ADA4610-2BRZ-RL [ADI]

Low Noise, Precision, Rail-to-Rail Output; 低噪声,精密,轨到轨输出
ADA4610-2BRZ-RL
型号: ADA4610-2BRZ-RL
厂家: ADI    ADI
描述:

Low Noise, Precision, Rail-to-Rail Output
低噪声,精密,轨到轨输出

文件: 总20页 (文件大小:370K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Precision, Rail-to-Rail Output,  
JFET Dual Operational Amplifier  
Data Sheet  
ADA4610-2  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage  
PIN 1  
INDICATOR  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8
7
6
5
V+  
B grade: 0.4 mV maximum  
A grade: 1 mV maximum  
Low offset voltage drift  
B grade: 4 µV/°C maximum  
A grade: 8 µV/°C maximum  
Low input bias current: 5 pA typical at VSY  
Dual-supply operation: 4.5 V to 15 V  
Low noise  
OUT B  
–IN B  
+IN B  
ADA4610-2  
TOP VIEW  
(Not to Scale)  
NOTES  
1. THE EXPOSED PAD MUST BE  
CONNECTED TO V–.  
=
15 V  
Figure 1. 8-Lead LFCSP (CP Suffix)  
7.3 nV/√Hz typical at f = 1 kHz  
0.45 µV p-p at 0.1 Hz to 10 Hz  
Low distortion: 0.00006%  
No phase reversal  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4610-2  
TOP VIEW  
(Not to Scale)  
OUT B  
–IN B  
+IN B  
Rail-to-rail output  
Unity gain stable  
Figure 2. 8-Lead SOIC_N (R Suffix) and 8-Lead MSOP (RM Suffix)  
APPLICATIONS  
Instrumentation  
Medical instruments  
Multipole filters  
Precision current measurement  
Photodiode amplifiers  
Sensors  
Audio  
GENERAL DESCRIPTION  
The ADA4610-2 is a dual channel, precision JFET amplifier  
that features low input voltage and current noise, offset voltage,  
input bias current, and rail-to-rail output.  
The fast slew rate and great stability with capacitive loads make  
the ADA4610-2a perfect fit for high performance filters. Low  
input bias currents, low offset, and low noise result in a wide  
dynamic range for photodiode amplifier circuits. Low noise  
and distortion, high output current, and excellent speed make  
the ADA4610-2 a great choice for audio applications.  
The combination of low offset, noise, and very low input  
bias current makes these amplifiers especially suitable for  
high impedance sensor amplification and precise current  
measurements using shunts. With excellent dc precision, low  
noise, and fast settling time, the ADA4610-2 provides superior  
accuracy in medical instruments, electronic measurement, and  
automated test equipment. Unlike many competitive amplifiers,  
the ADA4610-2 maintains fast settling performance with  
substantial capacitive loads. Unlike many older JFET amplifiers,  
the ADA4610-2 does not suffer from output phase reversal  
when input voltages exceed the maximum common-mode  
voltage range.  
The ADA4610-2 is specified over the −40°C to +125°C  
extended industrial temperature range.  
The ADA4610-2 is available in the 8-lead narrow SOIC, 8-lead  
MSOP, and 8-lead LFCSP packages.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADA4610-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Comparative Voltage and Variable Voltage Graphs............... 13  
Applications Information .............................................................. 15  
Comparator Operation.............................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 4  
Absolute Maximum Ratings............................................................ 6  
REVISION HISTORY  
5/12—Rev. 0 to Rev. A  
Changes to Data Sheet Title and General Description Section.. 1  
Changed Input Impedance, Differential to Input Capacitance,  
Differential in Table 1....................................................................... 3  
Added Input Resistance in Table 1................................................. 3  
Changed Input Impedance, Differential to Input Capacitance,  
Differential in Table 2....................................................................... 4  
Added Input Resistance in Table 2 ................................................. 4  
Added Figure 9, Figure 10, and Figure 14 ..................................... 8  
Added Figure 15................................................................................ 9  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 17  
12/11—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
Data Sheet  
ADA4610-2  
SPECIFICATIONS  
VSY  
= 5 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VOS  
Test Conditions/Comments  
Min  
Typ  
0.2  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (B Grade)1  
0.4  
0.8  
1
1.8  
4
mV  
mV  
mV  
mV  
µV/°C  
µV/°C  
pA  
nA  
pA  
nA  
V
dB  
dB  
dB  
dB  
pF  
pF  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage (A Grade)1  
VOS  
0.4  
Offset Voltage Drift (B Grade)2  
Offset Voltage Drift (A Grade)2  
Input Bias Current  
ΔVOS/ΔT  
ΔVOS/ΔT  
IB  
0.5  
1
5
8
25  
1.5  
20  
0.25  
+2.5  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
2
Input Voltage Range  
Common-Mode Rejection Ratio  
−2.5  
94  
86  
98  
86  
CMRR  
AVO  
VCM = −2.5 V to +2.5 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VOUT = −3.5 V to +3.5 V  
−40°C < TA < +125°C  
VCM = 0 V  
110  
100  
Large Signal Voltage Gain  
Input Capacitance, Differential  
Input Capacitance, Common-Mode  
Input Resistance  
3.1  
4.8  
>1 × 1013  
VCM = 0 V  
VCM = 0 V  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
−40°C < TA < +125°C  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
4.85  
4.6  
4.6  
4.90  
4.89  
−4.95  
−4.9  
63  
V
V
V
V
V
V
V
V
4.05  
Output Voltage Low  
VOL  
−4.9  
−4.75  
−4.8  
−4.4  
−40°C < TA < +125°C  
Short-Circuit Current  
POWER SUPPLY  
ISC  
mA  
Power Supply Rejection Ratio  
PSRR  
IS  
VSY = 4.5 V to 18 V  
−40°C < TA < +125°C  
IOUT = 0 mA  
106  
103  
125  
1.5  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
1.7  
1.85  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
−3 dB Closed-Loop Bandwidth  
NOISE PERFORMANCE  
Voltage Noise  
GBP  
UGC  
φM  
VIN = 5 mV p-p, RL = 2 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 2 kΩ, AV = −10  
15.4  
9.3  
61  
MHz  
MHz  
Degrees  
MHz  
−3 dB  
AV = 1, VIN = 5 mV p-p  
10.6  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
0.45  
14  
8.2  
7.3  
7.3  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Voltage Noise Density  
f = 10 kHz  
1 Offset voltage does not include solder heat resistance.  
2 Guaranteed by design and characterization.  
Rev. A | Page 3 of 20  
 
 
ADA4610-2  
Data Sheet  
ELECTRICAL CHARACTERISTICS  
VSY  
= 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
VOS  
Test Conditions/Comments  
Min  
Typ  
0.2  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (B Grade)1  
0.4  
0.8  
1
1.8  
4
8
25  
1.5  
20  
0.25  
+12.5  
mV  
mV  
mV  
mV  
µV/°C  
µV/°C  
pA  
nA  
pA  
nA  
V
dB  
dB  
dB  
dB  
pF  
pF  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage (A Grade)1  
VOS  
0.4  
Offset Voltage Drift (B Grade)2  
Offset Voltage Drift (A Grade)2  
Input Bias Current  
ΔVOS/ΔT  
ΔVOS/ΔT  
IB  
0.5  
1
5
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
2
Input Voltage Range  
Common-Mode Rejection Ratio  
−12.5  
100  
96  
104  
91  
CMRR  
AVO  
VCM = −12.5 V to +12.5 V  
−40°C < TA < +125°C  
RL = 2 kΩ, VOUT = 13.5 V  
−40°C < TA < +125°C  
VCM = 0 V  
115  
107  
Large Signal Voltage Gain  
Input Capacitance, Differential  
Input Capacitance, Common-Mode  
Input Resistance  
3.1  
4.8  
>1 × 1013  
VCM = 0 V  
VCM = 0 V  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
−40°C < TA < +125°C  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω  
14.8  
14.9  
14.47  
−14.9  
−14.68  
79  
V
V
V
V
V
V
V
V
14.65  
14.25  
13.35  
Output Voltage Low  
VOL  
−14.85  
−14.75  
−14.6  
−40°C < TA < +125°C  
−14.3  
Short-Circuit Current  
POWER SUPPLY  
ISC  
mA  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 4.5 V to 18 V  
−40°C < TA < +125°C  
IOUT = 0 mA  
106  
103  
125  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
1.6  
1.85  
2.0  
−40°C < TA < +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Unity-Gain Crossover  
Phase Margin  
SR  
RL = 2 kΩ  
VIN = 5 mV p-p, RL = 2 kΩ, AV = 100  
VIN = 5 mV p-p, RL = 2 kΩ, AV = −10  
172  
+25/−61  
16.3  
9.3  
66  
9.50  
V/µs  
MHz  
MHz  
Degrees  
MHz  
%
GBP  
UGC  
φM  
−3 dB Closed-Loop Bandwidth  
Total Harmonic Distortion (THD) + Noise THD + N  
−3 dB  
AV = 1, VIN = 5 mV p-p  
1 kHz, G = +1, RL = 2 kΩ, VIN = 6 V rms  
0.00006  
Rev. A | Page 4 of 20  
 
 
Data Sheet  
ADA4610-2  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Peak-to-Peak Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz bandwidth  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
0.45  
14  
8.5  
7.3  
7.3  
µV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
1 Offset voltage does not include solder heat resistance.  
2 Guaranteed by design and characterization.  
Rev. A | Page 5 of 20  
 
ADA4610-2  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Table 4. Thermal Resistance  
Package Type  
1
θJA  
θJC  
Unit  
°C/W  
°C/W  
°C/W  
Parameter  
Rating  
8-Lead MSOP (RM-8)  
8-Lead SOIC_N (R-8)  
8-Lead LFCSP_VD (CP-8-9)  
142  
120  
57  
45  
43  
12  
Supply Voltage  
18 V  
Input Voltage  
VS  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Observe derating curves  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
1 θJA is specified for worst-case conditions, that is, θJA is specified for device  
soldered in circuit board for surface-mount packages.  
ESD CAUTION  
Electrostatic Discharge  
(Human Body Model)  
2500 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 20  
 
 
 
Data Sheet  
ADA4610-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
400  
400  
350  
300  
250  
200  
150  
100  
50  
ADA4610-2  
ADA4610-2  
V = ±15V  
SY  
V
= ±5V  
SY  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
T = 25°C  
A
A
SOIC  
SOIC  
0
0
–1000 –800 –600 –400 –200  
0
200 400 600 800 1000 1200  
–1000 –800 –600 –400 –200  
0
200 400 600 800 1000 1200  
OFFSET VOLTAGE (µV)  
OFFSET VOLTAGE (µV)  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage Distribution  
350  
300  
250  
200  
150  
400  
350  
300  
250  
200  
150  
100  
50  
ADA4610-2  
= ±5V  
SOIC  
ADA4610-2  
= ±15V  
SOIC  
V
V
SY  
SY  
100  
50  
0
0
BIN (µV/°C)  
BIN (µV/°C)  
Figure 4. TCVOS Distribution  
Figure 7. TCVOS Distribution  
500  
400  
500  
400  
300  
300  
200  
200  
100  
100  
0
0
–100  
–200  
–300  
–400  
–500  
–100  
–200  
–300  
–400  
–500  
ADA4610-2  
ADA4610-2  
V
T
= ±15V  
= 25°C  
V
T
= ±5V  
= 25°C  
SY  
SY  
A
A
R
=
R
= ∞  
L
L
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–15  
–10  
–5  
0
5
10  
15  
COMMON-MODE INPUT (V)  
COMMON-MODE INPUT (V)  
Figure 5. Input Offset Voltage vs. Common-Mode Input Voltage  
Figure 8. Input Offset Voltage vs. Common-Mode Input Voltage  
Rev. A | Page 7 of 20  
 
ADA4610-2  
Data Sheet  
1M  
ADA4610-2  
SOIC  
ADA4610-2  
V
T
= ±5V  
= 25°C  
SY  
V
= ±15V  
SY  
A
100k  
10k  
1k  
R
A
=
L
T
= +25°C  
1
0.1  
100  
10  
1
–5  
0.01  
0.1  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
1
10  
SOURCE (mA)  
100  
V
(V)  
I
CMI  
OUT  
Figure 9. Input Bias Current vs. Common Mode Voltage  
Figure 12. Dropout Voltage vs. Source Current  
100M  
10M  
1M  
ADA4610-2  
SOIC  
ADA4610-2  
= ±5V  
V
= ±5V  
SY  
V
10  
SY  
R
=
L
T
= 25°C  
A
100k  
10k  
1k  
1
+125°C  
100  
10  
+85°C  
0.1  
0.01  
+25°C  
1
1
–40°C  
5
0.1  
–5  
–4  
–3  
–2  
–1  
0
2
3
4
6
0.1  
1
10  
100  
V
(V)  
CMI  
I
SINK (mA)  
OUT  
Figure 10. Input Bias Current vs. Common Mode Voltage and Temperature  
Figure 13. Dropout Voltage vs. Sink Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
ADA4610-2  
ADA4610-2  
SOIC  
V
= ±5V  
SY  
V
= ±15V  
SY  
R
A
=
L
T
= +25°C  
10  
1
0
–15  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
Figure 11. Input Bias Current vs. Temperature  
Figure 14. Input Bias Current vs. Common-Mode Voltage  
Rev. A | Page 8 of 20  
Data Sheet  
ADA4610-2  
1G  
ADA4610-2  
ADA4610-2  
SOIC  
100M  
V
T
= ±15V  
= 25°C  
V
= ±15V  
10  
SY  
SY  
R
=
A
L
10M  
1M  
100k  
10k  
1k  
1
+125°C  
+85°C  
0.1  
0.01  
100  
10  
+25°C  
–40°C  
1
–15  
–10  
–5  
0
5
10  
15  
0.01  
0.1  
1
10  
100  
COMMON-MODE VOLTAGE (V)  
I
SINK (mA)  
OUT  
Figure 15. Input Bias Current vs. Common-Mode Voltage and Temperature  
Figure 18. Dropout Voltage vs. Sink Current  
100  
120  
270  
ADA4610-2  
= ±5V  
ADA4610-2  
V
SY  
V
= ±15V  
SY  
100  
80  
T
= 25°C 225  
A
R
= 2kΩ  
L
180  
135  
90  
10  
60  
40  
20  
0
45  
1
0
–20  
–40  
–45  
–90  
0.1  
–50  
–25  
0
25  
50  
75  
100  
125  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 16. Input Bias Current vs. Temperature  
Figure 19. Open-Loop Gain and Phase vs. Frequency  
60  
40  
ADA4610-2  
= ±15V  
ADA4610-2  
= ±5V  
V
SY  
V
SY  
T
= 25°C  
A
T
= 25°C  
A
A
= +100  
= +10  
V
1
A
V
20  
0
A
= +1  
V
0.1  
–20  
–40  
0.01  
0.1  
1
10  
SOURCE (mA)  
100  
1
10  
100  
1k  
10k  
100k  
I
OUT  
FREQUENCY (kHz)  
Figure 17. Dropout Voltage vs. Source Current  
Figure 20. Closed-Loop Gain vs. Frequency  
Rev. A | Page 9 of 20  
ADA4610-2  
Data Sheet  
1k  
1k  
ADA4610-2  
ADA4610-2  
V
T
= ±5V  
= 25°C  
V
T
= ±15V  
= 25°C  
SY  
SY  
A
A
100  
100  
10  
1
10  
1
A
= +100  
= +10  
V
A
= +100  
= +10  
V
A
V
A
V
0.1  
0.1  
A
= +1  
V
A = +1  
V
0.01  
0.1  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 21. Closed-Loop Output Impedance vs. Frequency  
Figure 24. Closed-Loop Output Impedance vs. Frequency  
120  
270  
120  
100  
80  
ADA4610-2  
ADA4610-2  
V
= ±15V  
SY  
V
= ±5V  
SY  
100  
80  
225  
180  
135  
90  
T
= 25°C  
A
T
= 25°C  
A
R
= 2kΩ  
L
60  
PSRR–  
60  
40  
40  
20  
0
45  
PSRR+  
20  
0
0
–20  
–40  
–45  
–90  
–20  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 22. Open-Loop Gain and Phase vs. Frequency  
Figure 25. PSRR vs. Frequency  
140  
120  
100  
60  
40  
ADA4610-2  
ADA4610-2  
V
T
= ±15V  
= 25°C  
V
T
= ±5V  
= 25°C  
SY  
SY  
A
= +100  
A
A
V
A
= +10  
= +1  
V
20  
0
80  
60  
40  
A
V
–20  
–40  
20  
0
0.1  
1
10  
100  
1k  
10k  
100k  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 23. Closed-Loop Gain vs. Frequency  
Figure 26. CMRR vs. Frequency  
Rev. A | Page 10 of 20  
Data Sheet  
ADA4610-2  
3
12  
2
1
8
4
0
0
ADA4610-2  
ADA4610-2  
= ±15V  
V
T
A
R
C
= ±5V  
= 25°C  
= +1  
SY  
V
SY  
–1  
–4  
A
T
= 25°C  
= +1  
A
V
L
L
A
R
C
V
L
L
= 2kΩ  
= 100pF  
= 2kΩ  
= 100pF  
–2  
–3  
–8  
–12  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (µs)  
Figure 27. Large Signal Transient Response  
Figure 30. Large Signal Transient Response  
120  
100  
80  
75  
ADA4610-2  
V
T
= ±15V  
= 25°C  
SY  
A
50  
25  
PSRR–  
ADA4610-2  
60  
V
= ±5V  
= 25°C  
= +1  
= 2kΩ  
= 100pF  
SY  
0
T
A
A
R
C
40  
V
L
L
PSRR+  
–25  
20  
0
–50  
–75  
–20  
0.1  
1
10  
100  
1k  
10k  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
TIME (µs)  
Figure 28. PSRR vs. Frequency  
Figure 31. Small Signal Transient Response  
100  
10  
1
140  
ADA4610-2  
= ±5V  
ADA4610-2  
= ±15V  
V
SY  
V
SY  
T
= 25°C  
A
120  
100  
80  
60  
40  
20  
0
T = 25°C  
A
0.001  
0.01  
0.1  
1
10  
100  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 32. Voltage Noise Density  
Figure 29. CMRR vs. Frequency  
Rev. A | Page 11 of 20  
ADA4610-2  
Data Sheet  
60  
100  
10  
1
ADA4610-2  
ADA4610-2  
V
T
= ±5V  
= 25°C  
V
T
= ±15V  
SY  
SY  
= 25°C  
A
A
50  
40  
30  
20  
A
R
= +1  
= 2kΩ  
V
L
V
= 100mV p-p  
IN  
OS+  
OS–  
10  
0
0.01  
0.1  
CAPACITANCE (nF)  
1
0.001  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
Figure 33. Overshoot vs. Load Capacitance  
Figure 35. Voltage Noise Density  
75  
50  
45  
ADA4610-2  
= ±15V  
V
SY  
T
A
R
= 25°C  
= +1  
= 2kΩ  
A
50  
25  
V
L
40  
35  
30  
25  
20  
V
= 100mV p-p  
IN  
OS+  
ADA4610-2  
V
= ±15V  
SY  
0
T
= 25°C  
= +1  
= 2kΩ  
= 100pF  
A
A
R
C
V
L
L
OS–  
–25  
15  
10  
–50  
–75  
0
0.01  
0
1
2
3
4
5
6
7
8
9
10  
0.1  
CAPACITANCE (nF)  
1
TIME (µs)  
Figure 34. Small Signal Transient Response  
Figure 36. Overshoot vs. Load Capacitance  
Rev. A | Page 12 of 20  
Data Sheet  
ADA4610-2  
COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS  
16  
12  
8
–40  
ADA4610-2  
ADA4610-2  
= ±15V  
V
= ±15V  
SY  
V
SY  
T
= 25°C  
A
T
= 25°C  
= +1  
A
–60  
–80  
R
= 2kΩ  
L
A
R
C
V
L
L
= 2kΩ  
= 100pF  
4
0
–100  
–120  
–140  
–160  
–4  
–8  
–12  
–16  
OUTPUT  
INPUT  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0.1  
1
10  
100  
TIME (ms)  
FREQUENCY (kHz)  
Figure 40. No Phase Reversal  
Figure 37. Channel Separation  
1
0.1  
300  
200  
100  
0
ADA4610-2  
= ±15V  
ADA4610-2  
V
SY  
V
T
= ±15V  
= 25°C  
SY  
T
= 25°C  
= 2kΩ  
= 1kHz  
A
A
R
L
R
= 2kΩ  
L
F
IN  
THD + N %  
0.01  
0.001  
0.0001  
0.00001  
–100  
–200  
–300  
0.001  
0.01  
0.1  
1
10  
0
1
2
3
4
5
6
7
8
9
10  
AMPLITUDE (V rms)  
TIME (sec)  
Figure 38. THD + N vs. Amplitude  
Figure 41. Voltage Noise, 0.1 Hz to 10 Hz  
12  
10  
8
0.01  
ADA4610-2  
ADA4610-2  
= ±15V  
V
T
R
V
= ±15V  
= 25°C  
= 2kΩ  
V
SY  
SY  
T
= 25°C  
A
A
A
R
C
= +1  
= 2kΩ  
= 20pF  
L
V
L
L
= 5V rms  
IN  
POSITIVE STEP  
0.001  
0.1%  
6
500kHz BAND-PASS FILTER  
0.01%  
0.0001  
80kHz BAND-PASS FILTER  
4
2
0
0.00001  
0.01  
0.1  
1
10  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
FREQUENCY (kHz)  
SETTLING TIME (µs)  
Figure 39. THD + N vs. Frequency  
Figure 42. Positive Step Settling Time  
Rev. A | Page 13 of 20  
 
ADA4610-2  
Data Sheet  
4.0  
12  
+125°C  
+85°C  
ADA4610-2  
ADA4610-2  
R
=
V
= ±15V  
L
SY  
3.5  
3.0  
T
= 25°C  
A
10  
8
A
R
C
= +1  
= 2kΩ  
= 20pF  
V
L
L
NEGATIVE STEP  
+25°C  
2.5  
2.0  
1.5  
0.01%  
–40°C  
0.1%  
6
4
2
0
1.0  
0.5  
0
0
5
10  
15  
20  
25  
30  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
V
(V)  
SETTLING TIME (µs)  
SY  
Figure 43 Negative Step Settling Time  
Figure 44. Supply Current vs. Supply Voltage and Temperature  
Rev. A | Page 14 of 20  
Data Sheet  
ADA4610-2  
APPLICATIONS INFORMATION  
8
COMPARATOR OPERATION  
COMPARATOR, V  
= LOW  
OUT  
7
6
Although op amps are quite different from comparators,  
occasionally an unused section of a dual or a quad op amp may  
be used as a comparator; however, this is not recommended for  
any rail-to-rail output op amp. For rail-to-rail output op amps,  
the output stage is generally a ratioed current mirror with bipolar  
or MOSFET transistors. With the part operating open loop, the  
second stage increases the current drive to the ratioed mirror to  
close the loop. However, the second stage cannot close the loop,  
which results in an increase in supply current. With the op amp  
configured as a comparator, the supply current can be signifi-  
cantly higher (see Figure 45). Configuring an unused section as  
a voltage follower with the noninverting input connected to a  
voltage within the input voltage range is recommended. The  
ADA4610-2 has a unique output stage design that reduces the  
excess supply current, but does not entirely eliminate this effect  
when the op amp is operating open loop.  
COMPARATOR, V  
= HIGH  
OUT  
5
4
3
FOLLOWER  
2
1
0
0
4
8
12  
16  
20  
24  
28  
32  
SUPPLY VOLTAGE (V)  
Figure 45. Supply Current vs. Supply Voltage  
V
CC  
D31  
R16  
R6  
R7  
Q9  
C3  
Q30  
Q14  
Q29  
Q15  
Q8  
Q28  
C2  
RC4  
+
1+  
A2  
DE5  
Q12  
C4  
Q18  
A1  
DE1  
R10  
Q13  
R11  
Q5  
Q1  
Q4  
R3  
Q23  
Q16  
Q17  
V
OUT  
DE3  
R2  
V
V
J1  
J2  
IN+  
R5  
DE6  
IN–  
C1  
DE4  
Q6  
Q7  
Q27  
DE2  
R16  
D26  
Q25  
I
I
I
4
Q24  
2
3
V
EE  
Figure 46. Simplified Schematic  
Rev. A | Page 15 of 20  
 
 
 
ADA4610-2  
Data Sheet  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 48. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
Rev. A | Page 16 of 20  
 
Data Sheet  
ADA4610-2  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
5
0.50  
BSC  
0.60 MAX  
8
2.95  
2.75 SQ  
2.55  
EXPOSED  
PAD  
1.60  
1.50  
1.40  
PIN 1  
INDICATOR  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
2.23  
2.13  
2.03  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION  
0.30  
0.23  
0.18  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.20 REF  
Figure 49. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
Branding  
A2U  
A2U  
A2U  
A2U  
ADA4610-2ACPZ-R7  
ADA4610-2ACPZ-RL  
ADA4610-2ARMZ  
ADA4610-2ARMZ-R7  
ADA4610-2ARMZ-RL  
ADA4610-2ARZ  
ADA4610-2ARZ-R7  
ADA4610-2ARZ-RL  
ADA4610-2BRZ  
CP-8-9  
CP-8-9  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
A2U  
ADA4610-2BRZ-R7  
ADA4610-2BRZ-RL  
R-8  
1 Z = RoHS Compliant Part.  
Rev. A | Page 17 of 20  
 
 
ADA4610-2  
NOTES  
Data Sheet  
Rev. A | Page 18 of 20  
Data Sheet  
NOTES  
ADA4610-2  
Rev. A | Page 19 of 20  
ADA4610-2  
NOTES  
Data Sheet  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09646-0-5/12(A)  
Rev. A | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY