ADA4075-2 [ADI]

Ultralow Noise Amplifier at Lower Power; 超低噪声放大器的低功耗
ADA4075-2
型号: ADA4075-2
厂家: ADI    ADI
描述:

Ultralow Noise Amplifier at Lower Power
超低噪声放大器的低功耗

放大器
文件: 总24页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise Amplifier at Lower Power  
ADA4075-2  
PIN CONFIGURATION  
FEATURES  
Ultralow noise: 2.8 nV/√Hz at 1 kHz typical  
Ultralow distortion: 0.0002% typical  
Low supply current: 1.8 mA per amplifier typical  
Offset voltage: 1 mV maximum  
Bandwidth: 6.5 MHz typical  
OUTA  
–INA  
+INA  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4075-2  
TOP VIEW  
(Not to Scale)  
OUTB  
–INB  
+INB  
Figure 1. 8-Lead SOIC  
Slew rate: 12 V/μs typical  
Unity-gain stable  
Extended industrial temperature range  
SOIC package  
APPLICATIONS  
Precision instrumentation  
Professional audio  
Active filters  
Low noise amplifier front end  
Integrators  
GENERAL DESCRIPTION  
Table 1. Low Noise Precision Op Amps  
The ADA4075-2 is a dual, high performance, low noise operational  
amplifier combining excellent dc and ac characteristics on the  
Analog Devices, Inc., iPolar® process. The iPolar process is an  
advanced bipolar technology implementing vertical junction  
isolation with lateral trench isolation. This allows for low noise  
performance amplifiers in smaller die size at faster speed and  
lower power. Its high slew rate, low distortion, and ultralow  
noise make the ADA4075-2 ideal for high fidelity audio and  
high performance instrumentation applications. It is also  
especially useful for lower power demands, small enclosures,  
and high density applications. The ADA4075-2 is specified for  
the temperature range of −40°C to +125°C and is available in a  
standard SOIC package.  
Supply 44 V  
36 V  
12 V to 16 V  
AD8665  
OP162  
5 V  
Single  
OP27  
AD8671  
AD8675  
AD797  
AD8605  
AD8655  
AD8691  
AD8606  
AD8656  
AD8692  
AD8608  
AD8694  
Dual  
OP275  
AD8672  
AD8676  
AD8599  
ADA4004-4  
AD8674  
AD8666  
OP262  
Quad  
AD8668  
OP462  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADA4075-2  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 15  
Input Protection ......................................................................... 15  
Total Harmonic Distortion ....................................................... 15  
Phase Reversal ............................................................................ 15  
DAC Output Filter...................................................................... 16  
Balanced Line Driver................................................................. 17  
Balanced Line Receiver.............................................................. 18  
Low Noise Parametric Equalizer.............................................. 19  
Schematic......................................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
Power Sequencing ........................................................................ 4  
ESD Caution.................................................................................. 4  
Typical Performance Characteristics ............................................. 5  
REVISION HISTORY  
10/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADA4075-2  
SPECIFICATIONS  
VSY  
= 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ  
0.2  
30  
5
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
1
mV  
mV  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
dB  
dB  
μV/°C  
MΩ  
pF  
−40°C ≤ TA ≤ +125°C  
1.2  
100  
150  
50  
75  
+12.5  
Input Bias Current  
IB  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
−12.5  
110  
106  
114  
108  
112  
106  
CMRR  
AVO  
VCM = −12.5 V to +12.5 V  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ, VO = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C  
118  
117  
117  
Large-Signal Voltage Gain  
RL = 600 Ω, VO = −10 V to +10 V  
−40°C ≤ TA ≤ +125°C  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
RIN  
Offset Voltage Drift  
Input Resistance  
Input Capacitance, Differential Mode CINDM  
Input Capacitance, Common Mode  
OUTPUT CHARACTERISTICS  
Output Voltage High  
0.3  
40  
2.4  
2.1  
CINCM  
VOH  
pF  
RL = 2 kΩ to GND  
12.8  
12.5  
12.4  
12  
15.4  
15  
13  
V
V
V
V
V
V
V
V
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
12.8  
15.8  
−14  
VSY  
=
18 V, RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
RL = 2 kΩ to GND  
Output Voltage Low  
VOL  
−13.6  
−13  
−13  
−12.5  
−16  
−40°C ≤ TA ≤ +125°C  
RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
−13.6  
−16.6  
V
V
V
VSY  
=
18 V, RL = 600 Ω to GND  
−40°C ≤ TA ≤ +125°C  
−15.5  
V
Short-Circuit Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
ISC  
ZOUT  
40  
0.3  
mA  
Ω
f = 100 kHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY  
−40°C ≤ TA ≤ +125°C  
VSY 4.5 V to 18 V, IO = 0 mA  
=
4.5 V to 18 V  
106  
100  
110  
1.8  
dB  
dB  
mA  
mA  
Supply Current per Amplifier  
=
2.25  
3.35  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
ΦM  
RL = 2 kΩ, AV = 1  
12  
3
6.5  
60  
V/μs  
μs  
MHz  
Degrees  
To 0.01%, VIN = 10 V step, RL = 1 kΩ  
RL = 1 MΩ, CL = 35 pF, AV = 1  
RL = 1 MΩ, CL = 35 pF, AV = 1  
THD + NOISE  
Total Harmonic Distortion and Noise THD + N RL = 2 kΩ, AV = 1, VIN = 3V rms, f = 20 Hz to 20 kHz  
NOISE PERFORMANCE  
0.0002  
%
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
60  
2.8  
1.2  
nV p-p  
nV/√Hz  
pA/√Hz  
Rev. 0 | Page 3 of 24  
 
ADA4075-2  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard 2-layer board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
Differential Input Voltage  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
20 V  
VSY  
10 mA  
1 V  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
8-Lead SOIC  
158  
43  
°C/W  
POWER SEQUENCING  
The op amp supplies must be established simultaneously with,  
or before, any input signals are applied. If this is not possible,  
the input current must be limited to 10 mA.  
Lead Temperature (Soldering, 60 sec) 300°C  
1 The input pins have clamp diodes to the power supply pins.  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 4 of 24  
 
ADA4075-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
250  
200  
150  
100  
50  
250  
V
V
= ±5V  
= 0V  
V
V
= ±15V  
= 0V  
SY  
CM  
SY  
CM  
200  
150  
100  
50  
0
–1.0  
0
–1.0  
–0.5  
0
0.5  
1.0  
–0.5  
0
0.5  
1.0  
V
(mV)  
V
(mV)  
OS  
OS  
Figure 2. Input Offset Voltage Distribution  
Figure 5. Input Offset Voltage Distribution  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= ±5V  
V
= ±15V  
SY  
–40°C T +125°C  
SY  
–40°C T +125°C  
A
A
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
–2.0 –1.6 –1.2 –0.8 –0.4  
0
0.4  
0.8  
1.2  
1.6  
2.0  
TCV (μV/°C)  
TCV (μV/°C)  
OS  
OS  
Figure 6. Input Offset Voltage Drift Distribution  
Figure 3. Input Offset Voltage Drift Distribution  
300  
200  
100  
0
300  
200  
100  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
–100  
–200  
–300  
–100  
–200  
–300  
–15  
–10  
–5  
0
5
10  
15  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
V
(V)  
CM  
CM  
Figure 4. Input Offset Voltage vs. Common-Mode Voltage  
Figure 7. Input Offset Voltage vs. Common-Mode Voltage  
Rev. 0 | Page 5 of 24  
 
ADA4075-2  
80  
100  
80  
60  
40  
20  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
60  
40  
20  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Input Bias Current vs. Temperature  
Figure 11. Input Bias Current vs. Temperature  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= ±15V  
V
= ±5V  
SY  
SY  
–15  
–10  
–5  
0
5
10  
15  
–4  
–3  
–2  
–1  
0
1
2
3
4
V
(V)  
V
(V)  
CM  
CM  
Figure 9. Input Bias Current vs. Input Common-Mode Voltage  
Figure 12. Input Bias Current vs. Input Common-Mode Voltage  
10  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
V
– V  
– V  
V
– V  
OH  
CC  
OH  
CC  
1
1
V
– V  
EE  
V
OL  
OL  
EE  
0.1  
0.001  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 10. Output Voltage to Supply Rail vs. Load Current  
Figure 13. Output Voltage to Supply Rail vs. Load Current  
Rev. 0 | Page 6 of 24  
ADA4075-2  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
= ±15V  
V
= ±5V  
SY  
L
SY  
L
V
– V  
OH  
CC  
R
= 2k  
R
= 2k  
V
– V  
OH  
CC  
V
– V  
EE  
OL  
V
– V  
EE  
OL  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Output Voltage to Supply Rail vs. Temperature  
Figure 17. Output Voltage to Supply Rail vs. Temperature  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±15V  
V
= ±5V  
SY  
SY  
PHASE  
PHASE  
60  
60  
60  
60  
GAIN  
40  
40  
40  
40  
20  
20  
20  
20  
GAIN  
0
0
0
0
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
–20  
–40  
–60  
–80  
–100  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
Figure 18. Open-Loop Gain and Phase vs. Frequency  
50  
40  
50  
40  
V
= ±15V  
SY  
V
= ±5V  
SY  
A
= +100  
= +10  
= +1  
A
= +100  
= +10  
= +1  
V
V
V
V
V
V
30  
30  
A
A
A
A
20  
20  
10  
10  
0
0
–10  
–20  
–30  
–10  
–20  
–30  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. Closed-Loop Gain vs. Frequency  
Figure 19. Closed-Loop Gain vs. Frequency  
Rev. 0 | Page 7 of 24  
ADA4075-2  
1k  
1k  
100  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
A
= +10  
A
= +10  
V
100  
10  
V
A
= +100  
A
= +100  
V
V
A
= +1  
V
A
= +1  
V
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Output Impedance vs. Frequency  
Figure 23. Output Impedance vs. Frequency  
140  
120  
100  
80  
140  
120  
100  
80  
V
= ±15V  
V
= ±5V  
SY  
SY  
60  
60  
40  
40  
20  
20  
0
100  
0
100  
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21. CMRR vs. Frequency  
Figure 24. CMRR vs. Frequency  
120  
100  
80  
120  
100  
80  
V
= ±15V  
V
= ±5V  
SY  
SY  
60  
60  
PSRR–  
PSRR+  
PSRR–  
PSRR+  
40  
40  
20  
20  
0
0
–20  
10  
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22. PSRR vs. Frequency  
Figure 25. PSRR vs. Frequency  
Rev. 0 | Page 8 of 24  
ADA4075-2  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
V
A
R
= ±5V  
= +1  
V
A
R
= ±15V  
= +1  
SY  
SY  
V
L
V
L
= 2k  
= 2kΩ  
0
10  
0
10  
100  
1000  
100  
1000  
CAPACITANCE (pF)  
CAPACITANCE (pF)  
Figure 26. Small-Signal Overshoot vs. Load Capacitance  
Figure 29. Small-Signal Overshoot vs. Load Capacitance  
V
V
A
R
C
= ±5V  
= 7V p-p  
= +1  
V
V
A
R
C
= ±15V  
= 20V p-p  
= +1  
SY  
IN  
SY  
IN  
V
L
L
V
L
L
= 2kΩ  
= 2kΩ  
= 100pF  
= 100pF  
0V  
0V  
TIME (4µs/DIV)  
TIME (4µs/DIV)  
Figure 30. Large-Signal Transient Response  
Figure 27. Large-Signal Transient Response  
V
V
A
R
C
= ±15V  
= 100mV p-p  
= +1  
SY  
IN  
V
V
A
R
C
= ±5V  
SY  
IN  
V
L
L
= 100mV p-p  
= +1  
V
L
L
= 2kΩ  
= 2k  
= 100pF  
= 100pF  
0V  
0V  
TIME (10µs/DIV)  
TIME (10µs/DIV)  
Figure 31. Small-Signal Transient Response  
Figure 28. Small-Signal Transient Response  
Rev. 0 | Page 9 of 24  
ADA4075-2  
4
2
0
4
2
0
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
0
0
–2  
–4  
–6  
–8  
–5  
–10  
–15  
–20  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 32. Negative Overload Recovery  
Figure 35. Negative Overload Recovery  
4
2
4
2
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
0
0
–2  
–2  
15  
10  
5
4
2
OUTPUT  
OUTPUT  
0
0
–2  
–4  
–5  
–10  
TIME (1µs/DIV)  
TIME (1µs/DIV)  
Figure 33. Positive Overload Recovery  
Figure 36. Positive Overload Recovery  
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
+6mV  
+10mV  
OUTPUT  
OUTPUT  
0V  
0V  
ERROR BAND  
ERROR BAND  
–10mV  
–6mV  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 37. Positive Settling Time to 0.01%  
Figure 34. Positive Settling Time to 0.01%  
Rev. 0 | Page 10 of 24  
ADA4075-2  
V
= ±5V  
V
= ±15V  
SY  
SY  
INPUT  
INPUT  
+6mV  
+10mV  
0V  
ERROR BAND  
OUTPUT  
OUTPUT  
0V  
ERROR BAND  
–10mV  
–6mV  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 41. Negative Settling Time to 0.01%  
Figure 38. Negative Settling Time to 0.01%  
10  
10  
V
= ±15V  
V
= ±5V  
SY  
SY  
1
1
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39. Voltage Noise Density  
Figure 42. Voltage Noise Density  
10  
10  
R
V
= ±15V  
V
= ±5V  
R
S1  
SY  
SY  
S1  
R
R
S2  
S2  
UNCORRELATED  
= 0  
UNCORRELATED  
= 0  
R
R
S1  
S1  
1
1
CORRELATED  
= R  
CORRELATED  
= R  
R
R
S1  
S2  
S1  
S2  
0.1  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43. Current Noise Density  
Figure 40. Current Noise Density  
Rev. 0 | Page 11 of 24  
ADA4075-2  
V
= ±15V  
V
= ±5V  
SY  
SY  
TIME (1s/DIV)  
TIME (1s/DIV)  
Figure 44. 0.1 Hz to 10 Hz Noise  
Figure 47. 0.1 Hz to 10 Hz Noise  
8
6
6
5
4
3
2
1
0
V
= ±15V  
SY  
+125°C  
V
= ±5V  
SY  
+85°C  
4
2
0
+25°C  
–40°C  
4
6
8
10  
12  
14  
16  
18  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
Figure 48. Supply Current vs. Temperature  
Figure 45. Supply Current vs. Supply Voltage  
0
–20  
0
–20  
V
V
R
= ±15V  
= 10V p-p  
= 2kΩ  
V
V
R
= ±5V  
= 5V p-p  
= 2kΩ  
SY  
SY  
IN  
IN  
L
L
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
Figure 46. Channel Separation vs. Frequency  
Figure 49. Channel Separation vs. Frequency  
Rev. 0 | Page 12 of 24  
ADA4075-2  
10  
1
10  
1
V
= ±5V  
V
= ±15V  
SY  
f = 1kHz  
SY  
f = 1kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.00001  
0.001  
0.0001  
0.00001  
600  
2kꢀ  
600ꢀ  
2kꢀ  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 50. THD + Noise vs. Amplitude  
Figure 53. THD + Noise vs. Amplitude  
1
0.1  
1
0.1  
V
V
= ±15V  
= 3V rms  
V
V
= ±5V  
= 1.5V rms  
SY  
IN  
SY  
IN  
0.01  
0.01  
600ꢀ  
0.001  
0.001  
0.0001  
600ꢀ  
2kꢀ  
2kꢀ  
0.0001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54. THD + Noise vs. Frequency  
Figure 51. THD + Noise vs. Frequency  
10  
1
1
V
V
= ±18V  
= 8V rms  
V
= ±18V  
SY  
IN  
SY  
f = 1kHz  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0001  
0.00001  
600ꢀ  
2kꢀ  
600ꢀ  
2kꢀ  
0.0001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
10  
100  
1k  
10k  
100k  
AMPLITUDE (V rms)  
FREQUENCY (Hz)  
Figure 52. THD + Noise vs. Amplitude  
Figure 55. THD + Noise vs. Frequency  
Rev. 0 | Page 13 of 24  
 
 
ADA4075-2  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
V = ±18V  
SY  
V
= ±18V  
SY  
L
R
= 2kꢀ  
V
– V  
OH  
CC  
V
– V  
OH  
CC  
1
V
– V  
EE  
OL  
V
– V  
EE  
OL  
0.1  
0.001  
0
0.01  
0.1  
1
10  
100  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 56. Output Voltage to Supply Rail vs. Temperature  
Figure 57. Output Voltage to Supply Rail vs. Load Current  
Rev. 0 | Page 14 of 24  
ADA4075-2  
APPLICATIONS INFORMATION  
1
0.1  
INPUT PROTECTION  
The maximum differential input voltage that can be applied to  
the ADA4075-2 is determined by the internal diodes connected  
across its inputs. These diodes limit the maximum differential  
input voltage to 1 V and are needed to prevent base-emitter  
junction breakdown from occurring in the input stage of the  
ADA4075-2 when very large differential voltages are applied. To  
make sure that the ultralow voltage noise feature of the ADA4075-2  
is preserved, the commonly used internal resistors in series with  
the inputs were not used to limit the current in the diodes.  
V
R
= ±4V  
= 2k  
= 1.5V rms  
SY  
0.01  
L
V
IN  
V
R
= ±15V  
= 2kꢀ  
= 3V rms  
SY  
L
0.001  
0.0001  
V
IN  
In small-signal applications, this is not an issue; however, in  
applications where large differential voltages can be inadvertently  
applied to the device, large currents may flow through these  
diodes. If the differential voltage of the ADA4075-2 exceeds 1 V,  
external resistors should be used at both inputs of the op amp to  
limit the input currents to less than 10 mA (see Figure 58).  
However, when series resistors are added, the total voltage noise  
degrades because the resistors may have a thermal noise that is  
greater than the voltage noise of the op amp itself. For example, a  
1 kΩ resistor at room temperature has a thermal noise of 4 nV/√Hz,  
whereas the ADA4075-2 has an ultralow voltage noise of only  
2.8 nV/√Hz typical.  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 59. THD + Noise vs. Frequency  
PHASE REVERSAL  
Phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. When the voltage  
driving the input to these amplifiers exceeds the maximum  
input common-mode voltage range, the output of the amplifiers  
changes polarity. Phase reversal can cause permanent damage to  
the amplifier as well as system lockups in feedback loops.  
The ADA4075-2 amplifiers have been carefully designed to prevent  
output phase reversal when both inputs are maintained within  
the specified input voltage range. If one or both inputs exceed  
the input voltage range but remain within the supply rails, the  
output is capped at the maximum output that it can swing to.  
For a supply voltage of 15 V and a load resistance of 2 kΩ, the  
output is capped at 13 V typical when the input voltage exceeds  
the input voltage range but stays within the supply rails. Figure 60  
shows the output voltage of the AD4075-2 configured as a unity-  
gain buffer with a supply voltage of 15 V.  
ADA4075-2  
R1  
R2  
2
3
1
Figure 58. Input Protection  
TOTAL HARMONIC DISTORTION  
The total harmonic distortion + noise (THD + N) of the  
ADA4075-2 is 0.0002% typical with a load resistance of 2 kΩ.  
Figure 59 shows the performance of the ADA4075-2 driving a  
2 kΩ load with supply voltages of 4 V and 15 V. Notice that  
there is more distortion for the supply voltage of 4 V than for a  
supply voltage of 15 V. Thus, it is very important to operate the  
ADA4075-2 at a supply voltage greater than 5 V for optimum  
distortion. The THD + noise graphs for supply voltages of 5 V  
and 18 V are available in Figure 54 and Figure 55.  
V
= ±15V  
SY  
V
IN  
V
OUT  
TIME (40µs/DIV)  
Figure 60. No Phase Reversal  
Rev. 0 | Page 15 of 24  
 
 
 
 
ADA4075-2  
on the output pins of the DAC. It also provides differential-to-  
single-ended conversion from the differential outputs of the DAC.  
DAC OUTPUT FILTER  
The ultralow voltage noise, low distortion, and high slew rate of  
the ADA4075-2 make it an ideal choice for professional audio  
signal processing. Figure 61 shows the ADA4075-2 used in a  
typical audio DAC output filter configuration. The differential  
outputs of the DAC are fed into the ADA4075-2. The ADA4075-2  
is configured as a differential Sallen-key filter. It operates as an  
external low-pass filter to remove high frequency noise present  
For a DAC output filter, an op amp with reasonable slew rate  
and bandwidth is required. The slew rate of the ADA4075-2 is  
at a high 12 V/μs, and the bandwidth is 6.5 MHz. The cutoff  
frequency of the low-pass filter is approximately 167 kHz. In  
addition, the 100 kΩ and 47 μF RC network perform ac coupling  
to block out the dc components at the output.  
11kꢀ  
68pF  
11kꢀ  
3.01kꢀ  
47µF  
DAC OUTN  
DAC OUTP  
100ꢀ  
1/2  
OUTPUT  
100kꢀ  
5.62kꢀ  
1.5kꢀ  
270pF  
2.2nF  
ADA4075-2  
560pF  
150pF  
5.62kꢀ  
Figure 61. Typical DAC Output Filter Circuit (Differential)  
Rev. 0 | Page 16 of 24  
 
 
ADA4075-2  
Finally, even with these precautions, it is vital that the positive  
feedback be accurately controlled. This is partly achieved by  
using 1% resistors. In addition, the following setup procedure  
ensures that the positive feedback does not become excessive:  
BALANCED LINE DRIVER  
The circuit of Figure 62 shows a balanced line driver designed  
for audio use. Such drivers are intended to mimic an output  
transformer in operation, whereby the common-mode voltage  
can be impressed by the load. Furthermore, either output can be  
shorted to ground in single-ended applications without affecting  
the overall operation.  
1. Set R11 to its mid position (or short the ends together,  
whichever is easier), and temporarily short the negative  
output to ground.  
2. Apply a 10 V p-p sine wave at approximately 1 kHz to the  
input, and adjust R7 to provide 930 mV p-p at the point  
marked “test.”  
3. Remove the short from the negative output (and across  
R11, if used), and adjust R11 until the output waveforms  
are symmetric.  
Circuits of this type use positive and negative feedback to obtain a  
high common-mode output impedance, and they are somewhat  
notorious for component sensitivity and susceptibility to latch-up.  
This circuit uses several techniques to avoid spurious behavior.  
First, the 4-op-amp arrangement ensures that the input impedance  
is load independent (the input impedance can become negative  
with some configurations). Note that the output op amps are  
packaged with the input op amps to maximize drive capability.  
The overall gain of the driver is equal to 2, which provides an  
extra 6 dB of headroom in balanced differential mode. The  
output noise is about −109 dBV in a 20 kHz bandwidth.  
Second, the positive feedback is ac-coupled by C2 and C3, which  
eliminates the need for offset trim. Because the circuit is ac-coupled  
at the input, these capacitors do not have significant dc voltage  
across them, thus tantalum types of capacitors can be used.  
C5  
IN  
50pF  
R5  
C1  
R4  
10µF  
A1  
1/2  
4.7kꢀ  
4.7kꢀ  
A2  
R1  
R13  
10kꢀ  
OUT+  
1/2  
100ꢀ  
ADA4075-2  
ADA4075-2  
R7  
250ꢀ  
R6  
R8  
R9  
R2  
4.7kꢀ  
4.7kꢀ  
1004.7kꢀ  
FEEDBACK  
TRIM  
C4  
50pF  
R3  
SYMMETRY  
TRIM  
TEST  
C3  
10µF  
C2  
10µF  
R10  
R12  
4.7kꢀ  
C6  
4.7kꢀ  
4.7kꢀ  
R11  
250ꢀ  
A3  
1/2  
50pF  
A4  
R14  
ADA4075-2  
OUT–  
1/2  
R15  
100ꢀ  
4.7kꢀ  
ADA4075-2  
R16  
R17  
4.7kꢀ  
100ꢀ  
NOTES  
1. ALL RESISTORS SHOULD HAVE 1% TOLERANCE.  
2. A1/A2 IN SAME PACKAGE; A3/A4 IN SAME PACKAGE.  
Figure 62. Balanced Line Driver  
Rev. 0 | Page 17 of 24  
 
 
ADA4075-2  
complementary output. A3 raises the common-mode input  
impedance from about 7.5 kꢀ to about 70 kꢀ, reducing the  
degradation of CMRR due to mismatches in source impedance.  
It should be noted that A3 is not in the signal path, and almost any  
op amp will work well here. Although it may seem as though the  
inverting output should be noisier than the noninverting one,  
they are in fact symmetric at about −111 dBV (20 kHz bandwidth).  
BALANCED LINE RECEIVER  
Figure 63 depicts a unity-gain balanced line receiver capable of  
a high degree of hum rejection. The CMRR is approximately  
given by  
R1R4  
R2R3  
20 log10  
Therefore, R1 to R4 should be close-tolerance components to  
obtain the best possible CMRR without adjustment. The presence  
of A2 ensures that the impedances are symmetric at the two inputs  
(unlike many other designs), and, as a bonus, A2 also provides a  
Sometimes an overall gain of ½ is desired to provide an extra  
6 dB of differential input headroom. This can be attained by  
reducing R3 and R4 to 5 kꢀ and increasing R9 to 22 kꢀ.  
C2  
50pF  
R3  
OUT+  
C3  
10kꢀ  
50pF  
R6  
R1  
5kꢀ  
A1  
IN–  
IN+  
R5  
A2  
5kꢀ  
1/2  
R2  
5kꢀ  
OUT–  
1/2  
5kꢀ  
ADA4075-2  
ADA4075-2  
R7  
5.6kꢀ  
R8  
5.6kꢀ  
R4  
10kꢀ  
C1  
22µF  
A3*  
(NON-POLAR)  
R9  
R10  
11kꢀ  
11kꢀ  
*A3 REDUCES THE DEGRADATION OF CMRR  
(SEE THE BALANCED LINE RECEIVER SECTION FOR MORE DETAILS).  
Figure 63. Balanced Line Receiver  
Rev. 0 | Page 18 of 24  
 
 
ADA4075-2  
48 Hz/Ct, where Ct is the value of C1 and C2 in microfarads.  
The bandwidth control adjusts the Q from 0.9 to about 11. The  
overall noise is setting dependent, but with all controls centered  
it is about −104 dBV in a 20 kHz bandwidth. Such a low noise  
level can obviate the need for a bypass switch in many applications.  
LOW NOISE PARAMETRIC EQUALIZER  
The circuit of Figure 64 is a reciprocal parametric equalizer  
yielding 20 dB of cut or boost with variable bandwidth and  
frequency. The frequency control range is 6.9:1, with the geometric  
mean center frequency conveniently occurring at the midpoint  
of the potentiometer setting. The center frequency is equal to  
47µF  
6.2k  
6.2kꢀ  
620ꢀ  
IN  
OUT  
1/2  
ADA4075-2  
100ꢀ  
BOOST  
CUT  
BANDWIDTH  
1kꢀ  
5kꢀ  
2.7kꢀ  
1.5kꢀ  
ADA4075-2  
C1*  
C2*  
1.5kꢀ  
2.5kꢀ  
1/2  
1.3kꢀ  
1.3kꢀ  
2.5kꢀ  
2.5kꢀ  
620ꢀ  
2.5kꢀ  
1/2  
1/2  
ADA4075-2  
ADA4075-2  
620ꢀ  
FREQUENCY (GANGED POTENTIOMETER)  
*THE CENTER FREQUENCY IS AFFECTED BY THE VALUE OF C1 AND C2  
(SEE THE LOW NOISE PARAMETRIC EQUALIZER SECTION FOR MORE DETAILS).  
Figure 64. Low Noise Parametric Equalizer  
Rev. 0 | Page 19 of 24  
 
 
ADA4075-2  
SCHEMATIC  
V+  
OUTA/  
OUTB  
–INA/  
–INB  
+INA/  
+INB  
V–  
Figure 65. Simplified Schematic  
Rev. 0 | Page 20 of 24  
 
ADA4075-2  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 66. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
ADA4075-2ARZ1  
ADA4075-2ARZ-R71  
ADA4075-2ARZ-RL1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
R-8  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 21 of 24  
 
ADA4075-2  
NOTES  
Rev. 0 | Page 22 of 24  
ADA4075-2  
NOTES  
Rev. 0 | Page 23 of 24  
ADA4075-2  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07642-0-10/08(0)  
Rev. 0 | Page 24 of 24  

相关型号:

ADA4075-2ACPZ

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ACPZ-R7

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ACPZ-RL

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ARZ

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ARZ-R7

Ultralow Noise Amplifier at Lower Power
ADI

ADA4075-2ARZ-RL

Ultralow Noise Amplifier at Lower Power
ADI

ADA4077-1

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1ARMZ

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI

ADA4077-1ARMZ-R7

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1ARMZ-RL

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Amplifiers
ADI

ADA4077-1ARZ

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI

ADA4077-1ARZ-R7

4 MHz, 7 nV/√Hz, Low Offset and Drift, High Precision Single Amplifier
ADI