AD9993-EBZ [ADI]

Integrated Mixed-Signal Front End;
AD9993-EBZ
型号: AD9993-EBZ
厂家: ADI    ADI
描述:

Integrated Mixed-Signal Front End

文件: 总57页 (文件大小:2436K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Integrated Mixed-Signal Front End (MxFE)  
Data Sheet  
AD9993  
FEATURES  
GENERAL DESCRIPTION  
Quad 14-bit 250 MSPS ADC  
SFDR = 83 dBc at 87 MHz input  
Dual 14-bit 500 MSPS DAC  
SFDR = 75 dBc at 20 MHz output  
On-chip PLL clock synthesizer  
Low power  
The AD9993 is a mixed-signal front-end (MxFE®) device that  
integrates four 14-bit ADCs and two 14-bit DACs. Figure 1  
shows the block diagram of the MxFE. The MxFE is  
programmable using registers accessed via a serial peripheral  
interface (SPI). ADC and DAC datapaths include FIFO buffers  
to absorb phase differences between LVDS lane clocks and the  
1536 mW, 1 GHz master clock, on-chip synthesizer  
500 MHz double data rate (DDR)  
LVDS interfaces for DACs and ADCs  
data converter sampling clocks.  
The MxFE DACs are part of the Analog Devices, Inc., high  
speed CMOS DAC core family. These DACs are designed to be  
used in wide bandwidth communication system transmitter  
(Tx) signal chains.  
Small 12 mm × 12 mm lead-free BGA package  
APPLICATIONS  
Point to point microwave backhaul radios  
Wireless repeaters  
The MxFE ADCs are multistage pipelined CMOS ADC cores  
designed for use in communications receivers.  
FUNCTIONAL BLOCK DIAGRAM  
DOUT3A_x TO DOUT0A_x  
DOUT3B_x TO DOUT0B_x  
DOUT3C_x TO DOUT0C_x  
DOUT3D_x TO DOUT0D_x  
DCO_x  
2
2
2
2
14  
14  
14  
14  
14  
4
ADC_A  
ADC_B  
ADC_C  
ADC_D  
LVDS  
BUFFER  
DCO CLOCK  
STROBE  
STROBE_x  
DIGITAL  
–ADC AND DAC  
DATAPATHS  
–CONTROLS  
–SPI REGISTERS  
–FIFO BUFFERS  
14  
DIN6A_x TO DIN0A_x  
LVDS  
BUFFER  
DIN6B_x TO DIN0B_x  
DCI_x  
DCI CLOCK  
2
2
14  
14  
DAC_A  
DAC_B  
4
SPI_SCLK, SPI_CS, SPI_SDI, SPI_SDO  
RST  
ALERT  
PLL  
0
1
MxFE  
AD9993  
CLOCK GENERATOR  
31.25MHz  
OR  
62.5MHz  
DIV  
1GHz  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD9993* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD9993 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD9993 Evaluation board  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD9993 EngineerZone Discussions.  
AD9993: Integrated Mixed-Signal Front End (MxFE) Data  
Sheet  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
TOOLS AND SIMULATIONS  
AD9993 IBIS Model  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9993  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
LVDS Interface Timing.............................................................. 22  
LVDS Lane Testing Using PRBS............................................... 23  
Power Mode Programming....................................................... 23  
Interrupt Request Operation .................................................... 23  
Temperature Sensor ................................................................... 23  
Start-Up Register Sequences......................................................... 25  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
Specifications..................................................................................... 4  
DC Specifications ......................................................................... 4  
AC Specifications.......................................................................... 5  
Digital Specifications ................................................................... 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 11  
Receiver ADC Performance...................................................... 11  
Transmitter DAC Performance................................................. 13  
Terminology .................................................................................... 15  
Theory of Operation ...................................................................... 16  
Product Description................................................................... 16  
SPI Port ........................................................................................ 16  
SPI Configuration Programming............................................. 17  
Register Update Transfer Method............................................ 17  
ADC Register Update Indexing................................................ 17  
ADCs............................................................................................ 17  
ADC Architecture ...................................................................... 17  
ADC Section Programming...................................................... 17  
Analog Input Considerations.................................................... 17  
DACs ............................................................................................ 18  
DAC Transfer Function ............................................................. 18  
Power-Up Routine When Using the On-Chip Clock  
Synthesizer .................................................................................. 25  
Power-Up Routine When Using External Clock ................... 25  
Applications Information.............................................................. 27  
Direct Conversion Radio Application..................................... 27  
Register Map ................................................................................... 28  
Register Descriptions..................................................................... 30  
SPI Configuration Register ....................................................... 30  
Chip ID Register......................................................................... 30  
Chip Grade Register................................................................... 31  
Device Index Register................................................................ 31  
Power Mode Control Register .................................................. 32  
Align ADC LVDS Clocks, ADC FIFO, DAC FIFO Register 32  
Strobe Lane Control Register.................................................... 33  
Output Mode Register ............................................................... 33  
LVDS Tx Control Register ........................................................ 34  
VREF Control Register................................................................. 34  
PRBS Generator Control Register............................................ 35  
8-Bit Seed MSB of PRBS Generator for Lane 0 Register....... 35  
8-Bit Seed MSB of PRBS Generator for Lane 1 Register....... 36  
8-Bit Seed MSB of PRBS Generator for Lane 2 Register....... 36  
8-Bit Seed MSB of PRBS Generator for Lane 3 Register....... 36  
Synthesizer Status Register........................................................ 37  
Loop Filter Control Signals Register........................................ 37  
Loop Filter Control Signals Register........................................ 38  
Loop Filter Control Signals Register........................................ 38  
Integer Value of Synthesizer Divider Register........................ 39  
Synthesizer Control Register .................................................... 39  
Clock Generator Control Register ........................................... 39  
CLKGEN Control Register ....................................................... 40  
DAC LVDS Rx Control Register .............................................. 40  
DAC LVDS Current Bias Control Register............................. 41  
DAC Cores Control Register .................................................... 42  
DAC Datapath Format Control Register ................................ 42  
DAC Output Compliance Voltage Range and AC  
Performance ................................................................................ 18  
DAC Voltage Reference ............................................................. 19  
DAC Gain Setting....................................................................... 19  
DAC Datapath Format Selection.............................................. 19  
DAC Test Tone Generator DDS................................................ 19  
Clocking....................................................................................... 20  
On-Chip PLL Clock Multiplier ................................................ 20  
Selecting Clocking Options....................................................... 21  
ADC Datapath and DAC Datapath FIFOs ............................. 21  
LVDS Interfaces.......................................................................... 21  
Rev. A | Page 2 of 56  
Data Sheet  
AD9993  
DAC IQ Calibration Control Register......................................43  
DAC IQ Calibration Status Register.........................................43  
DAC Rx FIFO Status 1 Register ................................................43  
PRBS Detector Control Register...............................................44  
PRBS Detector Error Count 0 for DAC A Register................44  
PRBS Detector Error Count 1 for DAC A Register................44  
PRBS Detector Error Count 2 for DAC A Register................45  
PRBS Detector Error Count 3 for DAC A Register................45  
PRBS Detector Error Count 4 for DAC A Register................45  
PRBS Detector Error Count 5 for DAC A Register................46  
PRBS Detector Error Count 6 for DAC A Register................46  
PRBS Detector Error Count 0 for DAC B Register ................46  
PRBS Detector Error Count 1 for DAC B Register ................47  
PRBS Detector Error Count 2 for DAC B Register ................47  
PRBS Detector Error Count 3 for DAC B Register ................47  
PRBS Detector Error Count 4 for DAC B Register ................48  
PRBS Detector Error Count 5 for DAC B Register ................48  
PRBS Detector Error Count 6 for DAC B Register ................48  
Bits[7:0] of Temperature Sensor Data Readback Register.....49  
Bits[15:8] of Temperature Sensor Data Readback Register...49  
Temperature Sensor Control Signals Register ........................49  
Interrupt Pin Control Register..................................................50  
DDS Control Register.................................................................50  
DDS Tuning Word for Tone 1 Register....................................51  
DDS Tuning Word for Tone 1 Register....................................51  
DDS Tuning Word for Tone 1 Register....................................52  
DDS Tuning Word for Tone 1 Register....................................52  
Interrupt Status Register ............................................................53  
Interrupt Enable Register...........................................................53  
Interrupt Source Status Register ...............................................54  
Global Device Update Register .................................................55  
Outline Dimensions........................................................................56  
Ordering Guide ...........................................................................56  
REVISION HISTORY  
5/14—Rev. 0 to Rev. A  
Changes to Ordering Guide...........................................................56  
5/14—Revision 0: Initial Version  
Rev. A | Page 3 of 56  
 
AD9993  
Data Sheet  
SPECIFICATIONS  
DC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD = AVDD = 1.8 V, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Tx DAC RESOLUTION  
Tx DAC OUTPUT CHARACTERISTICS  
Offset Error  
14  
Bits  
±±.5  
±2.±  
2±.±  
% FSR  
% FSR  
mA  
Gain Error  
Full-Scale Output Current (IOUTFS  
)
Output Compliance Voltage Range  
CML_A, CML_B connected to AVSS, setting of  
DAC_VCM_VREF_BIT[2:±] following reset  
CML_A, CML_B connected to a bypass capacitor,  
DAC_VCM_VREF_BIT[2:±] set to ±1±  
−±.5  
±.±  
+±.5  
1.±  
V
Output Compliance Voltage Range  
V
Output Resistance  
Tx DAC TEMPERATURE DRIFT  
Gain  
Reference Voltage (VREF_DAC)  
REFERENCE (VREF_DAC)  
Internal Reference Voltage  
Rx ADC RESOLUTION  
Rx ADC CHARACTERISTICS  
Gain Error  
1±  
MΩ  
Gain using on-chip VREF_DAC  
On-chip VREF_DAC  
±ꢀ5  
±215  
ppm/°C  
ppm/°C  
±.95  
1.±  
14  
1.±5  
V
Bits  
±1.±  
1.75  
% FSR  
V p-p  
Peak-to-Peak Differential Input Voltage  
Range  
Input Capacitance  
Setting of VREF_FS_ADJ[4:±] at reset  
ADC inputs are not self biased  
2.5  
pF  
V
Rx ADC FULL-SCALE VREF ADJUSTMENT  
1.3ꢀ3 1.75  
2.±ꢀ7  
±.96  
COMMON-MODE VOLTAGE REFERENCE  
(A_CML, B_CML, C_CML, D_CML)  
ADC Common-Mode Voltage Output  
±.ꢀ4  
±.9  
V
ANALOG SUPPLY VOLTAGES  
AVDD33  
AVDD  
3.14  
1.71  
3.3  
1.ꢀ  
3.47  
1.ꢀ9  
V
V
DIGITAL SUPPLY VOLTAGES  
DVDD  
1.62  
1.ꢀ  
1.9ꢀ  
V
POWER CONSUMPTION  
Single Tone Input, Single Tone Output  
AVDD33  
AVDD  
DVDD  
1536  
55  
65  
21±  
1±.±  
+25  
mW  
mA  
mA  
mA  
mA  
°C  
Power-Down Mode  
OPERATING RANGE  
−4±  
+ꢀ5  
Rev. A | Page 4 of 56  
 
 
 
Data Sheet  
AD9993  
AC SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD = AVDD = 1.8 V, DAC sampling rate = 500 MSPS and ADC sampling rate = 250 MSPS, unless  
otherwise specified.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
DAC OUTPUT  
Spurious-Free Dynamic Range  
(SFDR)  
Two Tone Intermodulation  
Distortion (IMD3)  
fOUT = 2± MHz  
75  
dBc  
dBc  
f
OUT = ꢀ± MHz  
65  
Noise Spectral Density (NSD),  
Single Tone  
256-QAM Adjacent Channel  
Power (ACP)  
fOUT = ꢀ± MHz  
−16±  
76  
dBm/Hz  
fCENTER = 5± MHz, single carrier, 3.375 MHz offset frequency  
dBc  
dBc  
ADC INPUT  
Signal to Noise Ratio (SNR)  
fIN = ꢀ7 MHz  
Spurious-Free Dynamic Range  
(SFDR)  
Measured with −1.± dBFS sine wave input  
Measured with −1.± dBFS sine wave input  
7±  
fIN = 1± MHz  
fIN = ꢀ7 MHz  
Two-Tone IMD3  
Full Power Bandwidth  
ꢀ6  
ꢀ3  
9±  
1±±±  
dBc  
dBc  
dBc  
MHz  
fIN1 = ꢀ9 MHz, fIN2 = 92 MHz, AIN = −12 dBFS  
Bandwidth of operation in which proper ADC performance can be  
achieved  
DIGITAL SPECIFICATIONS  
TMIN to TMAX, AVDD33 = 3.3 V, DVDD = AVDD = 1.8 V, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
CMOS INPUT LOGIC LEVEL  
Input VIN Logic High  
Input VIN Logic Low  
1.ꢀ  
±.±  
V
V
CMOS OUTPUT LOGIC LEVEL  
Output VOUT Logic High  
1.2  
V
Output VOUT Logic Low  
±.ꢀ  
V
ADC AND DAC LVDS DATA INTERFACES  
ADC LVDS Transmitter Outputs  
DCO_P/DCO_N to Data Skew (tSKEW  
)
Data to DDR DCO_P/DCO_N transition delay  
35±  
ps  
Output Voltage High, VOH, Single  
Ended  
Output Voltage Low, VOL, Single  
Ended  
Applies to output voltage, positive and negative, VOUTP  
and VOUTN  
Applies to VOUTP and VOUTN  
1375  
1±25  
mV  
mV  
Output Differential Voltage  
Output Offset Voltage  
2±±  
12±±  
mV  
mV  
DAC LVDS Receiver Inputs  
Specifications apply to DAC data inputs and DCI_P/DCI_N  
Input Voltage Range, Single Ended  
Applies to input voltage, positive and negative, VINP and  
VINN  
ꢀ25  
1575 mV  
Input Differential Threshold  
Input Differential Hysteresis  
Receiver Differential Input  
Impedance  
−1±±  
ꢀ5  
+1±± mV  
mV  
25  
115  
Ω
Rev. A | Page 5 of 56  
 
 
AD9993  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
CLOCK INPUT (CLKP, CLKN)  
Differential Peak to Peak Voltage  
Common Mode Voltage  
Master Clock Frequency  
REFCLK Input (REFCLK)  
Input VIN Logic High  
35±  
1.2  
mV  
V
1±±± MHz  
2±±  
1.ꢀ  
±.±  
V
V
Input VIN Logic Low  
REFCLK Frequency  
31.25 or  
62.5  
MHz  
SERIAL PERIPHERAL INTERFACE (SPI)  
SPI_SCLK Frequency  
SPI_SCLK Pulse Width High  
SPI_SCLK Pulse Width Low  
Setup Time, SPI_SDI to SPI_SCLK Rising  
Edge  
25  
MHz  
ns  
ns  
1±  
1±  
2
ns  
Hold Time, SPI_SCLK Rising Edge to  
SPI_SDI  
Setup Time, SPI_CS to SPI_SCLK Rising  
Edge  
Hold Time, SPI_SCLK Rising Edge to  
SPI_CS  
2
2
2
2
ns  
ns  
ns  
ns  
Data Valid, SPI_SCLK Falling Edge to  
SPI_SDO  
Rev. A | Page 6 of 56  
Data Sheet  
AD9993  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Parameter  
Rating  
AVSS to DVSS  
−±.3 V to +±.3 V  
−±.3 V to +3.9 V  
−±.3 V to +2.2 V  
−±.3 V to +2.2 V  
−±.3 V to AVDD + ±.3 V  
AVDD33 to AVSS, DVSS  
AVDD to AVSS, DVSS  
DVDD to DVSS, AVSS  
CP, A_VINP, A_VINN, B_VINP, B_VINN,  
C_VINP, C_VINN, D_VINP, D_VINN,  
IBIAS_TEST to AVSS  
THERMAL RESISTANCE  
Table 5. Thermal Resistances and Characterization Parameters  
VREF_DAC, FSAJ_A, FSAJ_B, CML_A,  
CML_B, A_CML, B_CML, B_CML,  
D_CML to AVSS  
IOUTA_P, IOUTA_N, IOUTB_P,  
IOUTB_N to AVSS  
−±.3 V to AVDD + ±.3 V  
−±.3 V to AVDD + ±.3 V  
Package Type  
θJA  
θJB  
θJC  
ψJT  
ψJB  
Unit  
196-Ball CSP_BGA  
27.± 15.4 5.3ꢀ ±.11 15.± ºC/W  
CLKP, CLKN, REFCLK to AVSS  
PDWN, ALERT, RST, MODE, SPI_SCLK,  
SPI_CS, SPI_SDI, SPI_SDO to DVSS  
−±.3 V to AVDD + ±.3 V  
−±.3 V to DVDD + ±.3 V  
ESD CAUTION  
LVDS Data Inputs to DVSS  
LVDS Data Outputs to DVSS  
STROBE_P, STROBE_N to DVSS  
DCI_N, DCI_P, DCO_N, DCO_P  
Junction Temperature  
−±.3 V to DVDD + ±.3 V  
−±.3 V to DVDD + ±.3 V  
−±.3 V to DVDD + ±.3 V  
−±.3 V to DVDD + ±.3 V  
125°C  
Storage Temperature Range  
−65°C to +16±°C  
Rev. A | Page 7 of 56  
 
 
 
AD9993  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
IBIAS_  
TEST  
AVSS  
CLKP  
AVSS  
D_VINP  
C_CML  
C_VINP  
AVSS  
AVSS  
B_VINP  
B_CML  
A_VINP  
AVSS  
AVSS  
A
B
C
D
E
F
CLKN  
AVSS  
REFCLK  
AVSS  
CP  
AVSS  
AVSS  
AVSS  
AVDD  
RST  
D_VINN  
AVSS  
D_CML  
AVSS  
C_VINN  
AVSS  
AVSS  
AVDD  
AVSS  
AVSS  
DVSS  
DVDD  
AVSS  
AVSS  
AVSS  
AVDD  
AVSS  
AVSS  
DVSS  
DVDD  
DCO_N  
AVSS  
AVSS  
AVSS  
AVDD  
AVSS  
AVSS  
DVSS  
DVDD  
DCO_P  
B_VINN  
AVSS  
AVSS  
AVDD  
AVSS  
AVSS  
DVSS  
DVDD  
A_CML  
AVSS  
AVSS  
AVDD  
AVSS  
AVSS  
DVSS  
DVDD  
A_VINN  
AVSS  
AVSS  
AVDD  
AVSS  
AVSS  
DVSS  
DVDD  
AVSS  
AVSS  
IOUTA_N IOUTA_P  
AVDD33  
AVDD33  
LDO15  
AVDD  
PDWN  
AVSS  
AVSS  
AVSS  
IOUTB_N IOUTB_P  
AVDD  
ALERT  
AVDD  
AVDD  
AVDD33  
DVDD  
DVSS  
DVDD  
AVDD  
AVDD  
FSAJ_B  
CML_B  
DVSS  
AVDD  
FSAJ_A  
CML_A  
DVSS  
MODE  
SPI_SDO  
DVSS  
VREF_DAC  
AVDD  
SPI_SCLK SPI_CS  
SPI_SDI  
DVSS  
DVDD  
G
H
J
DVSS  
DVDD  
DVSS  
DVDD  
DVSS  
DVDD  
DVDD  
DVDD  
DVDD  
DIN6B_N DIN4B_N DIN1B_N DOUT3D_P DOUT3D_N DOUT3C_P  
DOUT3B_P DOUT3A_N DOUT3A_P DIN1A_N DIN4A_N DIN6A_N  
K
L
DIN6B_P DIN4B_P DIN1B_P DOUT1D_N DOUT2D_N DOUT1C_N DOUT3C_N DOUT3B_N DOUT1B_N DOUT2A_N DOUT1A_N DIN1A_P DIN4A_P DIN6A_P  
DIN5B_N DIN3B_N DIN3B_P DOUT1D_P DOUT2D_P DOUT1C_P STROBE_N STROBE_P DOUT1B_P DOUT2A_P DOUT1A_P DIN3A_N DIN3A_P DIN5A_N  
M
N
P
DIN5B_P DIN2B_N DIN0B_N DOUT0D_N DOUT0C_N DOUT2C_N  
DVSS  
DCI_N  
DVSS  
DCI_P  
DOUT2B_N DOUT0B_N DOUT0A_N DIN0A_N DIN2A_N DIN5A_P  
DVSS  
DIN2B_P DIN0B_P DOUT0D_P DOUT0C_P DOUT2C_P  
DOUT2B_P DOUT0B_P DOUT0A_P DIN0A_P DIN2A_P  
DVSS  
Figure 2. Pin Configuration  
Table 6. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
A1, A3, A7, Aꢀ, A12, A14, B3, B7, Bꢀ, B12, C1, C2,  
C3, C4, C5, C6, C7, Cꢀ, C9, C1±, C11, C12, D3, D4,  
D5, D6, D7, Dꢀ, D9, D1±, D11, D12, F6, F7, Fꢀ, F9,  
F1±, F11, G6, G7, Gꢀ, G9, G1±, G11  
AVSS  
Analog Ground.  
A2  
A4  
A5  
A6  
A9  
A1±  
CLKP  
External Master Clock Input Positive.  
ADC D Input Voltage Positive.  
Common-Mode Level Bias Voltage Output ADC C.  
ADC C Input Voltage Positive.  
ADC B Voltage Input Positive.  
Common-Mode Level Bias Voltage Output for ADC B.  
D_VINP  
C_CML  
C_VINP  
B_VINP  
B_CML  
Rev. A | Page ꢀ of 56  
 
Data Sheet  
AD9993  
Pin No.  
A11  
A13  
B1  
B2  
B4  
B5  
B6  
B9  
B1±  
B11  
B13  
B14  
C13, C14, F5  
D1  
D2  
D13  
D14  
Mnemonic  
A_VINP  
IBIAS_TEST  
CLKN  
REFCLK  
D_VINN  
D_CML  
C_VINN  
B_VINN  
A_CML  
A_VINN  
IOUTA_N  
IOUTA_P  
AVDD33  
LDO15  
Description  
ADC A Voltage Input Positive.  
Test. Connect to ground.  
External Master Clock Input Negative  
On-Chip PLL Synthesizer Reference Clock Input.  
ADC D Input Voltage Negative.  
Common-Mode Level Bias Voltage Output ADC D.  
ADC C Input Voltage Negative.  
ADC B Voltage Input Negative.  
Common-Mode Level Bias Voltage Output for ADC A.  
ADC A Voltage Input Negative.  
DAC A Output Current Negative.  
DAC A Output Current Positive.  
3.3 V Analog Power Supply.  
On-Chip Regulator Output. Bypass with 4.7 μF capacitor to ground.  
Connection for On-Chip PLL Optional External Portion of Loop Filter.  
DAC B Output Current Negative.  
CP  
IOUTB_N  
IOUTB_P  
DAC B Output Current Positive.  
E1, E2, E3, E4, E5, E6, E7, Eꢀ, E9, E1±, E11, E12, E13, AVDD  
E14, G12  
1.ꢀ V Analog Power Supply.  
F1  
F2  
PDWN  
ALERT  
Power-Down. Set to 1 to place the device in low power mode.  
Active Low Alarm Indicator Output, Open Drain.  
Reset Input, Active Low.  
F3  
RST  
F4  
MODE  
Connect to ground.  
F12  
F13  
F14  
G1  
G2  
G3  
G4  
VREF_DAC  
FSAJ_B  
FSAJ_A  
SPI_SCLK  
SPI_CS  
SPI_SDI  
SPI_SDO  
DAC A and DAC B Reference Voltage Input/Output.  
DAC B Full-Scale Current Output Adjust.  
DAC A Full-Scale Current Output Adjust.  
SPI Clock.  
SPI Chip Select, Active Low.  
SPI Serial Data Input.  
SPI Serial Data Output.  
G5, J1, J2, J3, J4, J5, J6, J7, Jꢀ, J9, J1±, J11, J12, J13, DVDD  
J14  
1.ꢀ V Digital Supply.  
G13  
CML_B  
DAC B Common-Mode Control. Connect to ground for DAC bias < ±.5 V.  
Connect a ±.1 μF capacitor between CML_B and ground for other DAC  
bias values ≥ ±.5 V.  
G14  
CML_A  
DAC A Common-Mode Control. Connect to ground for DAC bias < ±.5 V.  
Connect a ±.1 μF capacitor between CML_A and ground for other DAC  
bias values ≥ ±.5 V.  
H1, H2, H3, H4, H5, H6, H7, Hꢀ, H9, H1±, H11, H12, DVSS  
H13, H14, N7, Nꢀ, P1, P14  
Digital Ground.  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
Kꢀ  
DIN6B_N  
DAC B Data Input Lane 6 Negative.  
DAC B Data Input Lane 4 Negative.  
DAC B Data Input Lane 1 Negative.  
ADC D Data Output Lane 3 Positive.  
ADC D Data Output Lane 3 Negative.  
ADC C Data Output Lane 3 Positive.  
LVDS Data Clock Output Negative.  
LVDS Data Clock Output Positive.  
ADC B Data Output Lane 3 Positive.  
ADC A Data Output Lane 3 Negative.  
ADC A Data Output Lane 3 Positive.  
DAC A Data Input Lane 1 Negative.  
DAC A Data Input Lane 4 Negative.  
DAC A Data Input Lane 6 Negative.  
DIN4B_N  
DIN1B_N  
DOUT3D_P  
DOUT3D_N  
DOUT3C_P  
DCO_N  
DCO_P  
K9  
DOUT3B_P  
DOUT3A_N  
DOUT3A_P  
DIN1A_N  
DIN4A_N  
DIN6A_N  
K1±  
K11  
K12  
K13  
K14  
Rev. A | Page 9 of 56  
AD9993  
Data Sheet  
Pin No.  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
Lꢀ  
Mnemonic  
DIN6B_P  
DIN4B_P  
Description  
DAC B Data Input Lane 6 Positive.  
DAC B Data Input Lane 4 Positive.  
DAC B Data Input Lane 1 Positive.  
ADC D Data Output Lane 1 Negative.  
ADC D Data Output Lane 2 Negative.  
ADC C Data Output Lane 1 Negative.  
ADC C Data Output Lane 3 Negative.  
ADC B Data Output Lane 3 Negative.  
ADC B Data Output Lane 1 Negative.  
ADC A Data Output Lane 2 Negative.  
ADC A Data Output Lane 1 Negative.  
DAC A Data Input Lane 1 Positive.  
DAC A Data Input Lane 4 Positive.  
DAC A Data Input Lane 6 Positive.  
DAC B Data Input Lane 5 Negative.  
DAC B Data Input Lane 3 Negative.  
DAC B Data Input Lane 3 Positive.  
ADC D Data Output Lane 1 Positive.  
ADC D Data Output Lane 2 Positive.  
ADC C Data Output Lane 1 Positive.  
LVDS Data Output Strobe Negative.  
LVDS Data Output Strobe Positive.  
ADC B Data Output Lane 1 Positive.  
ADC A Data Output Lane 2 Positive.  
ADC A Data Output Lane 1 Positive.  
DAC A Data Input Lane 3 Negative.  
DAC A Data Input Lane 3 Positive.  
DAC A Data Input Lane 5 Negative.  
DAC B Data Input Lane 5 Positive.  
DAC B Data Input Lane 2 Negative.  
DAC B Data Input Lane ± Negative.  
ADC D Data Output Lane ± Negative.  
ADC C Data Output Lane ± Negative.  
ADC C Data Output Lane 2 Negative.  
ADC B Data Output Lane 2 Negative.  
ADC B Data Output Lane ± Negative.  
ADC A Data Output Lane ± Negative.  
DAC A Data Input Lane ± Negative.  
DAC A Data Input Lane 2 Negative.  
DAC A Data Input Lane 5 Positive.  
DAC B Data Input Lane 2 Positive.  
DAC B Data Input Lane ± Positive.  
ADC D Data Output Lane ± Positive.  
ADC C Data Output Lane ± Positive.  
ADC C Data Output Lane 2 Positive.  
LVDS Data Clock Input Negative.  
LVDS Data Clock Input Positive.  
DIN1B_P  
DOUT1D_N  
DOUT2D_N  
DOUT1C_N  
DOUT3C_N  
DOUT3B_N  
DOUT1B_N  
DOUT2A_N  
DOUT1A_N  
DIN1A_P  
DIN4A_P  
DIN6A_P  
DIN5B_N  
DIN3B_N  
L9  
L1±  
L11  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
Mꢀ  
M9  
M1±  
M11  
M12  
M13  
M14  
N1  
N2  
N3  
N4  
N5  
N6  
N9  
N1±  
N11  
N12  
N13  
N14  
P2  
P3  
P4  
P5  
P6  
DIN3B_P  
DOUT1D_P  
DOUT2D_P  
DOUT1C_P  
STROBE_N  
STROBE_P  
DOUT1B_P  
DOUT2A_P  
DOUT1A_P  
DIN3A_N  
DIN3A_P  
DIN5A_N  
DIN5B_P  
DIN2B_N  
DIN±B_N  
DOUT±D_N  
DOUT±C_N  
DOUT2C_N  
DOUT2B_N  
DOUT±B_N  
DOUT±A_N  
DIN±A_N  
DIN2A_N  
DIN5A_P  
DIN2B_P  
DIN±B_P  
DOUT±D_P  
DOUT±C_P  
DOUT2C_P  
DCI_N  
P7  
Pꢀ  
DCI_P  
P9  
DOUT2B_P  
DOUT±B_P  
DOUT±A_P  
DIN±A_P  
ADC B Data Output Lane 2 Positive.  
ADC B Data Output Lane ± Positive.  
ADC A Data Output Lane ± Positive.  
DAC A Data Input Lane ± Positive.  
DAC A Data Input Lane 2 Positive.  
P1±  
P11  
P12  
P13  
DIN2A_P  
Rev. A | Page 1± of 56  
Data Sheet  
AD9993  
TYPICAL PERFORMANCE CHARACTERISTICS  
RECEIVER ADC PERFORMANCE  
fADC = 250 MHz, unless otherwise specified.  
IMD3 (dBc)  
IMD3 (dBFS)  
0
–15  
–30  
–45  
–60  
–75  
–20  
–40  
–60  
2
3
–90  
–105  
–120  
–135  
–80  
6
4
5
–100  
–120  
15  
30  
45  
60  
75  
90  
105  
120  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 3. Single Tone FFT, fIN = 87 MHz  
Figure 6. Two Tone IMD3 vs. Input Amplitude (AIN), fIN1 = 89.12 MHz, fIN2  
92.12 MHz  
=
95  
90  
85  
80  
75  
70  
65  
120  
100  
80  
60  
40  
20  
0
SNR (dBc)  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
20  
40  
60  
80  
fIN (MHz)  
100  
120  
INPUT AMPLITUDE (dBFS)  
Figure 4. Single Tone SNR and SFDR vs. Input Amplitude (AIN), fIN = 87 MHz  
Figure 7. Single Tone SNR vs. Input Frequency (fIN  
)
0
95  
90  
85  
80  
75  
70  
65  
SFDR (dBc)  
SFDR (dBFS)  
–20  
–40  
–60  
–80  
–100  
–120  
–90  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
20  
40  
60  
80  
fIN (MHz)  
100  
120  
INPUT AMPLITUDE (dBFS)  
Figure 5. Two Tone SFDR vs. Input Amplitude (AIN), fIN1 = 89.12 MHz,  
IN2 = 92.12 MHz  
Figure 8. Single Tone SNR vs. Input Frequency (fIN  
)
f
Rev. A | Page 11 of 56  
 
 
AD9993  
Data Sheet  
fADC = 250 MHz, unless otherwise specified.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
ADC A  
ADC B  
ADC C  
ADC D  
0
–15  
–30  
–45  
–60  
–75  
F2 – F1  
2F2 + F1  
2F1 – F2  
–90  
–105  
–120  
–135  
2F1 + F2  
2F2 – F1  
F1 + F2  
15  
30  
45  
60  
75  
90  
105  
120  
100  
120  
140  
160  
180  
200  
220  
240  
FREQUENCY (MHz)  
ADC SAMPLING FREQUENCY (MSPS)  
Figure 11. Single Tone SFDR vs. ADC Sampling Freqency (fADC), fIN = 90.0 MHz,  
All Four ADCs  
Figure 9. Two Tone FFT, fIN1 = 89.12 MHz, fIN2 = 92.12 MHz  
100  
ADC A  
ADC B  
ADC C  
ADC D  
95  
90  
85  
80  
75  
70  
65  
60  
100  
120  
140  
160  
180  
200  
220  
240  
ADC SAMPLING FREQUENCY (MSPS)  
Figure 10. Single Tone SNR vs. ADC Sampling Freqency (fADC), fIN = 90.0 MHz,  
All Four ADCs  
Rev. A | Page 12 of 56  
Data Sheet  
AD9993  
TRANSMITTER DAC PERFORMANCE  
fDAC = 500 MHz, unless otherwise specified.  
–76.2dBc  
–76.4dBc –75.5dBc  
–75.9dBc  
–75.9dBc  
–76.2dBc  
–75.9dBc  
2R  
11.2dBm  
–76.3dBc  
–30  
–40  
–50  
–60  
–70  
2
–80  
–90  
1
–100  
–110  
START 1MHz  
#RES BW 1kHz  
STOP 250MHz  
SWEEP 300.2s (601pts)  
VBW 1kHz  
CENTER 50MHz  
#RES BW 30kHz  
#VBW 300kHz  
LOWER  
SPAN 54MHz  
SWEEP 175.1ms  
MARKER  
TRACE  
TYPE  
FREQ  
FREQ  
FREQ  
FREQ  
X AXIS  
AMPLITUDE  
1R  
1
1
1
1
1
47.9MHz –0.56dBm  
48.0MHz –83.28dB  
47.9MHz –0.56dBm  
96.4MHz –71.74dB  
UPPER  
dBc dBm Filter  
OFFSET FREQ INTEG BW  
dBc  
dBm  
2R  
2
3.375MHz  
6.375MHz  
12MHz  
18MHz  
24MHz  
750kHz –80.81 –92.04 –29.72 –40.95 OFF  
5.25MHz –75.93 –87.16 –75.95 –87.18 OFF  
6MHz –75.49 –86.72 –76.30 –87.53 OFF  
6MHz –76.23 –87.46 –76.17 –87.41 OFF  
6MHz –76.42 –87.65 –75.93 –87.16 OFF  
Figure 12. 5 MHz Bandwidth 256-QAM Adjacent Channel Power  
Figure 15. 1st Nyquist Zone Output Spectrum, fOUT = 48 MHz  
–40  
–40  
fDAC = 250MHz, DAC B  
fDAC = 350MHz, DAC B  
fDAC = 500MHz, DAC B  
SECOND HARMONIC (dBc)  
THIRD HARMONIC (dBc)  
SFDR (dBc)  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–50  
–60  
–70  
–80  
–90  
–100  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
fOUT (MHz)  
fOUT (MHz)  
Figure 13. SFDR, 2nd and 3rd Harmonics vs. fOUT, Maximum IOUTFS (DAC Gain)  
Figure 16. SFDR at Three DAC Sampling Frequencies (fDAC) vs. fOUT  
–45  
–50  
–55  
–60  
–65  
–40  
DAC B, +25°C  
DAC B, +85°C  
DAC B, –40°C  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
DACA  
–70  
DACB  
–75  
–80  
–85  
–90  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
fOUT (MHz)  
fOUT (MHz)  
Figure 17. IMD3 vs. fOUT, Both DACs  
Figure 14. SFDR at Three Temperatures vs. fOUT  
Rev. A | Page 13 of 56  
 
AD9993  
Data Sheet  
fDAC = 500 MHz, unless otherwise specified.  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–135  
–140  
–145  
–150  
–155  
–160  
–165  
f
f
f
DAC = 500MHz, DAC A, +25°C, EXTERNAL CLOCK  
DAC = 500MHz, DAC A, +85°C, EXTERNAL CLOCK  
DAC = 500MHz, DAC A, –40°C, EXTERNAL CLOCK  
f
f
f
DAC = 300MHz, DAC B, EXTERNAL CLOCK  
DAC = 400MHz, DAC B, EXTERNAL CLOCK  
DAC = 500MHz, DAC B, EXTERNAL CLOCK  
–85  
–90  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
fOUT (MHz)  
fOUT (MHz)  
Figure 18. IMD3 at Three DAC Sampling Frequencies (fDAC) vs. fOUT  
Figure 19. NSD at Three Temperatures vs. fOUT  
Rev. A | Page 14 of 56  
Data Sheet  
AD9993  
TERMINOLOGY  
Settling Time  
Linearity Error (Integral Nonlinearity or INL)  
INL is defined as the maximum deviation of the actual analog  
output from the ideal output, determined by a straight line  
drawn from zero to full scale.  
Settling time is the time required for the output to reach and  
remain within a specified error band about its final value,  
measured from the start of the output transition.  
Spurious-Free Dynamic Range (SFDR)  
Differential Nonlinearity (DNL)  
DNL is the measure of the variation in analog value, normalized  
to full scale, associated with a 1 LSB change in digital input code.  
SFDR is the difference, in decibels (dB), between the rms  
amplitude of the output signal and the peak spurious signal  
over the specified bandwidth.  
Monotonicity  
Noise Spectral Density (NSD)  
A digital-to-analog converter is monotonic if the output either  
increases or remains constant as the digital input increases.  
Noise spectral density is the average noise power normalized to  
a 1 Hz bandwidth, with the DAC converting and producing an  
output tone.  
Offset Error  
Offset error is the deviation of the output current from the ideal  
of zero. For IOUTx_P, 0 mA output is expected when the inputs  
are all 0s. For IOUTx_N, 0 mA output is expected when all  
inputs are set to 1.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the measured output signal  
to the rms sum of all other spectral components below the  
Nyquist frequency, excluding the first six harmonics and dc.  
The value for SNR is expressed in decibels.  
Gain Error  
Gain error is the difference between the actual and ideal output  
span. The actual span is determined by the output when all inputs  
are set to 1, minus the output when all inputs are set to 0. The  
ideal gain is calculated using the measured VREF. Therefore,  
the gain error does not include effects of the reference.  
Signal to Noise and Distortion (SINAD)  
The ratio of the total signal power level (wanted signal + noise +  
distortion or SND) to unwanted signal power (noise +  
distortion or ND).  
Output Compliance Voltage  
Output compliance voltage is the range of allowable voltage  
at the output of a current output DAC. Operation beyond the  
maximum compliance limits can cause either output stage  
saturation or breakdown, resulting in nonlinear performance.  
Temperature Drift  
Temperature drift is specified as the maximum change from  
the ambient (25°C) value to the value at either TMIN or TMAX  
.
For offset and gain drift, the drift is reported in ppm of full-  
scale range (FSR) per °C. For reference drift, the drift is  
reported in ppm per °C.  
Rev. A | Page 15 of 56  
 
AD9993  
Data Sheet  
THEORY OF OPERATION  
SPI_CS  
(chip select) is an active low control signal used by the  
PRODUCT DESCRIPTION  
SPI_CS  
SPI master to select the AD9993 SPI port. When  
is  
Figure 1 shows a block diagram of the MxFE. This product  
integrates four 14-bit ADCs and two 14-bit DACs. The DAC  
data interface consists of six DDR LVDS data lanes for each  
DAC and a shared DCI_P/DCI_N clock (hereafter referred to  
as DCI). The ADC data interface consists of four DDR LVDS  
data lanes for each ADC with a shared DCO_P/DCO_N clock  
(hereafter referred to as DCO) and a shared STROBE output.  
The MxFE control and status registers are written/read via an  
SPI interface. ADC and DAC datapaths include FIFO buffers to  
absorb phase differences between LVDS lane timing and the  
data converter sampling clocks. Internal AD9993 clock signals  
can be developed from an external clock signal or from the  
output of an on-chip PLL frequency multiplier driven by an  
external reference oscillator.  
high, SPI_SDO is in a high impedance state. During the  
communication cycle, chip select must remain low.  
SPI_SDI (serial data input) is the address and data input,  
sampled on the rising edge of SPI_SCLK.  
SPI_SDO (serial data output) is the data output pin. Data is  
shifted out on the falling edge of SCLK  
Figure 20 shows a timing diagram for a single byte MSB first  
AD9993 SPI write operation. Each AD9993 register address is  
an 8-bit value. During the first SPI_SCLK cycle, SPI_SDI = 0,  
indicating that the operation is a data write. SPI_SDI is always  
held low for the next two clock cycles. The next 13 clock cycles  
are the first register address. The next eight clock cycles contain  
SPI_CS  
data to be written. The write operation ends when  
high. In this example, data for one 8-bit register is written.  
Multiple registers can be written in a single write operation by  
SPI_CS  
goes  
SPI PORT  
The AD9993 provides a 4-wire synchronous serial communica-  
tions SPI port that allows easy interfacing to ASICs, FPGAs, and  
industry-standard microcontrollers. The interface facilitates  
read/write access to all registers that configure the AD9993. Its  
data rate can be up to 25 MHz.  
keeping  
address is automatically updated using an address counter as  
SPI_CS  
low for multiple byte periods. The register  
bytes are written while  
remains low.  
Figure 21 depicts an MSB first register read operation. Register  
data from the AD9993 appears on SPI_SDO starting on the  
SPI_SCLK cycle following the last bit of the 16-bit instruction  
header on SPI_SDI. Multiple registers can be read in a single  
SPI Port Signals  
SPI_SCLK (serial clock) is the serial shift clock. The serial clock  
pin synchronizes data to and from the device and runs the  
internal state machines. All address and input data bits are  
sampled on the rising edge of SPI_SCLK. All output data is  
driven out on the falling edge of SPI_SCLK.  
SPI_CS  
read operation by keeping  
periods.  
low for multiple byte  
SPI_CS  
DON’T CARE  
SPI_SCLK  
DON’T CARE  
DON’T CARE  
R/W W1  
DON’T CARE  
DON’T CARE  
W0  
A12 A11 A11 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SPI_SDI  
SPI_SDO  
16-BIT INSTRUCTION HEADER  
REGISTER DATA  
Figure 20. 4-Wire SPI Interface Timing, MSB First Write  
SPI_CS  
SPI_SCLK  
SPI_SDI  
DON’T CARE  
DON’T CARE  
DON’T CARE  
DON’T CARE  
DON’T CARE  
DON’T CARE  
W1  
R/W  
W0  
A12 A11 A11 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
REGISTER DATA  
SPI_SDO  
16-BIT INSTRUCTION HEADER  
Figure 21. 4-Wire SPI Interface Timing, MSB First Read  
Rev. A | Page 16 of 56  
 
 
 
 
 
Data Sheet  
AD9993  
A_CML, B_CML, C_CML, and D_CML pins. Using these  
SPI CONFIGURATION PROGRAMMING  
common-mode voltage outputs to set the input common mode  
of each ADC is recommended. Optimum performance is  
achieved when the common-mode voltage of the analog input is  
set by the on-chip common mode references. The A_CML,  
B_CML, C_CML, and D_CML pins must be decoupled to  
ground by a 0.1 μF capacitor.  
The SPI_CONFIG register controls AD9993 SPI interface  
operation. By default, the SPI bus operates MSB first. In MSB  
fist mode, the register address counter decrements automati-  
cally during multiple byte reads or writes. The SPI bus can be  
configured to run LSB first by setting the SPI_LSB_FIRSTx bits  
to 1. During LSB first multiple register read or write operations,  
the register address counter is incremented automatically. SPI  
registers can be reset to their Reset values by setting the self  
clearing SPI_SOFT_RESETx bits to 1.  
ADC SECTION PROGRAMMING  
Each of the four ADCs has its power mode programmed by  
the indexed ADC_PDWN_MODE bit field of the POWER_  
MODES register (see the ADC Register Update Indexing  
section). At reset, all four ADC cores are in power-down mode.  
REGISTER UPDATE TRANSFER METHOD  
Changes to the writeable SPI registers labeled transfer in Table 10  
do not take effect immediately when written to the device via  
the SPI. Values are held in a shadow register set until the self  
clearing CHIP_REGMAP_TRANSFER bit in the DEVICE_  
UPDATE register is set. All changes to transfer register values  
then take effect simultaneously.  
ADC digital data output modes are programmed by the indexed  
FLEX_OUTPUT_MODE register (see the ADC Register Update  
Indexing section). Setting the DP_OUT_DATA_EN_N bit to 0  
enables the data output of each ADC selected in the DEVICE_  
INDEX register. At reset, ADC output data is disabled. Setting  
the DP_OUT_DATA_INV bit to 1 inverts the data output from  
selected ADCs. The DP_OUT_DFS bit field selects the output  
code for each selected ADC, offset binary (twos complement with  
the sine bit inverted), twos complement (reset value), or gray code.  
ADC REGISTER UPDATE INDEXING  
In addition to the register transfer mechanism, the POWER_  
MODES and FLEX_OUTPUT_MODE registers have an  
indexing mechanism. Each of the four ADC cores has its own  
page containing these registers. These pages can be  
programmed independently or simultaneously in any  
combination. ADC core register sets are addressed for a  
particular register map master/slave transfer by setting the  
SPI_ADC_x_INDEX bits in the DEVICE_INDEX register.  
Register data is transferred to the ADC core pages that have  
these bits set when the next transfer occurs.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9993 is a differential switched  
capacitor circuit that has been designed for optimum  
performance while processing a differential input signal.  
For baseband applications where SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 22. To bias the  
analog input, the VCM voltage can be connected to the center tap  
of the secondary winding of the transformer.  
ADCs  
The MxFE ADCs are multistage pipelined CMOS ADC cores  
designed for use in communications receivers.  
C2  
R3  
R2  
ADC ARCHITECTURE  
x_VINP  
R1  
The AD9993 architecture consists of a dual front-end sample-  
and-hold circuit, followed by a pipelined switched capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 14-bit result.  
2V p-p  
49.9  
C1  
R1  
ADC  
x_CML  
R2  
x_VINN  
33Ω  
0.1µF  
0.1µF  
R3  
The input stage of each ADC core contains a differential  
sampling circuit that can be ac- or dc-coupled in differential or  
single-ended modes.  
C2  
Figure 22. Differential Transformer-Coupled Configuration  
Input Common-Mode Voltage (VCM) References  
Differential double balun coupling is used as the input  
The analog inputs of the AD9993 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD (or  
0.9 V) is recommended for optimum performance. Four  
on-board common-mode voltage references are included in the  
design, one for each AD9993 ADC, and are available from the  
configuration for AD9993 ADC performance characterization  
(see Figure 23). In this configuration, the input is ac-coupled and  
the VCM voltage is provided to each input through a 33 Ω resistor.  
These resistors compensate for losses in the input baluns to  
provide a 50 Ω impedance to the driver.  
Rev. A | Page 17 of 56  
 
 
 
 
 
 
 
 
AD9993  
Data Sheet  
C2  
R3  
R1  
0.1µF  
0.1µF  
0.1µF  
R2  
R2  
x_VINP  
ADC  
x_CML  
2V p-p  
33  
33Ω  
P
A
S
S
P
C1  
R1  
0.1µF  
x_VIN  
N
R3  
33Ω  
0.1µF  
C2  
Figure 23. Differential Double Balun Input Configuration  
In the double balun and transformer configurations, the value of  
the input capacitors and resistors is dependent on the input  
frequency and source impedance. Based on these parameters,  
the value of the input resistors and capacitors may need to be  
adjusted or some components may need to be removed. Table 7  
displays recommended values to set the RC network for the  
0 MHz to 100 MHz frequency range:  
DACs  
The MxFE DACs are part of the Analog Devices high speed  
CMOS DAC core family. These DACs are designed to be used  
as part of wide bandwidth communication system transmitter  
signal chains.  
DAC TRANSFER FUNCTION  
The AD9993 DACs provide two differential current outputs:  
IOUTA_P/IOUTA_N, and IOUTB_P/IOUTB_N.  
Table 7. Example RC Network  
Component  
R1 Series  
C1 Differential  
R2 Series  
Value  
33 Ω  
ꢀ.2 pF  
± Ω  
15 pF  
49.9 Ω  
The DAC output current equations are as follows:  
IOUTx_P = IOUTFS × DACx input code/214  
IOUTx_N = IOUTFS × ((214 − 1) − DACx input code)/214  
C2 Shunt  
R3 Shunt  
where:  
DACx input code = 0 to 214 − 1.  
The values given in Table 7 are for each R1, R2, C1, C2, and R3  
component shown in Figure 22 and Figure 23.  
I
OUTFS is the full-scale output current or DAC gain specified in  
Table 1.  
ADRF6518 as ADC Driver  
I
OUTFS = 32 × IIREFx  
The ADRF6518 is a variable gain amplifier and low-pass filter  
that is designed to drive the analog inputs of analog-to-digital  
converters like the ones included in the AD9993. A principle  
application of the ADRF6518 is as part of the signal chain in a  
wideband radio receiver. Figure 32 shows a block diagram for a  
wideband microwave radio that includes the ADRF6518 and  
the AD9993.  
where IREFx = VREFDAC/RFSADJ_x  
.
Each DAC has its own IREFx set resistor, RFSADJ_x. RFSADJ_x resistors  
can be on or off chip at the discretion of the users. The nominal  
value of RFSADJ_x is 1.6 kΩ. The nominal value of VREFDAC is 1.0 V.  
V
REFDAC can be selected as the on-chip band gap reference or as  
an external user supplied reference.  
DAC outputs have a sin(πfOUT/fDAC)/(πfOUT/fDAC) envelope  
response as a function frequency. This response is also referred  
to as a sinc envelope.  
The low impedance (<10 Ω) output buffers of the ADRF6518  
are designed to drive ADC inputs. They are capable of delivering  
up to 4 V p-p composite two-tone signals into 400 Ω differential  
loads with >60 dBc IMD3. The output common-mode voltage  
can be adjusted to 900 mV (the AD9993 input common-mode  
voltage) without loss of drive capability by presenting the  
ADRF6518 VOCM pin with the desired common-mode voltage.  
The high input impedance of VOCM allows the AD9993 refer-  
ence output (A_CML, B_CML, C_CML or D_CML) to be  
connected directly.  
DAC OUTPUT COMPLIANCE VOLTAGE RANGE  
AND AC PERFORMANCE  
Each DAC has a pair of differential current outputs. The  
compliance voltage range for each of these two outputs is  
specified in Table 1. Optimal DAC ac performance is achieved  
when the output common-mode voltage is between 0.0 V and  
0.5 V. and the signal swing falls within the compliance range.  
Rev. A | Page 1ꢀ of 56  
 
 
 
 
 
 
Data Sheet  
AD9993  
DAC_REF_EXT = 0  
REG 0x039[0]  
CLKA  
BAND GAP  
TRIM  
I
25  
25ꢀ  
OUTP  
1.0V  
DAC_A  
I
OUTN  
±1%  
I
A
MEAS  
NOTE:  
DEFAULT VALUES FOR  
DAC A GAIN AND  
DAC B GAIN ARE  
SET AT FACTORY TRIM  
FOR IFS = 20mA WITH  
DAC_RSET_EN = 1  
DAC_CAL_IQ_SEL  
REG 0x03C[1]  
–0.25V  
TO +0.25V  
CAL IQ  
1
0
I
B
MEAS  
I
25ꢀ  
25ꢀ  
OUTP  
DAC_RSET_EN = 1  
REG 0x039[1]  
I
DAC_B  
CLKB  
OUTN  
DAC_RSET_EN = 0  
REG 0x039[1]  
1.6kꢀ  
TRIM  
±3%  
–0.25V  
TO +0.25V  
ON CHIP  
1.6kꢀ  
±2%  
1.6kꢀ  
±2%  
0.1µF  
Figure 24. DACs, Band Gap Reference, On-Chip and Off-Chip RFSADJ_x, DAC Gain Setting, and IQ Calibration  
DAC IQ Gain Calibration  
Selecting DAC Output Common-Mode Voltage  
When board level RFSADJ_x resistors are used, the gains of the two  
DACs can be better matched by running the automatic DAC IQ  
gain calibration procedure. This is done by programming the  
DAC_CAL_IQ_CTRL register and observing the  
Two steps are required to select the common-mode output  
voltages for the two DACs. For a common-mode voltage less  
than 0.5 V, the CML_A and CML_B pins are grounded. For  
common-mode voltages that are greater than or equal to 0.5 V,  
connect a 0.1 ꢀF capacitor between CML_A or CML_B and  
ground. The second step is to program the DAC_VCM_  
VREF_BIT bit field. There are three common-mode level  
settings to choose from. This common-mode setting applies to  
both DACs.  
DAC_CAL_IQ_STAT register as follows:  
1. Write 0x23 to DAC_CAL_IQ_CTRL (power up the DAC  
clock, enable IQ calibration, and start IQ calibration).  
2. Read the DAC_CAL_IQ_DONE bit of the  
DAC_CAL_IQ_STAT register until it goes high.  
3. Write 0x4 to DAC_CAL_IQ_CTRL.  
DAC VOLTAGE REFERENCE  
DAC DATAPATH FORMAT SELECTION  
The DACs use a single common voltage reference. An on-chip  
band gap reference is provided. Optionally, an off-chip voltage  
reference can be used. If an off-chip DAC reference is used, set  
the DAC_REF_EXT bit in the DAC_CTRL register to 1. After  
reset, the on-chip reference is selected.  
At reset, the DAC_BINARY bit in the DAC_DP_FMT register is  
set to 0, selecting twos complement as the data input format for  
both DACs. To select binary offset, set the DAC_BINARY bit to 1.  
DAC TEST TONE GENERATOR DDS  
DAC GAIN SETTING  
The AD9993 includes a tunable direct digital synthesizer for  
DAC output tone generation. When the DDS_EN bit of the  
DDS_CTRL register is set to 1, the DDS becomes the digital  
signal source for the two DACs. The DDS_CTRL register also  
has a clock inversion control and amplitude attenuation  
controls. At reset, the 32-bit DDS tuning word in the  
DDS_TW1_3, DDS_TW1_2, DDS_TW1_1, and DDS_TW1_0  
registers is set to 0x19A00000. This value programs the DDS to  
produce a 50 MHz tone at both DAC outputs if the master clock  
frequency is 1 GHz (DAC sampling rate = 500 MSPS). The  
equation for DDS output frequency is  
Figure 24 is a diagram of the AD9993 DACs gain setting  
section. It shows the two transmit DACs, the bypassable built-in  
1.0 V band gap reference, and the selectable internal and board  
level RFSADJ_x resistors. By default, the on-chip band gap  
reference is selected. If using a board level. DAC reference  
voltage, write 1 to the DAC_REF_EXT bit of the DAC_CTRL  
register.  
Each DAC has its own RFSADJ_x set resistor. These resistors can be  
on or off chip at the discretion of the user. When the on-chip  
resistors are in use, their gain accuracy is factory calibrated.  
When the off-chip RFSADJ_x resistors are used, an on-chip IQ  
calibration scheme can be employed to maintain accuracy  
between DAC pairs. By default, the on-chip RFSADJ_x is selected.  
If using a board level RFSADJ_x, write 0 to the DAC_RSET_EN bit  
of the DAC_CTRL register.  
f
DDS = (DDS_TW1/232) × fDAC  
Rev. A | Page 19 of 56  
 
 
 
 
 
AD9993  
Data Sheet  
the master clock, the buffered VCO output signal is divided by 4  
to produce the synthesized master clock signal.  
CLOCKING  
The clock signals for the LVDS lanes, the DACs, and the ADCs  
are developed from a single master clock signal. This signal is  
either input directly on the CLKP/CLKN pins or synthesized by  
an on-chip PLL multiplier using the REFCLK input signal as a  
reference. The ADC output and DAC input LVDS lanes run at  
the master clock frequency divided by 2 and are DDR. Data is  
clocked on both edges. The sampling rate of the ADCs is ¼ the  
master clock rate. The sampling rate of the DACs is ½ the  
master clock frequency. A 1 GHz master clock is shown in  
Figure 1.  
The reference clock of the on-chip PLL can be either 31.25 MHz  
or 62.5 MHz. When using a 62.5 MHz clock, a divide by 2  
option is provided, as shown in Figure 25, such that the internal  
PLL reference clock can be set to 31.25 MHz.  
A programmable loop filter is integrated on chip. At reset, the  
on-chip loop filter bandwidth is set to 500 kHz. Lower loop  
bandwidth can be achieved using an external loop filter  
connected to the CP pin, as shown in Figure 25.  
An on-chip LDO provides the supply voltage for the VCO.  
At a 1 GHz master clock frequency, the other on-chip clock  
frequencies are as follows:  
PLL Synthesizer Control and Status Registers  
At reset, the SYNTH_INT register contains the reset default  
value for the VCO output divider of 64 (shown in Figure 25).  
The PLL multiplier lock status can be read back on Bit 1 of the  
SYNTH_STAT register. Calibration status is also read from this  
register. Bits in the SYNTH_CTRL register are used to enable  
charge pump calibration and to start synthesizer calibration.  
Synthesizer calibration is required as part of the process of  
acquiring lock. Charge pump calibration and synthesizer  
calibration are steps described in the Power-Up Routine When  
Using the On-Chip Clock Synthesizer section.  
DCO (ADC DDR LVDS output lane clock): 500 MHz  
DCI (DAC DDR LVDS input lane clock): 500 MHz  
DAC sampling rate: 500 MSPS  
ADC sampling rate: 250 MSPS  
ON-CHIP PLL CLOCK MULTIPLIER  
Figure 25 shows a block diagram of the MxFE on-chip PLL  
clock multiplier. If the PLL clock multiplier is used to generate  
PROGRAMABLE  
REG 0x031  
VDD = 1.8V  
FIXED  
DIVIDER  
÷64  
DIVIDER  
0.1µF  
÷2  
VCO  
LDO  
BYP_R3  
BUF  
1.5V  
0.1µF  
PFD  
BUF  
REFCLK =  
31.25MHz  
R3  
C3  
R1  
C1  
VCO  
4GHz  
EXT_CP  
_SEL  
C2  
VCO  
CAL  
ON-CHIP LOOP FILTER  
PROGRAMABLE BY  
REG 0x02E TO REG 0x030  
CP  
R110  
487  
C62  
390pF  
C67  
22nF  
NOTES  
1. WHEN USING EXTERNAL LOOP FILTER SET C1, C2, C3, R1, AND R3 TO  
MIN OR MAX VALUES AS DEFINED IN REGISTER DESCRIPTION, AS DESIRED.  
Figure 25. On-Chip PLL Clock Multiplier Block Diagram  
Rev. A | Page 2± of 56  
 
 
 
Data Sheet  
AD9993  
MASTER  
CLOCK INPUT  
CLKP  
CLKN  
Reg 0x034[1:0]  
CLKGEN_MODE  
00 = INTERNAL 1GHz CLOCK  
11 = EXTERNAL CLOCK (200MHz TO 1GHz)  
200MHz TO  
1000MHz  
100  
1.8V  
DIFF  
8kꢀ  
15kꢀ  
15kꢀ  
8kꢀ  
1
0
TO DAC,  
ADC, AND  
LVDS  
REG 0x034[1:0]  
CLKGEN_MODE  
REFCLK = 31.25MHz  
OR  
1
0
62.5MHz  
PLL  
÷2  
Reg 0x031[7:0]  
PLL Input Freq | SYNTH_INT  
31.25MHz | 0x80  
62.5MHz | 0x40  
Reg 0x031[7:0]  
SYNTH_INT  
Reg 0x033[5]  
CLKGEN_REFCLK_DIV1  
Figure 26. MxFE Clock Control  
as the RXFIFO_THERM[7:0] value in the DAC_FIFO_STS1  
register. This value is a thermometer code. FIFO depths remain  
constant after initialization when all clocks are running  
properly.  
SELECTING CLOCKING OPTIONS  
Figure 26 is a block diagram of the MxFE clocking system and  
its controls. Options of using either an external master clock or  
a master clock generated from the on-chip PLL are provided.  
CLKGEN_MODE[1:0] in the CLKGEN_CTRL2 register selects  
the PLL multiplier or CLKP/CLKN as the master clock source.  
LVDS INTERFACES  
Each DAC has seven DDR LVDS input data lanes. Each DAC  
sample input requires the user to input two 7-bit words to the  
interface with appropriate zero stuffing. Each ADC has four  
DDR LVDS output data lanes. For each ADC output sample,  
four 4-bit words are output.  
ADC DATAPATH AND DAC DATAPATH FIFOS  
In the AD9993, data FIFOs are placed between the ADC core  
outputs and the LVDS buffers and drivers. Similarly, on the  
DAC side, data FIFOs are placed between the LVDS input  
buffers and the DAC cores. These FIFOs absorb the phase  
difference between DCI and the DAC sampling clock and  
between the ADC sampling clock and DCO. DAC sampling  
clock and DCI are locked in frequency but have an unknown  
phase relationship. The ADC sampling clock and DCO have the  
same characteristics.  
LVDS ADC Data Link  
There are two LVDS ADC buses for the two ADCs. Each LVDS  
ADC Data bus has four lanes for 14-bit data output in two full  
DDR cycles. A strobe lane is shared by the four ADC LVDS  
links to identify the MSB of the 14-bit data. Figure 27 shows one  
LVDS ADC output data link with four lanes. Lane 0 to Lane 2  
output the 12 MSBs of the 14-bit ADC data. Lane 3 carries the  
two LSBs of the 14-bit ADC data and an overrange bit.  
FIFOs are eight samples deep. During a start-up register  
sequence, both the DAC input datapath FIFOs and the ADC  
output data path FIFOs have their read and write pointers  
initialized (see the Start-Up Register Sequences section). This  
occurs after all clocks in the AD9993 are running and settled.  
The pointers are set four data samples apart. The ADC datapath  
FIFO depth can be read in the RXFIFO_WR_OFFSET bit field  
in the align register. The DAC datapath FIFO depth can be read  
LVDS DAC Data Link  
There are two LVDS DAC data links for the dual DAC. Each  
LVDS DAC data link has seven lanes capable of transmitting  
14-bit data in one DDR full cycle. Figure 28 shows one LVDS  
DAC input data link with seven lanes.  
Rev. A | Page 21 of 56  
 
 
 
 
AD9993  
Data Sheet  
ADC LVDS  
A/B/C/D  
DCO_P  
(DATA CLOCK OUTPUT PORT)  
STROBE+  
LANE 3  
LANE 2  
LANE 1  
LANE 0  
D[–2]  
OVERRANGE  
(SAMPLE N)  
D[–1]  
D[–2]  
OVERRANGE  
0
(SAMPLE N – 1)  
(SAMPLE N)  
(SAMPLE N)  
(SAMPLE N + 1)  
D[2]  
(SAMPLE N – 1)  
D[11]  
(SAMPLE N)  
D[8]  
(SAMPLE N)  
D[5]  
(SAMPLE N)  
D[2]  
(SAMPLE N)  
D[11]  
(SAMPLE N + 1)  
D[1]  
(SAMPLE N – 1)  
D[10]  
(SAMPLE N)  
D[7]  
(SAMPLE N)  
D[4]  
(SAMPLE N)  
D[1]  
(SAMPLE N)  
D[10]  
(SAMPLE N + 1)  
D[0]  
(SAMPLE N – 1)  
D[9]  
(SAMPLE N)  
D[6]  
(SAMPLE N)  
D[3]  
(SAMPLE N)  
D[0]  
(SAMPLE N)  
D[9]  
(SAMPLE N + 1)  
Figure 27. Output Sample Data Format  
DCI_P  
(DATA CLOCK INPUT PORT)  
D[6]  
(SAMPLE N – 1)  
D[13]  
(SAMPLE N)  
D[6]  
(SAMPLE N)  
D[13]  
(SAMPLE N + 1)  
D[6]  
(SAMPLE N + 1)  
D[13]  
(SAMPLE N + 2)  
LANE 6  
LANE 5  
D[5]  
(SAMPLE N – 1)  
D[12]  
(SAMPLE N)  
D[5]  
(SAMPLE N)  
D[12]  
(SAMPLE N + 1)  
D[5]  
(SAMPLE N + 1)  
D[12]  
(SAMPLE N + 2)  
D[4]  
(SAMPLE N – 1)  
D[4]  
(SAMPLE N)  
D[4]  
(SAMPLE N + 1)  
D[11]  
(SAMPLE N)  
D[11]  
(SAMPLE N + 1)  
D[11]  
(SAMPLE N + 2)  
LANE 4  
D[3]  
(SAMPLE N – 1)  
D[10]  
(SAMPLE N)  
D[3]  
(SAMPLE N)  
D[10]  
(SAMPLE N + 1)  
D[3]  
(SAMPLE N + 1)  
D[10]  
(SAMPLE N + 2)  
LANE 3  
LANE 2  
LANE 1  
D[2]  
(SAMPLE N – 1)  
D[9]  
(SAMPLE N)  
D[2]  
(SAMPLE N)  
D[9]  
(SAMPLE N + 1)  
D[2]  
(SAMPLE N + 1)  
D[9]  
(SAMPLE N + 2)  
D[1]  
(SAMPLE N – 1)  
D[8]  
(SAMPLE N)  
D[1]  
(SAMPLE N)  
D[8]  
(SAMPLE N + 1)  
D[1]  
(SAMPLE N + 1)  
D[8]  
(SAMPLE N + 2)  
D[0]  
(SAMPLE N – 1)  
D[7]  
(SAMPLE N)  
D[0]  
(SAMPLE N)  
D[7]  
(SAMPLE N + 1)  
D[0]  
(SAMPLE N + 1)  
D[7]  
(SAMPLE N + 2)  
LANE 0  
Figure 28. DAC Input Sample Data Format  
LVDS INTERFACE TIMING  
DATA PERIOD  
DATA PERIOD  
DAC Input Interface  
Table 8 specifies the setup and hold time requirements for DAC  
LVDS data lane inputs relative to DCI. Figure 29 shows a timing  
diagram for this interface. DDR DCI edges occur at the position  
within the data eye (the white region in Figure 29) listed in  
Table 8.  
CLOCK  
DATA  
tSU tHOLD  
tSU tHOLD  
tSU tHOLD  
Table 8. DAC DDR LVDS Input Setup and Hold Times  
Relative to DCI (Guaranteed)  
Figure 29. DAC Input LVDS Lane Timing  
ADC Output Interface  
Parameter  
Minimum  
Unit  
DATA  
PERIOD  
DATA  
PERIOD  
|tSU|  
15±  
ps  
|tHOLD  
Data Period  
|
2±±  
1±±±  
ps  
Ps  
DCO_P/  
DCO_N  
STROBE_P/  
STROBE_N  
DATA  
tSU tHOLD  
tSU tHOLD  
tSU tHOLD  
tSU tHOLD  
Figure 30. ADC Output LVDS Lane Timing  
Rev. A | Page 22 of 56  
 
 
 
 
 
Data Sheet  
AD9993  
Table 9 specifies the time between the ADC LVDS data lane  
output transitions and the DDR DCO clock edge 50% transition  
point.  
The eight events that trigger an interrupt (if enabled) are  
PLL lock lost  
PLL locked  
FIFO Warning 1  
FIFO Warning 2  
ADC A overrange  
ADC B overrange  
ADC C overrange  
ADC D overrange  
Table 9. ADC DDR LVDS Data and Strobe Output Setup and  
Hold Times Relative to DCO (Guaranteed)  
Parameter  
Minimum  
Unit  
|tSU|  
4±±  
ps  
|tHOLD  
|
43±  
ps  
Data Period  
1±±±  
ps  
Interrupt Service Routine  
LVDS LANE TESTING USING PRBS  
For the interrupt service routine, interrupt request management  
starts by selecting the set of events that require host interven-  
tion or monitoring using the bits in the INTEN register. For  
One pseudorandom binary sequence (PRBS) generator is  
included for each ADC LVDS lane and one PRBS detector on  
each DAC LVDS lane. The designs for the generator and  
detector are implemented as a 23rd-order pseudorandom noise  
(PN23) sequence defined by the generator polynomial x23 + x18 + 1.  
The initial seed of the generator is programmable so that each  
lane can output different values if started simultaneously. The  
four seed registers are indexed as described in the ADC Register  
Update Indexing section.  
ALERT  
events requiring host intervention, upon  
activation, run  
the following routine to clear an interrupt request:  
1. Read the status of the latched bits in the INT register that  
are being monitored.  
2. Monitor the unlatched status bits in the INT_RAW register  
directly if needed.  
3. Perform any actions that may be required to clear the  
interrupt(s).  
4. Read the INT_RAW bits to verify that the actions taken  
have cleared the event.  
DAC PRBS test results are read back on the DAC_A_PRBS_ERRx  
and DAC_B_PRBS_ERRx error counter registers. The DAC  
input PRBS error counters are enabled and the error counters  
cleared by the bits in the DAC_PRBS_CTRL register. ADC  
output lane PRBS generation is controlled by the bits in the  
PRBS_GEN_CTRL register.  
5. Clear the interrupt by writing 1 to the event flag bit in the  
INT register.  
TEMPERATURE SENSOR  
POWER MODE PROGRAMMING  
The AD9993 has a diode-based temperature sensor for  
measuring the temperature of the die. The temperature reading  
is accessed using the TS_RD_LSB and TS_RD_MSB registers.  
The temperature of the die can be calculated as  
The AD9993 has a POWER_MODES register that allows the  
user to place sections of the chip into different power modes.  
The PDWN_PIN_FUNC bit programs the function of the  
PDWN pin. By default, assertion of PDWN causes the AD9993  
to go into full power-down. The clock generator, indexed  
ADCs, DACs, and PLL synthesizer are all powered down at  
reset. The indexed ADCs have four power modes. See the ADC  
Register Update Indexing section for a definition of indexing.  
Die Temp[15:0] 41,237  
TDIE  
106  
where:  
DIE is the die temperature in degrees Celsius.  
T
INTERRUPT REQUEST OPERATION  
Die Temp is the concatenated 16-bit contents of the TD_RD_LSB  
and TD_RD_MSB registers. The temperature accuracy is 7°C  
typical over the −40°C to +85°C range with one point  
temperature calibration against a known temperature. A typical  
plot of the die temperature code readback vs. die temperature is  
shown in Figure 31.  
ALERT  
The AD9993 provides an interrupt request signal,  
used to notify the user system of significant on-chip events. The  
ALERT  
. It is  
pin is an open-drain, active low output.  
Eight different event flags provide visibility into the device.  
These raw events are located in the INT_RAW register. These  
raw events are always latched in the INT register. If the event is  
left unmasked, the latched event triggers an external interrupt  
ALERT  
on  
event is masked, the INT register captures the event in latched  
ALERT  
. INTEN is the interrupt enable register. When an  
form. A masked event does not cause  
to go true.  
Rev. A | Page 23 of 56  
 
 
 
 
 
AD9993  
Data Sheet  
51000  
49000  
47000  
45000  
43000  
41000  
39000  
37000  
35000  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Figure 31. Die Temperature Code Readback vs. Die Temperature  
Estimates of the ambient temperature can be made if the power  
dissipation of the device is known.  
Rev. A | Page 24 of 56  
 
Data Sheet  
AD9993  
START-UP REGISTER SEQUENCES  
POWER-UP ROUTINE WHEN USING THE ON-CHIP  
CLOCK SYNTHESIZER  
Synchronize LVDS Interface  
SPI.Write(0x00A, 0x82); synchronize ADC  
data with DCO clock, self cleared but  
needs following SPI clock  
To power up the device, set the register settings as described in  
the following sections.  
SPI.Write(0x00A, 0x81); realign Tx FIFO  
read and write pointers, self cleared but  
need following SPI clock  
Chip Power-Up  
SPI.Write(0x008, 0x00); power up all  
blocks  
SPI.Write(0x00A, 0x90); realign Rx FIFO  
read and write pointers, DCI clock must be  
present, self cleared but need following  
SPI clock  
DAC Setup  
SPI.Write(0x03A, 0x02); DAC data format  
offset binary  
Miscellaneous  
or  
Clear Interrupt  
SPI.Write(0x03A, 0x00); DAC data format  
twos complement  
SPI.Write(0x0F0, 0xFF)  
Enable Interrupt  
ADC Setup  
SPI.Write(0x013, 0x00); enable ADC LVDS  
output and offset binary  
SPI.Write(0x0F1, 0xFF)  
SPI.Write(0x055, 0x01); ALERT_PULLUP_EN  
(optional)  
or  
SPI.Write(0x013, 0x01); enable ADC LVDS  
output and twos complement  
SPI.Write(0x0FF, 0x01); transfer  
SPI.Write(0x039, 0x12); set DAC CML based  
on compliance range of 0.7 V and on-chip  
RFSADJ_x resistors  
SPI.Write(0x014, 0x01); set LVDS to 2 mA  
(optional: 1 mA is default)  
SPI.Write(0x0FF, 0x01); transfer  
Set this bit if using DAC compliance range > 0.7 V.  
Synthesizer Setup (62.5 MHz Reference Clock Input)  
SPI.Write(0x032, 0x01); SYNTH_CP_CAL_EN  
SPI.Write(0x0FF, 0x01); transfer  
SPI.Write(0x0ff, 0x001); data transfer  
POWER-UP ROUTINE WHEN USING EXTERNAL  
CLOCK  
SPI.Write(0x032, 0x11); start synthesizer  
calibration  
Chip Power-Up  
SPI.Write(0x008, 0x00); power up all  
blocks  
SPI.Write(0x0FF, 0x01); transfer  
SPI.Read(0x02D); synthesizer status  
0x01; calibration in progress  
DAC Setup  
SPI.Write(0x03A, 0x02); DAC data format  
offset binary  
0x04; calibration done, synthesizer no  
lock  
or  
0x06;calibration done, synthesizer locked  
Sythesizer Setup (31.25 MHz Reference Clock Input)  
SPI.Write(0x033, 0x20); CLKGEN_REFCLK_DIV1  
SPI.Write(0x03A, 0x00); DAC data format  
twos complement  
ADC Setup  
SPI.Write(0x013, 0x00); enable ADC LVDS  
output and offset binary  
SPI.Write(0x032, 0x01); synthesizer  
CP_CAL_EN  
or  
SPI.Write(0x0FF, 0x01); transfer  
SPI.Write(0x013, 0x01); enable ADC LVDS  
output and twos complement  
SPI.Write(0x032, 0x11); start synth  
calibration  
SPI.Write(0x014, 0x01); set LVDS to 2 mA  
(optional: 1 mA is default)  
SPI.Write(0x0FF, 0x01); transfer  
SPI.Read(0x02D); synthesizer status  
0x01; calibration in progress  
SPI.Write(0x0FF, 0x01); transfer  
External Clock Setup  
0x04; calibration done, synthesizer no  
lock  
SPI.Write(0x034, 0x07); set external clock  
mode  
0x06; calibration done, synthesizer  
locked  
SPI.Write(0x0FF, 0x01); transfer  
Rev. A | Page 25 of 56  
 
 
 
AD9993  
Data Sheet  
Synchronize LVDS Interface  
Enable Interrupt  
SPI.Write(0x00A, 0x82); synchronize ADC  
data with DCO clock, self cleared but  
needs following SPI clock  
SPI.Write(0x0F1, 0xFF)  
SPI.Write(0x055, 0x01); ALERT_PULLUP_EN  
(optional)  
SPI.Write(0x00A, 0x81); realign Tx FIFO  
read and write pointers, self cleared but  
need following SPI clock  
SPI.Write(0x0FF, 0x01); transfer  
SPI.Write(0x039, 0x12); set DAC CML based  
on compliance range of 0.7 V and on-chip  
RFSADJ_x resistors,  
SPI.Write(0x00A, 0x90); realign Rx FIFO  
read and write pointers, DCI clock must be  
present, self cleared but need following  
SPI clock.  
Set this bit if using DAC compliance range > 0.7 V  
SPI.Write(0x0FF, 0x001); data transfer  
Miscellaneous  
Clear Interrupt  
SPI.Write(0x0F0, 0xFF)  
Rev. A | Page 26 of 56  
Data Sheet  
AD9993  
APPLICATIONS INFORMATION  
must fall within an allowable voltage range, which gives rise to a  
common-mode voltage requirement at the outputs of the DACs.  
DIRECT CONVERSION RADIO APPLICATION  
A direct conversion radio application of the MxFE is shown in  
Figure 32. The DAC output signals, IOUTA_P/IOUTA_N and  
IOUTB_P/IOUTB_N, are differential currents. At 500 MSPS,  
DAC output signals fall within the 1st Nyquist zone (dc to  
250 MHz). DAC current outputs are converted to a voltage and  
then processed by passive low-pass filters (LPF). The low-pass  
filters reject out of band signal harmonics and their sampling  
images. The filter outputs feed the baseband inputs of a  
The MxFE receive signal chain consists of a VGA followed by a  
quadrature demodulator, then by a programmable LPF, and  
another VGA. The ADRF6518 is an LPF and VGA specifically  
designed to drive the analog inputs of high speed ADCs like the  
ones on the MxFE. The LPF is an antialiasing filter. At  
250 MSPS, the ADC signal bandwidth is 125 MHz.  
See the ADRF6518 as ADC Driver section for further  
information about this interface.  
quadrature modulator. Quadrature modulator baseband inputs  
AD9993  
PLL AND CLOCK  
CLKP  
DISTRIBUTION  
500MSPS  
DACs  
CLKN  
OR BYPASS  
PASSIVE LPF  
IOUTA_x  
DINxA_x, DINxB_x  
DCI_x  
QUAD  
MODULATOR  
RF OUT  
VGA  
IOUTB_x  
DATA  
ASSEMBLER  
DOUTxA_x/DOUxB_x  
PROGRAMMABLE  
LPF AND VGA  
DCO_x  
A_VINx, B_VINx  
C_VINx, D_VINx  
RF IN  
STROBE_x  
QUAD  
DEMOD  
VGA  
ADRF6518  
RST  
SPI_SDI, SPI_SDO  
SPI_SCLK  
SERIAL  
250MSPS  
ADCs  
PORT  
REFERENCES  
AND BIAS  
LOGIC  
SPI_CS  
Figure 32. Radio Signal Chain Example  
Rev. A | Page 27 of 56  
 
 
 
AD9993  
Data Sheet  
REGISTER MAP  
Table 10. SPI Accessible Register Summary  
Address Name  
Description  
Reset Value  
RW  
RW  
R
±x±±±  
±x±±1  
±x±±2  
±x±±5  
±x±±ꢀ  
±x±±A  
±x±±C  
±x±1±  
±x±11  
±x±12  
±x±13  
±x±14  
±x±16  
±x±17  
±x±2±  
±x±21  
±x±22  
±x±23  
±x±2D  
±x±2E  
±x±2F  
±x±3±  
±x±31  
±x±32  
±x±33  
±x±34  
±x±35  
±x±36  
±x±37  
±x±3ꢀ  
±x±39  
±x±3A  
±x±3C  
±x±3D  
±x±3F  
±x±4±  
±x±41  
±x±42  
±x±43  
±x±44  
±x±45  
±x±46  
±x±47  
±x±4ꢀ  
±x±49  
±x±4A  
±x±4B  
±x±4C  
±x±4D  
±x±4E  
SPI_CONFIG  
CHIP_ID  
SPI configuration  
Chip ID  
±x1ꢀ  
±xB2  
±x±1  
±x±F  
±x55  
±xꢀ±  
±x±1  
±x±±  
±x±±  
±x±±  
±x11  
±x±±  
±x±±  
±x±±  
±x±1  
±x±2  
±x±3  
±x±4  
±x±±  
±x77  
±xF7  
±x±±  
±x4±  
±x±±  
±x±±  
±x±4  
±x4D  
±x±±  
±x±±  
±x±±  
±x±2  
±x±±  
±x±4  
±x±±  
±x55  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
±x±±  
CHIP_GRADE  
CHIP_GRADE  
Device index  
Power mode control (indexed)  
Align ADC LVDS clocks, ADC FIFO, DAC FIFO  
Reserved  
Reserved  
Reserved  
Strobe lane control (transfer)  
Output mode (transfer, indexed)  
LVDS Tx control (transfer)  
R
DEVICE_INDEX  
POWER_MODES  
ALIGN  
Reserved  
Reserved  
RW  
RW  
RW  
R
R
R
Reserved  
STROBE_CTRL  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
R
RW  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
FLEX_OUTPUT_MODE  
FLEX_OUTPUT_ADJUST  
FLEX_VREF  
PRBS_GEN_CTRL  
PRBS±_SEED_MSB  
PRBS1_SEED_MSB  
PRBS2_SEED_MSB  
PRBS3_SEED_MSB  
SYNTH_STAT  
LF_CTRL1  
LF_CTRL2  
LF_CTRL3  
SYNTH_INT  
VREF control (transfer)  
PRBS generator control (transfer, indexed)  
ꢀ-bit seed MSB of PRBS generator for Lane± (transfer, indexed)  
ꢀ-bit seed MSB of PRBS generator for Lane1 (transfer, indexed)  
ꢀ-bit seed MSB of PRBS generator for Lane2 (transfer, indexed)  
ꢀ-bit seed MSB of PRBS generator for Lane3 (transfer, indexed)  
Synthesizer status  
Loop filter control signals (transfer)  
Loop filter control signals (transfer)  
Loop filter control signals (transfer)  
Integer value of synthesize divider (transfer)  
Synthesizer control (transfer)  
Clock generator control (transfer)  
CLKGEN control (transfer)  
DAC LVDS Rx control (transfer)  
DAC LVDS current bias control (transfer)  
Reserved  
SYNTH_CTRL  
CLKGEN_CTRL1  
CLKGEN_CTRL2  
DAC_LVDS_CTRL  
DAC_LVDS_BIAS  
Reserved  
Reserved  
DAC_CTRL  
DAC_DP_FMT  
DAC_CAL_IQ_CTRL  
DAC_CAL_IQ_STAT  
DAC_FIFO_STS1  
DAC_PRBS_CTRL  
DAC_A_PRBS_ERR±  
DAC_A_PRBS_ERR1  
DAC_A_PRBS_ERR2  
DAC_A_PRBS_ERR3  
DAC_A_PRBS_ERR4  
DAC_A_PRBS_ERR5  
DAC_A_PRBS_ERR6  
DAC_B_PRBS_ERR±  
DAC_B_PRBS_ERR1  
DAC_B_PRBS_ERR2  
DAC_B_PRBS_ERR3  
DAC_B_PRBS_ERR4  
DAC_B_PRBS_ERR5  
DAC_B_PRBS_ERR6  
Reserved  
DAC cores control (transfer)  
DAC datapath format control (transfer)  
DAC IQ calibration control (transfer)  
DAC IQ calibration status  
DAC Rx FIFO Status 1  
PRBS detector control (transfer)  
PRBS Detector Error Count ± for DAC A  
PRBS Detector Error Count 1 for DAC A  
PRBS Detector Error Count 2 for DAC A  
PRBS Detector Error Count 3 for DAC A  
PRBS Detector Error Count 4 for DAC A  
PRBS Detector Error Count 5 for DAC A  
PRBS Detector Error Count 6 for DAC A  
PRBS Detector Error Count ± for DAC B  
PRBS Detector Error Count 1 for DAC B  
PRBS Detector Error Count 2 for DAC B  
PRBS Detector Error Count 3 for DAC B  
PRBS Detector Error Count 4 for DAC B  
PRBS Detector Error Count 5 for DAC B  
PRBS Detector Error Count 6 for DAC B  
Rev. A | Page 2ꢀ of 56  
 
 
Data Sheet  
AD9993  
Address Name  
Description  
Reset Value  
RW  
R
R
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
±x±5±  
±x±51  
±x±52  
±x±53  
±x±54  
±x±55  
±x±6±  
±x±61  
±x±62  
±x±63  
±x±64  
±x±F±  
±x±F1  
±x±F2  
±x±FF  
TS_RD_LSB  
TS_RD_MSB  
Reserved  
Reserved  
TS_CTRL  
IRQ_CTRL  
DDS_CTRL  
DDS_TW1_±  
DDS_TW1_1  
DDS_TW1_2  
DDS_TW1_3  
INT  
Bits[7:±] of Temperature sensor data readback  
Bits[15:ꢀ] of Temperature sensor data readback  
Reserved  
Reserved  
Temperature sensor control signals  
Interrupt pin control  
±x±±  
±x±±  
±x±±  
±x±±  
±x±1  
±x±±  
±x±±  
±x±±  
±x±±  
±xA±  
±x19  
±x±±  
±x±±  
±x±±  
±x±±  
DDS control  
DDS tuning word for Tone 1  
DDS tuning word for Tone 1  
DDS tuning word for Tone 1  
DDS tuning word for Tone 1  
Interrupt status  
Interrupt enable (transfer)  
Interrupt source status  
Global device update register  
INTEN  
INT_RAW  
DEVICE_UPDATE  
RW  
R
RW  
Rev. A | Page 29 of 56  
AD9993  
Data Sheet  
REGISTER DESCRIPTIONS  
SPI CONFIGURATION REGISTER  
Address: 0x000, Reset: 0x18, Name: SPI_CONFIG  
Table 11. Bit Descriptions for SPI_CONFIG  
Bits  
Bit Name  
Description  
Reset  
Access  
6
SPI_LSB_FIRST2  
SPI least significant bit first.  
±x±  
RW  
1 = least significant bit shifted first for all SPI operations. On multibyte SPI  
operations, addressing increments automatically.  
± = most significant bit shifted first for all SPI operations. On multibyte SPI  
operations, addressing decrements automatically.  
This bit must be accessed with all devices enabled and is not reset by  
setting the SPI_SOFT_RESET1 or SPI_SOFT_RESET2 bit.  
5
SPI_SOFT_RESET2  
Self Clearing Soft Reset 1. Reset the SPI registers (self clearing).  
This bit must be accessed with all devices enabled.  
13-bit addressing mode always enabled.  
±x±  
RW  
[4:3]  
2
SPI_ADDR_MODE  
SPI_SOFT_RESET1  
±x3  
±x±  
R
Self Clearing Soft Reset 1. Reset the SPI registers (self clearing).  
This bit must be accessed with all devices enabled.  
SPI least significant bit first.  
RW  
1
SPI_LSB_FIRST1  
±x±  
RW  
1 = least significant bit shifted first for all SPI operations. On multibyte SPI  
operations, addressing increments automatically.  
± = most significant bit shifted first for all SPI operations. On multibyte SPI  
operations, addressing decrements automatically.  
This bit must be accessed with all devices enabled and is not reset by  
setting the SPI_SOFT_RESET1 or SPI_SOFT_RESET2 bit.  
CHIP ID REGISTER  
Address: 0x001, Reset: 0xB2, Name: CHIP_ID  
Table 12. Bit Descriptions for CHIP_ID  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
CHIP_ID  
Chip ID.  
±xB2  
R
Rev. A | Page 3± of 56  
 
 
 
Data Sheet  
AD9993  
CHIP GRADE REGISTER  
Address: 0x002, Reset: 0x01, Name: CHIP_GRADE  
Table 13. Bit Descriptions for CHIP_GRADE  
Bits  
[5:4]  
[2:±]  
Bit Name  
Description  
Reset  
±x±  
±x1  
Access  
CHIP_SPEED_GRADE  
CHIP_DIE_REV  
Chip ID/speed grade.  
Chip die revision.  
R
R
DEVICE INDEX REGISTER  
Address: 0x005, Reset: 0x0F, Name: DEVICE_INDEX  
Table 14. Bit Descriptions for DEVICE_INDEX  
Bits  
Bit Name  
Description  
Reset  
Access  
3
SPI_ADC_D_INDEX  
ADC Core D access enable.  
±x1  
RW  
1 = ADC Core D receives the next read/write access from the SPI interface.  
± = ADC Core D does not receive the next read/write access from the SPI  
interface.  
2
1
±
SPI_ADC_C_INDEX  
SPI_ADC_B_INDEX  
SPI_ADC_A_INDEX  
ADC Core C access enable.  
1 = ADC Core C receives the next read/write access from the SPI interface.  
± = ADC Core C does not receive the next read/write access from the SPI  
interface.  
±x1  
±x1  
±x1  
RW  
RW  
RW  
ADC Core B access enable.  
1 = ADC Core B receives the next read/write access from the SPI interface.  
± = ADC Core B does not receive the next read/write access from the SPI  
interface.  
ADC Core A access enable.  
1 = ADC Core A receives the next read/write access from the SPI interface.  
± = ADC Core A does not receive the next read/write access from the SPI  
interface.  
Rev. A | Page 31 of 56  
 
 
AD9993  
Data Sheet  
POWER MODE CONTROL REGISTER  
Address: 0x008, Reset: 0x55, Name: POWER_MODES  
Table 15. Bit Descriptions for POWER_MODES  
Bits  
Bit Name  
Description  
Reset  
Access  
7
PDWN_PIN_FUNC  
Power-down pin function. External power-down pin mode.  
±x±  
RW  
± = assertion of external power-down pin (PDWN) causes chip to enter full  
power-down mode.  
1 = assertion of external power-down pin (PDWN) causes chip to enter  
standby mode.  
6
CLKGEN_PDWN  
Clock generation power-down mode.  
Synthesizer power-down mode.  
DAC power-down mode.  
±x1  
±x1  
±x1  
±x1  
RW  
RW  
RW  
RW  
[5:4]  
[3:2]  
[1:±]  
SYNTH_PDWN_MODE  
DAC_PDWN_MODE  
ADC_PDWN_MODE  
ADC power-down mode. (ADC indexed)  
±± = normal mode (power up).  
±1 = power-down mode; digital datapath clocks disabled; digital datapath  
held in reset; outputs disabled.  
1± = standby mode; digital datapath clocks disabled; outputs disabled.  
11 = reserved.  
ALIGN ADC LVDS CLOCKS, ADC FIFO, DAC FIFO REGISTER  
Address: 0x00A, Reset: 0x80, Name: ALIGN  
Table 16. Bit Descriptions for ALIGN  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:5]  
RXFIFO_WR_OFFSET  
The distance of Rx FIFO write pointer away from read pointer; needs  
RXFIFO_ALIGN_REQ asserted to apply this value to datapath.  
±x4  
RW  
4
1
±
RXFIFO_ALIGN_REQ  
LVDS_DCO_SYNC  
TXFIFO_ALIGN  
Align Rx FIFO read and write pointers.  
Sync LVDS Tx DCO with data and strobe (self clear with following SPI clock). ±x±  
Align Tx FIFO read and write pointers (self clear with following SPI clock).  
±x±  
RW  
RW  
RW  
±x±  
Rev. A | Page 32 of 56  
 
 
Data Sheet  
AD9993  
STROBE LANE CONTROL REGISTER  
Address: 0x012, Reset: 0x00, Name: STROBE_CTRL  
Table 17. Bit Descriptions for STROBE_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:4]  
STROBE_SAMPLE_RATE  
Sample rate of strobe output.  
± = 1/1 of data sample rate.  
1 = 1/2 of data sample rate.  
2 = 1/4 of data sample rate.  
3 = 1/ꢀ of data sample rate.  
4 = 1/16 of data sample rate.  
5 = 1/32 of data sample rate.  
6 = 1/64 of data sample rate.  
7 = 1/12ꢀ of data sample rate.  
ꢀ = 1/256 of data sample rate.  
Needs at least one ADC channel working.  
±x±  
RW  
±
STROBE_DUTY_CYCLE_EN  
Enable 5±% duty cycle of strobe lane. Needs at least one ADC channel  
working.  
±x±  
RW  
OUTPUT MODE REGISTER  
Address: 0x013, Reset: 0x11, Name: FLEX_OUTPUT_MODE  
Table 18. Bit Descriptions for FLEX_OUTPUT_MODE  
Bits  
Bit Name  
Description  
Reset  
Access  
4
DP_OUT_DATA_EN_N  
Digital datapath output enable (active low) (ADC indexed).  
± = digital output from ADC is enabled.  
1 = digital output from ADC is disabled.  
Digital datapath output invert (ADC indexed).  
± = output from ADC is not inverted.  
1 = output from ADC is inverted.  
Digital datapath output data format select (DFS) (ADC indexed).  
±± = offset binary.  
±x1  
RW  
2
DP_OUT_DATA_INV  
DP_OUT_DFS  
±x±  
±x1  
RW  
RW  
[1:±]  
±1 = twos complement.  
1± = gray code.  
11 = reserved.  
Rev. A | Page 33 of 56  
 
 
AD9993  
Data Sheet  
LVDS TX CONTROL REGISTER  
Address: 0x014, Reset: 0x00, Name: FLEX_OUTPUT_ADJUST  
Table 19. Bit Descriptions for FLEX_OUTPUT_ADJUST  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:5]  
LVDS_BIAS_DAC  
Sets LVDS output swing.  
±±± = 2±± mV.  
±x±  
RW  
±±1 = 227 mV.  
±1± = 257 mV.  
±11 = 2ꢀ2 mV.  
1±± = 296 mV.  
1±1 = 33± mV.  
11± = 35± mV.  
111 = 372 mV.  
[4:2]  
[1:±]  
LVDS_BG_TRIM  
LVDS_DRIVE  
Band gap trim for LVDS Tx DOUTxx_P and DOUTxx_N pins.  
Output LVDS drive current.  
±± = 1 mA output drive current (default).  
±1 = 2 mA output drive current.  
1± = 3 mA output drive current.  
11 = 4 mA output drive current.  
±x±  
±x±  
RW  
RW  
VREF CONTROL REGISTER  
Address: 0x016, Reset: 0x00, Name: FLEX_VREF  
Table 20. Bit Descriptions for FLEX_VREF  
Bits  
Bit Name  
Description  
Reset  
Access  
[4:±]  
VREF_FS_ADJ  
Main reference full-scale VREF adjustment.  
±1111 = internal 2.±ꢀ7 V p-p.  
±x±  
RW  
±±±±1 = internal 1.772 V p-p.  
±±±±± = internal 1.75 V p-p.  
11111 = internal 1.727 V p-p.  
1±±±± = internal 1.3ꢀ3 V p-p.  
Rev. A | Page 34 of 56  
 
 
Data Sheet  
AD9993  
PRBS GENERATOR CONTROL REGISTER  
Address: 0x017, Reset: 0x00, Name: PRBS_GEN_CTRL  
Table 21. Bit Descriptions for PRBS_GEN_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
5
STROBE_PRBS_RESET  
Reset PRBS generator on strobe lane (transfer not needed).  
± = normal working if PRBS enabled.  
1 = reset the PRBS on strobe lane.  
Enable PRBS testing on strobe lane.  
±x±  
RW  
4
STROBE_PRBS_EN  
±x±  
RW  
± = normal mode working with STROBE_DUTY_CYCLE_EN and  
STROBE_SAMPLE_RATE.  
1 = test mode only.  
Note: needs at least one ADC channel working.  
1
±
DP_PRBS_GEN_RESET  
DP_PRBS_GEN_EN  
Pseudorandom binary sequence generator reset (transfer not needed,  
ADC indexed).  
± = PRBS generator enabled.  
±x±  
±x±  
RW  
RW  
1 = PRBS generator held in reset.  
Enable PRBS generating on ADC data lanes (ADC indexed).  
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 0 REGISTER  
Address: 0x020, Reset: 0x01, Name: PRBS0_SEED_MSB  
Table 22. Bit Descriptions for PRBS0_SEED_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DP_PRBS±_SEED_MSB  
ꢀ-bit MSB seed of PRBS generator in Lane ± (ADC indexed).  
The 15-bit LSB is always ±x3AFF.  
±x1  
RW  
Rev. A | Page 35 of 56  
 
 
AD9993  
Data Sheet  
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 1 REGISTER  
Address: 0x021, Reset: 0x02, Name: PRBS1_SEED_MSB  
Table 23. Bit Descriptions for PRBS1_SEED_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DP_PRBS1_SEED_MSB  
ꢀ-bit MSB seed of PRBS generator in Lane 1 (ADC indexed.)  
The 15-bit LSB is always ±x3AFF.  
±x2  
RW  
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 2 REGISTER  
Address: 0x022, Reset: 0x03, Name: PRBS2_SEED_MSB  
Table 24. Bit Descriptions for PRBS2_SEED_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DP_PRBS2_SEED_MSB  
ꢀ-bit MSB seed of PRBS generator in Lane 2 (ADC indexed).  
The 15-bit LSB is always ±x3AFF.  
±x3  
RW  
8-BIT SEED MSB OF PRBS GENERATOR FOR LANE 3 REGISTER  
Address: 0x023, Reset: 0x04, Name: PRBS3_SEED_MSB  
Table 25. Bit Descriptions for PRBS3_SEED_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DP_PRBS3_SEED_MSB  
ꢀ-bit MSB seed of PRBS generator in Lane 3 (ADC indexed).  
The 15-bit LSB is always ±x3AFF.  
±x4  
RW  
Rev. A | Page 36 of 56  
 
 
 
Data Sheet  
AD9993  
SYNTHESIZER STATUS REGISTER  
Address: 0x02D, Reset: 0x00, Name: SYNTH_STAT  
Table 26. Bit Descriptions for SYNTH_STAT  
Bits  
Bit Name  
Description  
Reset  
±x±  
±x±  
Access  
2
1
±
SYNTH_CP_CAL_DONE  
SYNTH_LOCKDET  
SYNTH_VCO_CAL_IN_PROGRESS VCO calibration in progress.  
Charge pump calibration done.  
Synthesizer frequency locked.  
R
R
R
±x±  
LOOP FILTER CONTROL SIGNALS REGISTER  
Address: 0x02E, Reset: 0x77, Name: LF_CTRL1  
Table 27. Bit Descriptions for LF_CTRL1  
Bits  
Bit Name  
Description  
Reset  
±x7  
Access  
[6:4]  
LF_C2  
Loop filter coefficient.  
±±± = 3.13 pF.  
RW  
±±1 = 2.26 pF.  
±1± = 9.39 pF.  
±11 = 12.52 pF.  
1±± = 15.65 pF.  
1±1 = 1ꢀ.7ꢀ pF.  
11± = 21.91 pF.  
111 = 25.±4 pF.  
Loop filter coefficient.  
±±± = 46.5ꢀ4 pF.  
±±1 = 93.16ꢀ pF.  
±1± = 139.752 pF.  
±11 = 1ꢀ6.336 pF.  
1±± = 232.92± pF.  
1±1 = 279.5±4 pF.  
11± = 326.±ꢀꢀ pF.  
111 = 372.672 pF.  
[2:±]  
LF_C1  
±x7  
RW  
Rev. A | Page 37 of 56  
 
 
AD9993  
Data Sheet  
LOOP FILTER CONTROL SIGNALS REGISTER  
Address: 0x02F, Reset: 0xF7, Name: LF_CTRL2  
Table 28. Bit Descriptions for LF_CTRL2  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:6]  
LF_R3  
Loop filter coefficient.  
±± = 4.63 kΩ.  
±1 = 2.315 kΩ.  
1± = 1.543 kΩ.  
11 = 1.157 kΩ  
±x3  
±x3  
±x7  
RW  
[5:4]  
[2:±]  
LF_R1  
LF_C3  
Loop filter coefficient.  
±± = 12.±4 kΩ.  
±1 = 6.±2 kΩ.  
1± = 4.±1 kΩ.  
11 = 3.±1 kΩ.  
RW  
RW  
Loop filter coefficient.  
±±± = ±.6325 pF.  
±±1 = 1.265 pF.  
±1± = 1.ꢀ975 pF.  
±11 = 2.53± pF.  
1±± = 3.1625 pF.  
1±1 = 3.795 pF.  
11± = 4.4275 pF.  
111 = 5.±6 pF.  
LOOP FILTER CONTROL SIGNALS REGISTER  
Address: 0x030, Reset: 0x00, Name: LF_CTRL3  
Table 29. Bit Descriptions for LF_CTRL3  
Bits  
Bit Name  
EXT_CP_SEL  
BYP_R3  
Description  
Reset  
±x±  
±x±  
Access  
RW  
RW  
1
±
Short external CP pin to charge pump output.  
Bypass R3 in loop filter.  
Rev. A | Page 3ꢀ of 56  
 
 
Data Sheet  
AD9993  
INTEGER VALUE OF SYNTHESIZER DIVIDER REGISTER  
Address: 0x031, Reset: 0x40, Name: SYNTH_INT  
Table 30. Bit Descriptions for SYNTH_INT  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
SYNTH_INT  
Integer part on the synthesizer divider (N). N = freq (MHz)/31.25.  
±x4±  
RW  
SYNTHESIZER CONTROL REGISTER  
Address: 0x032, Reset: 0x00, Name: SYNTH_CTRL  
Table 31. Bit Descriptions for SYNTH_CTRL  
Bits  
Bit Name  
Description  
Reset  
±x±  
±x±  
Access  
RW  
RW  
4
±
SYNTH_CAL_START  
SYNTH_CP_CAL_EN  
Start synthesizer calibration.  
Enable charge pump calibration.  
CLOCK GENERATOR CONTROL REGISTER  
Address: 0x033, Reset: 0x00, Name: CLKGEN_CTRL1  
Table 32. Bit Descriptions for CLKGEN_CTRL1  
Bits  
Bit Name  
Description  
Reset  
Access  
7
CLKGEN_DC_MODE  
DAC clock direct connect to ADC.  
± = ADC clock from 1 GHz.  
±x±  
RW  
1 = ADC clock from DAC.  
6
5
CLKGEN_DC_MODE_INV  
CLKGEN_REFCLK_DIV1  
Not used.  
±x±  
±x±  
RW  
RW  
± = select REFCLK as PLL reference.  
1 = select REFCLK/2 as PLL reference.  
Selects the output of the on-chip reference clock divider to the PLL.  
Sets the divider ratio for the on-chip reference clock divider.  
Rev. A | Page 39 of 56  
4
CLKGEN_REFDIV_EN  
CLKGEN_REFDIV_SEL  
±x±  
±x±  
RW  
RW  
[1:±]  
 
 
 
AD9993  
Data Sheet  
CLKGEN CONTROL REGISTER  
Address: 0x034, Reset: 0x04, Name: CLKGEN_CTRL2  
Table 33. Bit Descriptions for CLKGEN_CTRL2  
Bits  
Bit Name  
Description  
Reset  
Access  
3
CLKGEN_DAC_M±_INV  
Swaps CMOS and differential clock buffer for DAC only.  
± = normal mode.  
1 = inverts CLKGEN_MODE[±] for DAC only.  
Swaps CMOS and differential clock buffer for ADC only.  
± = normal mode.  
±x±  
±x1  
±x±  
RW  
2
CLKGEN_ADC_M±_INV  
CLKGEN_MODE  
RW  
RW  
1 = inverts CLKGEN_MODE[±] for ADC only.  
Configures the IC for external or internal clock.  
[1:±]  
±± = selects on-chip synthesizer to drive LVDS at 1 GHz, ADC at 25± MHz,  
and DAC at 5±± MHz.  
±1 = same as ±± except uses differential clock buffer for DAC and ADC.  
1± = selects external clock source to drive LVDS at clock rate, ADC at clock  
rate divide by 4, and DAC at clock rate divide by 2. Minimum clock rate =  
2±± MHz.  
11 = same as 1± except uses differential clock buffer for DAC and ADC.  
DAC LVDS RX CONTROL REGISTER  
Address: 0x035, Reset: 0x4D, Name: DAC_LVDS_CTRL  
Rev. A | Page 4± of 56  
 
 
Data Sheet  
AD9993  
Table 34. Bit Descriptions for DAC_LVDS_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
[3:±]  
DAC_RES_CAL  
DAC LVDS Rx termination selection.  
±±±1 = 977 Ω.  
±±1± = 497 Ω.  
±±11 = 341 Ω.  
±1±± = 267 Ω.  
±1±1 = 215 Ω.  
±11± = 1ꢀ4 Ω.  
±111 = 16± Ω.  
1±±± = 145Ω.  
1±±1 = 131 Ω.  
1±1± = 121 Ω.  
1±11 = 112 .  
±xD  
RW  
11±± = 1±5 Ω.  
11±1 = 99 Ω.  
111± = 93Ω.  
1111 = ꢀ9 Ω.  
DAC LVDS CURRENT BIAS CONTROL REGISTER  
Address: 0x036, Reset: 0x00, Name: DAC_LVDS_BIAS  
Table 35. Bit Descriptions for DAC_LVDS_BIAS  
Bits  
Bit Name  
Description  
Reset  
Access  
[5:4]  
DAC_IAMP  
Adjust bias current for LVDS DAC receiver.  
±x±  
RW  
±± = nominal.  
±1 = 25%.  
1± = 5±%.  
11 = 75%.  
[1:±]  
DAC_IRCV  
Adjust the bias current to cascade voltage for LVDS DAC receiver.  
±x±  
RW  
±± = nominal.  
±1 = 25%.  
1± = 5±%.  
11 = 75%.  
Rev. A | Page 41 of 56  
 
AD9993  
Data Sheet  
DAC CORES CONTROL REGISTER  
Address: 0x039, Reset: 0x02, Name: DAC_CTRL  
Table 36. Bit Descriptions for DAC_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
7
DAC_TRANS  
DAC input latch data transfer method select.  
± = edge triggered.  
1 = level triggered.  
Sets DAC common-mode level.  
±±± = ±.± V.  
±x±  
RW  
[6:4]  
DAC_VCM_VREF_BIT  
±x±  
RW  
±±1 = ±.2 V.  
±1± = ±.3 V.  
±11 = ±.4 V  
1±± = ±.5 V  
1±1 = ±.6 V  
11± = ±.7 V.  
111 = ±.ꢀ V.  
1
±
DAC_RSET_EN  
DAC_REF_EXT  
Selects on-chip RFSADJ_x resistor.  
±x1  
±x±  
RW  
RW  
Selects external DAC Reference voltage. Set to 1 to use an off-chip DAC  
reference.  
DAC DATAPATH FORMAT CONTROL REGISTER  
Address: 0x03A, Reset: 0x00, Name: DAC_DP_FMT  
Table 37. Bit Descriptions for DAC_DP_FMT  
Bits  
Bit Name  
Description  
Reset  
Access  
1
DAC_BINARY  
Enable binary offset data format (default is twos complement).  
± = twos complement.  
±x±  
RW  
1 = binary offset.  
Rev. A | Page 42 of 56  
 
 
Data Sheet  
AD9993  
DAC IQ CALIBRATION CONTROL REGISTER  
Address: 0x03C, Reset: 0x04, Name: DAC_CAL_IQ_CTRL  
Table 38. Bit Descriptions for DAC_CAL_IQ_CTRL  
Bits  
Bit Name  
Description  
Reset  
±x±  
Access  
RW  
5
DAC_CAL_IQ_START  
DAC_CAL_IQ_RESET  
PD_DAC_CAL_CLK  
Starts DAC IQ calibration.  
4
Resets DAC IQ calibration.  
±x±  
RW  
2
± = DAC IQ calibration clock enabled. Must be ± to run IQ calibration.  
1 = DAC IQ calibration clock disabled.  
±x1  
RW  
1
±
DAC_CAL_IQ_SEL  
DAC_CAL_IQ_EN  
Selects output of IQ calibration. Must be 1 to run IQ calibration.  
Enables DAC I to Q calibration. Must stay high until DAC_CAL_IQ_DONE = 1.  
±x±  
±x±  
RW  
RW  
DAC IQ CALIBRATION STATUS REGISTER  
Address: 0x03D, Reset: 0x00, Name: DAC_CAL_IQ_STAT  
Table 39. Bit Descriptions for DAC_CAL_IQ_STAT  
Bits  
[7:1]  
±
Bit Name  
Description  
Reset  
Access  
DAC_CAL_IQ_RD  
DAC_CAL_IQ_DONE  
Value of DAC IQ calibration, valid when DAC_CAL_IQ_DONE = 1.  
Indicates when DAC IQ calibration is done.  
±x±  
±x±  
R
R
DAC RX FIFO STATUS 1 REGISTER  
Address: 0x03F, Reset: 0x55, Name: DAC_FIFO_STS1  
Table 40. Bit Descriptions for DAC_FIFO_STS1  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
RXFIFO_THERM  
Thermal value of FIFO usage.  
±x55  
R
Rev. A | Page 43 of 56  
 
 
 
AD9993  
Data Sheet  
PRBS DETECTOR CONTROL REGISTER  
Address: 0x040, Reset: 0x00, Name: DAC_PRBS_CTRL  
Table 41. Bit Descriptions for DAC_PRBS_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
RW  
1
PRBS_DET_ERRCLR  
PRBS_DET_EN  
Clear the error count of PRBS detector (transfer not required).  
Enable the PRBS detector.  
±x±  
±x±  
±
RW  
PRBS DETECTOR ERROR COUNT 0 FOR DAC A REGISTER  
Address: 0x041, Reset: 0x00, Name: DAC_A_PRBS_ERR0  
Table 42. Bit Descriptions for DAC_A_PRBS_ERR0  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A±  
Error count of Lane ± of DAC A.  
±x±  
R
PRBS DETECTOR ERROR COUNT 1 FOR DAC A REGISTER  
Address: 0x042, Reset: 0x00, Name: DAC_A_PRBS_ERR1  
Table 43. Bit Descriptions for DAC_A_PRBS_ERR1  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A1  
Error count of Lane 1 of DAC A.  
±x±  
R
Rev. A | Page 44 of 56  
 
 
 
Data Sheet  
AD9993  
PRBS DETECTOR ERROR COUNT 2 FOR DAC A REGISTER  
Address: 0x043, Reset: 0x00, Name: DAC_A_PRBS_ERR2  
Table 44. Bit Descriptions for DAC_A_PRBS_ERR2  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A2  
Error count of Lane 2 of DAC A.  
±x±  
R
PRBS DETECTOR ERROR COUNT 3 FOR DAC A REGISTER  
Address: 0x044, Reset: 0x00, Name: DAC_A_PRBS_ERR3  
Table 45. Bit Descriptions for DAC_A_PRBS_ERR3  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A3  
Error count of Lane 3 of DAC A.  
±x±  
R
PRBS DETECTOR ERROR COUNT 4 FOR DAC A REGISTER  
Address: 0x045, Reset: 0x00, Name: DAC_A_PRBS_ERR4  
Table 46. Bit Descriptions for DAC_A_PRBS_ERR4  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A4  
Error count of Lane 4 of DAC A.  
±x±  
R
Rev. A | Page 45 of 56  
 
 
 
AD9993  
Data Sheet  
PRBS DETECTOR ERROR COUNT 5 FOR DAC A REGISTER  
Address: 0x046, Reset: 0x00, Name: DAC_A_PRBS_ERR5  
Table 47. Bit Descriptions for DAC_A_PRBS_ERR5  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A5  
Error count of Lane 5 of DAC A.  
±x±  
R
PRBS DETECTOR ERROR COUNT 6 FOR DAC A REGISTER  
Address: 0x047, Reset: 0x00, Name: DAC_A_PRBS_ERR6  
Table 48. Bit Descriptions for DAC_A_PRBS_ERR6  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_A6  
Error count of Lane 6 of DAC A.  
±x±  
R
PRBS DETECTOR ERROR COUNT 0 FOR DAC B REGISTER  
Address: 0x048, Reset: 0x00, Name: DAC_B_PRBS_ERR0  
Table 49. Bit Descriptions for DAC_B_PRBS_ERR0  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B±  
Error count of Lane ± of DAC B.  
±x±  
R
Rev. A | Page 46 of 56  
 
 
 
Data Sheet  
AD9993  
PRBS DETECTOR ERROR COUNT 1 FOR DAC B REGISTER  
Address: 0x049, Reset: 0x00, Name: DAC_B_PRBS_ERR1  
Table 50. Bit Descriptions for DAC_B_PRBS_ERR1  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B1  
Error count of Lane 1 of DAC B.  
±x±  
R
PRBS DETECTOR ERROR COUNT 2 FOR DAC B REGISTER  
Address: 0x04A, Reset: 0x00, Name: DAC_B_PRBS_ERR2  
Table 51. Bit Descriptions for DAC_B_PRBS_ERR2  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B2  
Error count of Lane 2 of DAC B.  
±x±  
R
PRBS DETECTOR ERROR COUNT 3 FOR DAC B REGISTER  
Address: 0x04B, Reset: 0x00, Name: DAC_B_PRBS_ERR3  
Table 52. Bit Descriptions for DAC_B_PRBS_ERR3  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B3  
Error count of Lane 3 of DAC B.  
±x±  
R
Rev. A | Page 47 of 56  
 
 
 
AD9993  
Data Sheet  
PRBS DETECTOR ERROR COUNT 4 FOR DAC B REGISTER  
Address: 0x04C, Reset: 0x00, Name: DAC_B_PRBS_ERR4  
Table 53. Bit Descriptions for DAC_B_PRBS_ERR4  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B4  
Error count of Lane 4 of DAC B.  
±x±  
R
PRBS DETECTOR ERROR COUNT 5 FOR DAC B REGISTER  
Address: 0x04D, Reset: 0x00, Name: DAC_B_PRBS_ERR5  
Table 54. Bit Descriptions for DAC_B_PRBS_ERR5  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B5  
Error count of Lane 5 of DAC B.  
±x±  
R
PRBS DETECTOR ERROR COUNT 6 FOR DAC B REGISTER  
Address: 0x04E, Reset: 0x00, Name: DAC_B_PRBS_ERR6  
Table 55. Bit Descriptions for DAC_B_PRBS_ERR6  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
PRBS_DET_ERRCNT_B6  
Error count of Lane 6 of DAC B.  
±x±  
R
Rev. A | Page 4ꢀ of 56  
 
 
 
Data Sheet  
AD9993  
BITS[7:0] OF TEMPERATURE SENSOR DATA READBACK REGISTER  
Address: 0x050, Reset: 0x00, Name: TS_RD_LSB  
Table 56. Bit Descriptions for TS_RD_LSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
TEMP_SENSE_RDBK_LSB  
Temperature sensor measurement MSB.  
±x±  
R
BITS[15:8] OF TEMPERATURE SENSOR DATA READBACK REGISTER  
Address: 0x051, Reset: 0x00, Name: TS_RD_MSB  
Table 57. Bit Descriptions for TS_RD_MSB  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
TEMP_SENSE_RDBK_MSB  
Temperature sensor neasurement LSB.  
±x±  
R
TEMPERATURE SENSOR CONTROL SIGNALS REGISTER  
Address: 0x054, Reset: 0x01, Name: TS_CTRL  
Table 58. Bit Descriptions for TS_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
±
TEMP_SENSE_PD  
Turn off temperature sensor.  
±x1  
RW  
Rev. A | Page 49 of 56  
 
 
 
AD9993  
Data Sheet  
INTERRUPT PIN CONTROL REGISTER  
Address: 0x055, Reset: 0x00, Name: IRQ_CTRL  
Table 59. Bit Descriptions for IRQ_CTRL  
Bits  
Bit Name  
Description  
Reset  
Access  
±
ALERT_PULLUP_EN  
Interrupt (alarm) pin pull-up enable.  
±x±  
RW  
DDS CONTROL REGISTER  
Address: 0x060, Reset: 0x00, Name: DDS_CTRL  
Table 60. Bit Descriptions for DDS_CTRL  
Bits  
Bit Name  
Description  
Reset  
±x±  
Access  
RW  
6
DDS_1DB_DIS  
DDS_ATTEN  
Disable the −1 db attenuation on both DDS tone outputs.  
Amplitude attenuation.  
±± = ×1/1 amplitude.  
[3:2]  
±x±  
RW  
±1 = ×1/2 amplitude.  
1± = ×1/4 amplitude.  
11 = ×1/ꢀ amplitude.  
1
±
DDS_CLK_INV  
DDS_EN  
DDS clock invert bit.  
± = normal. DDS clock not inverted.  
1 = DDS clock inverted.  
±x±  
±x±  
RW  
RW  
Enable DDS Tone 1 output.  
Rev. A | Page 5± of 56  
 
 
Data Sheet  
AD9993  
DDS TUNING WORD FOR TONE 1 REGISTER  
Address: 0x061, Reset: 0x00, Name: DDS_TW1_0  
Table 61. Bit Descriptions for DDS_TW1_0  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DDS_TW1_±  
32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,  
DDS_TW1_1, and DDS_TW1_±. The default configuration is for 5± MHz  
when working with 5±± MHz DAC clock.  
±x±  
RW  
DDS TUNING WORD FOR TONE 1 REGISTER  
Address: 0x062, Reset: 0x00, Name: DDS_TW1_1  
Table 62. Bit Descriptions for DDS_TW1_1  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DDS_TW1_1  
32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,  
DDS_TW1_1, and DDS_TW1_±. The default configuration is for 5± MHz  
when working with 5±± MHz DAC clock.  
±x±  
RW  
Rev. A | Page 51 of 56  
 
 
AD9993  
Data Sheet  
DDS TUNING WORD FOR TONE 1 REGISTER  
Address: 0x063, Reset: 0xA0, Name: DDS_TW1_2  
Table 63. Bit Descriptions for DDS_TW1_2  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DDS_TW1_2  
32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,  
DDS_TW1_1, and DDS_TW1_±. The default configuration is for 5± MHz  
when working with 5±± MHz DAC clock.  
±xa±  
RW  
DDS TUNING WORD FOR TONE 1 REGISTER  
Address: 0x064, Reset: 0x19, Name: DDS_TW1_3  
Table 64. Bit Descriptions for DDS_TW1_3  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:±]  
DDS_TW1_3  
32-bit tuning word for Tone 1 combined by DDS_TW1_3, DDS_TW1_2,  
DDS_TW1_1, and DDS_TW1_±. The default configuration is for 5± MHz  
when working with 5±± MHz DAC clock.  
±x19  
RW  
Rev. A | Page 52 of 56  
 
 
Data Sheet  
AD9993  
INTERRUPT STATUS REGISTER  
Address: 0x0F0, Reset: 0x00, Name: INT  
Table 65. Bit Descriptions for INT  
Bits  
Bit Name  
Description  
Reset  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
Access  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
7
6
5
4
3
2
1
±
ADC_D_OVR_IRQ  
ADC_C_OVR_IRQ  
ADC_B_OVR_IRQ  
ADC_A_OVR_IRQ  
FIFO_WARN2_IRQ  
FIFO_WARN1_IRQ  
PLL_UNLOCK_IRQ  
PLL_LOCKED_IRQ  
ADC D overrange interrupt (write 1 to clear).  
ADC C overrange interrupt (write 1 to clear).  
ADC B overrange interrupt(write 1 to clear).  
ADC A overrange interrupt (write 1 to clear).  
FIFO Warning 2 interrupt (write 1 to clear).  
FIFO Warning 1 interrupt (write 1 to clear).  
PLL unlock interrupt (write 1 to clear).  
PLL lock interrupt (write 1 to clear).  
INTERRUPT ENABLE REGISTER  
Address: 0x0F1, Reset: 0x00, Name: INTEN  
Rev. A | Page 53 of 56  
 
 
AD9993  
Data Sheet  
Table 66. Bit Descriptions for INTEN  
Bits  
Bit Name  
Description  
Reset  
Access  
RW  
RW  
7
6
5
ADC_D_OVR_IRQ_EN  
ADC_C_OVR_IRQ_EN  
ADC_B_OVR_IRQ_EN  
ADC_A_OVR_IRQ_EN  
FIFO_WARN2_IRQ_EN  
FIFO_WARN1_IRQ_EN  
PLL_UNLOCK_IRQ_EN  
PLL_LOCKED_IRQ_EN  
Enable ADC D Overrange interrupt.  
Enable ADC C Overrange interrupt.  
Enable ADC B Overrange interrupt.  
Enable ADC A Overrange interrupt.  
Enable FIFO Warning 2 interrupt.  
Enable FIFO Warning 1 interrupt.  
Enable PLL unlock interrupt.  
Enable PLL lock interrupt.  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
RW  
4
3
2
1
RW  
RW  
RW  
RW  
±
RW  
INTERRUPT SOURCE STATUS REGISTER  
Address: 0x0F2, Reset: 0x00, Name: INT_RAW  
Table 67. Bit Descriptions for INT_RAW  
Bits  
Bit Name  
Description  
Reset  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
±x±  
Access  
7
6
5
4
3
2
1
±
ADC_D_OVR_RAW  
ADC_C_OVR_RAW  
ADC_B_OVR_RAW  
ADC_A_OVR_RAW  
FIFO_WARN2_RAW  
FIFO_WARN1_RAW  
PLL_UNLOCK_RAW  
PLL_LOCKED_RAW  
ADC D overrange interrupt source.  
ADC C overrange interrupt source.  
ADC B overrange interrupt source.  
ADC A overrange interrupt source.  
FIFO Warning 2 interrupt source.  
FIFO Warning 1 interrupt source.  
PLL unlock interrupt source.  
PLL lock interrupt source.  
R
R
R
R
R
R
R
R
Rev. A | Page 54 of 56  
 
Data Sheet  
AD9993  
GLOBAL DEVICE UPDATE REGISTER  
Address: 0x0FF, Reset: 0x00, Name: DEVICE_UPDATE  
Table 68. Bit Descriptions for DEVICE_UPDATE  
Bits  
Bit Name  
Description  
Reset  
Access  
±
CHIP_REGMAP_TRANSFER  
Register map master/slave transfer bit. Self clearing bit used to  
±x±  
RW  
synchronize the transfer of data from the master to the slave registers.  
± = no effect  
1 = transfer data from the master registers written by the register maps  
to the slave registers seen by the datapath.  
Rev. A | Page 55 of 56  
 
AD9993  
Data Sheet  
OUTLINE DIMENSIONS  
12.10  
12.00 SQ  
11.90  
A1 BALL  
CORNER  
A1 BALL  
CORNER  
14 13 12 11 10 9  
8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
10.40  
BSC SQ  
0.80  
BSC  
K
L
M
N
P
0.80  
REF  
TOP VIEW  
DETAIL A  
BOTTOM VIEW  
*
1.40  
1.24  
1.15  
0.97  
0.90  
0.83  
0.54  
REF  
DETAIL A  
0.39  
0.34  
0.29  
0.36  
REF  
0.50  
0.45  
0.40  
COPLANARITY  
0.12  
SEATING  
PLANE  
BALL DIAMETER  
*
COMPLIANT TO JEDEC STANDARDS MO-219 WITH  
EXCEPTION TO PACKAGE HEIGHT.  
Figure 33. 196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
(BC-196-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD9993BBCZ  
AD9993BBCZRL  
AD9993-EBZ  
Temperature Range  
−4±°C to +ꢀ5°C  
−4±°C to +ꢀ5°C  
Package Description  
Package Option  
BC-196-9  
BC-196-9  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
196-Ball Chip Scale Package Ball Grid Array [CSP_BGA]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12260-0-5/14(A)  
Rev. A | Page 56 of 56  
 
 

相关型号:

AD9993BBCZ

Integrated Mixed-Signal Front End
ADI

AD9993BBCZRL

Integrated Mixed-Signal Front End
ADI

AD9993_17

Integrated Mixed-Signal Front End
ADI

AD9994

12-Bit CCD Signal Processor with Precision Timing Generator
ADI

AD9995

12-Bit CCD Signal Processor with Precision Timing ⑩ Generator
ADI

AD9995KCP

12-Bit CCD Signal Processor with Precision Timing ⑩ Generator
ADI

AD9995KCPRL

12-Bit CCD Signal Processor with Precision Timing ⑩ Generator
ADI

AD9995KCPZ

IC SPECIALTY CONSUMER CIRCUIT, QCC56, 8 X 8 MM, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other
ADI

AD9995KCPZRL

IC SPECIALTY CONSUMER CIRCUIT, QCC56, 8 X 8 MM, MO-220-VLLD-2, LFCSP-56, Consumer IC:Other
ADI

AD9C1747

Small and light size
VANLONG

AD9C1747/1842F75KCA

Array Duplexer (AD Type)
VANLONG

AD9C1950

Small and light size
VANLONG