AD9941BSTZRL [ADI]

Complete 14-Bit, 56 MSPS Imaging Signal Processor;
AD9941BSTZRL
型号: AD9941BSTZRL
厂家: ADI    ADI
描述:

Complete 14-Bit, 56 MSPS Imaging Signal Processor

商用集成电路
文件: 总16页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Complete 14-Bit, 56 MSPS  
Imaging Signal Processor  
AD9941  
FEATURES  
GENERAL DESCRIPTION  
Differential sensor input with 1 V p-p input range  
0 dB/6 dB variable gain amplifier (VGA)  
Low noise optical black clamp circuit  
14-bit, 56 MSPS analog-to-digital converter (ADC)  
No missing codes guaranteed  
3-wire serial digital interface  
3 V single-supply operation  
Low power CMOS: 145 mW @ 3.0 V, 56 MHz  
48-lead LQFP package  
The AD9941 is a complete analog signal processor for imaging  
applications that do not require correlated double sampling  
(CDS). It is also suitable for processing the output signal from  
the AD9940 CDS front end product. It features a 56 MHz, single-  
channel architecture designed to sample and condition the output  
of CMOS imagers and CCD arrays already containing on-chip  
CDS. The AD9941 signal chain consists of a differential input  
sample-and-hold amplifier (SHA), a digitally controlled variable  
gain amplifier (VGA), a black level clamp, and a 14-bit ADC.  
The internal registers are programmed through a 3-wire serial  
digital interface.  
APPLICATIONS  
Digital still cameras using CMOS imagers  
Professional HDTV camcorders  
Professional/high-end digital cameras  
Broadcast cameras  
The AD9941 operates from a single 3 V supply, typically  
dissipates 145 mW, and is packaged in a 48-lead LQFP.  
FUNCTIONAL BLOCK DIAGRAM  
AVDD AVSS  
REFT REFB  
PBLK  
AD9941  
DRVDD  
DRVSS  
BAND GAP  
REFERENCE  
0dB, 6dB  
VGA  
VIN+  
VIN–  
14  
14-BIT  
ADC  
DOUT  
SHA  
CLP  
CLPOB  
8
INTERNAL  
REGISTERS  
BLK CLAMP  
LEVEL  
DVDD  
DVSS  
DIGITAL  
INTERFACE  
SL  
SCK  
SDATA  
ADCLK  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD9941  
TABLE OF CONTENTS  
Specifications .....................................................................................3  
Equivalent Input/Output Circuits...................................................9  
Serial Interface Timing...................................................................10  
Circuit Description and Operation ..............................................12  
Differential Input SHA...............................................................12  
Variable Gain Amplifier.............................................................13  
ADC..............................................................................................13  
Optical Black Clamp...................................................................13  
Applications Information...............................................................14  
Outline Dimensions........................................................................16  
Ordering Guide ...........................................................................16  
Digital Specifications....................................................................3  
Analog Specifications ...................................................................4  
Timing Specifications...................................................................5  
Timing Diagrams ..........................................................................5  
Absolute Maximum Ratings ............................................................6  
Thermal Characteristics...............................................................6  
ESD Caution ..................................................................................6  
Pin Configuration and Function Descriptions .............................7  
Terminology .......................................................................................8  
REVISION HISTORY  
7/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
AD9941  
SPECIFICATIONS  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
TEMPERATURE RANGE  
Operating  
Storage  
−25  
−65  
+85  
+150  
°C  
°C  
POWER SUPPLY VOLTAGE  
AVDD, DVDD, DRVDD  
POWER DISSIPATION  
Normal Operation—56 MHz, AVDD = DVDD = DRVDD = 3.0 V  
Standby Mode  
2.9  
3.0  
3.6  
V
145  
2
mW  
mW  
MHz  
MAXIMUM CLOCK RATE  
56  
DIGITAL SPECIFICATIONS  
DRVDD = 2.9 V, CL = 20 pF, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
LOGIC INPUTS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
VIH  
VIL  
IIH  
IIL  
CIN  
2.1  
V
V
μA  
μA  
pF  
0.6  
10  
10  
10  
LOGIC OUTPUTS  
High Level Output Voltage , IOH = 2 mA  
Low Level Output Voltage , IOL = 2 mA  
VOH  
VOL  
2.2  
V
V
0.5  
Rev. 0 | Page 3 of 16  
 
AD9941  
ANALOG SPECIFICATIONS  
TMIN to TMAX, AVDD = DVDD, fADCLK = 56 MHz, unless otherwise noted.  
Table 3.  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
ANALOG INPUTS (VIN+, VIN−)  
Input Common-Mode Range1  
Maximum Input Amplitude1  
Maximum Differential Input Amplitude1  
OB Correction Range  
Gain 1 (6 dB)1  
1.1  
1.0  
2.0  
2.3  
V
V p-p  
V p-p  
Linear operating range for VIN+, VIN−  
VIN+ and VIN− signal swing  
Defined as VIN+ − VIN−  
OB offset shown in Note 1  
90  
180  
mV  
mV  
Gain 2 (0 dB)1  
VARIABLE GAIN AMPLIFIER (VGA)  
Gain Control Resolution  
Gain Range  
2
Steps  
CCD Mode Gain 1  
CCD Mode Gain 2  
5.0  
−0.5  
5.5  
0
6.0  
+0.5  
dB  
dB  
BLACK LEVEL CLAMP  
Clamp Level Resolution  
Clamp Level  
256  
Steps  
Clamp level = 4 × REFBLK  
Minimum Clamp Level (Code 0)  
Maximum Clamp Level (Code 255)  
A/D CONVERTER  
0
1020  
LSB  
LSB  
Resolution  
Differential Nonlinearity (DNL)  
No Missing Codes  
14  
Bits  
LSB  
0.5  
Guaranteed  
Integral Nonlinearity  
0.3  
2.0  
% FS  
V p-p  
Full-Scale Input Voltage  
VOLTAGE REFERENCE  
Reference Top Voltage (REFT)  
Reference Bottom Voltage (REFB)  
2.0  
1.0  
V
V
1 Input signal characteristics defined as  
2.3V  
VIN–  
1V p-p MAX INPUT SIGNAL SWING, VIN+ AND VIN–  
2V p-p MAX DIFFERENTIAL SIGNAL, VIN+ – VIN–  
BLACK  
LEVEL  
WHITE  
LEVEL  
VIN+  
GND  
1.1V  
MAX OB OFFSET  
Rev. 0 | Page 4 of 16  
 
 
AD9941  
TIMING SPECIFICATIONS  
CL = 20 pF, fADCLK = 56 MHz, refer to Figure 2 and Figure 8.  
Table 4.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SAMPLE CLOCKS  
ADCLK Clock Period  
ADCLK High/Low Pulse Width  
CLPOB Pulse Width  
Internal Clock Delay  
DATA OUTPUTS  
18  
ns  
ns  
Pixels  
ns  
8
20  
3
TID  
Output Delay  
Output Hold Time  
TOD  
TH  
20  
ns  
ns  
5
Pipeline Delay  
9
Cycles  
SERIAL INTERFACE  
Maximum SCK Frequency  
SL to SCK Setup Time  
SCK to SL Hold Time  
SDATA Valid to SCK Rising Edge Setup  
SCK Rising Edge to SDATA Valid Hold  
fSCLK  
tLS  
tLH  
tDS  
tDH  
10  
10  
10  
10  
10  
MHz  
ns  
ns  
ns  
ns  
TIMING DIAGRAMS  
N + 9  
N
N + 1  
VIN–  
N + 2  
N + 8  
VIN+  
tID  
tCONV  
ADCLK  
tOD  
tH  
OUTPUT  
DATA  
N – 10  
N – 9  
N – 8  
N – 1  
N
NOTES  
1. VIN+ AND VIN– SIGNALS ARE SAMPLED AT ADCLK RISING EDGES (CAN BE INVERTED USING THE ADCPOL REGISTER).  
2. INTERNAL SAMPLING DELAY (APERTURE) t IS TYPICALLY 3ns.  
ID  
3. OUTPUT DATA LATENCY IS NINE ADCLK CYCLES.  
Figure 2. Input/Output Data Timing  
HORIZONTAL  
BLANKING  
EFFECTIVE PIXELS  
OPTICAL BLACK PIXELS  
EFFECTIVE PIXELS  
IMAGER  
SIGNAL  
CLPOB  
PBLK  
OUTPUT  
DATA  
EFFECTIVE PIXEL DATA  
OB PIXEL DATA  
EFFECTIVE DATA  
NOTES  
1. CLPOB OVERWRITES PBLK. PBLK DOES NOT AFFECT CLAMP OPERATION IF OVERLAPPING CLPOB.  
2. PBLK SIGNAL IS OPTIONAL.  
3. DIGITAL OUPUT DATA IS ALL ZEROS DURING PBLK. OUTPUT DATA LATENCY IS NINE ADCLK CYCLES.  
Figure 3. Typical Imager Timing  
Rev. 0 | Page 5 of 16  
 
 
AD9941  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
REFT, REFB  
VIN+, VIN−  
ADCLK, RST, SL, SDI, SCK  
AVDD to AVSS  
DVDD and DRVDD to DVSS  
and DRVSS  
AVSS − 0.3 V to AVDD + 0.3 V  
AVSS − 0.3 V to AVDD + 0.3 V  
DVSS − 0.3 V to DVDD + 0.3 V  
−0.3 V to + 3.9 V  
−0.3 V to +3.9 V  
Any VSS to Any VSS  
Digital Outputs to DRVSS  
CLPOB/PBLK to DVSS  
−0.3 V to +0.3 V  
THERMAL CHARACTERISTICS  
−0.3 V to DRVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
Thermal resistance for the 48-lead LQFP package:  
SCK, SL, and SDATA to DVSS  
θJA = 92°C/W1  
1
θJA is measured using a 4-layer PCB.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 16  
 
AD9941  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
D2  
NC  
PIN 1  
2
3
D3  
D4  
AVSS  
NC  
4
D5  
AVDD  
NC  
5
D6  
AD9941  
TOP VIEW  
(Not to Scale)  
6
D7  
VIN–  
VIN+  
NC  
7
D8  
8
D9  
9
D10  
D11  
D12  
D13  
NC  
10  
11  
12  
NC  
NC  
NC  
13 14 15 16 17 18 19 20 21 22 23 24  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
1 to 12  
13  
14  
15  
Mnemonic  
D2 to D13  
DRVDD  
DRVSS  
DVSS  
Type  
DO  
P
P
P
Description  
Digital Data Outputs  
Digital Output Driver Supply  
Digital Output Ground  
Digital Ground  
16  
17  
ADCLK  
DVDD  
DI  
P
Digital Data Output Clock  
Digital Supply  
18, 21 to 29, 32,  
34, 36, 40, 41  
NC  
NC  
No Connection (tie to VDD or GND)  
19  
20  
30  
31  
33  
35  
37  
38  
39  
42  
43  
44  
45  
46  
47  
48  
PBLK  
CLPOB  
VIN+  
VIN−  
AVDD  
AVSS  
DVSS  
REFT  
REFB  
DVSS  
RST  
SDATA  
SCK  
SL  
D0  
D1  
DI  
DI  
AI  
AI  
P
Preblanking Clock Input (internal 50 kΩ pull-up)  
Black Level Clamp Clock Input  
Positive Data Input  
Negative Data Input  
Analog Supply  
P
P
Analog Ground (GND)  
Digital Ground  
AO  
AO  
P
DI  
DI  
DI  
DI  
DO  
DO  
ADC Reference Voltage Top (bypass to GND with a 0.1 μF capacitor)  
ADC Reference Voltage Bottom (bypass to GND with a 0.1 μF capacitor)  
Digital Ground  
Reset Control for Internal Registers (active low)  
Serial Data Input Signal  
Serial Clock  
Serial Load Enable  
Digital Data Output  
Digital Data Output  
Rev. 0 | Page 7 of 16  
 
AD9941  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Total Output Noise  
An ideal ADC exhibits code transitions that are exactly 1 LSB  
apart. DNL is the deviation from this ideal value; therefore, every  
code must have a finite width. No missing codes guaranteed to  
14-bit resolution indicates that all 16,384 codes must be present  
over all operating conditions.  
The rms output noise is measured using histogram techniques.  
The standard deviation of the ADC output codes is calculated  
in LSB and represents the rms noise level of the total signal  
chain at the specified gain setting. The output noise can be  
converted to an equivalent voltage, using the relationship  
Peak Nonlinearity  
1 LSB = (ADC full scale/2n codes)  
Peak nonlinearity, a full signal chain specification, refers to the  
peak deviation of the output of the AD9941 from a true straight  
line. The point used as zero scale occurs 0.5 LSB before the first  
code transition. Positive full scale is defined as a level 1 LSB and  
0.5 LSB beyond the last code transition. The deviation is measured  
from the middle of each output code to the true straight line. The  
error is then expressed as a percentage of the 2 V ADC full-scale  
signal. The input signal is always appropriately gained up to fill  
the ADCs full-scale range.  
where n is the bit resolution of the ADC, and 1 LSB is  
approximately 122 μV.  
Internal Delay for SHA  
The internal delay, or aperture delay, is the time delay from  
when the sampling edge is applied to the AD9941 to when the  
actual sample of the input signal is held. The ADCLK samples  
the input signal during the transition from low to high; therefore,  
the internal delay is measured from each clock’s rising edge to  
the instant the actual sample is taken.  
Power Supply Rejection (PSR)  
The PSR is measured with a step change applied to the supply  
pins. The PSR specification is calculated from the change in the  
data outputs for a given step change in the supply voltage.  
Rev. 0 | Page 8 of 16  
 
AD9941  
EQUIVALENT INPUT/OUTPUT CIRCUITS  
DVDD  
AVDD  
330Ω  
60Ω  
DVSS  
AVSS  
AVSS  
Figure 5. Digital Inputs—ADCLK, CLPOB, PBLK, SCK, SDATA, SL, RST  
Figure 7. VIN+, VIN−  
DVSS  
DRVDD  
DATA  
THREE-STATE  
DOUT  
DVSS  
DRVSS  
Figure 6. Data Outputs—D0 to D13  
Rev. 0 | Page 9 of 16  
 
AD9941  
SERIAL INTERFACE TIMING  
All of the internal registers of the AD9941 are accessed through  
a 3-wire serial interface. Each register consists of an 8-bit data  
byte, starting with the LSB bit. As shown in Figure 8, the data  
bits are clocked in on the rising edge of SCK after SL is asserted  
low, and the entire 8-bit word is latched in on the rising edge of  
SL after the last MSB bit. Consecutive serial writes are performed  
starting with Address 00 and ending with an address MSB bit  
prior to asserting SL high.  
Note that Address 00 must be written at the start of any write  
operation to specify the PARTSEL bit. The LSB of Address 00  
(PARTSEL) must be set high to write to the AD9941 registers.  
A hard reset is recommended after power-up to reset the  
AD9941 prior to performing a serial interface write. A hard  
reset is performed by asserting the RST pin low for a minimum  
of 10 μs. The serial interface pins SCK, SL, and SDI must be in a  
known state after the RST has been applied.  
ADDR 00  
ADDR 01  
ADDR N  
ADDR N + 1  
...  
...  
...  
...  
SDATA  
D7 D0 D1  
D3  
D7  
D1 D2 D3  
D3  
D7 D0 D1  
D3  
D7  
D0  
D2  
D0  
D2  
D2  
D1  
tDS  
tDH  
...  
...  
...  
...  
SCK  
SL  
tLS  
tLH  
...  
NOTES  
1. ANY NUMBER OF ADJACENT REGISTERS MAY BE LOADED SEQUENTIALLY, BEGINNING WITH THE LOWER ADDRESS 00.  
2. WHEN SEQUENTIALLY LOADING MULTIPLE REGISTERS, THE EXACT REGISTER LENGTH (SHOWN ABOVE) MUST BE USED  
FOR EACH REGISTER.  
3. ALL LOADED REGISTERS ARE SIMULTANEOUSLY UPDATED ON THE RISING EDGE OF SL.  
Figure 8. Consecutive Serial Write Interface Timing  
Rev. 0 | Page 10 of 16  
 
 
AD9941  
Table 7. Serial Interface Registers  
Address  
Data Bit Content  
Default Value  
Name  
Description  
00  
[0]  
[2:1]  
1
1
PARTSEL  
OPERATION MODE  
1 = select AD9941, 0 = select AD9940  
0 = standby mode  
1 = 6 dB VGA gain mode  
2 = test mode  
3 = 0 dB VGA gain mode  
Always set to 0  
0 = ADCLK rising edge update  
1 = ADCLK falling edge update  
0 = fast clamp off  
[3]  
[4]  
0
0
TESTMODE  
ADCPOL  
[5]  
0
CLPMODE  
1 = fast clamp on (the OB loop time constant is reduced by half)  
Always set to 0  
0 = normal operation, 1 = data outputs are three-state  
Always set to 0  
0 = OB clamp enabled, 1= OB clamp disabled  
Always set to 0  
[6]  
[7]  
0
0
0
TESTMODE  
DOUT DISABLE  
TESTMODE  
CLPDISABLE  
TESTMODE  
01  
[5:0]  
[6]  
[7]  
02  
03  
04  
05  
[7:0]  
[7:0]  
[7:0]  
[0]  
0
0
0
0
TESTMODE  
Always set to 72  
TESTMODE  
Always set to 99  
TESTMODE  
Always set to 16  
CLPLEVEL ENABLE  
0 = disable CLAMPLEVEL register, clamp level fixed at 492 LSB  
1 = enable CLAMPLEVEL register, clamp level is set to value in  
Register Value 06 CLAMPLEVEL  
[1]  
0
CLPUPDATE  
0 = ignore new value in CLAMPLEVEL register  
1 = update new clamp level value with CLAMPLEVEL register  
Always set to 0  
[7:2]  
[7:0]  
0
0
TESTMODE  
06  
CLAMPLEVEL  
OB clamp level (0 = 0 LSB, 123 = 492, 255 = 1020 LSB)  
Clamp level (LSB) = 4 × REFBLK  
Rev. 0 | Page 11 of 16  
AD9941  
CIRCUIT DESCRIPTION AND OPERATION  
both VIN+ and VIN− signals simultaneously. The imagers  
The AD9941 signal processing chain is shown in Figure 9. Each  
processing step is essential in achieving a high quality image  
from the raw data of the imager.  
signal is sampled on the rising edge of ADCLK. Placement of  
this clock signal is critical in achieving the best performance  
from the imager. An internal ADCLK delay (tID) of 3 ns is caused  
by internal propagation delays.  
DIFFERENTIAL INPUT SHA  
The differential input SHA circuit is designed to accommodate  
a variety of image sensor output voltages. The timing shown in  
Figure 2 illustrates how the ADCLK signal is used to sample  
0.1μF 0.1μF  
ADCLK  
REFB  
REFT  
1.0V 2.0V  
AD9941  
INTERNAL  
V
REF  
PBLK  
0dB, 6dB  
VIN+  
VIN–  
14  
14-BIT  
ADC  
SHA  
VGA  
DOUT  
OPTICAL BLACK  
CLAMP  
CLPOB  
8-BIT  
DAC  
OPERATION  
MODE  
REGISTER  
DIGITAL  
FILTER  
8
CLAMP LEVEL  
REGISTER  
Figure 9. Internal Block Diagram  
Rev. 0 | Page 12 of 16  
 
AD9941  
VARIABLE GAIN AMPLIFIER  
OPTICAL BLACK CLAMP  
The VGA stage can be programmed to either 0 dB or 6 dB using  
the OPERATION MODE register. The 6 dB gain setting is needed  
to match a 1 V input signal with the ADC full-scale range of 2 V.  
The 0 dB gain setting can be used with the AD9940 CDS front  
end component, which has a 2 V differential output range. Note  
that the OB correction range is different for each gain setting, as  
outlined in Table 3.  
The optical black clamp loop is used to remove residual offsets  
in the signal chain and to track low frequency variations in the  
imagers black level. During the optical black (shielded) pixel  
interval on each line, the ADC output is compared with a fixed  
black level reference, selected by the user in the CLAMPLEVEL  
register. The value can be programmed between 0 LSB and  
1020 LSB in 256 steps. The resulting error signal is filtered to  
reduce noise, and the correction value is applied to the ADC  
input through a digital-to-analog converter. Normally, the  
optical black clamp loop is turned on once per horizontal line,  
but this loop can be updated more slowly to suit a particular  
application. If external digital clamping is used during the  
postprocessing, the AD9941 optical black clamping can be  
disabled using the CLPDISABLE register.  
ADC  
The AD9941 uses a high performance ADC architecture,  
optimized for high speed and low power. Differential  
nonlinearity (DNL) performance is typically better than  
0.5 LSB. The ADC uses a 2 V input range.  
The CLPOB pulse should be placed during the imagers optical  
black pixels. It is recommended that the CLPOB pulse duration  
be at least 20 pixels wide to minimize clamp noise. Shorter pulse  
widths can be used, but clamp noise may increase and the  
ability to track low frequency variations in the black level will  
be reduced.  
Rev. 0 | Page 13 of 16  
 
AD9941  
APPLICATIONS INFORMATION  
Careful placement of a split in the ground plane on the board  
All signals should be carefully routed on the PCB to maintain  
low noise performance. The clock inputs are located on the  
package side opposite the analog pins and should be connected  
to the digital ASIC. A single ground plane is recommended for  
the AD9941. This ground plane should be as continuous as  
possible, particularly where analog pins are concentrated. This  
ensures that all analog decoupling capacitors provide the lowest  
possible impedance path between the power and bypass pins  
and their respective ground pins. All decoupling capacitors  
should be located as close as possible to the package pins.  
can help prevent the return current of the horizontal driver  
from flowing into the analog ground, thereby reducing digital-  
to-analog coupling noise. Power supply decoupling is very  
important for achieving low noise performance. Figure 11  
shows the local high frequency decoupling capacitors, but  
additional capacitance is recommended for lower frequencies.  
Additional capacitors and ferrite beads can further reduce noise.  
CMOS  
OR  
CCD  
AD9941  
DIGITAL  
OUTPUTS  
OUT+  
OUT–  
VIN+  
VIN–  
DIGITAL IMAGE  
PROCESSING  
ASIC  
ADC  
OUT  
IMAGER  
SERIAL  
INTERFACE  
REGISTER-  
DATA  
(MAY ALSO  
INCLUDE TG)  
BUFFER  
OR  
LEVEL SHIFT  
ADCLK/CLAMP  
TIMING  
V-DRIVER  
(CCD)  
IMAGER  
TIMING  
TIMING  
GENERATOR  
Figure 10. System Application Diagram  
Rev. 0 | Page 14 of 16  
 
AD9941  
RST  
3
SERIAL  
INTERFACE  
0.1μF  
0.1μF  
48 47 46 45 44 43 42 41 40 39 38 37  
NC  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
AVSS  
NC  
PIN 1  
2
3
0.1μF  
3V  
AVDD  
NC  
4
ANALOG  
SUPPLY  
5
AD9941  
TOP VIEW  
(Not to Scale)  
VIN–  
VIN+  
NC  
6
VIN– INPUT  
VIN+ INPUT  
7
8
NC  
D10  
D11  
D12  
D13  
9
NC  
10  
11  
12  
NC  
NC  
14  
DATA  
OUTPUTS  
13 14 15 16 17 18 19 20 21 22 23 24  
3
CLOCK  
INPUTS  
3V  
3V  
DRIVER  
SUPPLY  
ANALOG  
SUPPLY  
0.1μF  
0.1μF  
Figure 11. Recommended Circuit Configuration  
Rev. 0 | Page 15 of 16  
 
AD9941  
OUTLINE DIMENSIONS  
0.75  
0.60  
0.45  
9.00  
BSC SQ  
1.60  
MAX  
37  
48  
36  
1
PIN 1  
7.00  
BSC SQ  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
25  
12  
0.15  
0.05  
13  
24  
SEATING  
PLANE  
0.08 MAX  
COPLANARITY  
0.27  
0.22  
0.17  
VIEW A  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BBC  
Figure 12. 48-Lead Low Profile Quad Flat Package [LQFP]  
(ST-48)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
AD9941BSTZ1  
AD9941BSTZRL1  
−25°C to +85°C  
−25°C to +85°C  
48-Lead Low Profile Quad Flat Package (LQFP)  
48-Lead Low Profile Quad Flat Package (LQFP)  
ST-48  
ST-48  
1 Z = Pb-free part.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05504–0–7/05(0)  
Rev. 0 | Page 16 of 16  
 

相关型号:

AD9942

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9942BBCZ

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9942BBCZRL

Dual-Channel, 14-Bit CCD Signal Processor with Precision Timing⑩ Core
ADI

AD9943

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCP

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPRL

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZ

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZ1

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZRL

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943KCPZRL1

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9943_15

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI

AD9944

Complete 10-Bit and 12-Bit, 25 MHz CCD Signal Processors
ADI