Sub Word Start Address  
MODE_Reg_Addr Mode Register Address (Mode B = Addr 0x18)  
Sub Word End Address  
(31:24)  
Mode_Reg(1) (6:0)  
7
1
1
4
1
18  
0
0
1
0x0  
1
TGACTLINE  
TGPATSEL0  
TGPATSEL1  
TGMASK  
OFDPATSEL  
Unused  
TG Active Line  
7
8
TG1A/B Pattern Selector (0 = TG0, 1 = TG1)  
TG3A/B Pattern Selector (0 = TG0, 1 = TG1)  
TG Masking Control (1 = Mask)  
(12:9)  
13  
(31:14)  
OFD Pattern Selection (0 = OFD0, 1 = OFD1)  
Mode_Reg(2) (11:0)  
(23:12)  
12  
12  
8
95  
130  
HDTOG1  
HDTOG2  
Unused  
HD Toggle Position 1  
HD Toggle Position 2  
(31:24)  
Mode_Reg(3) (11:0)  
(23:12)  
12  
12  
8
830  
865  
HDTOG3  
HDTOG4  
Unused  
HD Toggle Position 3  
HD Toggle Position 4  
(31:24)  
Mode_Reg(4) (11:0)  
12  
11  
4
4
1
1559  
525  
0
HDLASTLEN  
VDLEN  
VDTOG1  
VDTOG2  
Unused  
HD Last Line Length  
VD Field Length  
VD Toggle Position 1  
VD Toggle Position 2  
(22:12)  
(26:23)  
(30:27)  
31  
4
Mode_Reg(5) (11:0)  
(23:12)  
12  
12  
8
808  
822  
CLPOBTOG1  
CLPOBTOG2  
Unused  
CLPOB Toggle Position 1  
CLPOB Toggle Position 2  
(31:24)  
Mode_Reg(6) (11:0)  
(23:12)  
12  
12  
8
1543  
1557  
CLPOBTOG3  
CLPOBTOG4  
Unused  
CLPOB Toggle Position 3  
CLPOB Toggle Position 4  
(31:24)  
Mode_Reg(7) (11:0)  
12  
12  
1
1
133  
1
HBLKTOG1  
HBLKTOG2  
H1TOG12POL  
Unused  
HBLK Toggle Position 1  
HBLK Toggle Position 2  
H1 Polarity between Toggle Positions 1 and 2  
(23:12)  
24  
(31:25)  
7
Mode_Reg(8) (11:0)  
12  
12  
1
825  
868  
0
HBLKTOG3  
HBLKTOG4  
H1TOG34POL  
Unused  
HBLK Toggle Position 3  
HBLK Toggle Position 4  
H1 Polarity between Toggle Positions 3 and 4  
(23:12)  
24  
(31:25)  
7
Mode_Reg(9) (11:0)  
(23:12)  
12  
12  
8
6
143  
PBLKTOG1  
PBLKTOG2  
Unused  
PBLK Toggle Position 1  
PBLK Toggle Position 2  
(31:24)  
Mode_Reg(10) (11:0)  
(23:12)  
12  
12  
8
831  
878  
PBLKTOG3  
PBLKTOG4  
Unused  
PBLK Toggle Position 3  
PBLK Toggle Position 4  
(31:24)  
Mode_Reg(11) (10:0)  
(21:11)  
11  
11  
10  
510  
6
PBLKSTART  
PBLKSTOP  
Unused  
PBLK Start Position  
PBLK Stop Position  
(31:22)  
Mode_Reg(12) (10:0)  
11  
11  
1
0
1
0
HMASKSTART  
HMASKSTOP  
H1MASKPOL  
Unused  
Vertical H Masking Start Position  
Vertical H Masking Stop Position  
Masking Polarity for H1 during Vertical Blanking Period  
(21:11)  
22  
(31:23)  
9
Mode_Reg(13) (11:0)  
(23:12)  
12  
12  
8
99  
830  
LMSTART0  
LMSTART1  
Unused  
LM Counter Start Position 1  
LM Counter Start Position 2  
(31:24)  
–16–  
REV. 0  
AD9937  
Table VI. Mode_B (Addr 0x18) (continued)  
Register  
Bit  
Bit  
Addr  
Breakdown Width  
Default Name  
Function  
Mode_Reg(14) (7:0)  
(15:8)  
8
8
8
8
1
0
0
0
SCP1  
SCP2  
SCP3  
SCP4  
Sequence Change Position 1  
Sequence Change Position 2  
Sequence Change Position 3  
Sequence Change Position 4  
(23:16)  
(31:24)  
Mode_Reg(15) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN0  
HD Counter Length Value for Region 0  
(13:12)  
(16:14)  
17  
(19:18)  
20  
0
0
0
0
0
1
VTPPATSEL0  
VTPREP0  
LMPATSEL0  
LMREP0  
SPHEN0  
CLPOBEN0  
Unused  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 0  
LM Pattern Select for Region 0 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 0  
Special H-Pattern Enable in Region 0  
CLPOB Enable in Region 0  
21  
(31:22)  
Mode_Reg(16) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN1  
HD Counter Length Value for Region 1  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 1  
LM Pattern Select for Region 1 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 1  
Special H-Pattern Enable in Region 1  
CLPOB Enable in Region 1  
(13:12)  
(16:14)  
17  
(19:18)  
20  
1
1
1
1
0
1
VTPPATSEL1  
VTPREP1  
LMPATSEL1  
LMREP1  
SPHEN1  
CLPOBEN1  
Unused  
21  
(31:22)  
Mode_Reg(17) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN2  
HD Counter Length Value for Region 2  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 2  
LM Pattern Select for Region 2 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 2  
(13:12)  
(16:14)  
17  
(19:18)  
20  
21  
(31:22)  
1
1
1
1
0
1
VTPPATSEL2  
VTPREP2  
LMPATSEL2  
LMREP2  
SPHEN2  
CLPOBEN2  
Unused  
Special H-Pattern Enable in Region 2  
CLPOB Enable in Region 2  
Mode_Reg(18) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN3  
HD Counter Length Value for Region 3  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 3  
LM Pattern Select for Region 3 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 3  
(13:12)  
(16:14)  
17  
(19:18)  
20  
1
1
1
1
0
1
VTPPATSEL3  
VTPREP3  
LMPATSEL3  
LMREP3  
SPHEN3  
CLPOBEN3  
Unused  
Special H-Pattern Enable in Region 3  
CLPOB Enable in Region 3  
21  
(31:22)  
Mode_Reg(19) (11:0)  
12  
2
3
1
2
1
1
10  
1559  
HDLEN4  
HD Counter Length Value for Region 4  
VTP Pattern Select (0 = VTP0, 1 = VTP1, 2 = VTP2)  
VTP Pulse Repetition Number in Region 4  
LM Pattern Select for Region 4 (0 = LM0, 1 = LM1)  
LM Repetition Number in Region 4  
(13:12)  
(16:14)  
17  
(19:18)  
20  
1
1
1
1
0
1
VTPPATSEL4  
VTPREP4  
LMPATSEL4  
LMREP4  
SPHEN4  
CLPOBEN4  
Unused  
Special H-Pattern Enable in Region 4  
CLPOB Enable in Region 4  
21  
(31:22)  
REV. 0  
–17–  
AD9937  
SERIAL INTERFACE TIMING  
System and Mode Register Serial Interface  
All of the internal registers of the AD9937 are accessed through  
a 3-wire serial interface. The 3-wire interface consists of a clock  
(SCK), serial load (SLD), and serial data (SDA).  
The AD9937 provides two options for writing to system and  
mode registers. The Page/Burst write option is used when all the  
registers are going to be written to, whereas the Random Access  
option is used when only one or a small contiguous sequence of  
registers is going to be written to. As shown in Figure 6, the  
protocol for writing to system and mode registers requires eight  
bits for the address data, 12 bits for the start location, 12 bits  
for the end location, and 32 bits for the register data.  
The AD9937 has three different register types that are configured  
by the 3-wire serial interface pins. As described in Table VII,  
the three register types are control registers, system registers,  
and mode registers.  
Table VII. Serial Interface Registers  
Page/Burst Option  
The AD9937 is automatically configured for Page/Burst mode if  
both 12-bit STARTADDRESS and ENDADDRESS fields  
equal 0. In this configuration, the AD9937 expects all registers  
to be written to, therefore all register data must be clocked in  
before the SLD pulse is asserted high. The SLD pulse is ignored  
until all register data is clocked in. The Page/Burst option is  
preferred when initially programming the system and mode  
registers at startup.  
Register  
Address  
No. of Registers  
Control Registers  
0x00 to  
0x12  
24-Bit Register at Each  
Address. See Table I.  
VTP Sequence  
System Registers  
0x14  
0x15  
0x16  
0x17  
0x18  
Fourteen 32-Bit System  
Registers at Address  
0x14. See Table II.  
H/LM System  
Registers  
Ten 32-Bit System  
Registers at Address  
0x15. See Table III.  
Random Access Option  
With the Random Access option, the 12-bit STARTADDRESS  
and ENDADDRESS fields are typically used when writing to  
one system or mode register or a small sequential number of  
system or mode registers. In this mode, the address data selects  
the system or mode register bank that is going to be accessed,  
the 12-bit STARTADDRESS determines the first register to be  
accessed, and the 12-bit ENDADDRESS determines the last  
register to be accessed. Two examples of Random Access are  
provided below (refer to Figure 6).  
Shutter System  
Registers  
Five 32-Bit System  
Registers at Address  
0x16. See Table IV.  
Mode_A  
Mode_B  
Twenty 32-Bit Mode_A  
Registers at Address  
0x17. See Table V.  
Twenty 32-Bit Mode_B  
Registers at Address  
0x18. See Table VI.  
Example 1: Accessing Only One Register, HLM_Reg(6)  
HLM_Reg_addr[A7:A0] = 0x15  
STARTADDRESS[S11:S0] = 0x0006  
ENDADDRESS[E11:E0] = 0x0006  
Control Register Serial Interface  
The control register 3-wire interface timing requirements are  
shown in Figure 5. Writing to control registers requires eight bits of  
address data followed by 24 bits of configuration data between  
each active low period of SLD for each address. The SLD signal  
must be kept high for at least one full SCK cycle between suc-  
cessive writes to control registers.  
Example 2: Accessing HLM_Reg(2), HLM_Reg(3), and  
HLM_Reg(4) Sequentially  
HLM_Reg_addr[A7:A0] = 0x15  
STARTADDRESS[S11:S0] = 0x0002  
ENDADDRESS[E11:E0] = 0x0004  
....  
....  
SDA  
SCK  
A7  
A6  
tDH  
A5  
A4  
A3  
A2  
A1  
A0  
D23  
D22  
D21  
D3  
D2  
D1  
D0  
tDS  
1
2
3
4
5
6
7
8
9
10  
11  
29  
30  
31  
tLH  
32  
tLS  
SLD  
1. SDA BITS ARE INTERNALLY LATCHED ONTHE RISING EDGES OF SCK.  
2. THISTIMING PATTERN MUST BEWRITTEN FOR EACH REGISTERWRITEWITH SLD REMAINING HIGH FOR AT  
LEAST ONE FULL SCK PERIOD BEFORE ASSERTING SLD LOW AGAIN FORTHE NEXT REGISTERWRITE.  
Figure 5. 3-Wire Serial Interface Timing for Control Registers  
–18–  
REV. 0  
AD9937  
8-BIT REG  
ADDRESS [7:0]  
12-BIT START  
ADDRESS [11:0]  
12-BIT END  
ADDRESS[11:0]  
32-BIT DATA 0 [31:0]  
32-BIT DATA N [31:0]  
SDA  
8 BIT  
ADDRESS  
START LOCATION  
ADDRESS  
END LOCATION  
ADDRESS  
DATA 0 [31:0]  
DATA N [31:0]  
SCK  
SLD  
1
1
2
1
1. ALL SLD PULSES ARE IGNORED UNTILTHE LAST BIT OFTHE LAST DATA NWORD IS CLOCKED IN.  
2.THE SLD PULSE MUST BE ASSERTED HIGHWHEN ALL SDA DATATRANSMISSIONS HAVE BEEN COMPLETED.  
Figure 6. System and Mode Register Writes  
Internal Power-On Reset Circuitry  
Asynchronous Register Operation  
After power-on, the AD9937 automatically resets all internal  
registers and performs internal calibration procedures. This  
takes approximately 1 ms to complete. During this time, normal  
clock signals and serial write operations may occur. However,  
serial register writes are ignored until the internal reset opera-  
tion is completed.  
For asynchronous register writes, SDA data is stored directly  
into the serial register at the rising edge of SLK. As a result,  
register operation begins immediately after the register LSB has  
been latched in on the rising edge of SCK.  
VD Synchronous Register Operation  
For VD synchronous type registers, SDA data is temporarily  
stored in a buffer register upon completion of clocking in the  
last register LSB. This data is held in the temporary buffer  
register until the next rising edge of VD is applied. Once the  
next rising edge of VD occurs, the buffered register data is  
loaded into the serial register, and register operation begins.  
See Figure 7.  
VD Synchronous and Asynchronous Register Operation  
There are two types of control registers, VD synchronous and  
VD asynchronous, as indicated in the Address column of Table I.  
Register writes to synchronous and asynchronous type registers  
operate differently as described in the following sections. All  
writes to system, Mode_A, and Mode_B registers occur  
asynchronously.  
Control registers at addresses 0x08, 0x09, 0x10, 0x11, and 0x12  
are VD synchronous type registers.  
OPERATION OF VD SYNCHRONOUS TYPE  
REGISTER WRITES BEGIN AT THE NEXT VD  
RISING EDGE.  
VD  
HD  
VCKM  
PROGRAMMING VD SYNCHRONOUS  
TYPE REGISTERS MUST BE COMPLETED  
AT LEAST FOUR VCKM CYCLES BEFORE  
THE RISING EDGE OF VD.  
Figure 7. VD Synchronous Type Register Writes  
REV. 0  
–19–  
AD9937  
SYSTEM OVERVIEW  
The H-drivers for H1(AD) and H2(A,B), and RS are included  
in the AD9937, allowing these clocks to be directly connected  
to the CCD. H-drive voltage of up to 3.6 V is supported. An  
external V-driver is required for the vertical transfer clocks and  
sensor gate pulses.  
Figure 8 shows the typical system block diagram for the AD9937.  
The CCD output is processed by the AD9937s AFE circuitry,  
which consists of a CDS, VGA, black level clamp, and A/D  
converter. The digitized pixel information is sent to the digital  
image processor chip, which performs the postprocessing and  
compression. To operate the CCD, all CCD timing parameters  
are programmed into the AD9937 from the system micropro-  
cessor, through the 3-wire serial interface. From the system  
master clock, VCKM provided by the image processor or exter-  
nal crystal, the AD9937 generates all of the CCDs horizontal  
and vertical clocks and all internal AFE clocks.  
Figure 9 shows the horizontal and vertical counter dimensions  
for the AD9937. All internal horizontal and vertical clocking is  
programmed using these dimensions to specify line and pixel  
locations.  
MAXIMUM FIELD DIMENSIONS  
12-BIT HORIZONTALCOUNTER = 4096 PIXELS MAX  
CCD  
AD9937  
DIGITAL  
OUTPUTS  
V
OUT  
ADC  
OUT  
0.1F  
DIGITAL IMAGE  
PROCESSING  
ASIC  
CCDIN  
C
SERIAL  
INTERFACE  
IN  
REGISTER  
DATA  
BUFFER  
V-DRIVE  
CCD  
TIMING  
TIMING  
GENERATOR  
Figure 8. Typical System Block Diagram, Master Mode  
Figure 9. Horizontal and Vertical Counters  
MAX VD LENGTH IS 2048 LINES  
VD  
MAX HD LENGTH IS 4095 PIXELS  
HD  
VCKM  
Figure 10. Maximum VD/HD Dimensions  
–20–  
REV. 0  
AD9937  
ANALOG FRONT END DESCRIPTION AND OPERATION  
The AD9937 AFE signal processing chain is shown in Figure 11.  
Each processing step is essential in achieving a high quality image  
from the raw CCD pixel data.  
Correlated Double Sampler  
The CDS circuit samples each CCD pixel twice to extract the  
video information and reject low frequency noise. The timing  
diagram in Figure 13 illustrates how the two internally gener-  
ated CDS clocks, SHP and SHD, are used to sample the  
reference level and the data level, respectively, of the CCD  
signal. The placement of the SHP and SHD sampling edges is  
determined by the setting of the SHPLOC (addr 0x05) and  
SHDLOC (addr 0x05) control registers. Placement of these two  
clock edges is critical in achieving the best performance from  
the CCD.  
DC Restore  
To reduce the large dc offset of the CCD output signal, a dc  
restore circuit is used with an external 0.1 µF series coupling  
capacitor. This restores the dc level of the CCD signal to approxi-  
mately 1.5 V to be compatible with the 3 V analog supply of  
the AD9937.  
1.0F  
REFT  
2.0V  
1.0F  
REFB  
1.0V  
DC RESTORE  
AD9937  
INTERNAL  
VREF  
1.5V  
DOUT  
PHASE  
SHP  
SHD  
2V FULL  
SCALE  
6dB TO 40dB  
0.1F  
OUTPUT  
DATA  
LATCH  
10  
CCDIN  
ADC  
CDS  
VGA  
DOUT  
10  
OPTICAL BLACK  
CLAMP  
8-BIT  
DAC  
VGA GAIN  
REGISTER  
CLPOB  
DIGITAL  
FILTER  
8
DOUT  
PHASE  
SHD  
CLPOB  
SHP  
CLAMP LEVEL  
REGISTER  
V-H  
PRECISION  
TIMING  
TIMING  
GENERATION  
GENERATION  
Figure 11. AFE Block Diagram  
REV. 0  
–21–  
AD9937  
PRECISION TIMING HIGH SPEED TIMING  
GENERATION  
High Speed Clock Programmability  
Figure 13 shows how the high speed clocks RS, H1H2, SHP, and  
SHD are generated. The RS and H1 pulse have positive and nega-  
tive edge programmability by using control registers (addr 0x06).  
The H2 clock is always the inverse of H1. Table VIII summarizes  
the high speed timing registers and the parameters for the high  
speed clocks. Each register is six bits wide with the 2 MSB  
used to select the quadrant region as outlined in Table IX.  
Figure 14 shows the range and default locations of the high  
speed clock signals.  
The AD9937 generates flexible high speed timing signals using  
the precision timing core. This core is the foundation for gener-  
ating the timing used for both the CCD and the AFE: the  
reset gate RS, horizontal drivers H1(AD) and H2(A, B), and  
the CDS sample clocks. A unique architecture makes it routine  
for the system designer to optimize image quality by providing  
precise control over the horizontal CCD readout and the AFE  
correlated double sampling.  
Timing Resolution  
H-Driver and RS Outputs  
The precision timing core uses a 13 master clock input  
(VCKM) as a reference. This clock should be the same as  
the CCD pixel clock frequency. Figure 12 illustrates how  
the internal timing core divides the master clock period into  
48 steps or edge positions. Using a 12 MHz VCKM fre-  
quency, the edge resolution of the precision timing core is  
1.7 ns. A 24 MHz VCKM frequency can be applied to the  
AD9937 where the AD9937 will internally divide the VCKM  
frequency by 2. VCKM frequency division by 2 is controlled  
by using the VCKM_DIVIDE control (addr 0x04) register.  
In addition to the programmable timing positions, the AD9937  
features on-chip output drivers for the RS and H1H2 outputs.  
These drivers are powerful enough to directly drive the CCD  
inputs. The H-driver current can be adjusted for optimum rise/  
fall time into a particular load by using the H1DRV and H2DRV  
control registers (addr 0x07). The RS drive current is adjustable  
using the RSDRV control register (addr 0x07). The H1DRV,  
H2DRV, and RSDRV registers are adjustable in 1.75 mA incre-  
ments. All DRV registers have setting of 0 equal to OFF or  
three-state, and the maximum setting of 7.  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
VCKM  
tVCKMDLY  
1 PIXEL  
PERIOD  
PIXEL CLOCK PERIOD IS DIVIDED INTO 48 POSITIONS, PROVIDING FINE EDGE RESOLUTION FOR HIGH SPEED CLOCKS.  
THERE IS A FIXED DELAY FROMTHE VCKM INPUTTOTHE INTERNAL PIXEL PERIOD POSITIONS (tVCKMDLY = 6ns TYP).  
Figure 12. High Speed Clock Resolution from VCKM Master Clock  
3
CCD  
SIGNAL  
4
(INTERNAL)  
CDS  
1
5
2
RS  
6
H1  
H2  
PROGRAMMABLE CLOCK INFORMATION  
1. RG RISING EDGE (PROGRAMMABLE AT CONTROL REGISTER RSPOSLOC (ADDR 0x06))  
2. RG FALLING EDGE (PROGRAMMABLE AT CONTROL REGISTER RSNEGLOC (ADDR 0x06))  
3. SHP SAMPLE LOCATION (PROGRAMMABLE AT CONTROL REGISTER SHPLOC (ADDR 0x05))  
4. SHD SAMPLE LOCATION (PROGRAMMABLE AT CONTROL REGISTER SHDLOC (ADDR 0x05))  
5. H1 RISING EDGE LOCATION (PROGRAMMABLE AT CONTROL REGISTER H1POSLOC (ADDR 0x06))  
6. H1 NEGATIVE EDGE LOCATION (PROGRAMMABLE AT CONTROL REGISTER H1NEGLOC (ADDR 0x06))  
7. H2 IS ALWAYS THE INVERSE OF H1.  
Figure 13. High Speed Clock Programmable Locations  
–22–  
REV. 0  
AD9937  
Table VIII. RS, H1, SHP, SHD, and DOUTPHASE Timing Parameters  
Bit Width  
Register Name*  
(Bits)  
Register Type  
Range  
Description  
RSPOSLOC  
RSNEGLOC  
H1POSLOC  
H1NEGLOC  
SHPLOC  
6
6
6
6
6
6
6
Control (Addr 0x06)  
Control (Addr 0x06)  
Control (Addr 0x06)  
Control (Addr 0x06)  
Control (Addr 0x05)  
Control (Addr 0x05)  
Control (Addr 0x05)  
047 Edge Location  
047 Edge Location  
047 Edge Location  
047 Edge Location  
047 Edge Location  
047 Edge Location  
047 Edge Location  
Falling Edge Location for RS  
Falling Edge Location for RS  
Positive Edge Location for H1  
Negative Edge Location for H1  
Sample Location for SHP  
SHDLOC  
DOUTPHASE  
Sample Location for SHD  
Phase Location of Data Output [9:0]  
*The 2 MSB bits are used to select the quadrant.  
Table IX. Precision Timing Edge Locations for RS, H1, SHP, SHD, and DOUTPHASE  
Quadrant  
(Range)  
RS Rising Edge  
RSPOSLOC  
RS Falling Edge  
RSNEGLOC  
Signal Name  
RS  
I
II  
III  
IV  
P[0] to P[11]  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
Quadrant  
(Range)  
H1 Rising Edge  
H1POSLOC  
H1 Falling Edge  
H1NEGLOC  
Signal Name  
H1  
I
II  
III  
IV  
P[0] to P[11]  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
Quadrant  
(Range)  
CDS (SHP) Rising Edge  
SHPLOC  
CDS (SHD) Falling Edge  
SHDLOC  
Signal Name  
CDS (Internal)  
I
II  
III  
IV  
P[0] to P[11]  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
Quadrant  
(Range)  
DOUT Rising Edge  
DOUTPHASE  
DOUT Falling Edge  
(Not Programmable)  
Signal Name  
Data Output[9:0]  
I
II  
III  
IV  
P[0] to P[11]  
000000 to 001011  
010000 to 011011  
100000 to 101011  
110000 to 111011  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
DOUTPHASE + 24 Steps  
P[12] to P[23]  
P[24] to P[35]  
P[36] to P[47]  
REV. 0  
–23–  
AD9937  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
POSITION  
PIXEL  
PERIOD  
RSr[0]  
Hr[0]  
RSf[12]  
RS  
H1  
Hf[24]  
CDS  
(INTERNAL)  
SHP[24]  
tS1  
CCD  
SIGNAL  
SHD[48]  
Figure 14. High Speed Clock Default and Programmable Locations  
tRISE  
H1  
H2  
tPD < tRISE  
tPD  
H2  
H1  
FIXED CROSSOVER VOLTAGE  
Figure 15. H-Clock Inverse Phase Relationship  
P[0]  
P[12]  
P[24]  
P[36]  
P[48] = P[0]  
PIXEL  
PERIOD  
VCLK  
tOD  
DOUT  
1. DOUTPHASE REGISTER (ADDR 0x05) CAN BE USEDTO SHIFTTHE PHASE OF VCLK AND DOUTTOGETHERWITH RESPECTTO P[0].  
2. DOUT[9:0] CAN BE INDEPENDENTLY DELAYEDWITH RESPECTTO VCLK BY USING DOUT_DELAY REGISTER (ADDR 0x05).  
Figure 16. Digital Output Phase Adjustment  
–24–  
REV. 0  
AD9937  
MASTER AND SLAVE MODE OPERATION  
The AD9937 defaults at power up into slave mode operation.  
During slave mode operation, the VD and HD pins are config-  
ured as inputs for external VD and HD signals. The AD9937  
can be configured into master mode operation to output the  
VD and HD signals by programming MASTER = 1 (control  
addr 0x05).  
Individual HMASK Sequence  
The HMASK programmable timing shown in Figure 18 pro-  
vides two HMASK toggle positions and an H1MASK polarity  
setting. These registers can be used to disable the horizontal  
H1 and H2 outputs during the vertical transfer period. As shown  
in Figure 18, the H2(A, B) outputs are always the opposite  
polarity of the H1(AD) outputs. The H1MASKSTART and  
H1MASKSTOP registers reference the 11-bit VD counter.  
HORIZONTAL AND VERTICAL TIMING  
Individual PBLK Sequences  
The internal VD and HD synchronization timing is configured  
by using the registers in Table X. As shown in Figure 17, the  
HD and VD clock positions are referenced to the 12-bit  
H-counter and 11-bit V-counter, respectively. This allows for  
a maximum of 4096 horizontal pixels by 2048 vertical  
line resolution.  
Up to two individual PBLK pulses can be programmed per line  
using the registers in Table XI. During the time PBLK is active,  
the DOUT[9:0] data is fixed at the level set in the PBLK_LEVEL  
(control addr 0x03) register. Figures 19, 20, and 21 provide  
examples of PBLK registers described in Table XI.  
The AD9937 provides programmability for two HD pulses per  
line with the ability to independently set the last line length by  
using the HDLASTLEN register (Mode_Reg(4)). Additionally,  
the HDLENx (where x = 0, 1, 2, 3, 4 representing CCD regions)  
registers can be used to set different line lengths for each CCD  
region. As shown in Figure 31, up to five unique CCD regions  
may be specified.  
Table X. HD and VD Registers  
Length  
(Bits)  
Register Name  
Register Type  
Range  
Description  
VDLEN  
11  
4
4
Mode_Reg(4)  
Mode_Reg(4)  
Mode_Reg(4)  
Mode_Reg(2)  
Mode_Reg(2)  
Mode_Reg(3)  
Mode_Reg(3)  
Mode_Reg(4)  
Mode_Reg(15)  
Mode_Reg(16)  
Mode_Reg(17)  
Mode_Reg(18)  
Mode_Reg(19)  
Control 0x04  
02047 Line Number  
015 Pixel Location  
015 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
HIGH/LOW  
11-Bit VD Counter Length  
VD Toggle Position 1. See Figure 17.  
VD Toggle Position 2. See Figure 17.  
HD Toggle Position 1. See Figure 17.  
HD Toggle Position 2. See Figure 17.  
HD Toggle Position 3. See Figure 17.  
HD Toggle Position 4. See Figure 17.  
HD Last Line Length. See Figure 17.  
12-Bit HD Counter Length Value for CCD Region 0  
12-Bit HD Counter Length Value for CCD Region 1  
12-Bit HD Counter Length Value for CCD Region 2  
12-Bit HD Counter Length Value for CCD Region 3  
12-Bit HD Counter Length Value for CCD Region 4  
VD and HD Inversion Control  
VDTOG1  
VDTOG2  
HDTOG1  
HDTOG2  
HDTOG3  
HDTOG4  
HDLASTLEN  
HDLEN0  
HDLEN1  
HDLEN2  
HDLEN3  
HDLEN4  
VDHD_INVERT  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
1
REV. 0  
–25–  
AD9937  
VDLEN  
11-BIT  
VD COUNTER  
000  
001  
000  
001  
002  
003  
N – 1  
N
2048  
12-BIT  
HD COUNTER  
*
HDLENx  
HDLASTLEN  
1
2
3
VD  
HD  
4
5
6
7
OPTIONAL SECOND HD PULSE PER LINE  
X = 0, 1, 2, 3, 4 REPRESENTING CCD REGIONS  
*
PROGRAMMABLE CLOCK POSITIONS  
1. VDHD_INVERT (PROGRAMMABLE AT CONTROL 0x04)  
2. VDTOG1 (PROGRAMMABLE AT MODE_REG(4))  
3. VDTOG2 (PROGRAMMABLE AT MODE_REG(4))  
4. HDTOG1 (PROGRAMMABLE AT MODE_REG(2))  
5. HDTOG2 (PROGRAMMABLE AT MODE_REG(2))  
6. HDTOG3 (PROGRAMMABLE AT MODE_REG(3))  
7. HDTOG4 (PROGRAMMABLE AT MODE_REG(3))  
Figure 17. VD and HD Programmable Locations  
11-BIT  
VD COUNTER  
VD  
HMASK  
H1(A–D)  
1
2
3
H1(A–D)  
H1(A, B)  
PROGRAMMABLE CLOCK POSITIONS  
1. HMASKSTART (PROGRAMMABLE AT MODE_REG(12))  
2. HMASKSTOP (PROGRAMMABLE AT MODE_REG(12))  
3. H1MASKPOL (PROGRAMMABLE AT MODE_REG(12))  
THE POLARITY OF H1(A–D) DURING BLANKING IS PROGRAMMABLE  
(H2(A, B) IS ALWAYSTHE OPPOSITE POLARITY OF H1 (A–D))  
Figure 18. Programmable Clock Positions for HMASK  
Table XI. PBLK Registers  
Register  
Length  
(Bits)  
Register Name  
Type  
Range  
Description  
PBLK_LEVEL  
1
Control 0x03  
HIGH/LOW  
0 = Blank Output Data to Zero,  
1 = Blank Output Data to REFBLACK  
PBLKTOG1  
PBLKTOG2  
PBLKTOG3  
PBLKTOG4  
PBLKSTART  
PBLKSTOP  
12  
12  
12  
12  
11  
11  
Mode_Reg(9)  
Mode_Reg(9)  
Mode_Reg(10)  
Mode_Reg(10)  
Mode_Reg(11)  
Mode_Reg(11)  
04095 Pixel Locations  
04095 Pixel Locations  
04095 Pixel Locations  
04095 Pixel Locations  
02047 Line Number  
02047 Line Number  
Sets PBLK Toggle Position 1 within the Line  
Sets PBLK Toggle Position 2 within the Line  
Sets PBLK Toggle Position 3 within the Line  
Sets PBLK Toggle Position 4 within the Line  
Sets the Line Number the PBLK Pulse Will Start In  
Sets the Line Number the PBLK Pulse Will Stop In  
–26–  
REV. 0  
AD9937  
12-BIT  
HD COUNTER  
PBLK  
1
3
2
4
PROGRAMMABLE CLOCK POSITIONS  
1. PBLKTOG1 (PROGRAMMABLE AT MODE_REG(9))  
2. PBLKTOG2 (PROGRAMMABLE AT MODE_REG(9))  
3. PBLKTOG3 (PROGRAMMABLE AT MODE_REG(10))  
4. PBLKTOG4 (PROGRAMMABLE AT MODE_REG(10))  
Figure 19. PBLK Timing  
HDLEN = 1500  
PBLKTOG2 = 785  
PBLKTOG1 = 500  
12-BIT  
HD COUNTER  
PBLK  
1. PBLKTOG1 = 500  
2. PBLKTOG2 = 785  
3. PBLKTOG3 = 4095  
4. PBLKTOG4 = 4095  
5.THIS PBLK PULSE SEQUENCE IS USED INTHE EXAMPLE BELOW.  
11-BIT  
VD COUNTER  
N – 4  
N – 3  
N – 2  
N – 1  
N
000  
001  
002  
003  
VD  
500 785  
500 785  
500  
500 785  
500 785  
500 785  
12-BIT  
HD COUNTER  
PBLKSTART  
PBLKSTOP  
1. PBLKSTART = N – 2  
2. PBLKSTOP = 001  
3.THIS EXAMPLE SHOWS HOW PBLK IS LOW INTHEVERTICAL BLANKING REGION FROM PBLKTOG1 IN LINE PBLKSTART UNTIL PBLKTOG2 IN LINE PBLKSTOP.  
AS SHOWN INTHE ABOVE FIGURE, PBLK REMAINS LOW FROM PBLKTOG1TO PBLKTOG2.  
Figure 20. Example of PBLK Applied in Vertical Blanking Region Using PBLKSTART and PBLKSTOP Registers  
REV. 0  
–27–  
AD9937  
11-BIT  
VD COUNTER  
000  
001  
002  
003  
004  
N – 1  
N
12-BIT  
HD COUNTER  
VD  
HD  
PBLK  
Figure 21. Example with PBLKSTOP = PBLKSTART = 2048  
Controlling CLPOB Clamp Pulse Timing  
provided that allow for independently enabling and disabling  
the CLPOB pulse in each region of the CCD. Figure 23 shows  
an example of disabling the CLPOB pulse while operating in  
CCD region 1.  
Up to two individual CLPOB pulses can be programmed per line  
using the CLPOBTOGx (x = 1, 2, 3, 4) registers in Table XII.  
As shown in Figure 19, these registers reference the 12-bit HD  
counter. Additional CLPOBENn (n = 0, 1, 2, 3, 4) registers are  
Table XII. CLPOB Registers  
Length  
(Bits)  
Register  
Type  
Register Name  
Range  
Description  
CLPOBTOG1  
CLPOBTOG2  
CLPOBTOG3  
CLPOBTOG4  
CLPOBEN0  
CLPOBEN1  
CLPOBEN2  
CLPOBEN3  
CLPOBEN4  
12  
12  
12  
12  
1
1
1
1
1
Mode_Reg(5)  
Mode_Reg(5)  
Mode_Reg(6)  
Mode_Reg(6)  
Mode_Reg(15)  
Mode_Reg(16)  
Mode_Reg(17)  
Mode_Reg(18)  
Mode_Reg(19)  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
Enabled/Disabled  
First Toggle Position for CLPOB  
First Toggle Position for CLPOB  
First Toggle Position for CLPOB  
First Toggle Position for CLPOB  
CCD Region 0 CLPOB Enable Disable Control  
CCD Region 1 CLPOB Enable Disable Control  
CCD Region 2 CLPOB Enable Disable Control  
CCD Region 3 CLPOB Enable Disable Control  
CCD Region 4 CLPOB Enable Disable Control  
12-BIT  
HD COUNTER  
HD  
CLPOB  
1
2
3
4
PROGRAMMABLE CLOCK POSITIONS  
1. CLPOBTOG1 (PROGRAMMABLE AT MODE_REG(5))  
2. CLPOBTOG2 (PROGRAMMABLE AT MODE_REG(5))  
3. CLPOBTOG3 (PROGRAMMABLE AT MODE_REG(6))  
4. CLPOBTOG4 (PROGRAMMABLE AT MODE_REG(6))  
Figure 22. CLPOB Toggle Positions  
–28–  
REV. 0  
AD9937  
CCD REGION 2  
CCD REGION 0  
CCD REGION 1  
VD  
HD  
CLPOB  
Figure 23. Example with CLPOBEN1 = 0  
Vertical Sensor Transfer Gate Timing  
SHUTTER TIMING CONTROL  
The vertical transfer sensor gate (TG) pulses are used to trans-  
fer the pixel charges from the light-sensitive image area into the  
light-shielded vertical registers. When a mechanical shutter is  
not being used, this transfer effectively ends the exposure  
period during the image acquisition. From the light-shield  
vertical registers, the image is then read out line by line using  
the vertical transfer pulses in conjunction with the high speed  
horizontal clocks.  
CCD image exposure is controlled through use of the substrate  
clock signal (OFD), which pulses the CCD substrate to clear  
out accumulated charge. The AD9937 supports two types of  
OFD shutter timing: normal shutter mode and high precision  
shutter mode. The registers used for OFD programming are  
described in Table XIV.  
Normal Shutter Mode  
Figure 24 shows the VD and OFD output for normal shutter  
mode. Programming the OFD outputs is similar to program-  
ming the TG pulse whereas two unique OFD pulses can be  
preprogrammed using the OFDTOG_x (x = 0, 1) registers. The  
OFDTOG_x registers reference the 12-bit HD counter as shown  
in Figure 24. Once the toggle positions have been programmed,  
the OFDPATSEL register is used to select which of the two  
preprogrammed OFD pulses will be output. The OFD will pulse  
once per line for as many lines set in the OFDNUM register.  
The AD9937 provides four programmable vertical transfer gate  
pulses (TG1A, TG1B, TG3A, and TG3B). Table XIII lists the  
TG registers. Two unique TG pulses can be preprogrammed  
using the TGTOG_x (x = 0, 1) registers. As shown in Figure 24,  
these toggle registers reference the 12-bit H counter for resolu-  
tion control at the pixel level. Once the toggle positions have  
been programmed, the TGPATSELx (x = 0, 1) can be used to  
select which of the two TG pulses will be output on the TG1A/  
B and TG3A/B pins. The TG1A/B and TG3A/B outputs are  
selected as a group. As a result, the TG1A and TG1B outputs  
will always be the same. This also applies for the TG3A and  
TG3B outputs. For example, if TGPATSEL0 = 0, TG1A and  
TG1B will have the outputs provided by the TGTOG1_0 and  
TGTOG2_0 registers.  
High Precision Shutter Mode  
High precision shuttering is controlled in the same way as nor-  
mal shuttering but requires a second set of shutter registers. In  
this mode, the OFD still pulses once per line, but the last OFD  
in the field will have an additional OFD pulse whose location is  
determined by the OFDHPTOG1 and OFDHPTOG2 registers.  
An example of this is shown in Figure 25. Finer resolution of  
the exposure time is possible using this mode. Leaving both  
OFDHPTOG registers set to 4095 disables the high precision  
shutter mode (default setting).  
The TGMASK register can be used to individually mask (disable)  
any one of the TG outputs. For example, if TGMASK = 1, the  
TG1A will not be output. All TG outputs can be disabled by  
setting TGEN = 0.  
Table XIII. TG Registers  
Length Register  
Register Name  
(Bits)  
Type  
Range  
Description  
TGEN  
1
Control 0x10  
Shut_Reg(1)  
Shut_Reg(1)  
Shut_Reg(2)  
Shut_Reg(2)  
Mode_Reg(1)  
Mode_Reg(1)  
Mode_Reg(1)  
Mode_Reg(1)  
High/Low  
TG Output Enable Control (0 = Disable, 1 = Enable)  
TG0 Pulse Toggle Position 1  
TG0 Pulse Toggle Position 2  
TG1 Pulse Toggle Position 1  
TGTOG1_0  
TGTOG2_0  
TGTOG1_1  
TGTOG2_1  
TGACTLINE  
TGPATSEL0  
TGPATSEL1  
TGMASK  
12  
12  
12  
12  
7
1
1
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
04095 Pixel Location  
0127 Pixel Location  
High/Low  
TG1 Pulse Toggle Position 2  
Line in Field where TG Outputs are Active  
TG1 A/B Pattern Selector (0 = TG0, 1 = TG1)  
TG3 A/B Pattern Selector (0 = TG0, 1 = TG1)  
TG Masking Control (0 = No Masking, 1 = Mask TG1A,  
2 = Mask TG1B, 3 = Mask TG3A, 4 = Mask TG3B)  
High/Low  
4 Individual Bits  
4
REV. 0  
–29–  
AD9937  
Table XIV. OFD Registers  
Length Register  
Register Name  
(Bits)  
Type  
Range  
Description  
OFDEN  
OFDNUM  
1
Control 0x10  
Control 0x10  
Control 0x11  
Control 0x11  
Shut_Reg(3)  
Shut_Reg(3)  
Shut_Reg(4)  
Shut_Reg(4)  
Mode_Reg(1)  
High/Low  
02048 Pulses  
OFD Output Enable Control (0 = Disable, 1 = Enable)  
Total Number of OFD Pulses per Field  
11  
12  
12  
12  
12  
12  
12  
1
OFDHPTOG1  
OFDHPTOG2  
OFDTOG1_0  
OFDTOG2_0  
OFDTOG1_1  
OFDTOG2_1  
OFDPATSEL  
04095 Pixel Locations High Precision Toggle Position 1. See Figure 24.  
04095 Pixel Locations High Precision Toggle Position 2. See Figure 24.  
04095 Pixel Locations OFD0 Pulse Toggle Position 1  
04095 Pixel Locations OFD0 Pulse Toggle Position 2  
04095 Pixel Locations OFD1 Pulse Toggle Position 1  
04095 Pixel Locations OFD1 Pulse Toggle Position 2  
High/Low  
OFD Pattern Selector (0 = OFD0, 1 = OFD1)  
11-BIT  
VD COUNTER  
000  
001  
002  
003  
N – 1  
N
2048  
000  
001  
12-BIT  
HD COUNTER  
LAST LINE  
VD  
HD  
1
2
TG1A  
TG1B  
3
TG3A  
TG3B  
4
5
tEXP  
OFD  
6
7
PROGRAMMABLE CLOCK POSITIONS  
1. TGACTLINE (PROGRAMMABLE AT MODE_REG(1)) 5. TGTOG2_1 (PROGRAMMABLE AT SHUT_REG(2))  
6. OFDTOG1_0 (PROGRAMMABLE AT SHUT_REG(3))  
7. OFDTOG2_0 (PROGRAMMABLE AT SHUT_REG(3))  
2. TGTOG1_0 (PROGRAMMABLE AT SHUT_REG(1))  
3. TGTOG2_0 (PROGRAMMABLE AT SHUT_REG(1))  
4. TGTOG1_1 (PROGRAMMABLE AT SHUT_REG(2))  
Figure 24. Horizontal Timing Example with TGACTLINE = 1 and OFDNUM = 2  
VD  
HD  
LAST LINE  
TG1A  
TG1B  
TG3A  
TG3B  
tEXP  
OFD  
1
2
PROGRAMMABLE CLOCK POSITIONS  
1. OFDHPTOG1 (PROGRAMMABLE AT CONTROL REGISTER 0x11)  
2. OFDHPTOG2 (PROGRAMMABLE AT CONTROL REGISTER 0x11)  
SECOND OFD PULSE ADDED INTHE  
LAST LINE FOR GREATER EXPOSURE  
CONTROL PRECISION  
Figure 25. High Precision  
–30–  
REV. 0  
AD9937  
Controlling LM Pulse Timing  
the 12-bit H counter resets to 0 set by the HDLEN register.  
The LMSTART0 and LMSTART1 positions reference the 12-  
bit H counter value zero. The 8-bit LM counter begins counting  
when LMSTART0 is reached; it counts up to the value set in  
the LMLENx register, as shown in Figure 26. The LM pulse  
toggle positions reference the 8-bit LM counter.  
The AD9937 provides an LM output pulse that is fully program-  
mable by using the registers in Table XV. Two unique sets of LM  
pulses can be preprogrammed using the LMLENx, LMTOG1_x,  
and LMTOG2_x (x = 0, 1) registers. Once these pulses are  
preprogrammed, they can be individually selected to be output  
in any of the five CCD regions by using the LMPATSELn  
register (n = 0, 1, 2, 3, 4). The number of repetitions can also be  
individually programmed for each CCD region by using the  
LMREPn register (n = 0, 1, 2, 3, 4).  
Figures 26 and 27 provide examples of programming the LM  
pulses. Figure 26 shows an example when LMSTART1 is less  
than HDLEN. In this case, multiple sets of LM pulses can be  
output between the HDLEN lengths. The number of sets is  
determined by the value of HDLEN and LMSTART1. Figure 27  
shows that only one set of LM pulses will be output when  
LMSTART1 is greater than HDLEN.  
The 12-bit H counter and 8-bit LM counters are used for con-  
figuring the LM pulse. The 8-bit LM counter resets to 0 when  
Table XV. LM Registers  
Length  
(Bits)  
Register  
Type  
Register Name  
Range  
Description  
LM_INVERT  
LMSTART0*  
LMSTART1*  
1
12  
12  
Control 0x04  
Mode_Reg(13)  
Mode_Reg(13)  
High/Low  
04095 Pixels  
04095 Pixels  
LM Inversion Control (1 = Invert Programmed LM)  
LM Counter Start Position 1  
LM Counter Start Position 2  
LMLEN0  
8
8
8
8
8
8
HLM_Reg(8)  
HLM_Reg(8)  
HLM_Reg(8)  
HLM_Reg(9)  
HLM_Reg(9)  
HLM_Reg(9)  
0255 Pixels  
0255 Pixels  
0255 Pixels  
0255 Pixels  
0255 Pixels  
0255 Pixels  
LM Counter Length for LM0  
LM0 Toggle Position 1  
LM0 Toggle Position 2  
LM Counter Length for LM1  
LM1 Toggle Position 1  
LM1 Toggle Position 2  
LMTOG1_0  
LMTOG2_0  
LMLEN1  
LMTOG1_1  
LMTOG2_1  
LMPATSEL0  
LMREP0  
LMPATSEL1  
LMREP1  
LMPATSEL2  
LMREP2  
LMPATSEL3  
LMREP3  
1
2
1
2
1
2
1
2
1
2
Mode_Reg(15)  
Mode_Reg(15)  
Mode_Reg(16)  
Mode_Reg(16)  
Mode_Reg(17)  
Mode_Reg(17)  
Mode_Reg(18)  
Mode_Reg(18)  
Mode_Reg(19)  
Mode_Reg(19)  
High/Low  
03 LM Repetitions  
High/Low  
03 LM Repetitions  
High/Low  
03 LM Repetitions  
High/Low  
03 LM Repetitions  
High/Low  
03 LM Repetitions  
Selects CCD Region 0 LM Pattern (0 = LM0, 1 = LM1)  
LM Repetition Number in CCD Region 0  
Selects CCD Region 1 LM Pattern (0 = LM0, 1 = LM1)  
LM Repetition Number in CCD Region 1  
Selects CCD Region 2 LM Pattern (0 = LM0, 1 = LM1)  
LM Repetition Number in CCD Region 2  
Selects CCD Region 3 LM Pattern (0 = LM0, 1 = LM1)  
LM Repetition Number in CCD Region 3  
LMPATSEL4  
LMREP4  
Selects CCD Region 4 LM Pattern (0 = LM0, 1 = LM1)  
LM Repetition Number in CCD Region 4  
*LMSTART0 and LMSTART1 reference the 12-bit HD counter.  
REV. 0  
–31–  
AD9937  
12-BIT  
HD COUNTER  
1
LMLENx  
8-BIT  
LM COUNTER  
2
LMREPn = 3  
1
1
2
3
LMx  
LM PULSE SET 1  
LM PULSE SET 2  
LMSTART0  
LMSTART1  
NOTES  
1
PROGRAMMABLE CLOCK POSITIONS  
1. LM_INVERT (PROGRAMMABLE AT CONTROL 0x04)  
2. LMTOG1_x (PROGRAMMABLE AT HLM_REG(8))  
3. LMTOG2_x (PROGRAMMABLE AT HLM_REG(8))  
x = 0, 1 (TWO UNIQUE SETS OF LM OUTPUTS CAN BE PROGRAMMED)  
n = 0, 1, 2, 3, 4 (INDIVIDUAL REPETITION CONTROL FOR EACH CCD REGION)  
2
Figure 26. Example of LM Pulse with LMSTART1 < HDLEN  
12-BIT  
HD COUNTER  
LMLENx  
8-BIT  
LM COUNTER  
LMREPn = 3  
LMx  
LM PULSE SET 1  
LMSTART0  
Figure 27. Example of LM Pulse with LMSTART1 > HDLEN  
SPECIAL HORIZONTAL PATTERN TIMING  
the H1A output is shown, the same special H timing can be  
independently configured on the remaining horizontal outputs  
by using the registers described in Table XVI. As shown in  
Figure 28, the special H1A output begins when SPHSTARTx  
is reached. It is important to note that there are two SPHSTART  
registers. If SPHPATSEL = 0, the SPHSTART0 register will  
be used, whereas if SPHPATSEL = 1, the SPHSTART1 regis-  
ter will be used. The special H patterns can be enabled and  
disabled for each of the five CCD regions by using the SPHENx  
(x = 0, 1, 2, 3, 4).  
The AD9937 provides the ability to interrupt the normal hori-  
zontal H1(AD) and H2(A, B) clocking in order to apply a  
special pattern on these outputs. This special horizontal pattern  
timing occurs during the period when the LM outputs are active.  
Table XVI lists the registers used to program the special H  
patterns. Figure 28 provides an example of a special H pattern  
being applied to the H1A output.  
The timing diagram shown in Figure 28 identifies the registers  
associated with outputting the special H patterns. Although only  
–32–  
REV. 0  
AD9937  
MASKING H1 AND H2 OUTPUTS  
The H1 and H2 outputs can be masked during the horizontal  
and vertical transfers as shown in Figures 29 and 30.  
will be masked during the entire last line. It is recommended to  
always program HBLKTOG3 and HBLKTOG4 to 4095 when  
only one H-blanking in a line is required. It is also recommended  
to program HBLKTOG1 < HBLKTOG2 < HBLKTOG3 <  
HBLKTOG4.  
Horizontal Masking  
The H1 clocks are masked with the polarity set by the  
H1MASKPOL register as shown in Figure 29. The H2 outputs  
will always be the opposite polarity of H1. The H1 and H2 out-  
puts are masked from HDLEN + 1 to HBLKTOG1 position  
when HDLASTLEN is the same as HDLEN. In the case when  
HDLASTLEN is greater than HDLEN, the H1 and H2 outputs  
Vertical Masking  
As shown in Figure 30, the H1 and H2 outputs remain masked  
if the horizontal HMASK is followed by the vertical HMASK  
region or if the vertical HMASK region is followed by the hori-  
zontal HMASK region.  
Table XVI. Special H Pattern Registers  
Length Register  
Register Name  
(Bits)  
Type  
Range  
Description  
HBLKTOG11  
HBLKTOG21  
HBLKTOG31  
HBLKTOG41  
H1APOL  
H1BPOL  
H1CPOL  
H1DPOL  
H2APOL  
H2BPOL  
SPHSTART02  
SPHSTART12  
SPH1A1  
SPH1B1  
SPH1C1  
SPH1D1  
SPH2A1  
SPH2B1  
SPH1A2  
SPH1B2  
SPH1C2  
12  
12  
12  
12  
1
1
1
1
1
1
8
8
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1
1
1
Mode_Reg(7)  
Mode_Reg(7)  
Mode_Reg(8)  
Mode_Reg(8)  
HLM_Reg(1)  
HLM_Reg(1)  
HLM_Reg(1)  
HLM_Reg(1)  
HLM_Reg(1)  
HLM_Reg(1)  
HLM_Reg(8)  
HLM_Reg(9)  
HLM_Reg(2)  
HLM_Reg(2)  
HLM_Reg(2)  
HLM_Reg(3)  
HLM_Reg(3)  
HLM_Reg(3)  
HLM_Reg(4)  
HLM_Reg(4)  
HLM_Reg(4)  
HLM_Reg(5)  
HLM_Reg(5)  
HLM_Reg(5)  
HLM_Reg(6)  
HLM_Reg(6)  
HLM_Reg(6)  
HLM_Reg(7)  
HLM_Reg(7)  
HLM_Reg(7)  
04095 Pixel Locations  
04095 Pixel Locations  
04095 Pixel Locations  
04095 Pixel Locations  
High/Low  
High/Low  
High/Low  
High/Low  
High/Low  
HBLK Toggle Position 1  
HBLK Toggle Position 2  
HBLK Toggle Position 3  
HBLK Toggle Position 4  
H1A Special H Pattern Start Polarity  
H1B Special H Pattern Start Polarity  
H1C Special H Pattern Start Polarity  
H1D Special H Pattern Start Polarity  
H2A Special H Pattern Start Polarity  
H2B Special H Pattern Start Polarity  
High/Low  
0255 Pixel Locations  
0255 Pixel Locations  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
6 Individual Bits  
LM Pattern #0 (LM0) Special H Pulse Start Position  
LM Pattern #1 (LM1) Special H Pulse Start Position  
H1A Special H Pattern during LM Repetition 1  
H1B Special H Pattern during LM Repetition 1  
H1C Special H Pattern during LM Repetition 1  
H1D Special H Pattern during LM Repetition 1  
H2A Special H Pattern during LM Repetition 1  
H2B Special H Pattern during LM Repetition 1  
H1A Special H Pattern during LM Repetition 2  
H1B Special H Pattern during LM Repetition 2  
H1C Special H Pattern during LM Repetition 2  
H1D Special H Pattern during LM Repetition 2  
H2A Special H Pattern during LM Repetition 2  
H2B Special H Pattern during LM Repetition 2  
H1A Special H Pattern during LM Repetition 3  
H1B Special H Pattern during LM Repetition 3  
H1C Special H Pattern during LM Repetition 3  
H1D Special H Pattern during LM Repetition 3  
H2A Special H Pattern during LM Repetition 3  
H2B Special H Pattern during LM Repetition 3  
Special H Pattern Enable in CCD Region 0  
Special H Pattern Enable in CCD Region 1  
Special H Pattern Enable in CCD Region 2  
Special H Pattern Enable in CCD Region 3  
Special H Pattern Enable in CCD Region 4  
SPH1D2  
SPH2A2  
SPH2B2  
SPH1A3  
SPH1B3  
SPH1C3  
SPH1D3  
SPH2A3  
SPH2B3  
SPHEN0  
SPHEN1  
SPHEN2  
SPHEN3  
SPHEN4  
Mode_Reg(15) High/Low  
Mode_Reg(16) High/Low  
Mode_Reg(17) High/Low  
Mode_Reg(18) High/Low  
Mode_Reg(19) High/Low  
1
1
NOTES  
1The HBLKTOGx toggle positions reference the 12-bit HD counter.  
2The SPHSTART0 and SPHSTART1 toggle positions reference the 8-bit LM counter.  
REV. 0  
–33–  
AD9937  
12-BIT  
HD COUNTER  
LMSTART0  
8-BIT  
LM COUNTER  
HBLKTOG1  
SPHSTARTx  
H1A  
2
3
4
5
6
HBLKTOG2  
HBLKTOG3  
LMSTART1  
HBLKTOG3  
PROGRAMMING NOTES  
1. THERE ARE TWO SPHSTART REGISTERS. THEY ARE SPHSTART0 AND SPHSTART1.  
SPHSTART0 IS USED WHEN THE LM0 PULSE IS SELECTED BY SETTING LMPATSEL = 0.  
SPHSTART1 IS USED WHEN THE LM1 PULSE IS SELECTED BY SETTING LMPATSEL = 1.  
2.THIS REGION REPRESENTS NORMAL H1A OUTPUTS.  
3.THIS REGION REPRESENTS SPECIAL H1A PATTERN BEING OUTPUT DURINGTHE LM REP 1.  
THE SPH1A1 REGISTER IS USEDTO SETTHE SPECIAL H1A PATTERN INTHIS REGION.  
4.THIS REGION REPRESENTS SPECIAL H1A PATTERN BEING OUTPUT DURINGTHE LM REP 2.  
THE SPH1A2 REGISTER IS USEDTO SETTHE SPECIAL H1A PATTERN INTHIS REGION.  
5.THIS REGION REPRESENTS SPECIAL H1A PATTERN BEING OUTPUT DURINGTHE LM REP 3.  
THE SPH1A3 REGISTER IS USEDTO SETTHE SPECIAL H1A PATTERN INTHIS REGION.  
6.THIS REGION REPRESENTS NORMAL H1A OUTPUTS.  
8-BIT  
LM COUNTER  
SPHSTARTx  
PIXEL  
CLOCK  
SPH1A1  
1
1
0
1
0
1
SPECIAL  
H1A  
PROGRAMMING NOTES  
1.THIS EXAMPLE SHOWS H1A OUTPUT FOR REGION 3 ABOVE.  
INTHIS EXAMPLE: SPH1A1 = 110101.  
2.THE SPECIAL H PATTERN STARTING POLARITY CAN BE INDEPENDENTLY SET FOR EACH H OUTPUT  
USINGTHE POL REGISTERS LISTED INTABLE XVI. NOTE: THE SPECIAL H STARTING POLARITYWILL  
OCCUR ATTHE START OF SPHSTARTx. (ABOVE: H1APOL = 0)  
Figure 28. Example of Programming the Special H-Output Patterns  
HMASK  
HBLK  
HBLK  
HBLK  
3
0
131  
132  
133  
134  
135  
823  
824  
825  
868  
1559 1560  
1
2
4
H1TOG34POL  
H1MASKPOL  
H1  
H2  
H1TOG12POL  
HBLKTOG2  
HBLKTOG3  
HBLKTOG4  
HBLKTOG1  
Figure 29. Example of Horizontal HMASK Masking  
–34–  
REV. 0  
AD9937  
HMASK  
HBLK  
HMASK  
VERTICAL HMASK  
HBLK  
0
234  
0
131  
132  
133  
134  
135  
154  
155  
156  
233  
1
2
1559 1560  
1
2
3
4
H1TOG34POL  
H1MASKPOL  
H1  
H2  
H1TOG12POL  
HBLKTOG2  
HDLEN  
HDLASTLEN  
HBLKTOG1  
Figure 30. Example of Vertical HMASK Masking with HDLASTLEN > HDLEN with HMASTKSTART = 0 and HMASKSTOP = 1560  
VERTICAL TIMING GENERATION  
CCD REGIONS  
The AD9937 provides a very flexible solution for generating  
vertical CCD timing, and can support multiple CCDs and differ-  
ent system architectures. The 4-phase vertical transfer clocks  
V1V4 are used to shift each line of pixels into the horizontal  
output register of the CCD. The AD9937 allows these outputs  
to be individually programmed into different pulse patterns.  
Vertical sequence control registers then organize the individual  
vertical pulses into the desired CCD vertical timing arrangement.  
Up to five unique CCD regions can be preprogrammed using the  
sequence change position registers as described in Table XVII.  
The SCPx (x = 0, 1, 2, 3, 4) registers determine when the set-  
tings in Mode_Reg(1519) are active. For example, the SCP1  
register activates the registers at Mode_Reg(16) for CCD region 1.  
Note that SCP0 is not programmable. The SCP0 position always  
starts at Line 0, as shown in Figure 31.  
SCP0  
(FIXED AT LINE 0)  
The AD9937 can preprogram three unique sets of vertical transfer  
pulses known as VTP0, VTP1, and VTP2. Each VTP set consists  
of the four vertical clocks (V1A/B, V2, V3A/B, and V4), as shown  
in Figure 32. Once preprogrammed, any one of the three unique  
VTP sets can then be selected to be output in any one of the  
five CCD regions by using the VTPPATSELx (x = 0, 1, 2, 3, 4)  
registers. The VTP_Reg(19) registers listed in Table II are used  
for generating the VTP pulse sets.  
CCD REGION 0  
REGISTERS LOCATED AT MODE_REG(15)  
ARE ACTIVE WHILE  
OPERATING IN CCD REGION 0  
SCP1 [7:0]  
CCD REGION 1  
REGISTERS LOCATED AT MODE_REG(16)  
ARE ACTIVE WHILE  
OPERATING IN CCD REGION 1  
SCP2 [7:0]  
CCD REGION 2  
Figure 32 shows an example of programming one VTPx (x = 0, 1, 2)  
pulse set. Once a VTP pulse set has been configured, multiple  
repetitions of this set can be repeated to create an entire VTP  
sequence. This is accomplished by using the VTPREPn  
(n = 0, 1, 2, 3, 4) registers where n represents the five CCD regions.  
An example of repeating a VTP set is shown in Figure 33.  
REGISTERS LOCATED AT MODE_REG(17)  
ARE ACTIVE WHILE  
OPERATING IN CCD REGION 2  
SCP3 [7:0]  
CCD REGION 3  
REGISTERS LOCATED AT MODE_REG(18)  
ARE ACTIVE WHILE  
OPERATING IN CCD REGION 3  
SCP4 [7:0]  
CCD REGION 4  
REGISTERS LOCATED AT MODE_REG(19)  
ARE ACTIVE WHILE  
OPERATING IN CCD REGION 4  
Figure 31. Sequence Change Positions  
Table XVII. Sequence Change Positions Registers  
Register  
Length  
(Bits)  
Register Name*  
Type  
Range  
Description  
SCP1  
SCP2  
SCP3  
SCP4  
8
8
8
8
Mode_Reg(14)  
Mode_Reg(14)  
Mode_Reg(14)  
Mode_Reg(14)  
0255 Line Positions  
0255 Line Positions  
0255 Line Positions  
0255 Line Positions  
Sequence Change Position 1  
Sequence Change Position 2  
Sequence Change Position 3  
Sequence Change Position 4  
*There is no SCP0 register. The SCP0 position is always fixed at Line 0.  
REV. 0  
–35–  
AD9937  
12-BIT  
HD COUNTER  
V1A/B  
6
1
2
5
7
8
V2  
V3A/B  
V4  
3
4
10  
9
11  
12  
VTPLEN_x*  
PROGRAMMING NOTES  
*(x = 0, 1, 2)THE x REPRESENTSTHETHREE SEPARATE REGISTERS FOR VTP0, VTP1, AND VTP2 SETS.THIS ALSO APPLIESTOTHE x  
USED INTHE PROGRAMMABLE CLOCK POSITIONS BELOW.  
PROGRAMMABLE CLOCK POSITIONS  
1. V1POL_x (PROGRAMMABLE AT VTP_REG(x))  
2. V2POL_x (PROGRAMMABLE AT VTP_REG(x))  
3. V3POL_x (PROGRAMMABLE AT VTP_REG(x))  
4. V4POL_x (PROGRAMMABLE AT VTP_REG(x))  
5. V1TOG1_x (PROGRAMMABLE AT VTP_REG(x))  
6. V1TOG2_x (PROGRAMMABLE AT VTP_REG(x))  
7. V2TOG1_x (PROGRAMMABLE AT VTP_REG(x))  
8. V2TOG2_x (PROGRAMMABLE AT VTP_REG(x))  
9. V3TOG1_x (PROGRAMMABLE AT VTP_REG(x))  
10. V3TOG2_x (PROGRAMMABLE AT VTP_REG(x))  
11. V4TOG1_x (PROGRAMMABLE AT VTP_REG(x))  
12. V4TOG2_x (PROGRAMMABLE AT VTP_REG(x))  
Figure 32. Example of Programming One VTP Pulse  
VTPREPn* = 2  
12-BIT  
HD COUNTER  
V1A/B  
V2  
75  
250  
355  
530  
40  
145  
320  
425  
110  
215  
390  
495  
V3A/B  
V4  
5
180  
285  
460  
VTPLEN_x  
*(n = 0, 1, 2, 3, 4) n REPRESENTSTHE NUMBER OF PROGRAMMABLE CCD REGIONS.THE NUMBER OF REPETITIONS IN EACH  
CCD REGION CAN BE INDEPENDENTLY SET USINGTHE VTPREP REGISTER FORTHAT REGION.  
Figure 33. Example of Creating a Sequence of VTP Pulses by Using the VTPREP Register  
–36–  
REV. 0  
AD9937  
12-BIT  
HD COUNTER  
VTPLEN_0  
VTPLEN_1  
VTPLEN_2  
V1A/B  
V2  
V3A/B  
V4  
VTP0  
VTP1  
VTP2  
Figure 34. Example of Three Preprogrammed VTP Pulses  
SCP0  
(FIXED AT LINE 0)  
SCP1 = 1  
11-BIT  
VD COUNTER  
000  
001  
002  
N
12-BIT  
HD COUNTER  
VD  
HD  
V1A/B  
V2  
V3A/B  
V4  
VTPPATSEL0 = 1  
VREP0 = 1  
VTPPATSEL1 = 0  
VREP1 = 1  
Figure 35. Example of Applying VTP Pulse Sequences to CCD Regions  
REV. 0  
–37–  
AD9937  
SCP0  
(FIXED AT LINE 0)  
SCP1 = 1  
11-BIT  
VD COUNTER  
000  
001  
002  
N
12-BIT  
HD COUNTER  
VD  
HD  
V1A/B  
V2  
V3A/B  
V4  
VTPPATSEL0 = 1  
VREP0 = 1  
VTPPATSEL1 = 0  
VREP1 = 2  
Figure 36. Example of VTP Pulse Sequence with VREP = 2 in CCD Region 1  
–38–  
REV. 0  
AD9937  
VDD  
(INPUT)  
1
1
tPWR  
INTERNAL  
POWER-ON  
AUTO-RESET  
(LO-ACTIVE)  
2
VCKM  
4
5
6
7
SERIAL  
WRITES  
OUTCONT  
(REGISTER  
CONTROLLED)  
1V  
VD  
(OUTPUT)  
ODD FIELD  
EVEN FIELD  
ODD FIELD  
1H  
HD  
(OUTPUT)  
V1A/B, V2, V3A/B, V4, TG1A, TG1B, TG3A, TG3B,  
OFD, H1(A, B, C, D)  
DIGITAL  
OUTPUTS  
RS, H2(A, B), LM  
2
3
tSETTINGS  
tDELAY  
VCLK  
NOTES  
1
THE INTERNAL POWER-ON AUTO RESET TIME tPWR = 1.0ms REGARDLESS OF THE VCLK CLOCK FREQUENCY.  
2
IT TAKES 500s FOR VCLK TO SETTLE ONCE THE DIG_STBY REGISTER HAS BEEN PROGRAMMED.  
3
IT TAKES FOUR VCKM CLOCK CYCLES FROM WHEN OUTCONT IS ASSERTED HIGH UNTIL THE VD, HD, AND DIGITAL OUTPUT DATA IS VALID.  
Figure 37. Recommended Power-Up Sequence  
Table XVIII. Start-Up Polarities  
(While OUTCONT = LO)  
POWER-UP FOR MASTER MODE  
When the AD9937 is powered up, the following sequence is  
recommended. (Refer to Figure 37 for each step.)  
Output  
OUTCONT = LO  
1. Turn on power supplies for AD9937.  
V1A/B  
V2  
V3A/B  
V4  
TG1A  
TG1B  
TG3A  
TG3B  
OFD  
H1(AD)  
H2(A, B)  
LM  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
HI  
LO  
LO  
LO  
2. The internal power-on auto-reset circuit will deassert  
1.0 ms after VDD settles. (All internal registers are reset to  
the default values.)  
3. The VCKM clock can be applied as soon as VDD settles.  
4. Reset the internal AD9937 registers: write a 0x000000 to  
the SW_RESET register (addr 0x00). This will set all inter-  
nal register values to their default values. (This step is optional  
because the internal power-on reset circuit is applied at  
power-up.)  
5. Write a 1 to the DIG_STBY and AFE_STBY registers  
(addr 0x02). This will put the digital and analog circuits into  
the normal operating mode.  
6. Program all control, system, and mode registers.  
7. Write a 1 to the OUTCONT_REG (addr 0x01). This will put  
the digital outputs into the normal operating mode. The inter-  
nal OUTCONT will be asserted high on the rising edge of the  
32nd SCK clock when writing to the OUTCONT_REG.  
RS  
REV. 0  
–39–  
AD9937  
VDD  
(INPUT)  
3
VCKM  
1
2
5
6
7
SERIAL  
WRITES  
OUTCONT  
(INTERNAL  
SIGNAL)  
VD  
(OUTPUT)  
HD  
(OUTPUT)  
V1A/B, V2, V3A/B, V4, TG1A, TG1B, TG3A, TG3B,  
OFD, H1(A, B, C, D)  
DIGITAL  
OUTPUTS  
RS, H2(A, B), LM  
tDELAY  
*
AFE_STBY  
(REGISTER)  
DIG_STBY  
(REGISTER)  
*IT TAKES 4 VCKM CLOCK CYCLES FROM WHEN OUTCONT GOES HIGH UNTIL VD, HD AND DIGITAL  
OUTPUT DATA IS VALID.  
Figure 38. Recommended Standby Sequence  
STANDBY SEQUENCE  
3. Stop VCKM clock. (This is optional.)  
The following sequence is recommended when the AD9937 is  
put into standby operation. (Refer to Figure 38 for each step.)  
4. Apply VCKM when ready to come out of standby operation.  
5. Write a 1 to the DIG_STBY and AFE_STBY registers  
(addr 0x02). This will put the digital and analog circuits into  
the normal operating mode.  
6. Program any necessary control, system, or mode registers.  
7. Write a 1 to the OUTCONT_REG register (addr 0x01) to  
begin operation.  
1. Write a 0 to the OUTCONT_REG register (addr 0x01).  
2. Write a 0 to the DIG_STBY and AFE_STBY registers  
(addr 0x02). This will put the digital and analog circuits into  
the standby operating mode.  
–40–  
REV. 0  
AD9937  
POWER-DOWN SEQUENCE  
The following sequence is recommended when AD9937 is being  
powered down. (Refer to Figure 39 for each step.)  
2. Write a 0 to the DIG_STBY and AFE_STBY registers  
(addr 0x02). This will put the digital and analog circuits into  
the standby operating mode.  
3. Stop VCKM clock.  
4. Turn off power supplies to AD9937.  
1. Write a 0 to the OUTCONT_REG register (addr 0x01).  
4
VDD  
(INPUT)  
3
VCKM  
SERIAL  
WRITES  
OUTCONT  
(INTERNAL)  
VD  
(OUTPUT)  
ODD FIELD  
EVEN FIELD  
ODD FIELD  
HD  
(OUTPUT)  
V1A/B, V2, V3A/B, V4, TG1A, TG1B, TG3A, TG3B,  
OFD, H1(A, B, C, D)  
DIGITAL  
OUTPUTS  
RS, H2(A, B), LM  
VCLK  
AFE_STBY  
(REGISTER)  
DIG_STBY  
(REGISTER)  
Figure 39. Recommended Power-Down Sequence  
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
N + 9  
CCD  
SIGNAL  
N
N + 7  
N + 8  
N + 10  
N + 11  
tID  
tID  
SHP  
SHD  
tS2  
tS1  
tCP  
CYCLE 1  
CYCLE 2  
CYCLE 3  
CYCLE 4  
CYCLE 5  
CYCLE 6  
CYCLE 7  
CYCLE 8  
CYCLE 9  
VCKM  
tOD  
OUTPUT  
DATA  
N – 10  
N – 9  
N – 8  
N – 7  
N – 6  
N – 5  
N – 4  
N – 3  
N – 2  
N – 1  
N
NOTES  
1. RECOMMENDED PLACEMENT FOR VCKM RISING EDGE IS BETWEEN THE SHD RISING EDGE AND NEXT SHP FALLING EDGE.  
2. CCD SIGNAL IS SAMPLED AT SHP AND SHD RISING EDGES.  
3. OUTPUT DATA LATENCY IS NINE VCKM CYCLES.  
Figure 40. Pipeline Latency  
–41–  
REV. 0  
AD9937  
CIRCUIT LAYOUT INFORMATION  
The analog bypass pins (REFB, REFT) should also be carefully  
decoupled to ground as close as possible to their respective pins.  
The analog input (CCDIN) capacitor should also be located  
close to the pin.  
The AD9937 typical circuit connection is shown in Figure 41.  
The PCB layout is critical in achieving good image quality from  
the AD9937 product. All of the supply pins, particularly the  
AVDD, DVDD, TCVDD, RSVDD, HVDD1, and HVDD2  
supplies, must be decoupled to ground with good quality high  
frequency chip capacitors. The decoupling capacitors should be  
located as close as possible to the supply pins, and should have  
a very low impedance path to a continuous ground plane. There  
should also be a 4.7 µF or larger value bypass capacitor for each  
main supply although this is not necessary for each individual pin.  
The H1(AD), H2(A, B), and RS printed circuit board traces  
should be designed to have low inductance to avoid excessive distor-  
tion of the signals. Heavier traces are recommended, because of  
the large transient current demand on H1(AD) and H2(A, B) by  
the CCD. If possible, physically locate the AD9937 closer to the  
CCD to reduce the inductance on these lines. As always, the rout-  
ing path should be as direct as possible from the AD9937 to the  
CCD. Careful trace impedance considerations must also be made  
with applications using a flex printed circuit (FPC) connecting the  
CCD to the AD9937. FPC trace impedances can be controlled  
by applying a solid uniform ground plane under the H1(AD),  
H2(A, B), and RS traces. This helps minimize the amount of  
overshoot and ringing on these signals at the CCD inputs.  
In most applications, it is easier and recommended to share the  
same supply for AVDD, DVDD, TCVDD, RSVDD, HVDD1,  
and HVDD2, which may be done as long as the individual supply  
pins are separately bypassed at each supply pin. A separate 3 V  
supply should be used for DRVDD with this supply pin decoupled  
to the same ground plane as the rest of the chip. A separate  
ground for DRVSS is not recommended.  
0.1F  
3V  
ANALOG SUPPLY  
2
VD, HD  
OFD, LM, V4, TG3B, V3A/B,  
TG3A, V2, TG1B, V1A/B, TG1A,  
TO V-DRIVER  
8
3
SERIAL  
INTERFACE  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
TG1B  
V1A/B  
TG1A  
REFB  
REFT 1.0F  
AVSS  
NC  
NC  
42  
41  
40  
1
2
PIN 1  
IDENTIFIER  
D0  
D1  
3
1.0F  
39  
38  
37  
36  
35  
34  
33  
32  
31  
4
D2  
5
D3  
AD9937  
6
0.1F  
CCDIN  
AVDD  
VCKM  
TCVDD  
DRVSS  
DRVDD  
D4  
CCD SIGNAL  
7
3V  
DRIVER  
SUPPLY  
TOP VIEW  
(Not to Scale)  
4.7F  
0.1F  
3V ANALOG SUPPLY  
8
REF CLOCK INPUT  
9
0.1F  
D5  
10  
11  
12  
13  
14  
0.1F  
TCVSS  
D6  
NC  
NC  
NC  
D7  
3V ANALOG SUPPLY  
D8  
30  
29  
4.7F  
D9  
10  
DATA  
OUTPUTS  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
RS  
H1D, H2B, H1B, H1C, H2A, H1A  
6
DATA OUTPUT CLOCK  
0.1F  
0.1F  
0.1F  
3V ANALOG SUPPLY  
Figure 41. Typical Circuit Configuration  
–42–  
REV. 0  
AD9937  
Figures 42 and 43 show the recommended AD9937 supply group-  
ing. Figure 42 shows how the supplies should be tied together when  
there are only two available supply sources, whereas Figure 43  
shows how the supplies can be tied together when there are three  
available supply sources. In either case, all grounds should be  
tied together as shown.  
Also as shown in Figures 42 and 43 is that the AD9937 DRVDD  
supply can be shared with the system ASIC/DSP.  
AD9937  
3V ANALOG  
SUPPLY  
AVDD  
AVSS  
TCVSS  
HVSS1  
HVSS2  
RSVSS  
DVSS  
TCVDD  
HVDD1  
HVDD2  
RSVDD  
DVDD  
3V DRIVER  
SUPPLY  
DRVDD  
DRVSS  
ASIC/DSP  
Figure 42. Recommended Supply Grouping with Two Available Supply Sources  
3V ANALOG  
SUPPLY 1  
AD9937  
AVDD  
AVSS  
TCVSS  
DVSS  
HVSS1  
HVSS2  
RSVSS  
TCVDD  
DVDD  
HVDD1  
HVDD2  
RSVDD  
3V ANALOG  
SUPPLY 2  
3V DRIVER  
SUPPLY  
DRVDD  
DRVSS  
ASIC/DSP  
Figure 43. Recommended Supply Grouping with Three Available Supply Sources  
REV. 0  
–43–  
AD9937  
OUTLINE DIMENSIONS  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-56)  
Dimensions shown in millimeters  
0.30  
8.00  
BSC SQ  
0.23  
0.18  
0.60 MAX  
PIN 1  
INDICATOR  
0.60 MAX  
43  
56  
1
42  
PIN 1  
INDICATOR  
6.25  
6.10 SQ  
5.95  
7.75  
BSC SQ  
BOTTOM  
VIEW  
TOP  
VIEW  
0.50  
0.40  
0.30  
29  
28  
14  
15  
0.25 MIN  
6.50  
REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12MAX  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.50 BSC  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VLLD-2  
–44–  
REV. 0  

相关型号:

AD9937KCPZ

IC SPECIALTY CONSUMER CIRCUIT, QCC56, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other
ADI

AD9937KCPZRL

IC SPECIALTY CONSUMER CIRCUIT, QCC56, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other
ADI

AD9938

Tape and Reel Packaging
ADI

AD9940BCPZ

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BCPZRL

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BSTZ

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9940BSTZ

SPECIALTY CONSUMER CIRCUIT, PQFP48, LEAD FREE, MS-026-BBC, LQFP-48
ROCHESTER

AD9940BSTZRL

High Speed, Correlated Double Sampler with Integrated Timing Driver
ADI

AD9941BSTZ

Complete 14-Bit, 56 MSPS Imaging Signal Processor
ADI

AD9941BSTZRL

Complete 14-Bit, 56 MSPS Imaging Signal Processor
ADI

AD9942

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9942BBCZ

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI