ADA4666-2ARMZ-RL [ADI]

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier; 18 V , 725 A, 4 MHz的CMOS RRIO运算放大器
ADA4666-2ARMZ-RL
型号: ADA4666-2ARMZ-RL
厂家: ADI    ADI
描述:

18 V, 725 A, 4 MHz CMOS RRIO Operational Amplifier
18 V , 725 A, 4 MHz的CMOS RRIO运算放大器

运算放大器
文件: 总32页 (文件大小:896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
18 V, 725 µA, 4 MHz  
CMOS RRIO Operational Amplifier  
ADA4666-2  
Data Sheet  
FEATURES  
PIN CONNECTION DIAGRAMS  
Low power at high voltage (18 V): 725 μA maximum  
Low offset voltage:  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4666-2  
OUT B  
–IN B  
+IN B  
TOP VIEW  
2.2 mV maximum over entire common-mode range  
Low input bias current: 15 pA maximum  
Gain bandwidth product: 4 MHz typical at AV = 100  
Unity-gain crossover: 4 MHz typical  
−3 dB closed-loop bandwidth: 2.1 MHz typical  
Single-supply operation: 3 V to 18 V  
Dual-supply operation: 1.5 V to 9 V  
Unity-gain stable  
(Not to Scale)  
Figure 1. 8-Lead MSOP  
OUT A 1  
8 V+  
7 OUT B  
6 –IN B  
5 +IN B  
–IN A 2  
+IN A 3  
V– 4  
ADA4666-2  
TOP VIEW  
(Not to Scale)  
NOTES  
APPLICATIONS  
1. CONNECT THE EXPOSED PAD TO V– OR  
LEAVE IT UNCONNECTED.  
Current shunt monitors  
Active filters  
Portable medical equipment  
Buffer/level shifting  
High impedance sensor interfaces  
Battery powered instrumentation  
Figure 2. 8-Lead LFCSP  
10000  
1000  
100  
10  
V
= 18V  
SY  
GENERAL DESCRIPTION  
–40°C  
+25°C  
+85°C  
+125°C  
The ADA4666-2 is a dual, rail-to-rail input/output amplifier  
optimized for low power, high bandwidth, and wide operating  
supply voltage range applications.  
The ADA4666-2 performance is guaranteed at 3.0 V, 10 V,  
and 18 V power supply voltages. It is an excellent selection for  
applications that use single-ended supplies of 3.3 V, 5 V, 1 0 V,  
12 V, and 15 V, and dual supplies of 2.5 V, 3.3 V, and 5 V.  
1
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
Figure 3. Output Voltage (VOH) to Supply Rail vs. Load Current  
The ADA4666-2 is specified over the extended industrial  
temperature range (−40°C to +125°C) and is available in  
8-lead MSOP and 8-lead LFCSP (3 mm × 3 mm) packages.  
Table 1. Precision Low Power Op Amps (<1 mA)  
Supply Voltage  
5 V  
12 V to 16 V 30 V  
Single  
ADA4505-1  
AD8500  
ADA4505-2  
AD8502  
AD8506  
AD8546  
ADA4505-4  
AD8504  
AD8508  
AD8548  
OP196  
OP777  
Dual  
AD8657  
OP296  
ADA4661-2  
ADA4666-2  
AD8659  
OP496  
ADA4096-2  
OP727  
AD8682  
AD8622  
ADA4096-4  
OP747  
Quad  
AD8684  
AD8624  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADA4666-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Input Stage................................................................................... 22  
Gain Stage.................................................................................... 23  
Output Stage................................................................................ 23  
Maximum Power Dissipation................................................... 23  
Rail-to-Rail Input and Output.................................................. 23  
Comparator Operation.............................................................. 24  
EMI Rejection Ratio .................................................................. 25  
Current Shunt Monitor.............................................................. 25  
Active Filters ............................................................................... 25  
Capacitive Load Drive ............................................................... 26  
Noise Considerations with High Impedance Sources........... 28  
Outline Dimensions....................................................................... 29  
Ordering Guide .......................................................................... 29  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Connection Diagrams............................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—18 V Operation ............................. 3  
Electrical Characteristics—10 V Operation ............................. 5  
Electrical Characteristics—3.0 V Operation ............................ 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 11  
Applications Information .............................................................. 22  
REVISION HISTORY  
7/13—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
Data Sheet  
ADA4666-2  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—18 V OPERATION  
VSY = 18 V, VCM = VSY/ 2 V, T A = 25°C, unless otherwise specified.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
0.5  
2.2  
2.2  
3.5  
3.1  
15  
100  
900  
11  
mV  
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
VCM = 0 V to 18 V  
VCM = 0 V to 18 V; −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.6  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
30  
300  
18  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 18 V  
80  
77  
120  
120  
95  
dB  
dB  
dB  
dB  
VCM = 0 V to 18 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 17.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
147  
Input Resistance  
Differential Mode  
Common Mode  
RINDM  
RINCM  
>10  
>10  
GΩ  
GΩ  
Input Capacitance  
Differential Mode  
Common Mode  
CINDM  
CINCM  
8.5  
3
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
17.95 17.97  
17.94  
V
V
V
17.6  
17.79  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
Dropout voltage = 1 V  
Pulse width = 10 ms; refer to the Maximum  
Power Dissipation section  
17.58  
V
Output Voltage Low  
VOL  
14  
25  
40  
200  
300  
mV  
mV  
mV  
mV  
mA  
mA  
120  
Continuous Output Current  
Short-Circuit Current  
IOUT  
ISC  
40  
220  
Closed-Loop Output Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
ZOUT  
PSRR  
ISY  
f = 100 kHz, AV = 1  
0.2  
Ω
VSY = 3.0 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IOUT = 0 mA  
120  
120  
145  
630  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
725  
975  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Unity-Gain Crossover  
−3 dB Closed-Loop Bandwidth  
Phase Margin  
SR  
RS = 1 kΩ, RL = 10 kΩ, CL = 10 pF, AV = 1  
2
4
4
2.1  
60  
1.3  
V/µs  
MHz  
MHz  
MHz  
Degrees  
µs  
GBP  
UGC  
f−3 dB  
ΦM  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AV = 100  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AVO = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AVO = 1  
VIN = 1 V step, RL = 10 kΩ, CL = 10 pF  
Settling Time to 0.1%  
tS  
Rev. 0 | Page 3 of 32  
 
 
 
ADA4666-2  
Data Sheet  
Parameter  
Symbol  
CS  
EMIRR  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
Channel Separation  
EMI Rejection Ratio of +IN x  
f = 400 MHz  
f = 900 MHz  
f = 1800 MHz  
VIN = 17.9 V p-p, f = 10 kHz, RL = 10 kΩ  
VIN = 100 mV peak (200 mV p-p)  
80  
dB  
34  
42  
50  
60  
dB  
dB  
dB  
dB  
f = 2400 MHz  
NOISE PERFORMANCE  
Total Harmonic Distortion Plus Noise THD + N AV = 1, VIN = 5.4 V rms at 1 kHz  
Bandwidth = 80 kHz  
Bandwidth = 500 kHz  
Peak-to-Peak Noise  
0.0004  
0.0008  
3
18  
14  
%
%
µV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
Voltage Noise Density  
Current Noise Density  
in  
f = 1 kHz  
360  
Rev. 0 | Page 4 of 32  
Data Sheet  
ADA4666-2  
ELECTRICAL CHARACTERISTICS—10 V OPERATION  
VSY = 10 V, VCM = VSY/ 2 V, T A = 25°C, unless otherwise specified.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
2.2  
2.2  
3.5  
3.1  
15  
80  
750  
11  
mV  
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
VCM = 0 V to 10 V  
VCM = 0 V to 10 V; −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.6  
0.25  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
30  
270  
10  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 10 V  
75  
72  
120  
120  
90  
dB  
dB  
dB  
dB  
VCM = 0 V to 10 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 9.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
145  
Input Resistance  
Differential Mode  
Common Mode  
RINDM  
RINCM  
>10  
>10  
GΩ  
GΩ  
Input Capacitance  
Differential Mode  
Common Mode  
CINDM  
CINCM  
8.5  
3
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
Dropout voltage = 1 V  
Pulse width = 10 ms; refer to the Maximum  
Power Dissipation section  
9.96  
9.96  
9.7  
9.98  
9.88  
10  
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
9.7  
Output Voltage Low  
VOL  
15  
30  
110  
200  
77  
Continuous Output Current  
Short-Circuit Current  
IOUT  
ISC  
40  
220  
Closed-Loop Output Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
ZOUT  
PSRR  
ISY  
f = 100 kHz, AV = 1  
0.2  
Ω
VSY = 3.0 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IOUT = 0 mA  
120  
120  
145  
620  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
725  
975  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Unity-Gain Crossover  
−3 dB Closed-Loop Bandwidth  
Phase Margin  
SR  
RS = 1 kΩ, RL = 10 kΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AV = 100  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AVO = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AVO = 1  
VIN = 1 V step, RL = 10 kΩ, CL = 10 pF  
1.8  
4
4
2.1  
60  
1.3  
85  
V/µs  
MHz  
MHz  
MHz  
Degrees  
µs  
GBP  
UGC  
f−3 dB  
ΦM  
tS  
Settling Time to 0.1%  
Channel Separation  
CS  
VIN = 9.9 V p-p, f = 10 kHz, RL = 10 kΩ  
dB  
Rev. 0 | Page 5 of 32  
 
 
ADA4666-2  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
EMI Rejection Ratio of +IN x  
f = 400 MHz  
f = 900 MHz  
f = 1800 MHz  
f = 2400 MHz  
EMIRR  
VIN = 100 mV peak (200 mV p-p)  
34  
42  
50  
60  
dB  
dB  
dB  
dB  
NOISE PERFORMANCE  
Total Harmonic Distortion Plus Noise THD + N  
Bandwidth = 80 kHz  
Bandwidth = 500 kHz  
AV = 1, VIN =2.2 V rms at 1 kHz  
0.0004  
0.0008  
3
18  
14  
%
%
µV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
Current Noise Density  
in  
f = 1 kHz  
360  
Rev. 0 | Page 6 of 32  
Data Sheet  
ADA4666-2  
ELECTRICAL CHARACTERISTICS—3.0 V OPERATION  
VSY = 3.0 V, VCM = VSY/2 V, T A = 25°C, unless otherwise specified.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
0.5  
2.2  
2.2  
3.5  
3.1  
8
45  
650  
11  
30  
27  
3
mV  
mV  
mV  
μV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
VCM = 0 V to 3.0 V  
VCM = 0 V to 3.0 V; −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
0.6  
0.15  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Offset Current  
IOS  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 3.0 V  
64  
61  
105  
105  
80  
dB  
dB  
dB  
dB  
VCM = 0 V to 3.0 V; −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 0.5 V to 2.5 V  
−40°C ≤ TA ≤ +125°C  
Large Signal Voltage Gain  
130  
Input Resistance  
Differential Mode  
Common Mode  
RINDM  
RINCM  
>10  
>10  
GΩ  
GΩ  
Input Capacitance,  
Differential Mode  
Common Mode  
CINDM  
CINCM  
8.5  
3
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
RL = 1 kΩ to VCM  
−40°C ≤ TA ≤ +125°C  
Dropout voltage = 1 V  
Pulse width = 10 ms; refer to the Maximum  
Power Dissipation section  
2.98  
2.98  
2.9  
2.99  
2.96  
4
V
V
V
V
mV  
mV  
mV  
mV  
mA  
mA  
2.9  
Output Voltage Low  
VOL  
8
15  
40  
65  
25  
Continuous Output Current  
Short-Circuit Current  
IOUT  
ISC  
40  
220  
Closed-Loop Output Impedance  
POWER SUPPLY  
Power Supply Rejection Ratio  
ZOUT  
PSRR  
ISY  
f = 100 kHz, AV = 1  
0.2  
Ω
VSY = 3.0 V to 18 V  
−40°C ≤ TA ≤ +125°C  
IOUT = 0 mA  
120  
120  
145  
615  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
725  
975  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
SR  
RS = 1 kΩ, RL = 10 kΩ, CL = 10 pF, AV = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AV = 100  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AVO = 1  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AV = 1  
VIN = 1 V step, RL = 10 kΩ, CL = 10 pF  
1.7  
4
4
1.7  
1.3  
60  
90  
V/µs  
MHz  
MHz  
MHz  
µs  
Gain Bandwidth Product  
Unity-Gain Crossover  
−3 dB Closed-Loop Bandwidth  
Settling Time to 0.1%  
Phase Margin  
GBP  
UGC  
f−3 dB  
tS  
ΦM  
CS  
VIN = 10 mV p-p, RL = 10 kΩ, CL = 10 pF, AVO = 1  
VIN = 2.9 V p-p, f = 10 kHz, RL = 10 kΩ  
Degrees  
dB  
Channel Separation  
Rev. 0 | Page 7 of 32  
 
 
ADA4666-2  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
EMI Rejection Ratio of +IN x  
f = 400 MHz  
f = 900 MHz  
f = 1800 MHz  
f = 2400 MHz  
EMIRR  
VIN = 100 mV peak (200 mV p-p)  
34  
42  
50  
60  
dB  
dB  
dB  
dB  
NOISE PERFORMANCE  
Total Harmonic Distortion Plus Noise THD + N AV = 1, VIN = 0.44 V rms at 1 kHz  
Bandwidth = 80 kHz  
Bandwidth = 500 kHz  
Peak-to-Peak Noise  
0.002  
0.003  
3
18  
14  
%
%
µV p-p  
nV/√Hz  
nV/√Hz  
fA/√Hz  
en p-p  
en  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
f = 10 kHz  
Voltage Noise Density  
Current Noise Density  
in  
f = 1 kHz  
360  
Rev. 0 | Page 8 of 32  
Data Sheet  
ADA4666-2  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages using a  
standard 4-layer JEDEC board. The exposed pad of the LFCSP  
package is soldered to the board.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Input Current1  
20.5 V  
(V−) − 300 mV to (V+) + 300 mV  
10 mA  
Differential Input Voltage  
Limited by maximum input  
current  
Refer to the Maximum Power  
Dissipation section  
Table 6. Thermal Resistance  
Package Type  
8-Lead MSOP  
8-Lead LFCSP  
θJA  
θJC  
Unit  
°C/W  
°C/W  
Output Short-Circuit  
Duration to GND  
Temperature Range  
Storage  
Operating  
Junction  
142  
83.5  
45  
48.51  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
1 θJC is measured on the top surface of the package.  
ESD CAUTION  
Lead Temperature  
(Soldering, 60 sec)  
ESD  
4 kV  
Human Body Model2  
Machine Model3  
400 V  
Field-Induced Charged-  
Device Model (FICDM)4  
1.25 kV  
1 The input pins have clamp diodes to the power supply pins and to each  
other. Limit the input current to 10 mA or less when input signals exceed the  
power supply rail by 0.3 V.  
2 Applicable standard: MIL-STD-883, Method 3015.7.  
3 Applicable standard: JESD22-A115-A (ESD machine model standard of  
JEDEC).  
4 Applicable Standard JESD22-C101C (ESD FICDM standard of JEDEC).  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 32  
 
 
 
 
ADA4666-2  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
OUT A 1  
–IN A 2  
+IN A 3  
V– 4  
8 V+  
7 OUT B  
6 –IN B  
5 +IN B  
ADA4666-2  
TOP VIEW  
(Not to Scale)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
ADA4666-2  
OUT B  
–IN B  
+IN B  
TOP VIEW  
NOTES  
(Not to Scale)  
1. CONNECT THE EXPOSED PAD TO V– OR  
LEAVE IT UNCONNECTED.  
Figure 5. Pin Configuration, 8-Lead LFCSP  
Figure 4. Pin Configuration, 8-Lead MSOP  
Table 7. Pin Function Descriptions  
Pin No.1  
8-Lead MSOP 8-Lead LFCSP Mnemonic Description  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
92  
OUT A  
−IN A  
+IN A  
V−  
+IN B  
−IN B  
OUT B  
V+  
Output, Channel A.  
Negative Input, Channel A.  
Positive Input, Channel A.  
Negative Supply Voltage.  
Positive Input, Channel B.  
Negative Input, Channel B.  
Output, Channel B.  
Positive Supply Voltage.  
Exposed Pad. For the 8-lead LFCSP only, connect the exposed pad to V− or leave it  
unconnected.  
N/A  
EPAD  
1 N/A means not applicable.  
2 The exposed pad is not shown in the pin configuration diagram, Figure 5.  
Rev. 0 | Page 10 of 32  
 
 
Data Sheet  
ADA4666-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
70  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3V  
V
= 18V  
SY  
SY  
= V /2  
V
= V /2  
CM  
SY  
CM  
SY  
60  
50  
40  
30  
20  
10  
0
600 CHANNELS  
600 CHANNELS  
V
(mV)  
V
(mV)  
OS  
OS  
Figure 6. Input Offset Voltage Distribution  
Figure 9. Input Offset Voltage Distribution  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
V
= 3V  
V
= 18V  
SY  
SY  
= V /2  
= V /2  
V
CM  
SY  
CM  
SY  
–40°C ≤ T ≤ +125°C  
100 CHANNELS  
–40°C ≤ T ≤ +125°C  
100 CHANNELS  
A
A
6
6
4
4
2
2
0
0
TCV (µV/°C)  
TCV (µV/°C)  
OS  
OS  
Figure 7. Input Offset Voltage Drift Distribution  
Figure 10. Input Offset Voltage Drift Distribution  
1500  
1000  
500  
1500  
1000  
500  
V = 18V  
SY  
16 CHANNELS  
V
= 3V  
SY  
16 CHANNELS  
0
0
–500  
–1000  
–1500  
–500  
–1000  
–1500  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
3.0  
0
1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5 18.0  
V
V
(V)  
CM  
CM  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage  
Figure 11. Input Offset Voltage vs. Common-Mode Voltage  
Rev. 0 | Page 11 of 32  
 
 
 
 
 
ADA4666-2  
Data Sheet  
1500  
1000  
500  
1500  
V
= 18V  
SY  
V
= 3V  
SY  
25 CHANNELS AT –40°C AND +85°C  
25 CHANNELS AT –40°C AND +85°C  
1000  
500  
0
0
–500  
–1000  
–1500  
–500  
–1000  
–1500  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
3.0  
V
V
(V)  
CM  
CM  
Figure 12. Input Offset Voltage vs. Common-Mode Voltage  
Figure 15. Input Offset Voltage vs. Common-Mode Voltage  
1500  
1000  
500  
1500  
1000  
500  
V
= 18V  
SY  
V
= 3V  
SY  
25 CHANNELS AT –40°C AND +125°C  
25 CHANNELS AT –40°C AND +125°C  
0
0
–500  
–1000  
–1500  
–500  
–1000  
–1500  
0
0.3  
0.6  
0.9  
1.2  
1.5  
(V)  
1.8  
2.1  
2.4  
2.7  
3.0  
V
V
(V)  
CM  
CM  
Figure 13. Input Offset Voltage vs. Common-Mode Voltage  
Figure 16. Input Offset Voltage vs. Common-Mode Voltage  
0
0
V
ΔV  
= 10V  
= 400mV  
CM  
V
= 10V  
SY  
SY  
–20  
–40  
–20  
–40  
ΔV = 400mV  
SY  
PSRR–  
PSRR+  
–60  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
(V)  
CM  
CM  
Figure 17. Small Signal PSRR vs. Common-Mode Voltage  
Figure 14. Small Signal CMRR vs. Common-Mode Voltage  
Rev. 0 | Page 12 of 32  
 
 
 
 
 
 
Data Sheet  
ADA4666-2  
1000  
1000  
100  
10  
V
V
= 3V  
= V /2  
SY  
V = 18V  
SY  
SY  
V
= V /2  
SY  
CM  
CM  
100  
10  
1
|I –|  
B
|I –|  
B
|I +|  
|I +|  
B
B
1
0.1  
0.1  
25  
50  
75  
TEMPERATURE (°C)  
100  
125  
25  
50  
75  
TEMPERATURE (°C)  
100  
125  
Figure 18. Input Bias Current vs. Temperature  
Figure 21. Input Bias Current vs. Temperature  
3
2
3
V
V
= 3V  
= V /2  
SY  
V
V
= 18V  
SY  
SY  
2
1
= V /2  
CM  
CM  
SY  
1
0
0
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
V
CM  
CM  
Figure 19. Input Bias Current vs. Common-Mode Voltage  
Figure 22. Input Bias Current vs. Common-Mode Voltage  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
V
= 3V  
V
= 18V  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1
1
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 20. Output Voltage (VOH) to Supply Rail vs. Load Current  
Figure 23. Output Voltage (VOH) to Supply Rail vs. Load Current  
Rev. 0 | Page 13 of 32  
 
 
ADA4666-2  
Data Sheet  
10000  
10000  
1000  
100  
10  
V
= 3V  
V
= 18V  
SY  
SY  
1000  
100  
10  
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
1
1
0.1  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 24. Output Voltage (VOL) to Supply Rail vs. Load Current  
Figure 27. Output Voltage (VOL) to Supply Rail vs. Load Current  
3.00  
18.00  
17.95  
17.90  
17.85  
17.80  
17.75  
17.70  
R
= 10kΩ  
L
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
R
= 10kΩ  
L
R = 1kΩ  
L
R
= 1kΩ  
L
V
= 3V  
–25  
V
= 18V  
–25  
SY  
SY  
–50  
0
25  
50  
75  
100  
125  
–50  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. Output Voltage (VOH) vs. Temperature  
Figure 28. Output Voltage (VOH) vs. Temperature  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
V
= 18V  
SY  
V
= 3V  
SY  
R = 1kΩ  
L
R
= 1kΩ  
L
60  
40  
R
= 10kΩ  
R
= 10kΩ  
L
L
20  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 26. Output Voltage (VOL) vs. Temperature  
Figure 29. Output Voltage (VOL) vs. Temperature  
Rev. 0 | Page 14 of 32  
 
 
Data Sheet  
ADA4666-2  
1000  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 3V  
V
= 18V  
SY  
SY  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
–40°C  
+25°C  
+85°C  
+125°C  
–40°C  
+25°C  
+85°C  
+125°C  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
3
6
9
12  
15  
18  
V
V
(V)  
CM  
CM  
Figure 30. Supply Current vs. Common-Mode Voltage  
Figure 33. Supply Current vs. Common-Mode Voltage  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
600  
400  
200  
0
V
= V /2  
SY  
V
= V /2  
SY  
CM  
CM  
V
V
V
= 3V  
= 10V  
= 18V  
SY  
SY  
SY  
–40°C  
+25°C  
+85°C  
+125°C  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
V
SY  
Figure 34. Supply Current vs. Temperature  
Figure 31. Supply Current vs. Supply Voltage  
80  
60  
40  
20  
0
135  
80  
60  
40  
20  
0
135  
V
R
= 18V  
V
R
= 3V  
SY  
L
SY  
L
= 10kΩ  
= 10kΩ  
PHASE  
PHASE  
90  
45  
0
90  
45  
0
GAIN  
GAIN  
–45  
–45  
–90  
C
= 0pF  
C
C
C
C
= 0pF  
L
L
L
L
L
L
L
L
C
C
C
= 10pF  
= 0pF  
= 10pF  
= 0pF  
= 10pF  
= 10pF  
–90  
10M  
–20  
10k  
–20  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
100k  
1M  
FREQUENCY (Hz)  
Figure 32. Open-Loop Gain and Phase vs. Frequency  
Figure 35. Open-Loop Gain and Phase vs. Frequency  
Rev. 0 | Page 15 of 32  
ADA4666-2  
Data Sheet  
60  
60  
40  
V
C
= 3V  
= 5pF  
V
= 18V  
C = 5pF  
L
SY  
SY  
L
A
= 100  
A
= 100  
= 10  
V
V
40  
20  
A
= 10  
A
V
V
20  
A
= 1  
A = 1  
V
V
0
0
–20  
–40  
–20  
–40  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 36. Closed-Loop Gain vs. Frequency  
Figure 39. Closed-Loop Gain vs. Frequency  
10k  
1k  
10k  
1k  
V
CM  
= 3V  
V
V
= 18V  
SY  
= V /2  
CM SY  
SY  
V
= V /2  
SY  
100  
10  
100  
10  
A
= 100  
A
= 100  
V
V
A
= 10  
1
1
V
A
= 10  
V
A
= 1  
A
= 1  
V
V
0.1  
0.01  
0.1  
0.01  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Output Impedance vs. Frequency  
Figure 40. Output Impedance vs. Frequency  
120  
100  
80  
60  
40  
20  
0
120  
100  
80  
60  
40  
20  
0
V
= 18V  
V
CM  
= 3V  
SY  
CM  
SY  
V
= V /2  
V
= V /2  
SY  
SY  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 38. CMRR vs. Frequency  
Figure 41. CMRR vs. Frequency  
Rev. 0 | Page 16 of 32  
Data Sheet  
ADA4666-2  
100  
80  
60  
40  
20  
0
100  
V
= 3V  
V
= 18V  
PSRR+  
PSRR–  
PSRR+  
PSRR–  
SY  
SY  
80  
60  
40  
20  
0
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42. PSRR vs. Frequency  
Figure 45. PSRR vs. Frequency  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
V
= 3V  
V
= 18V  
SY  
IN  
V
L
SY  
IN  
V
L
V
= 100mV p-p  
= 1  
V
= 100mV p-p  
= 1  
A
R
A
R
= 10kΩ  
= 10kΩ  
OS–  
OS+  
OS–  
OS+  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
CAPACITANCE (pF)  
CAPACITANCE (pF)  
Figure 43. Small Signal Overshoot vs. Load Capacitance  
Figure 46. Small Signal Overshoot vs. Load Capacitance  
V
V
A
R
C
R
= ±9V  
= 17V p-p  
= 1  
= 10kΩ  
= 10pF  
= 1kΩ  
V
V
A
R
C
R
= ±1.5V  
= 2.5V p-p  
= 1  
= 10kΩ  
= 10pF  
= 1kΩ  
SY  
IN  
V
L
L
S
SY  
IN  
V
L
L
S
TIME (5µs/DIV)  
TIME (5µs/DIV)  
Figure 44. Large Signal Transient Response  
Figure 47. Large Signal Transient Response  
Rev. 0 | Page 17 of 32  
ADA4666-2  
Data Sheet  
V
V
A
R
C
= ±9V  
= 100mV p-p  
= 1  
V
V
A
R
C
= ±1.5V  
= 100mV p-p  
= 1  
SY  
IN  
SY  
IN  
V
L
L
V
L
L
= 10kΩ  
= 10pF  
= 10kΩ  
= 10pF  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 48. Small Signal Transient Response  
Figure 51. Small Signal Transient Response  
0.2  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1
0
18  
15  
12  
9
V
IN  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
V
–1  
–2  
–3  
–4  
–5  
–6  
IN  
V
OUT  
V
OUT  
6
3
V
= ±1.5V  
= –10  
V
= ±9V  
= –10  
SY  
SY  
A
R
C
A
R
C
V
L
L
V
L
L
0
–1.2  
–1.4  
= 10kΩ  
= 10pF  
= 225mV  
= 10kΩ  
= 10pF  
= 1.35V  
V
V
IN  
IN  
–0.5  
–3  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 49. Positive Overload Recovery  
Figure 52. Positive Overload Recovery  
0.4  
0.2  
2.0  
2
1
9
V
IN  
V
IN  
1.5  
6
0
1.0  
0
3
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
0.5  
–1  
–2  
–3  
–4  
–5  
0
0
–3  
–6  
–9  
–12  
–0.5  
–1.0  
–1.5  
–2.0  
V
= ±9V  
V
= ±1.5V  
SY  
V
SY  
OUT  
A
R
C
V
= –10  
V
A
R
C
V
= –10  
V
L
L
OUT  
V
L
L
= 10kΩ  
= 10pF  
= 1.35V  
= 10kΩ  
= 10pF  
= 225mV  
IN  
IN  
TIME (2µs/DIV)  
TIME (2µs/DIV)  
Figure 50. Negative Overload Recovery  
Figure 53. Negative Overload Recovery  
Rev. 0 | Page 18 of 32  
Data Sheet  
ADA4666-2  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
ERROR BAND  
ERROR BAND  
V
= ±9V  
= 1V p-p  
= 10kΩ  
= 10pF  
= –1  
V
V
R
C
A
= ±1.5V  
SY  
SY  
IN  
V
R
C
A
= 1V p-p  
IN  
= 10kΩ  
= 10pF  
= –1  
L
L
V
L
L
V
TIME (400ns/DIV)  
TIME (400ns/DIV)  
Figure 57. Positive Settling Time to 0.1%  
Figure 54. Positive Settling Time to 0.1%  
INPUT  
INPUT  
OUTPUT  
OUTPUT  
ERROR BAND  
ERROR BAND  
V
V
R
C
A
= ±1.5V  
= 1V p-p  
= 10kΩ  
= 10pF  
= –1  
V
V
R
C
A
= ±9V  
= 1V p-p  
= 10kΩ  
= 10pF  
= –1  
SY  
IN  
SY  
IN  
L
L
V
L
L
V
TIME (400ns/DIV)  
TIME (400ns/DIV)  
Figure 58. Negative Settling Time to 0.1%  
Figure 55. Negative Settling Time to 0.1%  
1k  
1k  
100  
10  
V
CM  
A
= 18V  
V
= 3V  
SY  
SY  
CM  
V
V
= V /2  
V
= V /2  
SY  
SY  
= 1  
A
= 1  
V
100  
10  
1
1
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 59. Voltage Noise Density vs. Frequency  
Figure 56. Voltage Noise Density vs. Frequency  
Rev. 0 | Page 19 of 32  
ADA4666-2  
Data Sheet  
V
V
= 3V  
V
V
= 18V  
SY  
SY  
= V /2  
= V /2  
CM  
SY  
CM  
SY  
A
= 1  
A
= 1  
V
V
TIME (2s/DIV)  
TIME (2s/DIV)  
Figure 60. 0.1 Hz to 10 Hz Noise  
Figure 63. 0.1 Hz to 10 Hz Noise  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
18  
16  
14  
12  
10  
8
6
V
V
R
C
A
= 3V  
= 2.9V  
= 10kΩ  
= 10pF  
= 1  
V
V
R
C
A
= 18V  
= 17.9V  
= 10kΩ  
= 10pF  
= 1  
4
SY  
IN  
L
L
V
SY  
IN  
L
L
V
2
0
10  
10  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 61. Output Swing vs. Frequency  
Figure 64. Output Swing vs. Frequency  
1
1
0.1  
80kHz LOW-PASS FILTER  
500kHz LOW-PASS FILTER  
V
= 3V  
80kHz LOW-PASS FILTER  
500kHz LOW-PASS FILTER  
V
= 18V  
SY  
V
L
SY  
V
L
A
R
V
= 1  
A
= 1  
= 10kΩ  
= 440mV rms  
R
V
= 10kΩ  
= 5.4V rms  
IN  
IN  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 62. THD + N vs. Frequency  
Figure 65. THD + N vs. Frequency  
Rev. 0 | Page 20 of 32  
Data Sheet  
ADA4666-2  
100  
10  
100  
V
= 18V  
V
= 3V  
SY  
V
L
SY  
V
L
A
R
= 1  
A
R
= 1  
= 10kΩ  
= 10kΩ  
f = 1kHz  
f = 1kHz  
10  
1
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
80kHz LOW-PASS FILTER  
80kHz LOW-PASS FILTER  
500kHz LOW-PASS FILTER  
500kHz LOW-PASS FILTER  
0.001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
AMPLITUDE (V rms)  
AMPLITUDE (V rms)  
Figure 66. THD + N vs. Amplitude  
Figure 68. THD + N vs. Amplitude  
0
–20  
0
–20  
V
V
V
= 0.5V p-p  
= 1.5V p-p  
= 2.9V p-p  
V
V
V
= 0.5V p-p  
IN  
IN  
IN  
IN  
IN  
IN  
= 9V p-p  
= 17.9V p-p  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
V
= 3V  
= 100  
V
= 18V  
= 100  
SY  
SY  
A
R
A
V
L
V
= 10kΩ  
R
= 10kΩ  
L
500kHz LOW-PASS FILTER  
500kHz LOW-PASS FILTER  
10  
100  
1k  
10k 100k  
10  
100  
1k  
10k 100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 67. Channel Separation vs. Frequency  
Figure 69. Channel Separation vs. Frequency  
Rev. 0 | Page 21 of 32  
ADA4666-2  
Data Sheet  
APPLICATIONS INFORMATION  
V+  
M19  
M17  
M20  
M18  
HIGH VOLTAGE PROTECTION  
I2  
M11  
M9  
M12  
M10  
M22  
C2  
C3  
+IN x  
–IN x  
R1  
R2  
C1  
M3 M4  
Q1  
Q2  
OUT x  
D1  
D2  
V1  
M1 M2  
M7  
M5  
M8  
M6  
M21  
M15  
M13  
M16  
M14  
I1  
I3  
HIGH VOLTAGE PROTECTION  
V–  
Figure 70. Simplified Schematic  
The ADA4666-2 is a low power, rail-to-rail input and output,  
CMOS amplifier that operates over a wide supply voltage range  
of 3 V to 18 V. To achieve a rail-to-rail input and output range  
with very low supply current, the ADA4666-2 uses unique input  
and output stages.  
For most of the input common-mode voltage range, the PMOS  
differential pair is active. When the input common-mode  
voltage is within a few volts of the power supplies, the input  
transistors are exposed to these voltage changes. As the  
common-mode voltage approaches the positive power supply,  
the active differential pair changes from the PMOS pair to the  
NMOS pair. Differential pairs commonly exhibit different offset  
voltages. The handoff of control from one differential pair to the  
other creates a step like characteristic that is visible in the VOS vs.  
INPUT STAGE  
Figure 70 shows the simplified schematic of the ADA4666-2.  
The amplifier uses a three-stage architecture with a fully  
differential input stage to achieve excellent dc performance  
specifications.  
VCM graphs (see Figure 8, Figure 11, Figure 12, Figure 13, Figure 15,  
and Figure 16). This characteristic is inherent in all rail-to-rail  
input amplifiers that use the dual differential pair topology.  
The input stage comprises two differential transistor pairs—a  
NMOS pair (M1, M2), a PMOS pair (M3, M4)—and folded-  
cascode transistors (M5 to M12). The input common-mode  
voltage determines which differential pair is active. The PMOS  
differential pair is active for most of the input common-mode  
range. The NMOS pair is required for input voltages up to and  
including the upper supply rail. This topology allows the  
amplifier to maintain a wide dynamic input voltage range and  
maximize signal swing to both supply rails.  
Additional steps in the VOS vs. VCM graphs are visible as the  
common-mode voltage approaches the negative power supply.  
These changes are a result of the load transistors (M5, M6)  
running out of headroom. As the load transistors are forced into  
the triode region of operation, the mismatch of their drain  
impedance becomes a significant portion of the amplifier offset.  
This effect can also be seen in the VOS vs. VCM graphs (see Figure 8,  
Figure 11, Figure 12, Figure 13, Figure 15, and Figure 16).  
The proprietary high voltage protection circuitry in the  
ADA4666-2 minimizes the common-mode voltage changes  
seen by the amplifier input stage for most of the input common-  
mode range. This results in the amplifier having excellent  
disturbance rejection when operating in this preferred  
common-mode range. The performance benefits of operating  
within this preferred range are shown in the PSRR vs. VCM (see  
Figure 17), CMRR vs. VCM (see Figure 14) and VOS vs. VCM  
graphs (see Figure 8, Figure 11, Figure 12, Figure 13, Figure 15,  
and Figure 16). The CMRR performance benefits of the reduced  
common-mode range are guaranteed at final test and shown in the  
electrical characteristics (see Table 2 to Table 4).  
Current Source I2 drives the PMOS transistor pair. As the input  
common-mode voltage approaches the upper power supply,  
this current is reduced to zero. At the same time, a replica  
current source, I1, is increased from zero to enable the NMOS  
transistor pair.  
The ADA4666-2 achieves its high performance specifications by  
using low voltage MOS devices for its differential inputs. These  
low voltage MOS devices offer excellent noise and bandwidth  
per unit of current. The input stage is isolated from the high  
system voltages with proprietary protection circuitry. This regu-  
lation circuitry protects the input devices from the high supply  
voltages at which the amplifier can operate.  
Rev. 0 | Page 22 of 32  
 
 
 
Data Sheet  
ADA4666-2  
The input devices are also protected from large differential  
input voltages by clamp diodes (D1 and D2). These diodes are  
buffered from the inputs with two 120 Ω resistors (R1 and R2).  
The diodes conduct significant current whenever the differential  
voltage exceeds approximately 600 mV; in this condition, the  
differential input resistance falls to 240 Ω. It is possible for a  
significant amount of current to flow through these protection  
diodes. The user must ensure that current flowing into the input  
pins is limited to the absolute maximum of 10 mA.  
Do not exceed the maximum junction temperature for the  
device, 150°C. Exceeding the junction temperature limit can  
cause degradation in the parametric performance or even  
destroy the device. To ensure proper operation, it is necessary to  
observe the maximum power derating curves. Figure 71 shows  
the maximum safe power dissipation in the package vs. the  
ambient temperature on a standard 4-layer JEDEC board. The  
exposed pad of the LFCSP package is soldered to the board.  
1.6  
T
= 150°C  
J MAX  
GAIN STAGE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
The second stage of the amplifier is composed of an NPN  
differential pair (Q1,Q2) and folded cascode transistors (M13  
to M20). The amplifier features nested Miller compensation  
(C1 to C3).  
8-LEAD LFCSP  
= 83.5°C/W  
θ
JA  
OUTPUT STAGE  
8-LEAD MSOP  
= 142°C/W  
θ
JA  
The ADA4666-2 features a complementary output stage  
consisting of the M21 and M22 transistors. These transistors are  
configured in a Class AB topology and are biased by the voltage  
source, V1. This topology allows the output voltage to go within  
millivolts of the supply rails, achieving a rail-to-rail output  
swing. The output voltage is limited by the output impedance of  
the transistors, which are low RON MOS devices. The output  
voltage swing is a function of the load current and can be  
estimated using the output voltage to the supply rail vs. load  
current graphs (see Figure 20, Figure 23, Figure 24, and Figure 27).  
The high voltage and high current capability of the ADA4666-2  
output stage requires the user to ensure that it operates within  
the thermal safe operating area (see the Maximum Power  
Dissipation section).  
0
25  
50  
75  
100  
125  
150  
AMBIENT TEMPERATURE (°C)  
Figure 71. Maximum Power Dissipation vs. Ambient Temperature  
Refer to Technical Article MS-2251, Data Sheet Intricacies—  
Absolute Maximum Ratings and Thermal Resistances, for more  
information.  
RAIL-TO-RAIL INPUT AND OUTPUT  
The ADA4666-2 features rail-to-rail input and output with a  
supply voltage from 3 V to 18 V. Figure 72 shows the input and  
output waveforms of the ADA4666-2 configured as a unity-gain  
buffer with a supply voltage of 9 V. With an input voltage of  
9 V, t h e ADA4666-2 allows the output to swing very close to  
both rails. Additionally, it does not exhibit phase reversal.  
10  
MAXIMUM POWER DISSIPATION  
The ADA4666-2 is capable of driving an output current up to  
220 mA. However, the usable output load current drive is  
limited to the maximum power dissipation allowed by the  
device package. The absolute maximum junction temperature  
for the ADA4666-2 is 150°C (see Table 5). The junction  
temperature can be estimated as follows:  
V
V
IN  
OUT  
8
6
4
TJ = PD × θJA + TA  
2
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated by the  
output stage transistor. It can be calculated as follows:  
0
–2  
–4  
–6  
–8  
–10  
PD = (VSY × ISY) + (VSY VOUT) × ILOAD  
V
V
A
R
C
= ±9V  
= ±9V  
= 1  
SY  
IN  
where:  
V
L
L
V
I
V
I
SY is the power supply rail.  
SY is the quiescent current.  
OUT is the output of the amplifier.  
LOAD is the output load.  
= 10kΩ  
= 10pF  
TIME (200µs/DIV)  
Figure 72. Rail-to-Rail Input and Output  
Rev. 0 | Page 23 of 32  
 
 
 
 
 
 
ADA4666-2  
Data Sheet  
Figure 75 and Figure 76 show the ADA4666-2 configured as a  
comparator, with 100 kΩ resistors in series with the input pins.  
Any unused channels are configured as buffers with the input  
voltage kept at the midpoint of the power supplies.  
COMPARATOR OPERATION  
An op amp is designed to operate in a closed-loop configuration  
with feedback from its output to its inverting input. Figure 73  
shows the ADA4666-2 configured as a voltage follower with an  
input voltage that is always kept at the midpoint of the power  
supplies. The same configuration is applied to the unused  
channel. A1 and A2 indicate the placement of ammeters to  
measure supply current. ISY+ refers to the current flowing from  
the upper supply rail to the op amp, and ISY− refers to the  
current flowing from the op amp to the lower supply rail. As  
shown in Figure 74, in normal operating conditions, the total  
current flowing into the op amp is equivalent to the total current  
flowing out of the op amp, where ISY+ = ISY− = 630 μA per amplifier  
at VSY = 18 V.  
+V  
SY  
A1  
I
+
SY  
100kΩ  
100kΩ  
ADA4666-2  
V
OUT  
1/2  
A2  
I
SY  
+V  
SY  
–V  
SY  
Figure 75. Comparator A  
A1  
I
+
SY  
+V  
SY  
A1  
I
+
SY  
100kΩ  
100kΩ  
ADA4666-2  
V
OUT  
1/2  
100kΩ  
ADA4666-2  
V
OUT  
A2  
I
SY  
1/2  
100kΩ  
A2  
I
SY  
–V  
SY  
Figure 73. Voltage Follower  
700  
600  
500  
400  
300  
200  
100  
0
–V  
SY  
Figure 76. Comparator B  
Figure 77 shows the supply currents for both comparator  
configurations. In comparator mode, the ADA4666-2 does not  
power up completely. For more information about configuring  
using op amps as comparators, see the AN-849 Application  
Note, Using Op Amps as Comparators.  
700  
600  
500  
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
COMPARATOR A  
400  
V
SY  
COMPARATOR B  
Figure 74. Supply Current vs. Supply Voltage (Voltage Follower)  
300  
In contrast to op amps, comparators are designed to work in an  
open-loop configuration and to drive logic circuits. Although  
op amps are different from comparators, occasionally an unused  
section of a dual op amp is used as a comparator to save board  
space and cost; however, this is not recommended for the  
ADA4666-2.  
200  
100  
0
0
2
4
6
8
10  
(V)  
12  
14  
16  
18  
V
SY  
Figure 77. Supply Current vs. Supply Voltage (ADA4666-2 as a Comparator)  
Rev. 0 | Page 24 of 32  
 
 
 
 
 
 
Data Sheet  
ADA4666-2  
Figure 79 shows a low-side current sensing circuit, and Figure 80  
shows a high-side current sensing circuit. Current flowing  
through the shunt resistor creates a voltage drop. The ADA4666-2,  
configured as a difference amplifier, amplifies the voltage drop  
by a factor of R2/R1. Note that for true difference amplification,  
matching of the resistor ratio is very important, where R2/R1 =  
R4/R3. The rail-to-rail output feature of the ADA4666-2 allows  
the output of the op amp to almost reach its positive supply.  
This allows the current shunt monitor to sense up to approximately  
VSY/(R2/R1 × RS) amperes of current. For example, with VSY =  
18 V, R2/R1 = 100, and RS = 100 mΩ, this current is approxi-  
mately 1.8 A.  
EMI REJECTION RATIO  
Circuit performance is often adversely affected by high frequency  
electromagnetic interference (EMI). When the signal strength is  
low and transmission lines are long, an op amp must accurately  
amplify the input signals. However, all op amp pins—the  
noninverting input, inverting input, positive supply, negative  
supply, and output pins—are susceptible to EMI signals. These  
high frequency signals are coupled into an op amp by various  
means, such as conduction, near field radiation, or far field  
radiation. For instance, wires and PCB traces can act as antennas  
and pick up high frequency EMI signals.  
Amplifiers do not amplify EMI or RF signals due to their  
relatively low bandwidth. However, due to the nonlinearities of  
the input devices, op amps can rectify these out-of-band signals.  
When these high frequency signals are rectified, they appear as  
a dc offset at the output.  
I
R
SUPPLY  
L
R
S
I
R1  
R2  
V
*
OUT  
V
SY  
To describe the ability of the ADA4666-2 to perform as  
intended in the presence of electromagnetic energy, the  
electromagnetic interference rejection ratio (EMIRR) of the  
noninverting pin is specified in Table 2, Table 3, and Table 4 of  
the Specifications section. A mathematical method of  
measuring EMIRR is defined as follows:  
1/2  
ADA4666-2  
R3  
R4  
*V  
= AMPLIFIER GAIN × VOLTAGE ACROSS R = R2/R1 × R × I  
OUT  
S
S
Figure 79. Low-Side Current Sensing Circuit  
R
S
I
EMIRR = 20 log (VIN_PEAKVOS)  
140  
R
SUPPLY  
L
I
V
= 3V TO 18V  
SY  
R3  
R4  
120  
100  
80  
V
SY  
V
*
1/2  
OUT  
ADA4666-2  
R1  
R2  
*V  
= AMPLIFIER GAIN × VOLTAGE ACROSS R = R2/R1 × R × I  
OUT  
S
S
60  
Figure 80. High-Side Current Sensing Circuit  
V
V
= 100mV PEAK  
= 50mV PEAK  
IN  
IN  
ACTIVE FILTERS  
40  
Active filters are used to separate signals, passing those of  
interest and attenuating signals at unwanted frequencies. For  
example, low-pass filters are often used as antialiasing filters in  
data acquisition systems or as noise filters to limit high  
frequency noise.  
20  
10M  
100M  
1G  
10G  
FREQUENCY (Hz)  
Figure 78. EMIRR vs. Frequency  
CURRENT SHUNT MONITOR  
The high input impedance, high bandwidth, low input bias  
current, and dc precision of the ADA4666-2 make it a good fit  
for active filters application. Figure 81 shows the ADA4666-2 in  
a four-pole Sallen-Key Butterworth low-pass filter configuration.  
The four-pole low-pass filter has two complex conjugate pole  
pairs and is implemented by cascading two two-pole low-pass  
filters. Section A and Section B are configured as two-pole low-  
pass filters in unity gain. Table 8 shows the Q requirement and  
pole position associated with each stage of the Butterworth  
filter. Refer to Chapter 8, Analog Filters,” in Linear Circuit  
Design Handbook, available at www.analog.com/AnalogDialogue,  
for pole locations on the S plane and Q requirements for filters  
of a different order.  
Many applications require the sensing of signals near the  
positive or negative rail. Current shunt monitors are one such  
application and are mostly used for feedback control systems.  
They are also used in a variety of other applications, including  
power metering, battery fuel gauging, and feedback controls in  
electrical power steering. In such applications, it is desirable to  
use a shunt with very low resistance to minimize the series  
voltage drop. This not only minimizes wasted power but also  
allows the measurement of high currents while saving power.  
The low input bias current, low offset voltage, and rail-to-rail  
feature of the ADA4666-2 makes the amplifier an excellent  
choice for precision current monitoring.  
Rev. 0 | Page 25 of 32  
 
 
 
 
 
ADA4666-2  
Data Sheet  
C2  
6.8nF  
C4  
6.8nF  
R1  
R2  
+V  
SY  
2.55k2.55kΩ  
R3  
R4  
+V  
V
SY  
IN  
6.19k6.19kΩ  
1/2  
C1  
5.6nF  
V
V
OUT2  
OUT1  
1/2  
ADA4666-2  
C3  
1nF  
–V  
ADA4666-2  
SY  
–V  
SY  
SECTION A  
SECTION B  
Figure 81. Four-Pole Low-Pass Filter  
CAPACITIVE LOAD DRIVE  
Table 8. Q Requirements and Pole Positions  
The ADA4666-2 can safely drive capacitive loads of up to 50 pF  
in any configuration. As with most amplifiers, driving larger  
capacitive loads than specified may cause excessive overshoot  
and ringing, or even oscillation. Heavy capacitive load reduces  
phase margin and causes the amplifier frequency response to  
peak. Peaking corresponds to overshooting or ringing in the  
time domain. Therefore, it is recommended that external  
compensation be used if the ADA4666-2 must drive a load  
exceeding 50 pF. This compensation is particularly important in  
the unity-gain configuration, which is the worst case for  
stability.  
Section  
Poles  
Q
A
B
−0.9239 j0.3827  
−0.3827 j0.9239  
0.5412  
1.3065  
The Sallen-Key topology is widely used due to its simple design  
with few circuit elements. This topology provides the user the  
flexibility of implementing either a low-pass or a high-pass filter  
by simply interchanging the resistors and capacitors. The  
ADA4666-2 is configured in unity gain with a corner frequency  
at 10 kHz. An active filter requires an op amp with a unity-gain  
bandwidth that is at least 100 times greater than the product of  
the corner frequency, fC, and the quality factor, Q. The resistors  
and capacitors are also important in determining the perfor-  
mance over manufacturing tolerances, time, and temperature.  
At least 1% or better tolerance resistors and 5% or better  
tolerance capacitors are recommended.  
A quick and easy way to stabilize the op amp for capacitive load  
drive is by adding a series resistor, RISO, between the amplifier  
output terminal and the load capacitance, as shown in Figure 83.  
RISO isolates the amplifier output and feedback network from  
the capacitive load. However, with this compensation scheme,  
the output impedance as seen by the load increases, and this  
reduces gain accuracy.  
Figure 82 shows the frequency response of the low-pass Sallen-  
Key filter, where:  
V
OUT1 is the output of the first stage.  
+V  
SY  
VOUT2 is the output of the second stage.  
R
ISO  
V
OUT  
1/2  
VOUT1 shows a 40 dB/decade roll-off and VOUT2 shows an  
80 dB/decade roll-off. The transition band becomes sharper as  
the order of the filter increases.  
V
IN  
ADA4666-2  
SY  
C
L
–V  
20  
Figure 83. Stability Compensation with Isolating Resistor, RISO  
Figure 84 shows the effect of the compensation scheme on the  
frequency response of the amplifier in unity-gain configuration  
driving 250 pF of load.  
0
–20  
V
1
OUT  
–40  
–60  
V
2
OUT  
–80  
–100  
V
V
= ±9V  
SY  
IN  
= 50mV p-p  
–120  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
Figure 82. Low-Pass Filter: Gain vs. Frequency  
Rev. 0 | Page 26 of 32  
 
 
 
 
 
Data Sheet  
ADA4666-2  
10  
0
–10  
–20  
–30  
V
V
A
C
R
= ±9V  
SY  
IN  
V
= 100mV p-p  
= 1  
R
R
R
R
= 0Ω  
–40  
–50  
ISO  
ISO  
ISO  
ISO  
= 210Ω  
= 301Ω  
= 499Ω  
= 250pF  
L
= 301Ω  
ISO  
TIME (10µs/DIV)  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 87. Output Response (RISO = 301 Ω)  
Figure 84. Frequency Response of Compensation Scheme  
Figure 85 shows the output response of the unity-gain amplifier  
driving 250 pF of capacitive load. With no compensation, the  
amplifier is unstable. Figure 86 to Figure 88 show the amplifier  
output response with 210 Ω, 301 Ω, and 750 Ω of RISO  
compensation. Note that with lower RISO values, ringing is still  
noticeable, whereas with higher RISO values, higher frequency  
signals are filtered out.  
V
V
A
C
R
= ±9V  
SY  
IN  
V
= 100mV p-p  
= 1  
= 250pF  
L
= 750Ω  
ISO  
TIME (10µs/DIV)  
Figure 88. Output Response (RISO = 750 Ω)  
V
V
A
C
R
= ±9V  
SY  
IN  
V
= 100mV p-p  
= 1  
= 250pF  
L
= 0Ω  
ISO  
TIME (10µs/DIV)  
Figure 85. Output Response with No Compensation (RISO = 0 Ω)  
V
V
A
C
R
= ±9V  
SY  
IN  
V
= 100mV p-p  
= 1  
= 250pF  
L
= 210Ω  
ISO  
TIME (10µs/DIV)  
Figure 86. Output Response (RISO = 210 Ω)  
Rev. 0 | Page 27 of 32  
 
 
 
 
ADA4666-2  
Data Sheet  
10  
NOISE CONSIDERATIONS WITH HIGH IMPEDANCE  
SOURCES  
Current noise from input terminals can become a dominant  
contributor to the total circuit noise when an amplifier is driven  
with a high impedance source. Unlike bipolar amplifiers,  
CMOS amplifiers like the ADA4666-2 do not have an intrinsic  
shot noise source at the input terminals. The small amount of  
shot noise present is produced by the reverse saturation current  
in the ESD protection diodes. This current noise is typically on  
the order of 1 fA/√Hz to 10 fA/√Hz. Therefore, to measure  
current noise in this range, a large source impedance of greater  
than 10 GΩ is required.  
1
R
= 10MΩ  
S
R
= 1MΩ  
S
0.1  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
For the ADA4666-2, the more relevant discussion centers  
around an effect referred to as blowback noise. The blowback  
effect comes from noise in the tail current source of the  
amplifier, which is capacitively coupled to the amplifier inputs  
through the gate-to-source capacitance (CGS) of the input  
transistors. This blowback noise is multiplied by the source  
impedance and appears as voltage noise at the input terminal. A  
10× increase in the source impedance results in a 10× increase  
in the voltage noise due to blowback.  
FREQUENCY (Hz)  
Figure 89. Voltage Noise Density vs. Frequency (with Input Series Resistor, RS)  
1
NOISE BANDWIDTH  
LIMITATION  
R
R
= 1MΩ  
= 10MΩ  
S
S
0.1  
The blowback noise spectrum has a high-pass response at low  
frequencies due to CGS coupling. At high frequencies, the  
spectrum tends to roll off with two poles: an internal pole due  
to parasitic capacitances of the tail current source and an  
external pole due to parasitic capacitances on the PCB.  
NOISE MEASUREMENT  
LIMITATION  
0.01  
Figure 89 shows the voltage noise density of the ADA4666-2  
with source impedances of 1 MΩ and 10 MΩ. At low  
frequencies (<1 Hz to 10 Hz), the amplifier 1/f voltage noise  
dominates the spectrum. At moderate frequencies, the  
spectrum flattens due to the thermal noise of the source  
resistors. As the frequency increases, blowback noise dominates  
and causes the voltage noise spectrum to increase. The noise  
spectrum continues to increase until it reaches either the  
internal or external pole frequency. After these poles, the  
spectrum starts to decrease.  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 90. Current Noise Density vs. Frequency  
Figure 90 shows the current noise density of the ADA4666-2  
with source impedances of 1 MΩ and 10 MΩ. This current  
noise is extracted only from the voltage noise density curves in  
the frequency band where blowback noise is the dominant  
contributor. At low frequencies, the noise measurement is  
dominated by resistor thermal noise and amplifier 1/f noise. At  
high frequencies, parasitic capacitances dominate the source  
impedance. The uncertainty of this scale factor prevents an  
accurate current noise measurement for the entire frequency  
range.  
Blowback noise is present in all amplifiers. The magnitude of  
the effect depends on the size of the input transistors and the  
construction of the biasing circuitry. CMOS amplifiers typically  
have more blowback noise than JFET amplifiers due to noisier  
MOS transistor biasing. On the other hand, bipolar amplifiers  
typically do not exhibit blowback noise because the large base  
current shot noise masks any blowback noise present.  
Rev. 0 | Page 28 of 32  
 
 
Data Sheet  
ADA4666-2  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 91. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.44  
2.34  
2.24  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.50  
0.40  
0.30  
0.20 MIN  
4
1
PIN 1  
TOP VIEW  
BOTTOM VIEW  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 92. 8-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-8-11)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
CP-8-11  
CP-8-11  
RM-8  
RM-8  
RM-8  
Branding  
A34  
A34  
A34  
A34  
ADA4666-2ACPZ-R7  
ADA4666-2ACPZ-RL  
ADA4666-2ARMZ  
ADA4666-2ARMZ-RL  
ADA4666-2ARMZ-R7  
A34  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 29 of 32  
 
 
ADA4666-2  
NOTES  
Data Sheet  
Rev. 0 | Page 30 of 32  
Data Sheet  
NOTES  
ADA4666-2  
Rev. 0 | Page 31 of 32  
 
ADA4666-2  
NOTES  
Data Sheet  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11382-0-7/13(0)  
Rev. 0 | Page 32 of 32  

相关型号:

ADA4691-2

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-2ACBZ-R7

Low Power, 3.6 MHz, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-2ACPZ-R2

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-2ACPZ-R7

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-2ACPZ-RL

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-2SD

Operational Amplifiers Selection Guide
ADI

ADA4691-4

Operational Amplifiers Selection Guide
ADI

ADA4691-4ACPZ-R2

QUAD OP-AMP, 4000 uV OFFSET-MAX, 3.6 MHz BAND WIDTH, QCC16, 3 X 3 MM, ROHS COMPLIANT, MO-220WEED, LFCSP-16
ROCHESTER

ADA4691-4ACPZ-R2

Low Power, 3.6 MHz, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-4ACPZ-R7

Low Power, 3.6 MHz, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI

ADA4691-4SD

Operational Amplifiers Selection Guide
ADI

ADA4692-2

Dual, Low Power, Wideband, Low Noise, Rail-to-Rail Output, Operational Amplifiers
ADI