ADA4637-1ACPZ-R2 [ADI]

30 V, High Speed, Low Noise, Low Bias Current; 30 V ,高速,低噪声,低偏置电流
ADA4637-1ACPZ-R2
型号: ADA4637-1ACPZ-R2
厂家: ADI    ADI
描述:

30 V, High Speed, Low Noise, Low Bias Current
30 V ,高速,低噪声,低偏置电流

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
30 V, High Speed, Low Noise, Low Bias  
Current, JFET Operational Amplifier  
Data Sheet  
ADA4627-1/ADA4637-1  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 200 μV maximum  
Offset drift: 1 μV/°C typical  
Very low input bias current: 5 pA maximum  
Extended temperature range: −40°C to +125°C  
5 V to 15 V dual supply  
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
ADA4627-1  
V+  
+IN  
OUT  
NULL  
TOP VIEW  
(Not to Scale)  
V–  
NC = NO CONNECT  
ADA4627-1 GBW: 19 MHz  
Figure 1. 8-Lead SOIC_N (R-8)  
ADA4637-1 GBW: 79 MHz  
Voltage noise: 6.1 nV/√Hz at 1 kHz  
ADA4627-1 slew rate: 82 V/μs  
ADA4637-1 slew rate: 170 V/μs  
High gain: 120 dB typical  
NULL  
–IN  
1
2
3
4
8
7
6
5
NC  
ADA4637-1  
V+  
+IN  
OUT  
NULL  
TOP VIEW  
(Not to Scale)  
V–  
High CMRR: 116 dB typical  
NC = NO CONNECT  
High PSRR: 112 dB typical  
Figure 2. 8-Lead SOIC_N (R-8)  
APPLICATIONS  
High impedance sensors  
Photodiode amplifier  
Precision instrumentation  
Phase-locked loop filters  
High end, professional audio  
DAC output amplifier  
ATE  
PIN 1  
NC  
–IN  
+IN  
V–  
1
2
3
4
8
7
6
5
NC  
V+  
INDICATOR  
ADA4627-1/  
ADA4637-1  
TOP VIEW  
OUT  
NC  
(Not toScale)  
NOTES  
1. NC = NO CONNECT.  
2. IT IS RECOMMENDED  
THAT THE EXPOSED PAD BE  
CONNECTED TO V–.  
Medical  
Figure 3. 8-Lead LFCSP_VD (CP-8-2)  
GENERAL DESCRIPTION  
The ADA4627-1/ADA4637-1 are wide bandwidth precision  
amplifiers featuring low noise, very low offset, drift, and bias  
current. The parts operate from ±± ꢀ to ±1± ꢀ dual supply.  
The ADA4627-1/ADA4637-1 are specified for both the  
industrial temperature range of −2±°C to +8±°C and the  
extended industrial temperature range of −40°C to +12±°C. The  
ADA4627-1/ADA4637-1 are available in tiny 8-lead LFCSP and  
8-lead SOIC packages.  
The ADA4627-1/ADA4637-1 provide benefits previously found  
in few amplifiers. These amplifiers combine the best specifications  
of precision dc and high speed ac op amps. The ADA4637-1 is  
a decompensated version of the ADA4627-1 and is stable at a  
noise gain of ± or greater.  
The ADA4627-1/ADA4637-1 are members of a growing series  
of high speed, precision op amps offered by Analog Devices,  
Inc. (see Table 1).  
With a typical offset voltage of only 70 μ, drift of less than  
1 μꢀ/°C, and noise of only 0.86 μꢀ p-p (0.1 Hz to 10 Hz), the  
ADA4627-1/ADA4637-1 are suited for applications where error  
sources cannot be tolerated.  
Table 1. High Speed Precision Op Amps  
Supply  
Single  
Dual  
5 V Low Cost  
5 V  
26 V Low Power  
AD8610  
30 V Low Cost  
AD8510  
30 V  
AD8615  
AD8651  
AD8652  
ADA4627-1/ADA4637-1  
AD8616  
AD8620  
AD8512  
Quad  
AD8618  
AD8513  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2009–2014 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADA4627-1/ADA4637-1  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Voltage Range................................................................... 14  
Input Offset Voltage Adjust Range........................................... 14  
Input Bias Current...................................................................... 14  
Noise Considerations................................................................. 14  
THD + N Measurements........................................................... 15  
Printed Circuit Board Layout, Bias Current, and Bypassing 15  
Output Phase Reversal............................................................... 15  
Decompensated Op Amps ........................................................ 16  
Driving Capacitive Loads.......................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—30 V Operation ............................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Theory of Operation ...................................................................... 14  
REVISION HISTORY  
1/14—Rev. D to Rev. E  
10/09—Rev. A to Rev. B  
Changes to Output Phase Reversal Section ................................ 15  
Changes to Figure 2...........................................................................1  
9/09—Rev. 0 to Rev. A  
10/10Rev. C to Rev. D  
Changes to Figure 1 and General Description ............................. 1  
Changes to Ordering Guide .......................................................... 18  
Changes to General Description Section .......................................1  
Changes to Table 2.............................................................................3  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 15  
7/10Rev. B to Rev. C  
Added ADA4637-1.............................................................Universal  
Added Figure 2; Renumbered Sequentially .................................. 1  
Changes to Table 2............................................................................ 3  
Change to Table 3 ............................................................................. 5  
Changes to Typical Performance Characteristics Section........... 6  
Updated Outline Dimensions ....................................................... 17  
Changes to Ordering Guide .......................................................... 18  
7/09—Revision 0: Initial Version  
Rev. E | Page 2 of 20  
 
Data Sheet  
ADA4627-1/ADA4637-1  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—30 V OPERATION  
VSY  
= 15 V, V CM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
B Grade  
Typ  
A Grade  
Parameter  
Symbol Test Conditions/Comments  
Min  
Max  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage1  
VOS  
70  
200  
350  
400  
2
120  
300  
410  
660  
3
µV  
µV  
µV  
µV/°C  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
∆VOS/∆T −40°C ≤ TA ≤ +125°C  
Offset Voltage Drift,  
Average  
1
1
Power Supply Rejection  
Ratio  
PSRR  
VSY  
=
4.5 V to 18 V  
106  
101  
112  
103  
99  
108  
dB  
−40°C ≤ TA ≤ +125°C  
dB  
pA  
nA  
nA  
pA  
nA  
nA  
Input Bias Current2  
IB  
1
5
0.5  
2
5
0.5  
2
1
5
0.5  
2
5
0.5  
2
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
0.5  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
16.5  
7.9  
6.1  
4.8  
0.7  
1.6  
30  
40  
20  
8
6
1.6  
16.5  
7.9  
6.1  
4.8  
0.7  
2.5  
48  
40  
20  
8
6
1.6  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
fA/√Hz  
fA p-p  
TΩ  
f = 10 kHz  
Voltage Noise  
Current Noise Density  
Current Noise  
en p-p  
in  
in p-p  
RIN  
0.1 Hz to 10 Hz  
f = 100 Hz  
0.1 Hz to 10 Hz  
Input Resistance  
10  
10  
Input Capacitance,  
Differential Mode  
CINDM  
8
8
pF  
Input Capacitance,  
Common Mode  
Input Voltage Range  
CINCM  
IVR  
7
7
pF  
−11  
−10.5  
+11  
+10.5  
−11  
−10.5  
+11  
+10.5  
V
V
−40°C ≤ TA ≤ +125°C  
Common-Mode  
Rejection Ratio  
CMRR  
TA = 25°C,  
VCM = −11 V to +11 V  
−40°C ≤ TA ≤ +125°C,  
VCM = −10.5 V to +10.5 V  
RL = 1 kΩ, VO = −10 V to +10 V  
−40 ≤ TA ≤ +85°C  
106  
98  
116  
120  
100  
97  
110  
120  
dB  
dB  
dB  
dB  
dB  
Large Signal Voltage Gain AVO  
112  
110  
102  
106  
104  
100  
−40 ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate ADA4627-1  
Slew Rate ADA4637-1  
SR  
SR  
10 V step, RL = 1 kΩ,  
CL = 100 pF, AV = +1  
10 V step, RL = 1 kΩ, CL = 100 pF, 40  
Rs = Rf = 1 kΩ, AV = −1  
10 V out, Cf = 4.8 pF, AV = −4  
10 V out, Cf = 4.8 pF, AV = +5  
40  
56/783  
82/843  
40  
40  
56/783  
82/843  
V/µs  
V/µs  
SR  
SR  
170  
170  
170  
170  
V/µs  
V/µs  
Rev. E | Page 3 of 20  
 
 
 
ADA4627-1/ADA4637-1  
Data Sheet  
B Grade  
Typ  
A Grade  
Typ  
Parameter  
Symbol Test Conditions/Comments  
tS  
Min  
Max  
Min  
Max  
Unit  
Settling Time to 0.01%  
ADA4627-1  
VIN = 10 V step, CL = 35 pF,  
RL = +1 kΩ, AV = −1  
VIN = 10 V step, CL = 35 pF,  
RL = +1 kΩ, AV = −4  
550  
300  
550  
300  
ns  
ns  
ADA4637-1  
Settling Time to 0.1%  
ADA4627-1  
tS  
VIN = 10 V step, CL = 35 pF,  
RL = +1 kΩ, AV = −1  
VOUT = 10 V step, CL = 35 pF,  
RL = +1 kΩ, AV = −4  
450  
200  
450  
200  
ns  
ns  
ADA4637-1  
Gain Bandwidth Product GBP  
ADA4627-1  
ADA4637-1  
RL = 1 kΩ, CL = 20 pF, AV = 1  
AV = 10  
164  
19  
79.9  
164  
19  
79.9  
MHz  
Phase Margin  
ADA4627-1  
ADA4637-1  
ΦM  
RL = 1 kΩ, CL = 20 pF, AV = 1  
AV = 10  
72  
85  
72  
85  
Degrees  
%
Total Harmonic  
THD + N f = 1 kHz, AV = 1, ADA4627-1  
0.000045  
0.000045  
Distortion + Noise  
POWER SUPPLY  
Supply Current per  
Amplifier  
ISY  
IO = 0 mA  
7.0  
7.5  
7.8  
7.0  
7.5  
7.8  
mA  
mA  
−40°C ≤ TA ≤ +125°C  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
VO = 10 V  
12.0  
11.8  
11.7  
12.3  
12.0  
11.8  
11.7  
12.3  
V
V
V
V
V
V
mA  
mA  
Ω
Output Voltage Low  
VOL  
−12.7  
−12.3  
−12.1  
−12.0  
−12.7  
−12.3  
−12.1  
−12.0  
Output Current  
Short-Circuit Current  
Closed-Loop Output  
Impedance  
IOUT  
ISC  
ZOUT  
45  
+70/−55  
41  
45  
+70/−55  
41  
TA = 25°C  
f = 1 MHz, AV = −100  
1 VOS is measured fully warmed up.  
2 Tested/extrapolated from 125°C.  
3 Rising/falling.  
4 Not tested. Guaranteed by simulation and characterization.  
Rev. E | Page 4 of 20  
 
 
Data Sheet  
ADA4627-1/ADA4637-1  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages. This  
was measured using a standard 2-layer board. For the LFCSP  
package, the exposed pad should be soldered to a copper plane.  
Parameter  
Rating  
Supply Voltage  
Input Voltage Range1  
Input Current1  
Differential Input Voltage2  
Output Short-Circuit Duration to GND Indefinite  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
36 V  
(V−) − 0.3 V to (V+) + 0.3 V  
10 mA  
VSY  
Table 4. Thermal Resistance  
Package Type  
θJA  
155  
77  
θJC  
45  
14  
Unit  
°C/W  
°C/W  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
8-Lead SOIC_N (R-8)  
8-Lead LFCSP (CP-8-2)  
Lead Temperature (Soldering, 60 sec) 300°C  
ESD Human Body Model 4 kV  
ESD CAUTION  
1 Input pin has clamp diodes to the power supply pins. Input current should  
be limited to 10 mA or less whenever input signals exceed the power supply  
rail by 0.3 V.  
2 Differential input voltage is limited to 30 V or the supply voltage, whichever  
is less.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 5 of 20  
 
 
 
 
 
 
ADA4627-1/ADA4637-1  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
100  
120  
100  
80  
60  
78°  
10  
40  
20  
0
ADA4627-1  
= 25°C  
19.1MHz  
ADA4627-1  
T
A
–20  
–40  
T
= 25°C  
A
V
= ±15V  
SY  
V
= ±15V  
SY  
1
0.01  
0.1  
FREQUENCY (kHz)  
1
10  
1k  
10k  
100k  
1M  
10M  
100M  
100M  
15  
FREQUENCY (Hz)  
Figure 7. Open-Loop Gain and Phase vs. Frequency  
Figure 4. Voltage Noise Density vs. Frequency  
100  
10  
140  
120  
100  
80  
R
= 1kΩ  
L
A
= –10  
V
R
= 600Ω  
L
1
A
= –100  
V
A
= –1  
V
0.1  
0.01  
ADA4627-1  
ADA4627-1  
T
V
= 25°C  
= ±15V  
T
V
= 25°C  
= ±15V  
A
A
SY  
SY  
V
= ±11V  
O
60  
–50  
100  
1k  
10k  
100k  
1M  
10M  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 8. Closed-Loop ZOUT vs. Frequency  
Figure 5. Open-Loop Gain vs. Temperature  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
0
–50  
–100  
–150  
ADA4627-1  
= 25°C  
= ±15V  
T
ADA4627-1  
= 25°C  
A
V
T
SY  
A
V
= ±15V  
SY  
–15  
–10  
–5  
0
5
10  
100  
1k  
10k  
100k  
1M  
10M  
V
(V)  
CM  
FREQUENCY (Hz)  
Figure 9. VOS vs. Common-Mode Voltage  
Figure 6. CMRR vs. Frequency  
Rev. E | Page 6 of 20  
 
Data Sheet  
ADA4627-1/ADA4637-1  
120  
100  
80  
120  
110  
100  
90  
60  
PSRR–  
PSRR+  
40  
80  
ADA4627-1  
20  
ADA4627-1  
70  
T
= 25°C  
A
V
V
= ±15V  
= ±11.5V  
SY  
V
= ±15V  
SY  
CM  
0
100  
60  
–50  
1k  
10k  
100k  
1M  
10M  
–25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 13. CMRR vs. Temperature  
Figure 10. PSRR vs. Frequency  
8
20  
10  
–40ºC  
ADA4627-1  
= 25°C  
7
6
5
4
3
2
1
0
T
A
V
= ±15V  
SY  
+25ºC  
+85ºC  
+125ºC  
ADA4627-1  
1
0
4
8
12  
16  
20  
24  
28  
32  
36  
10  
0.001  
0.01  
0.1  
1
100  
SUPPLY VOLTAGE (V)  
I
(mA)  
LOAD  
Figure 11. Supply Current vs. Supply Voltage and Temperature  
Figure 14. VOUT Sinking vs. ILOAD Current  
20  
10  
120  
ADA4627-1  
= 25°C  
T
A
V
= ±15V  
SY  
110  
ADA4627-1  
R
= ∞  
L
±4.5V < V < ±18V  
SY  
1
100  
–40  
10  
0.001  
0.01  
0.1  
1
100  
–20  
0
20  
40  
60  
80  
100  
120  
I
(mA)  
LOAD  
TEMPERATURE (°C)  
Figure 15. VOUT Sourcing vs. ILOAD Current  
Figure 12. PSRR vs. Temperature  
Rev. E | Page 7 of 20  
ADA4627-1/ADA4637-1  
Data Sheet  
8
7
6
5
4
3
0.01  
0.001  
ADA4627-1  
= 25°C  
T
A
V
V
R
= ±15V  
= 810mV  
= 600Ω  
SY  
IN  
L
80kHz FILTER  
0.0001  
0.00001  
2
ADA4627-1  
T
= 25°C  
1
0
A
SOIC PACKAGE  
0.01  
0.1  
1
10  
0
4
8
12  
16  
20  
24  
28  
32  
36  
FREQUENCY (kHz)  
SUPPLY VOLTAGE (V)  
Figure 16. Supply Current vs. Supply Voltage  
Figure 19. THD + N vs. Frequency  
10,000  
1,000  
100  
10  
0.1  
ADA4627-1  
= ±15V  
V
SY  
0.01  
0.001  
MEASURED  
ADA4627-1  
T
V
= 25°C  
= ±15V  
A
0.0001  
EXTRAPOLATED  
SY  
1
V
= 1kHz  
IN  
R
= 600Ω  
L
0.0647x  
y = 0.2895  
2
80kHz FILTER  
R
= 0.9991  
0.1  
0.00001  
10  
30  
50  
70  
90  
110  
130  
0.001  
0.01  
0.1  
1
TEMPERATURE (°C)  
AMPLITUDE (V rms)  
Figure 20. Input Bias Current vs. Temperature  
Figure 17. THD + N vs. VIN  
60  
50  
100  
75  
ADA4627-1  
= 25°C  
I
+
B
T
A
V
= ±15V  
SY  
+85°C  
+25ºC  
I
B
40  
50  
A
= +100  
V
V
30  
25  
I
+
B
20  
0
A
= +10  
I
B
10  
–25  
–50  
–75  
–100  
0
A
= +1  
100  
V
ADA4627-1  
= ±15V  
–10  
–20  
V
SY  
10  
1k  
10k  
FREQUENCY (kHz)  
100k  
1M  
10M  
100M  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
CM  
Figure 18. Closed-Loop Gain vs. Frequency  
Figure 21. Input Bias Current vs. VCM and Temperature  
Rev. E | Page 8 of 20  
Data Sheet  
ADA4627-1/ADA4637-1  
1200  
1100  
1000  
900  
800  
I
+
B
I
700  
B
1
600  
ADA4627-1  
500  
T
A
= 25°C  
= –1  
A
V
400  
V
= 20V p-p  
IN  
300  
200  
100  
0
ADA4627-1  
R
C
R
C
= R = 2k  
F
F
L
L
IN  
= 10pF  
= 1kΩ  
= 1nF  
T
V
= 125°C  
= ±15V  
A
SY  
TIME (1µs/DIV)  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
CM  
Figure 22. Input Bias Current vs. VCM at 125°C  
Figure 25. Large Signal Transient Response  
80  
60  
ADA4627-1  
ADA4627-1  
T
= 25°C  
A
T
= 25°C  
= +1  
A
V
= ±15V  
SY  
A
V
V
R
= 20V p-p  
= 0  
IN  
40  
F
20  
1
0
–20  
–40  
–60  
–80  
TIME (200ns/DIV)  
0
60  
120  
180  
240  
300  
TIME (Seconds)  
Figure 23. Input Offset Voltage vs. Time  
Figure 26. Large Signal Transient Response  
60  
50  
40  
30  
20  
10  
ADA4627-1  
T
A
= 25°C  
= –1  
A
V
OS–  
V
= 20V p-p  
IN  
R
= R = 2k  
F
IN  
OS+  
1
ADA4627-1  
= 25°C  
T
A
V
= ±15V  
= +1  
SY  
A
V
V
= 100mV p-p  
IN  
0
CH1 5.00V  
TIME (200ns/DIV)  
1
10  
100  
LOAD CAPACITANCE (pF)  
1000  
10,000  
Figure 24. Small Signal Overshoot vs. Load Capacitance  
Figure 27. Large Signal Transient Response  
Rev. E | Page 9 of 20  
ADA4627-1/ADA4637-1  
Data Sheet  
1
1
ADA4627-1  
ADA4627-1  
T
= 25°C  
T
A
= 25°C  
= +1  
A
A
A
V
= –1  
= 200mV p-p  
V
V
V
R
R
C
= 20V p-p  
= 0  
= 1kΩ  
= 1nF  
IN  
IN  
R
C
= R = 2k  
= 5pF  
F
F
IN  
F
L
L
TIME (1µs/DIV)  
TIME (200ns/DIV)  
Figure 28. Large Signal Transient Response  
Figure 31. Small Signal Transient Response  
ADA4627-1  
T
A
= 25°C  
= –1  
A
V
V
= 20V p-p  
IN  
R
C
R
C
= R = 2kΩ  
= 10pF  
= 1kΩ  
F
F
L
L
IN  
= 100pF  
1
1
ADA4627-1  
T
A
= 25°C  
= +1  
A
V
V
= 200mV p-p  
= 0Ω  
= 1kΩ  
IN  
R
R
C
F
L
L
= 1nF  
TIME (200ns/DIV)  
TIME (200ns/DIV)  
Figure 29. Large Signal Transient Response  
Figure 32. Small Signal Transient Response  
1
1
ADA4627-1  
ADA4627-1  
T
= 25°C  
A
T
A
= 25°C  
= +1  
A
A
= –1  
V
V
V
= 200mV p-p  
IN  
V
R
= 200mV p-p  
= 0Ω  
IN  
R
C
R
C
= R = 2kΩ  
= 5pF  
= 1kΩ  
= 100pF  
F
F
L
L
IN  
F
TIME (200ns/DIV)  
TIME (200ns/DIV)  
Figure 33. Small Signal Transient Response  
Figure 30. Small Signal Transient Response  
Rev. E | Page 10 of 20  
Data Sheet  
ADA4627-1/ADA4637-1  
20  
ADA4627-1  
ADA4627-1  
= 25°C  
T
= 25°C  
T
A
15  
10  
A
1
2
V
= ±15  
SY  
V
= ±15V  
SY  
5
V
OUT  
0
–5  
V
IN  
V
OUT  
–10  
–15  
–20  
V
IN  
TIME (200ns/DIV)  
0
0.5  
1.0  
1.5  
2.0  
TIME (ms)  
2.5  
3.0  
3.5  
4.0  
Figure 34. No Phase Reversal  
Figure 37. Positive Settling Time to 0.01%  
ADA4627-1  
T
V
= 25°C  
A
1
2
= ±15  
SY  
V
IN  
1
V
OUT  
ADA4627-1  
= 25°C  
T
A
V
= ±15V  
SY  
DUT GAIN = 100  
4TH ORDER BAND PASS FIXTURE GAIN = 10k  
TOTAL GAIN = 1M  
TIME (200ns/DIV)  
TIME (1s/DIV)  
Figure 35. Negative Settling Time to 0.01%  
Figure 38. 0.1 Hz to 10 Hz Noise  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
PHASE  
60  
GAIN  
40  
20  
0
ADA4637-1  
= ±15V  
V
–20  
–40  
–60  
–80  
–100  
SY  
T
= 25ºC  
A
A
R
R
C
C
= –4  
V
= 500  
IN  
= 2kΩ  
= 4.8pF  
= 35pF  
F
F
L
ADA4637-1  
V
T
= ±15V  
SY  
A
= 25ºC  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 36. Open-Loop Gain and Phase vs. Frequency  
Figure 39. CMRR vs. Frequency  
Rev. E | Page 11 of 20  
 
ADA4627-1/ADA4637-1  
Data Sheet  
120  
ADA4637-1  
T
A
= 25°C  
= +5  
PSRR+  
A
V
100  
V
= ±15V  
SY  
R
R
C
C
= 500  
= 2kꢀ  
= 4.8pF  
= 50pF  
IN  
PSRR–  
F
F
L
80  
60  
40  
ADA4637-1  
20  
V
= ±15V  
SY  
A
T
= +5  
= 25°C  
V
A
0
TIME (200ns/DIV)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 43. Small Signal Transient Response  
Figure 40. PSRR vs. Frequency  
50  
40  
30  
20  
10  
0
ADA4637-1  
A
T
= 25°C  
= –4  
A
= +100  
V
A
V
V
SY  
R
= ±15V  
= 500  
IN  
R
C
= 2kꢀ  
= 4.8pF  
F
F
A
= +10  
V
A
= +5  
V
V
–10  
TIME (100ns/DIV)  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 41. Closed-Loop Gain vs. Frequency  
Figure 44. Slew Rate Falling  
ADA4637-1  
A
ADA4637-1  
A
T
= 25°C  
= +5  
T
= 25°C  
= –4  
A
V
A
V
V
SY  
R
V
SY  
IN  
F
F
= ±15V  
= ±15V  
= 500  
R
= 500ꢀ  
IN  
R
C
= 2kꢀ  
= 3pF  
R
C
= 2kꢀ  
= 4.8pF  
F
F
TIME (200ns/DIV)  
TIME (100ns/DIV)  
Figure 42. Large Signal Transient Response  
Figure 45. Slew Rate Rising  
Rev. E | Page 12 of 20  
Data Sheet  
ADA4627-1/ADA4637-1  
100  
ADA4637-1  
SY  
V
V
= ±15V  
= 0V  
CM  
A
T
= 25°C  
10  
1
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 46. Voltage Noise Density vs. Frequency  
Rev. E | Page 13 of 20  
ADA4627-1/ADA4637-1  
Data Sheet  
THEORY OF OPERATION  
The ADA4627-1 is a high speed, unity gain stable amplifier with  
excellent dc characteristics. The ADA4637-1 is a decompensated  
version that is stable at a gain of 5 or greater. The typical offset  
voltage of 70 µV allows the amplifiers to be easily configured for  
high gains without the risk of excessive output voltage errors. The  
small temperature drift of 2 µV/°C ensures a minimum offset  
voltage error over the entire temperature range of −40°C to  
+125°C, making the amplifiers ideal for a variety of sensitive  
measurement applications in harsh operating environments.  
use the offset adjust pins, especially for offset adjust of a  
complete signal chain. Signal chain offset can be addressed with  
an auto-zero amplifier used to form a composite amplifier; or, if  
the ADA4627-1 or the ADA4637-1 is in an inverting amplifier  
stage, it can be modified easily to add a potentiometer (see  
Figure 48). The LFCSP package does not have offset adjust pins.  
R
F
R
IN  
2
3
INPUT VOLTAGE RANGE  
6
+
OUT  
ADA4627-1  
+
V
The ADA4627-1/ADA4637-1 are not rail-to-rail input  
amplifiers; therefore, care is required to ensure that both inputs  
do not exceed the input voltage range. Under normal negative  
feedback operating conditions, the amplifier corrects its output  
to ensure that the two inputs are at the same voltage. However,  
if either input exceeds the input voltage range, the loop opens,  
and large currents begin to flow through the ESD protection  
diodes in the amplifier.  
V
IN  
+V  
S
499kΩ  
499kΩ  
100kΩ  
0.1µF  
200Ω  
–V  
S
Figure 48. Alternate Offset Null Circuit for Inverting Stage  
INPUT BIAS CURRENT  
These diodes are connected between the inputs and each supply  
rail to protect the input transistors against an electrostatic discharge  
event, and they are normally reverse-biased. However, if the input  
voltage exceeds the supply voltage, these ESD diodes can become  
forward-biased. Without current limiting, excessive amounts  
of current can flow through these diodes, causing permanent  
damage to the device. If inputs are subject to overvoltage, insert  
appropriate series resistors to limit the diode current to less  
than 5 mA.  
Because the ADA4627-1/ADA4637-1 have a JFET input stage,  
the input bias current, due to the reverse-biased junction, has  
a leakage current that approximately doubles every 10°C. The  
power dissipation of the part, combined with the thermal resistance  
of the package, results in the junction temperature increasing  
up 20 degrees to 30 degrees Celsius above ambient. This  
parameter is tested with high speed ATE equipment, which does  
not result in the die temperature reaching equilibrium. This is  
correlated with bench measurements to match the guaranteed  
maximum at room temperature shown in Table 2.  
INPUT OFFSET VOLTAGE ADJUST RANGE  
The input current can be reduced by keeping the temperature as  
low as possible and using a light load on the output.  
The ADA4627-1/ADA4637-1 SOIC packages have offset  
adjust pins for compatibility with some existing designs. The  
recommended offset nulling circuit is shown in Figure 47.  
NOISE CONSIDERATIONS  
+V  
S
The JFET input stage offers very low input voltage noise and  
input current noise. The thermal noise of a 1 kΩ resistor at  
room temperature is 4 nV/√Hz; therefore, low values of  
resistance should be used for dc-coupled inverting and  
noninverting amplifier configurations. In the case of  
transimpedance amplifiers (TIAs), current noise is more  
important.  
100kΩ  
7
2
1
5
6
ADA4627-1  
3
4
The ADA4627-1/ADA4637-1 are an excellent choice for both of  
these applications. Analog Devices offers a wide variety of low  
voltage noise and low current noise op amps in a variety of  
processes that are optimized for different supply voltage ranges.  
Refer to Application Note AN-940 for a discussion of noise,  
calculations, and selection tables for more than three dozen low  
noise, op amp families.  
–V  
S
Figure 47. Standard Offset Null Circuit  
With a 100 kΩ potentiometer, the adjustment range is  
more than 11 mV. However, the VOS temperature drift  
increases by several µV/°C for every millivolt of offset adjust.  
The ADA4627-1/ADA4637-1 have matching thin film resistors  
that are laser trimmed at two temperatures to minimize both  
offset voltage and offset voltage drift. The offset voltage at room  
temperature is less than 0.5 mV, and the offset voltage drift is  
only a few µV/°C or less; therefore, it is not recommended to  
Rev. E | Page 14 of 20  
 
 
 
 
 
 
 
Data Sheet  
ADA4627-1/ADA4637-1  
C
F
THD + N MEASUREMENTS  
GUARD  
Total harmonic distortion plus noise (THD + N) is usually  
measured with an audio analyzer, such as those from Audio  
Precision, Inc™. The analyzer consists of a low distortion  
oscillator that is swept from the starting frequency to the  
ending frequency. The oscillator is connected to the circuit  
under test, and the output of the circuit goes back to the  
analyzer.  
R
F
2
3
6
+
OUT  
ADA4627-1  
V
I
8
N
Figure 50. Inverting Amplifier with Guard  
The analyzer has a tunable notch filter in lock step with the  
swept oscillator. This removes the fundamental frequency  
but allows all of the harmonics and wideband noise to be  
measured with an integrating voltmeter. However, there is a  
switchable low-pass filter in series with the notch filter. If the  
sine wave is at 100 Hz, then the tenth harmonic is still at 1 kHz;  
therefore, having a low pass at 80 kHz is not a problem. When  
the oscillator reaches 20 kHz, the fourth harmonic (80 kHz)  
is partially attenuated, resulting in a lower reading from the  
voltmeter. When evaluating THD + N curves from any  
manufacturer, careful attention should be paid to the test  
conditions. The difference between an 80 kHz low-pass filter  
and a 500 kHz filter is shown in Figure 49.  
For a noninverting configuration, the trace can be driven from  
the feedback divider, but the resistors should be chosen to offer  
a low impedance drive to the trace (see Figure 51).  
GUARD  
3
V
OUT  
6
+
ADA4627-1  
+
R
F
V
8
S
2
R
I
0.01  
Figure 51. Noninverting Amplifier with Guard  
ADA4627-1  
T
V
V
= 25°C  
A
The board layout should be compact with traces as short as  
possible. For second-order board considerations, such as  
triboelectric effects and piezoelectric effects, as well as a table  
of insulating material properties, see the AD549 data sheet.  
= ±15V  
= 810mV  
= 600Ω  
SY  
IN  
R
L
0.001  
0.0001  
In some cases, shielding from air currents may be helpful.  
A general rule of thumb, for op amps with gain bandwidth  
products higher than 1 MHz, bypass capacitors should be very  
close to the part, within 3 mm. Each supply should be bypassed  
with a 0.01 µF ceramic capacitor in parallel with a 1 µF bulk  
decoupling capacitor. The ceramic capacitors should be closer  
to the op amp. Sockets, which add inductance and capacitance,  
should not be used.  
500kHz FILTER  
80kHz FILTER  
0.00001  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
Figure 49. THD + N vs. Frequency  
OUTPUT PHASE REVERSAL  
PRINTED CIRCUIT BOARD LAYOUT, BIAS  
CURRENT, AND BYPASSING  
Output phase reversal occurs in some amplifiers when the input  
common-mode voltage range is exceeded. As common-mode  
voltage is moved outside the common-mode range, the outputs  
of these amplifiers can suddenly jump in the opposite direction  
to the supply rail. This is the result of the differential input pair  
shutting down, causing a radical shifting of internal voltages  
that results in the erratic output behavior.  
To take advantage of the very low input bias current of the  
ADA4627-1/ADA4637-1 at room temperature, leakage paths  
must be considered. A printed circuit board (PCB), with dust  
and humidity, can have 100 MΩ of resistance over a few tenths  
of an inch. A 1 mV differential between the two points results in  
10 pA of leakage current, more than the guaranteed maximum.  
The ADA4627-1/ADA4637-1 amplifiers are carefully designed  
to prevent any output phase reversal if both inputs are maintained  
within or slightly above the power supply rails. The ADA4627-1/  
ADA4637-1 do not phase reverse, as shown in Figure 34.  
The op amp inputs should be guarded by surrounding the nets  
with a metal trace maintained at the predicted voltage. In the  
case of an inverting configuration or transimpedance amplifier,  
(see Figure 50), the inverting and noninverting nodes can be  
surrounded by traces held at a quiet analog ground.  
Rev. E | Page 15 of 20  
 
 
 
 
 
 
ADA4627-1/ADA4637-1  
Data Sheet  
or oscillation. The ADA4627-1/ADA4637-1 have a high phase  
margin and low output impedance, so they can drive reasonable  
values of capacitance. This is a common situation when an  
amplifier is used to drive the input of switched capacitor ADCs.  
For other considerations and various circuit solutions, see the  
Analog Dialogue article titled Ask the Applications Engineer-25,  
Op Amps Driving Capacitive Loads, available at www.analog.com.  
DECOMPENSATED OP AMPS  
The ADA4637-1 is a decompensated op amp, and, as such, must  
always be operated at a noise gain of 5 or greater. See tutorial  
MT-033, Voltage Feedback Op Amp Gain and Bandwidth, at  
www.analog.com for more information.  
DRIVING CAPACITIVE LOADS  
Adding capacitance to the output of any op amp results in addi-  
tional phase shift, which reduces stability and leads to overshoot  
Rev. E | Page 16 of 20  
 
 
Data Sheet  
ADA4627-1/ADA4637-1  
OUTLINE DIMENSIONS  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
5
0.50  
BSC  
0.60 MAX  
8
2.95  
2.75 SQ  
2.55  
1.60  
1.45  
1.30  
EXPOSED  
PAD  
TOP  
VIEW  
PIN 1  
INDICATOR  
(BOTTOM VIEW)  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
1.89  
1.74  
1.59  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
SECTION OF THIS DATA SHEET.  
Figure 52. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-2)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 53. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 17 of 20  
 
ADA4627-1/ADA4637-1  
Data Sheet  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead LFCSP_VD  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
CP-8-2  
CP-8-2  
CP-8-2  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding  
A29  
A29  
ADA4627-1ACPZ-R2  
ADA4627-1ACPZ-RL  
ADA4627-1ACPZ-R7  
ADA4627-1ARZ  
ADA4627-1ARZ-RL  
ADA4627-1ARZ-R7  
ADA4627-1BRZ  
ADA4627-1BRZ-R7  
ADA4627-1BRZ-RL  
ADA4637-1ACPZ-R2  
ADA4637-1ACPZ-RL  
ADA4637-1ACPZ-R7  
ADA4637-1ARZ  
ADA4637-1ARZ-RL  
ADA4637-1ARZ-R7  
ADA4637-1BRZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
A29  
R-8  
CP-8-2  
CP-8-2  
CP-8-2  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
A2S  
A2S  
A2S  
ADA4637-1BRZ-R7  
ADA4637-1BRZ-RL  
1 Z = RoHS Compliant Part.  
Rev. E | Page 18 of 20  
 
 
Data Sheet  
NOTES  
ADA4627-1/ADA4637-1  
Rev. E | Page 19 of 20  
ADA4627-1/ADA4637-1  
NOTES  
Data Sheet  
©2009–2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07559-0-1/14(E)  
Rev. E | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY