ADA4805-2ACPZ-R2 [ADI]

Dual, 0.2 µV/°C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier;
ADA4805-2ACPZ-R2
型号: ADA4805-2ACPZ-R2
厂家: ADI    ADI
描述:

Dual, 0.2 µV/°C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier

放大器 光电二极管
文件: 总25页 (文件大小:830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.2 µV/°C Offset Drift, 105 MHz Low Power,  
Low Noise, Rail-to-Rail Amplifiers  
ADA4805-1/ADA4805-2  
Data Sheet  
FEATURES  
TYPICAL APPLICATIONS CIRCUIT  
+7.5V  
Low input offset voltage: 125 µV (maximum)  
Low input offset voltage drift  
5V REF  
ADA4805-1/  
ADA4805-2  
ADR435  
VDD  
0.2 µV/°C (typical)  
1.5 µV/°C (maximum)  
C4  
100nF  
C2  
10µF  
C3  
0.1µF  
Ultralow supply current: 500 µA per amplifier  
Fully specified at VS = 3 V, 5 V, 5 V  
High speed performance  
−3 dB bandwidth: 105 MHz  
Slew rate: 160 V/µs  
+7.5V  
ADA4805-1/  
0V TO  
REF  
ADA4805-2  
REF VDD  
V
IN+  
IN–  
R3  
20Ω  
AD7980  
GND  
Settling time to 0.1%: 35 ns  
Rail-to-rail outputs  
C1  
2.7nF  
Input common-mode range: −VS − 0.1 V to +VS − 1 V  
Low noise: 5.9 nV/√Hz at 100 kHz; 0.6 pA/√Hz at 100 kHz  
Low distortion: −102 dBc/−126 dBc HD2/HD3 at 100 kHz  
Low input bias current: 470 nA (typical)  
Dynamic power scaling  
Turn-on time: 3 µs (maximum) fully settled  
Small packaging  
6-lead SC70, 6-lead SOT-23, and 8-lead MSOP  
Figure 1. Driving the AD7980 with the ADA4805-1/ADA4805-2  
The Analog Devices, Inc., proprietary extra fast complementary  
bipolar (XFCB) process allows both low voltage and low current  
noise (5.9 nV/√Hz, 0.6 pA/√Hz). The ADA4805-1/ADA4805-2  
operate over a wide range of supply voltages from 1.5 V to  
5 V, as well as single 3 V and 5 V supplies, making them ideal  
for high speed, low power instruments.  
The ADA4805-1 is available in a 6-lead SOT-23 and a 6-lead  
SC70 package. The ADA4805-2 is available in an 8-lead MSOP  
and a 10-lead LFCSP package. These amplifiers are rated to  
work over the industrial temperature range of −40°C to +125°C.  
APPLICATIONS  
High resolution, high precision analog-to-digital converter  
(ADC) drivers  
Battery-powered instrumentation  
Micropower active filters  
Portable point of sales terminals  
Active RFID readers  
0
INPUT FREQUENCY = 10kHz  
SNR = 89.4dB  
–20  
THD = 104dB  
SINAD = 89.3dB  
–40  
Photo multipliers  
ADC reference buffers  
–60  
–80  
GENERAL DESCRIPTION  
–100  
–120  
–140  
–160  
–180  
The ADA4805-1/ADA4805-2 are high speed voltage feedback,  
rail-to-rail output amplifiers with an exceptionally low  
quiescent current of 500 µA, making them ideal for low power,  
high resolution data conversion systems. Despite being low  
power, these amplifiers provide excellent overall performance.  
They offer a high bandwidth of 105 MHz at a gain of +1, a high  
slew rate of 160 V/µs, and a low input offset voltage of 125 µV  
(maximum).  
0
10  
20  
30  
40  
50  
60  
70  
80  
FREQUENCY (kHz)  
Figure 2. FFT Plot for the Circuit Configuration in Figure 1  
Table 1. Complementary ADCs to the ADA4805-1/ADA4805-2  
A shutdown pin allows further reduction of the quiescent  
supply current to 2.9 µA. For power sensitive applications, the  
shutdown mode offers a very fast turn-on time of 3 µs. This  
allows the user to dynamically manage the power of the  
amplifier by turning the amplifier off between ADC samples.  
Throughput Resolution SNR  
Product ADC Power (mW) (MSPS)  
(Bits)  
(dB)  
AD7982  
AD7984  
AD7980  
AD7685  
7.0  
10.5  
4.0  
10  
1
1.33  
1
18  
18  
16  
16  
98  
98.5  
91  
0.25  
88  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Amplifier Description................................................................ 18  
Input Protection ......................................................................... 18  
Shutdown Operation.................................................................. 18  
Noise Considerations................................................................. 19  
Applications Information.............................................................. 20  
Slew Enhancement..................................................................... 20  
Effect of Feedback Resistor on Frequency Response ............ 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Typical Applications Circuit............................................................ 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
±± ꢀ Supply................................................................................... 3  
± ꢀ Supply...................................................................................... 4  
3 ꢀ Supply...................................................................................... ±  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
Maximum Power Dissipation ..................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 10  
Test Circuits..................................................................................... 17  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
Compensating Peaking in Large Signal Frequency Response  
....................................................................................................... 20  
Driving Low Power, High Resolution Successive  
Approximation Register (SAR) ADCs..................................... 20  
Dynamic Power Scaling............................................................. 21  
Single-Ended to Differential Conversion ................................... 23  
Layout Considerations............................................................... 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 2±  
12/14—Rev. A to Rev. B  
Changes to Figure 7 Caption, Figure 8 Caption, Figure 9  
Added 10-Lead LFCSP....................................................... Universal  
Caption, Figure 10 Caption, and Figure 11 Caption.....................9  
Changes to Figure 13 Caption, Figure 14, Figure 17, and  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
Changes to  
Changes to  
Changes to  
Current Parameter, Table 2................3  
Current Parameter, Table 3................±  
Current Parameter, Table 4................6  
Figure 18 ...........................................................................................10  
Change to Figure 29 ........................................................................12  
Moved Figure 41..............................................................................1±  
Changes to Figure 42.......................................................................1±  
Added Figure 43 ..............................................................................1±  
Changes to Figure 47 and Figure 48..............................................16  
Changes to Amplifier Description Section, Input Protection  
Section, Shutdown Operation Section, and Figure ±1................17  
Changes to Noise Considerations Section and Figure ±2 ..........18  
Changes to Effect of Feedback Resistor on Frequency Response  
Section, Compensating Peaking in Large Signal Frequency  
Response Section, Figure ±7, and Driving Low Power, High  
Resolution Successive Approximation Register (SAR) ADC  
Section...............................................................................................19  
Changes to Figure ±8, Dynamic Power Scaling Section,  
Changes to Table 6 and Figure 3......................................................7  
Changes to Table 8.............................................................................9  
Added Figure 6, Renumbered Sequentially ...................................9  
Added Figure 42...............................................................................16  
Changed Layout...............................................................................16  
Changes to Shutdown Operation Section ....................................18  
Changes to Dynamic Power Scaling Section and Figure 61 ......21  
Changes to Figure 62 and Figure 63..............................................22  
Updated Outline Dimensions........................................................2±  
Changes to Ordering Guide ...........................................................2±  
9/14—Rev. 0 to Rev. A  
Added ADA480±-2............................................................. Universal  
Changes to Features Section, General Description Section, and  
Table 1 .................................................................................................1  
Changes to Table 2.............................................................................3  
Changes to Table 3.............................................................................4  
Changes to Table 4.............................................................................±  
Changes to Table 6 and Figure 3......................................................7  
Added Figure 6; Renumbered Sequentially; and Table 8;  
Renumbered Sequentially.................................................................8  
Figure ±9, and Table 10...................................................................20  
Change to Figure 60 ........................................................................21  
Changes to Single-Ended to Differential Conversion Section,  
Table 11, and Figure 62...................................................................22  
Updated Outline Dimensions, Figure 6± .....................................24  
Changes to Ordering Guide...........................................................24  
7/14—Revision 0: Initial Version  
Rev. B | Page 2 of 25  
 
Data Sheet  
ADA4805-1/ADA4805-2  
SPECIFICATIONS  
5 V SUPPLY  
VS = 5 V at TA = 25°C; RF = 0 Ω for G = +1; otherwise, RF = 1 kΩ; RL = 2 kΩ to ground; unless otherwise noted. All specifications are per  
amplifier.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 2 V p-p  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 2 V step  
G = +2, VOUT = 4 V step  
G = +1, VOUT = 2 V step  
G = +2, VOUT = 4 V step  
120  
40  
18  
190  
250  
35  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
78  
ns  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD31  
fC = 20 kHz, VOUT = 2 V p-p  
−114/−140  
−102/−128  
−109/−143  
−93/−130  
−113/−142  
−96/−130  
5.2  
8
44  
0.7  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
Hz  
nV rms  
pA/√Hz  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 20 kHz, VOUT = 4 V p-p, G = +1  
fC = 100 kHz, VOUT = 4 V p-p, G = +1  
fC = 20 kHz, VOUT = 4 V p-p, G = +2  
fC = 100 kHz, VOUT = 4 V p-p, G = +2  
f = 100 kHz  
Input Voltage Noise  
Input Voltage Noise 1/f Corner Frequency  
0.1 Hz to 10 Hz Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift2  
Input Bias Current  
Input Offset Current  
Open-Loop Gain  
f = 100 kHz  
13  
125  
1.5  
800  
25  
µV  
µV/°C  
nA  
nA  
dB  
TMIN to TMAX, 4 σ  
VOUT = −4.0 V to +4.0 V  
0.2  
550  
2.1  
111  
107  
INPUT CHARACTERISTICS  
Input Resistance  
Common Mode  
Differential Mode  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
SHUTDOWN PIN  
50  
260  
1
MΩ  
kΩ  
pF  
V
−5.1  
103  
+4  
VIN, CM = −4.0 V to +4.0 V  
130  
dB  
SHUTDOWN Voltage  
Low  
High  
Powered down  
Enabled  
<−1.3  
>−0.9  
V
V
SHUTDOWN Current  
Low  
High  
Powered down  
Enabled  
50% of SHUTDOWN to <10% of enabled  
quiescent current  
−1.0  
0.2  
0.02  
1.25  
µA  
µA  
µs  
1.0  
2.75  
Turn-Off Time  
Turn-On Time  
50% of SHUTDOWN to >90% of final VOUT  
2
3
µs  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
(Rising/Falling Edge)  
Output Voltage Swing  
VIN = +6 V to −6 V, G = +2  
95/100  
ns  
V
RL = 2 kΩ  
−4.98  
+4.98  
Rev. B | Page 3 of 25  
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
Parameter  
Test Conditions/Comments  
Sinking/sourcing  
<1% THD at 100 kHz, VOUT = 2 V p-p  
VIN = 0.5 V p-p, f = 1 MHz, SHUTDOWN = −VS  
30% overshoot  
Min  
Typ  
85/73  
58  
Max  
Unit  
mA  
mA  
dB  
Short-Circuit Current  
Linear Output Current  
Off Isolation  
41  
Capacitive Load Drive  
POWER SUPPLY  
15  
pF  
Operating Range  
2.7  
10  
V
Quiescent Current per Amplifier  
Enabled  
SHUTDOWN = −VS  
570  
7.4  
625  
12  
µA  
µA  
Power Supply Rejection Ratio  
Positive  
Negative  
+VS = 3 V to 5 V, −VS = −5 V  
+VS = 5 V, −VS = −3 V to −5 V  
100  
100  
119  
122  
dB  
dB  
1 fC is the fundamental frequency.  
2 Guaranteed, but not tested.  
5 V SUPPLY  
VS = 5 V at TA = 25°C; RF = 0 Ω for G = +1; otherwise, RF = 1 kΩ; RL = 2 kΩ to midsupply; unless otherwise noted. All specifications are  
per amplifier.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 2 V p-p  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 2 V step  
G = +2, VOUT = 4 V step  
G = +1, VOUT = 2 V step  
G = +2, VOUT = 4 V step  
105  
35  
20  
160  
220  
35  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
82  
ns  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD31  
fC = 20 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 20 kHz, G = +2, VOUT = 4 V p-p  
fC = 100 kHz, G = +2, VOUT = 4 V p-p  
f = 100 kHz  
−114/−135  
−102/−126  
−107/−143  
−90/−130  
5.9  
8
54  
0.6  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
Hz  
nV rms  
pA/√Hz  
Input Voltage Noise  
Input Voltage Noise 1/f Corner  
0.1 Hz to 10 Hz Voltage Noise  
Input Current Noise  
f = 100 kHz  
DC PERFORMANCE  
Input Offset Voltage  
9
125  
1.5  
720  
µV  
µV/°C  
nA  
nA  
dB  
Input Offset Voltage Drift2  
TMIN to TMAX, 4 σ  
VOUT = 1.25 V to 3.75 V  
0.2  
470  
0.4  
109  
Input Bias Current  
Input Offset Current  
Open-Loop Gain  
105  
INPUT CHARACTERISTICS  
Input Resistance  
Common Mode  
Differential Mode  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
50  
260  
1
MΩ  
kΩ  
pF  
V
−0.1  
103  
+4  
VIN, CM = 1.25 V to 3.75 V  
133  
dB  
Rev. B | Page 4 of 25  
 
 
Data Sheet  
ADA4805-1/ADA4805-2  
Parameter  
SHUTDOWN PIN  
SHUTDOWN Voltage  
Low  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Powered down  
Enabled  
<1.5  
>1.9  
V
V
High  
SHUTDOWN Current  
Low  
High  
Powered down  
Enabled  
50% of SHUTDOWN to <10% of enabled  
quiescent current  
−1.0  
0.1  
0.01  
0.9  
µA  
µA  
µs  
1.0  
1.25  
Turn-Off Time  
Turn-On Time  
50% of SHUTDOWN to >90% of final VOUT  
3
4
µs  
ns  
OUTPUT CHARACTERISTICS  
Overdrive Recovery Time (Rising/Falling  
Edge)  
VIN = −1 V to +6 V, G = +2  
130/145  
Output Voltage Swing  
Short-Circuit Current  
Linear Output Current  
Off Isolation  
RL = 2 kΩ  
Sinking/sourcing  
<1% THD at 100 kHz, VOUT = 2 V p-p  
VIN = 0.5 V p-p, f = 1 MHz, SHUTDOWN = −VS  
30% overshoot  
0.02  
2.7  
4.98  
V
73/63  
47  
41  
mA  
mA  
dB  
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
15  
10  
520  
4
V
µA  
µA  
Quiescent Current per Amplifier  
Enabled  
SHUTDOWN = −VS  
500  
2.9  
Power Supply Rejection Ratio  
Positive  
Negative  
+VS = 1.5 V to 3.5 V, −VS = −2.5 V  
+VS = 2.5 V, −VS = −1.5 V to −3.5 V  
100  
100  
120  
126  
dB  
dB  
1 fC is the fundamental frequency.  
2 Guaranteed, but not tested.  
3 V SUPPLY  
VS = 3 V at TA = 25°C; RF = 0 Ω for G = +1; otherwise, RF = 1 kΩ; RL = 2 kΩ to midsupply; unless otherwise noted. All specifications are  
per amplifier.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 1 V p-p, +VS = 2 V, −VS = −1 V  
G = +1, VOUT = 0.02 V p-p  
G = +1, VOUT = 1 V step, +VS = 2 V, −VS = −1 V  
G = +1, VOUT = 1 V step  
95  
30  
35  
85  
41  
MHz  
MHz  
MHz  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD31  
fC = 20 kHz, VOUT = 1 V p-p, +VS = 2 V, −VS = −1 V  
fC = 100 kHz, VOUT = 1 V p-p, +VS = 2 V, −VS = −1 V  
f = 100 kHz  
−123/−143  
−107/−133  
6.3  
8
55  
0.8  
dBc  
dBc  
nV/√Hz  
Hz  
nV rms  
pA/√Hz  
Input Voltage Noise  
Input Voltage Noise 1/f Corner  
0.1 Hz to 10 Hz Voltage Noise  
Input Current Noise  
f = 100 kHz  
Rev. B | Page 5 of 25  
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
Parameter  
Test Conditions/Comments  
TMIN to TMAX, 4 σ  
Min Typ  
Max Unit  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift2  
Input Bias Current  
Input Offset Current  
Open-Loop Gain  
INPUT CHARACTERISTICS  
Input Resistance  
Common Mode  
Differential Mode  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
SHUTDOWN PIN  
SHUTDOWN Voltage  
Low  
7
125  
1.5  
690  
µV  
µV/°C  
nA  
0.2  
440  
0.5  
nA  
dB  
VOUT = 1.1 V to 1.9 V  
100  
107  
50  
260  
1
MΩ  
kΩ  
pF  
V
−0.1  
89  
+2  
VIN, CM = 0.5 V to 2 V  
117  
dB  
Powered down  
Enabled  
<0.7  
>1.1  
V
V
High  
SHUTDOWN Current  
Low  
High  
Powered down  
Enabled  
−1.0 0.1  
0.01  
µA  
µA  
1.0  
Turn-Off Time  
50% of SHUTDOWN to <10% of enabled  
quiescent current  
0.9  
1.25 µs  
Turn-On Time  
50% of SHUTDOWN to >90% of final VOUT  
7
8
µs  
ns  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time  
(Rising/Falling Edge)  
VIN = −1 V to +4 V, G = +2  
135/175  
Output Voltage Swing  
Short-Circuit Current  
Linear Output Current  
Off Isolation  
RL = 2 kΩ  
Sinking/sourcing  
<1% THD at 100 kHz, VOUT = 1 V p-p  
VIN = 0.5 V p-p, f = 1 MHz, SHUTDOWN = −VS  
30% overshoot  
0.02  
2.7  
2.98  
V
65/47  
40  
41  
mA  
mA  
dB  
pF  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
15  
10  
495  
3
V
µA  
µA  
Quiescent Current per Amplifier  
Enabled  
SHUTDOWN = −VS  
470  
1.3  
Power Supply Rejection Ratio  
Positive  
Negative  
+VS = 1.5 V to 3.5 V, −VS = −1.5 V  
+VS = 1.5 V, −VS = −1.5 V to −3.5 V  
96  
96  
119  
125  
dB  
dB  
1 fC is the fundamental frequency.  
2 Guaranteed, but not tested.  
Rev. B | Page 6 of 25  
 
Data Sheet  
ADA4805-1/ADA4805-2  
ABSOLUTE MAXIMUM RATINGS  
The quiescent power dissipation is the voltage between the supply  
pins (VS) multiplied by the quiescent current (IS).  
Table 5.  
Parameter  
Rating  
PD = Quiescent Power + (Total Drive Power Load Power)  
Supply Voltage  
11 V  
Power Dissipation  
See Figure 3  
−VS − 0.7 V to +VS + 0.7 V  
1 V  
−65°C to +125°C  
−40°C to +125°C  
2
VS VOUT  
VOUT  
RL  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec) 300°C  
Junction Temperature 150°C  
PD VS IS  
2
RL  
RMS output voltages must be considered. If RL is referenced  
to −VS, as in single-supply operation, the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
2
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
VS / 4  
PD  
VS IS   
RL  
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA. Also,  
more metal directly in contact with the package leads and  
exposed pad from metal traces, through holes, ground, and  
power planes reduces θJA.  
THERMAL RESISTANCE  
θJA is specified for the worst case conditions, that is, θJA is specified  
for a device soldered in a circuit board for surface-mount packages.  
Table 6 lists the θJA for the ADA4805-1/ADA4805-2.  
Figure 3 shows the maximum safe power dissipation in the  
package vs. the ambient temperature on a JEDEC standard,  
4-layer board. θJA values are approximations.  
4.0  
Table 6. Thermal Resistance  
T
= 150°C  
J
Package Type  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6-Lead SC70  
223.6  
209.1  
123.8  
51.4  
10-LEAD LFCSP  
6-Lead SOT-23  
8-Lead MSOP  
10-Lead LFCSP  
MAXIMUM POWER DISSIPATION  
8-LEAD MSOP  
6-LEAD SOT-23  
The maximum safe power dissipation for the ADA4805-1/  
ADA4805-2 is limited by the associated rise in junction  
temperature (TJ) on the die. At approximately 150C, which is  
the glass transition temperature, the properties of the plastic  
change. Even temporarily exceeding this temperature limit may  
change the stresses that the package exerts on the die, permanently  
shifting the parametric performance of the ADA4805-1/ADA4805-2.  
Exceeding a junction temperature of 175C for an extended  
period of time can result in changes in silicon devices, potentially  
causing degradation or loss of functionality.  
6-LEAD SC70  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the die  
due to the ADA4805-1/ADA4805-2 output load drive.  
Rev. B | Page 7 of 25  
 
 
 
 
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADA4805-1  
ADA4805-1  
V
1
2
3
6
5
4
+V  
S
V
1
2
3
6
5
4
+V  
S
OUT  
OUT  
–V  
S
–V  
S
SHUTDOWN  
–IN  
SHUTDOWN  
–IN  
+IN  
+IN  
Figure 5. 6-Lead SOT-23 Pin Configuration  
Figure 4. 6-Lead SC70 Pin Configuration  
Table 7. ADA4805-1 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
VOUT  
−VS  
+IN  
−IN  
SHUTDOWN  
+VS  
Output.  
Negative Supply.  
Noninverting Input.  
Inverting Input.  
Active Low Power-Down.  
Positive Supply.  
Rev. B | Page 8 of 25  
 
Data Sheet  
ADA4805-1/ADA4805-2  
ADA4805-2  
10 +V  
V
1
2
3
4
5
S
OUT1  
–IN1  
+IN1  
9
8
7
6
V
OUT2  
–IN2  
ADA4805-2  
–V  
+IN2  
S
V
1
2
3
4
8
7
6
5
+V  
SHUTDOWN1  
NOTES  
OUT1  
–IN1  
S
SHUTDOWN2  
V
OUT2  
+IN1  
–IN2  
+IN2  
1. THE EXPOSED PAD CAN BE CONNECTED TO  
GROUND OR POWER PLANES, OR IT CAN  
BE LEFT FLOATING.  
–V  
S
Figure 6. 10-Lead LFCSP Pin Configuration  
Figure 7. 8-Lead MSOP Pin Configuration  
Table 8. ADA4805-2 Pin Function Descriptions  
Pin No.  
10-Lead LFCSP  
8-Lead MSOP1  
Mnemonic  
VOUT1  
−IN1  
+IN1  
−VS  
SHUTDOWN1  
SHUTDOWN2  
+IN2  
−IN2  
VOUT2  
Description  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
N/A  
N/A  
5
6
7
Output 1.  
Inverting Input 1.  
Noninverting Input 1.  
Negative Supply.  
Active Low Power-Down 1.  
Active Low Power-Down 2.  
Noninverting Input 2.  
Inverting Input 2.  
Output 2.  
8
+VS  
Positive Supply.  
N/A  
EPAD  
Exposed Pad. For the 10-Lead LFCSP, the EPAD can be connected to ground or  
power planes, or it can be left floating.  
1 N/A means not applicable.  
Rev. B | Page 9 of 25  
ADA4805-1/ADA4805-2  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
RL = 2 kΩ, unless otherwise noted. When G = +1, RF = 0 Ω.  
3
0
3
G = +2  
G = +1  
0
G = +1  
G = +10  
G = +5  
–3  
–6  
–9  
–12  
–3  
G = +5  
–6  
G = +2  
G = +10  
–9  
V
V
= ±2.5V  
OUT  
= 2kΩ  
V
V
= ±2.5V  
S
S
= 20mV p-p  
= 2V p-p  
OUT  
R
R
R
R
= 1kΩ  
L
F
F
L
= 2kΩ  
= 1kΩ  
–12  
0.1  
0.1  
1
10  
100  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 8. Small Signal Frequency Response for Various Gains  
Figure 11. Large Signal Frequency Response for Various Gains  
3
3
–40°C  
–40°C  
+25°C  
0
0
+25°C  
–3  
+125°C  
+125°C  
–3  
–6  
–9  
–6  
V
= ±2.5V  
V
= ±2.5V  
S
S
G = +1  
= 20mV p-p  
G = +1  
= 2V p-p  
V
R
V
R
OUT  
= 2kΩ  
OUT  
= 2kΩ  
L
L
–12  
0.1  
–9  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
Figure 9. Small Signal Frequency Response for Various Temperatures  
Figure 12. Large Signal Frequency Response for Various Temperatures  
3
3
V
= ±5V  
S
V
= 0.5V p-p  
OUT  
V
= ±2.5V  
S
V
= 20mV p-p  
OUT  
0
–3  
V
= ±1.5V  
S
0
–3  
–6  
–6  
V
= 2V p-p  
OUT  
–9  
V
= 100mV p-p  
10  
G = +1  
= 20mV p-p  
L
V
= ±2.5V  
OUT  
S
V
R
G = +1  
= 2kΩ  
OUT  
= 2kΩ  
R
L
–12  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
100  
1000  
FREQUENCY (MHz)  
Figure 10. Small Signal Frequency Response for Various Supply Voltages  
Figure 13. Frequency Response for Various Output Voltages  
Rev. B | Page 10 of 25  
 
Data Sheet  
ADA4805-1/ADA4805-2  
12  
0.6  
0.5  
V
= ±2.5V  
V
V
= ±2.5V  
S
S
G = +1  
= 20mV p-p  
IN  
R
V
= 2k  
9
6
G = +1  
L
= 20mV p-p  
R
= 2k  
0.4  
OUT  
L
0.3  
0.2  
3
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–3  
–6  
–9  
–12  
C
C
C
C
C
= 15pF  
= 10pF  
= 5pF  
L
L
L
L
L
= 0pF  
= 15pF, R  
=
226Ω  
10  
FREQUENCY (MHz)  
S
1
100  
1
10  
100  
FREQUENCY (MHz)  
Figure 14. Small Signal Frequency Response for Various Capacitive Loads  
(See Figure 46)  
Figure 17. Small Signal 0.1 dB Bandwidth  
–50  
–60  
–50  
V
V
V
= ±5V, V  
= ±2.5V, V  
= +2V/–1V, V  
= 2V p-p  
= 2V p-p  
V
= ±5V, V  
= 4V p-p  
S
S
S
OUT  
S
OUT  
–60  
–70  
OUT  
= 1V p-p  
OUT  
–70  
HD2, G = +1  
HD2, G = +2  
HD2 V = ±5V  
S
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
HD2 V = +2V/–1V  
S
HD2 V = ±2.5V  
S
HD3, G = +2  
HD3 V = +2V/–1V  
S
HD3 V = ±2.5V  
S
HD3 V = ±5V  
S
HD3, G = +1  
1
10  
100  
FREQUENCY (kHz)  
1000  
1
10  
100  
FREQUENCY (kHz)  
1000  
Figure 15. Distortion vs. Frequency for Various Gains  
Figure 18. Distortion vs. Frequency for Various Supplies, G = +1  
–40  
–50  
–50  
V
V
V
= ±5V, V  
= ±2.5V, V  
= +2V/–1V, V  
= 4V p-p  
= 4V p-p  
V
V
= ±2.5V  
IN, CM  
INPUT COMMON-MODE  
VOLTAGE UPPER LIMIT  
S
S
S
OUT  
S
= 0V  
–60  
–70  
HD2 V = ±5V  
S
OUT  
(+V – 1V)  
G = +1  
R
= 1V p-p  
S
OUT  
= 2k  
L
–60  
HD2 V = ±2.5V  
S
–80  
–70  
V
= 1MHz  
IN  
–90  
–80  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–90  
HD2 V = +2V/–1V  
S
–100  
–110  
–120  
–130  
–140  
V
V
= 100kHz  
= 10kHz  
IN  
HD3 V = +2V/–1V  
S
IN  
HD3 V = ±2.5V  
S
HD3 V = ±5V  
S
1
10  
100  
1000  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
FREQUENCY (kHz)  
OUTPUT VOLTAGE (V peak)  
Figure 16. Total Harmonic Distortion vs. Output Voltage For Various  
Frequencies  
Figure 19. Distortion vs. Frequency, G = +2  
Rev. B | Page 11 of 25  
 
ADA4805-1/ADA4805-2  
Data Sheet  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12  
10  
8
V
= ±2.5V  
V
= +2.5V  
S
S
G = +1  
6
4
2
0
0.1  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Voltage Noise vs. Frequency  
Figure 23. Current Noise vs. Frequency (See Figure 47)  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
300  
V
= ±2.5V  
S
AVERAGE NOISE = 54nV rms  
250  
200  
150  
100  
50  
V
= ±5V  
S
0
–50  
–100  
–150  
–200  
–250  
–300  
V
= ±1.5V  
S
V
= ±2.5V  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
TIME (Seconds)  
Figure 21. 0.1 Hz to 10 Hz Voltage Noise  
Figure 24. Quiescent Supply Current vs. Temperature for Various Supplies  
20  
0
–10  
V
= ±2.5V  
V
= ±2.5V  
S
S
G = +1  
V , V  
= 100mV p-p  
S
CM  
R
= 2k  
= 0.5V p-p  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
L
V
IN  
SHUTDOWN = –2.5V  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–PSRR  
CMRR  
+PSRR  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0.01  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 22. CMRR, PSRR vs. Frequency  
Figure 25. Forward/Off Isolation vs. Frequency  
Rev. B | Page 12 of 25  
 
 
Data Sheet  
ADA4805-1/ADA4805-2  
35  
30  
25  
20  
15  
10  
5
30  
V
= ±2.5V  
SOT-23  
S
SC70  
V = ±2.5V  
S
S
V
= ±2.5V  
T = –40°C TO +125°C  
297 UNITS SOLDERED TO PCB  
300 UNITS  
300 UNITS  
25  
20  
15  
10  
5
= 7.5µV  
= 10.2µV  
= –0.19µV/°C  
SOT-23  
σ = 14.5µV  
σ = 18.9 µV  
σ = 0.28µV/°C  
SC70  
0
0
–120 –100 –80 –60 –40 –20  
0
20 40 60 80 100 120  
–1.9 –1.6 –1.2 –0.8 –0.4  
0
0.4 0.8 1.2 1.6 1.9  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
Figure 29. Input Offset Voltage Drift Distribution  
Figure 26. Input Offset Voltage Distribution  
100  
80  
150  
V
= ±2.5V  
V
= ±2.5V  
S
S
10 UNITS  
30 UNITS  
100  
50  
60  
40  
20  
0
0
–20  
–40  
–60  
–80  
–50  
–100  
–150  
–100  
3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0  
1.5  
2.0  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 27. Input Offset Voltage vs. Input Common-Mode Voltage  
Figure 30. Input Offset Voltage vs. Temperature  
650  
630  
6
–400  
–450  
–500  
–550  
–600  
–650  
–700  
–750  
–800  
V
= ±5V  
I
S
B–  
610  
590  
570  
550  
530  
510  
490  
470  
450  
430  
410  
390  
4
I
B+  
2
INPUT OFFSET CURRENT  
0
V
= ±2.5V  
S
–2  
–4  
V
= ±1.5V  
S
6
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–0.4  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
INPUT COMMON-MODE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 28. Input Bias Current vs. Temperature for Various Supplies  
(See Figure 48)  
Figure 31. Input Bias Current and Input Offset Current vs.  
Input Common-Mode Voltage  
Rev. B | Page 13 of 25  
 
ADA4805-1/ADA4805-2  
Data Sheet  
15  
1.5  
1.0  
G = +1  
= 20mV p-p  
V
= ±5V, V  
= 0V, V  
= 2V p-p  
G = +1  
S
IN, CM  
OUT  
V
OUT  
V
= ±2.5V, V  
= 0V, V  
= 2V p-p  
S
IN, CM  
OUT  
10  
V
= ±2.5V  
S
5
0
0.5  
0
–5  
–0.5  
–1.0  
–1.5  
V
= ±1.5V  
= ±5V  
S
–10  
–15  
V
= ±1.5V, V  
50  
= –0.5V, V  
= 1V p-p  
OUT  
S
IN, CM  
V
S
0
50  
100  
150  
TIME (ns)  
200  
250  
300  
0
100  
150  
200  
250  
300  
350  
TIME (ns)  
Figure 32. Small Signal Transient Response for Various Supplies, G = +1  
Figure 35. Large Signal Transient Response for Various Supplies, G = +1  
5
4
V
= ±2.5V  
V
= ±2.5V  
S
S
2×V  
IN  
V
G = +1  
G = +2  
IN  
4
3
3
2
2
V
1
OUT  
V
OUT  
1
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
Figure 33. Input Overdrive Recovery Time, G = +1  
Figure 36. Output Overdrive Recovery Time, G = +2  
120  
100  
80  
0
0.3  
0.2  
V
= +5V  
S
G = +1  
= 2V STEP  
–20  
V
R
OUT  
= 2kΩ  
L
GAIN  
–40  
–60  
–80  
0.1  
60  
0
–100  
–120  
–140  
–160  
–180  
PHASE  
40  
–0.1  
–0.2  
–0.3  
20  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
FREQUENCY (Hz)  
TIME (ns)  
Figure 34. Settling Time to 0.1%  
Figure 37. Open-Loop Gain and Phase Margin  
Rev. B | Page 14 of 25  
Data Sheet  
ADA4805-1/ADA4805-2  
0.9  
0.8  
0.7  
0.6  
0.9  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= ±2.5V  
V
= ±2.5V  
S
S
G = +1  
= 2kΩ  
G = +1  
= 2kΩ  
R
R
L
L
SHUTDOWN = +2.5V  
SHUTDOWN = +2.5V  
V
= ±5V  
S
+125˚C  
0.5  
V
= +2V/–1V  
S
V
= ±2.5V  
0.4  
S
+25˚C  
0.3  
0.2  
0.1  
0
–40˚C  
–0.1  
–0.1  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
TIME (µs)  
TIME (µs)  
Figure 38. Turn-On Response Time for Various Temperatures (See Figure 49)  
Figure 40. Turn-On Response Time for Various Supplies (See Figure 49)  
800  
800  
V
= ±2.5V  
V
= ±2.5V  
S
S
G = +1  
= 2kΩ  
G = +1  
R = 2kΩ  
L
700  
600  
500  
400  
300  
200  
100  
0
R
700  
600  
500  
400  
300  
200  
100  
L
V
= ±5V  
S
SHUTDOWN = –2.5V  
SHUTDOWN = –V  
S
+125°C  
+25°C  
V
= ±2.5V  
S
V
= ±1.5V  
S
40°C  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
TIME (µs)  
TIME (µs)  
Figure 39. Turn-Off Response Time for Various Temperatures (See Figure 50)  
Figure 41. Turn-Off Response Time for Various Supplies (See Figure 50)  
Rev. B | Page 15 of 25  
 
 
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
0
–20  
–40  
–60  
–80  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
AMP2 TO AMP1  
AMP2 TO AMP1  
AMP1 TO AMP2  
AMP1 TO AMP2  
0.1  
FREQUENCY (MHz)  
0.001  
0.01  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 44. Crosstalk vs. Frequency (MSOP)  
Figure 42. Crosstalk vs. Frequency (LFCSP)  
3
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
= ±2.5V  
S
6 UNITS, SOLDERED TO PCB  
2
1
DEVICE ENABLED  
–40°C  
OIL BATH  
TEMPERATURE  
0
+125°C  
+25°C  
–1  
–2  
–3  
–4  
–5  
DEVICE DISABLED  
0
200  
400  
600  
800  
1000  
1200  
1400  
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
TIME (Hours)  
SUPPLY VOLTAGE FROM GROUND (V)  
SHUTDOWN  
Figure 45. Long-Term VOS Drift  
Figure 43.  
Threshold vs. Supply Voltage from Ground for  
Various Temperatures  
Rev. B | Page 16 of 25  
Data Sheet  
ADA4805-1/ADA4805-2  
TEST CIRCUITS  
+2.5V  
V
OUT  
+2.5V  
–2.5V  
R
S
0.5V  
SHUTDOWN  
2kΩ  
V
OUT  
V
IN  
20mV p-p  
C
2kΩ  
L
–2.5V  
50Ω  
+
5V  
–2.5V  
Figure 46. Output Capacitive Load Behavior Test Circuit (See Figure 14)  
Figure 49. Turn-On Response Test Circuit (See Figure 38 and Figure 40)  
+2.5V  
I
S
+2.5V  
V
OUT  
V
OUT  
SHUTDOWN  
2kΩ  
75kΩ  
–2.5V  
–2.5V  
+
5V  
–2.5V  
Figure 47. Current Noise Test Circuit (See Figure 23)  
Figure 50. Turn-Off Response Test Circuit (See Figure 39 and Figure 41)  
+Ib  
Ib  
Figure 48. Input Bias Current Temperature Test Circuit (See Figure 28)  
Rev. B | Page 17 of 25  
 
 
 
 
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
THEORY OF OPERATION  
For differential voltages above approximately 1.2 V at room  
AMPLIFIER DESCRIPTION  
temperature, and 0.8 V at 125°C, the diode clamps begin to  
conduct. If large differential voltages must be sustained across  
the input terminals, the current through the input clamps must  
be limited to less than 10 mA. Series input resistors that are sized  
appropriately for the expected differential overvoltage provide  
the needed protection.  
The ADA4805-1/ADA4805-2 have a bandwidth of 105 MHz and  
a slew rate of 160 V/μs. They have an input referred voltage  
noise of only 5.9 nV/√Hz. e ADA4805-1/ADA4805-2 operate  
over a supply voltage range of 2.7 V to 10 V and consume only  
500 μA of supply current at VS = 5 V. The low end of the supply  
range allows for −10% variation of a 3 V supply. The amplifiers  
are unity-gain stable, and the input structure results in an  
extremely low input 1/f noise. The ADA4805-1/ADA4805-2 use  
a slew enhancement architecture, as shown in Figure 51. The  
slew enhancement circuit detects the absolute difference  
The ESD clamps begin to conduct for input voltages that are  
more than 0.7 V above the positive supply and input voltages  
more than 0.7 V below the negative supply. If an overvoltage  
condition is expected, the input current must be limited to less  
than 10 mA.  
between the two inputs. It then modulates the tail current, ITAIL  
,
of the input stage to boost the slew rate. The architecture allows  
higher slew rate and fast settling time with low quiescent  
current while maintaining low noise.  
SHUTDOWN OPERATION  
Figure 53 shows the ADA4805-1/ADA4805-2 shutdown  
circuitry. To maintain very low supply current in shutdown  
mode, no internal pull-up resistor is supplied; therefore, the  
SLEW ENHANCEMENT CIRCUIT  
V
S
SHUTDOWN  
pin must be driven high or low externally and  
SHUTDOWN  
not be left floating. Pulling the  
pin to ≥1 V below  
I
TAIL  
TO DETECT  
ABSOLUTE  
VALUE  
midsupply turns the device off, reducing the supply current to  
2.9 μA for a 5 V supply. When the amplifier is powered down,  
its output enters a high impedance state. The output impedance  
decreases as frequency increases. In shutdown mode, a forward  
isolation of −62 dB can be achieved at 100 kHz (see Figure 25).  
V
V
IN–  
IN+  
+IN/+INx  
+V  
S
–IN/INx  
2.2R  
INPUT  
STAGE  
1.1V  
ESD  
ESD  
Figure 51. Slew Enhancement Circuit  
SHUTDOWN  
INPUT PROTECTION  
The ADA4805-1/ADA4805-2 are fully protected from ESD  
events, withstanding human body model ESD events of 3.5 kV  
and charged device model events of 1.25 kV with no measured  
performance degradation. The precision input is protected with  
an ESD network between the power supplies and diode clamps  
across the input device pair, as shown in Figure 52.  
1.8R  
S
TO ENABLE  
AMPLIFIER  
–V  
Figure 53. Shutdown Circuit  
SHUTDOWN  
The  
Figure 53. Voltages beyond the power supplies cause these  
SHUTDOWN  
pin is protected by ESD clamps, as shown in  
+V  
S
diodes to conduct. To protect the  
pin, ensure that  
BIAS  
the voltage to this pin does not exceed 0.7 V above the positive  
supply or 0.7 V below the negative supply. If an overvoltage  
condition is expected, the input current must be limited to less  
than 10 mA with a series resistor. Table 9 summarizes the  
threshold voltages for the powered down and enabled modes for  
various supplies.  
ESD  
+IN/+INx  
ESD  
ESD  
ESD  
–IN/–INx  
–V  
S
Table 9. Threshold Voltages for Powered Down and Enabled  
Modes  
TO THE REST OF THE AMPLIFIER  
Figure 52. Input Stage and Protection Diodes  
Mode  
+3 V  
+5 V  
5 V  
+7 V/−2 V  
>+1.52 V  
<+1.52 V  
Enabled  
>+1.1 V >+1.9 V >−0.9 V  
Powered Down <+0.7 V <+1.5 V <−1.3 V  
Rev. B | Page 18 of 25  
 
 
 
 
 
 
 
 
Data Sheet  
ADA4805-1/ADA4805-2  
Figure 55 shows the total referred to input (RTI) noise due to  
the amplifier vs. the source resistance. Note that with a  
5.9 nV/√Hz input voltage noise and 0.6 pA/√Hz input current  
noise, the noise contributions of the amplifier are relatively  
small for source resistances from approximately 2.6 kΩ to  
47 kΩ.  
NOISE CONSIDERATIONS  
Figure 54 illustrates the primary noise contributors for the  
typical gain configurations. The total output noise (vn_out) is the  
root sum square of all the noise contributions.  
R
v
=
4kTR  
F
n_RF  
F
v
n
R
v
=
=
G
S
4kTR  
n_RG  
G
The Analog Devices silicon germanium (SiGe) bipolar process  
makes it possible to achieve a low noise of 5.9 nV/√Hz for the  
ADA4805-1/ADA4805-2. This noise is much improved  
compared to similar low power amplifiers with a supply current  
in the range of hundreds of microamperes.  
+ v  
i
n_out  
n–  
R
v
4kTR  
n_RS  
S
i
n+  
1000  
Figure 54. Noise Sources in Typical Connection  
TOTAL NOISE  
SOURCE RESISTANCE NOISE  
AMPLIFIER NOISE  
The output noise spectral density is calculated by  
vn_ out  
=
2  
2  
RF  
RG  
RF  
RG  
100  
2
2
2
4kTRs + in+2RS + vn  
]
+
4kTRG + in2 RF  
4kTRF + 1+  
[
where:  
k is Boltzmann’s constant.  
T is the absolute temperature in degrees Kelvin.  
RF and RG are the feedback network resistances, as shown in  
Figure 54.  
10  
SOURCE RESISTANCE = 47kΩ  
SOURCE RESISTANCE = 2.6kΩ  
RS is the source resistance, as shown in Figure 54.  
in+ and inrepresent the amplifier input current noise spectral  
density in pA/√Hz.  
1
100  
1k  
10k  
100k  
1M  
SOURCE RESISTANCE (Ω)  
vn is the amplifier input voltage noise spectral density in  
nV/√Hz.  
Figure 55. RTI Noise vs. Source Resistance  
Source resistance noise, amplifier input voltage noise (vn), and  
the voltage noise from the amplifier input current noise  
(in+ × RS) are all subject to the noise gain term (1 + RF/RG).  
Rev. B | Page 19 of 25  
 
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
APPLICATIONS INFORMATION  
5
4
SLEW ENHANCEMENT  
V
= ±2.5V  
S
G = +2  
R
V
= 2 k  
R
= 2.6kꢀ  
L
The ADA4805-1/ADA4805-2 have an internal slew enhancement  
circuit that increases the slew rate as the feedback error voltage  
increases. This circuit allows the amplifier to settle a large step  
response faster, as shown in Figure 56. This is useful in ADC  
applications where multiple input signals are multiplexed. The  
impact of the slew enhancement can also be seen in the large  
signal frequency response, where larger input signals cause a  
slight increase in peaking, as shown in Figure 57.  
1.5  
F
= 200mV p-p  
IN  
3
R
= 4.99kꢀ  
F
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
R
= 1kꢀ  
F
R
= 2.6k, C = 1pF  
F
F
R
= 4.99k, C = 1pF  
F
F
V
= ±2.5V  
S
G = +1  
R
= 2k  
L
V
= 2V p-p  
= 1V p-p  
OUT  
OUT  
1.0  
0.5  
100k  
1M  
10M  
100M  
V
FREQUENCY (Hz)  
Figure 58. Peaking in Frequency Response at Selected RF Values  
V
= 500mV p-p  
OUT  
0
COMPENSATING PEAKING IN LARGE SIGNAL  
FREQUENCY RESPONSE  
–0.5  
–1.0  
–1.5  
At high frequency, the slew enhancement circuit can contribute to  
peaking in the large signal frequency response. Figure 58 shows the  
effect of a feedback capacitor on the small signal response, whereas  
Figure 59 shows that the same technique is effective for reducing  
peaking in the large signal response.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
6
V
= ±2.5V  
S
Figure 56. Step Response with Selected Output Steps  
G = +2  
R
V
= 2 k  
= 632mV p-p  
L
3
0
2
1
IN  
V
= ±2.5V  
S
G = +1  
= 2k  
R
L
R
F
= 2.6k, C = 0pF  
F
F
0
R
= 1k, C = 0pF  
–3  
F
F
R
= 2.6k, C = 2.7pF  
F
V
= 2V p-p  
IN  
R
= 1 k, C = 2 pF  
F
F
V
V
V
= 200mV p-p  
= 632mV p-p  
= 400mV p-p  
–1  
–2  
–3  
–4  
–5  
–6  
IN  
IN  
IN  
–6  
–9  
–12  
–15  
V
= 100mV p-p  
IN  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 59. Peaking Mitigation in Large Signal Frequency Response  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
DRIVING LOW POWER, HIGH RESOLUTION  
SUCCESSIVE APPROXIMATION REGISTER (SAR)  
ADCs  
Figure 57. Peaking in Frequency Responses as Signal Level Changes, G = +1  
EFFECT OF FEEDBACK RESISTOR ON FREQUENCY  
RESPONSE  
The ADA4805-1/ADA4805-2 are ideal for driving low power,  
high resolution SAR ADCs. The 5.9 nV/√Hz input voltage noise  
and rail-to-rail output stage of the ADA4805-1/ADA4805-2  
help to minimize distortion at large output levels. With its low  
power of 500 μA, the amplifier consumes power that is  
compatible with low power SAR ADCs, which are usually in the  
microwatt (μW) to low milliwatt (mW) range. Furthermore, the  
ADA4805-1/ADA4805-2 support a single-supply configuration;  
their input common-mode range extends to 0.1 V below the  
negative supply, and 1 V below the positive supply.  
The amplifiers input capacitance and feedback resistor form a  
pole that, for larger value feedback resistors, can reduce phase  
margin and contribute to peaking in the frequency response.  
Figure 58 shows the peaking for selected feedback resistors (RF)  
when the amplifier is configured in a gain of +2. Figure 58 also  
shows how peaking can be mitigated with the addition of a  
small value capacitor placed across the feedback resistor of the  
amplifier.  
Rev. B | Page 20 of 25  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADA4805-1/ADA4805-2  
Figure 60 shows a typical 16-bit, single-supply application. The  
ADA4805-1/ADA4805-2 drive the AD7980, a 16-bit, 1 MSPS,  
SAR ADC in a low power configuration. The AD7980 operates  
on a 2.5 V supply and supports an input from 0 V to VREF. In  
this case, the ADR435 provides a 5 V reference. The ADA4805-1/  
ADA4805-2 are used both as a driver for the AD7980 and as a  
reference buffer for the ADR435.  
DYNAMIC POWER SCALING  
One of the merits of a SAR ADC, like the AD7980, is that its  
power scales with the sampling rate. This power scaling makes  
SAR ADCs very power efficient, especially when running at a  
low sampling frequency. However, the ADC driver used with  
the SAR ADC traditionally consumes constant power regardless  
of the sampling frequency.  
The low-pass filter formed by R3 and C1 reduces the noise to  
the input of the ADC (see Figure 60). In lower frequency  
applications, the designer can reduce the corner frequency of  
the filter to remove additional noise.  
Figure 61 illustrates a method by which the quiescent power of  
the ADC driver can be dynamically scaled with the sampling  
rate of the system. By providing properly timed signals to the  
SHUTDOWN  
convert start (CNV) pin of the ADC and the  
pin  
+7.5V  
of the ADA4805-1/ADA4805-2, both devices can be run at  
optimum efficiency.  
5V REF  
ADA4805-2  
ADR435  
ADA4805-1/  
VDD  
C4  
100nF  
+5V  
C2  
10µF  
C3  
0.1µF  
+6V  
+2.5V  
0.1µF  
V
IN  
REF  
VDD  
ADA4805-1/  
ADA4805-2  
+7.5V  
20  
AD7980  
ADA4805-1/  
2.7nF  
0V TO  
ADA4805-2  
GND CNV  
REF VDD  
V
REF  
IN+  
IN–  
R3  
20  
AD7980  
GND  
TIMING  
GENERATOR  
C1  
2.7nF  
Figure 61. ADA4805-1/ADA4805-2/AD7980 Power Management Circuitry  
Figure 60. Driving the AD7980 with the ADA4805-1/ADA4805-2  
Figure 62 illustrates the relative signal timing for power scaling  
the ADA4805-1/ADA4805-2 and the AD7980. To prevent any  
degradation in the performance of the ADC, the ADA4805-1/  
ADA4805-2 must have a fully settled output into the ADC  
before the activation of the CNV pin. In this example, the  
amplifier is switched to full power mode 3 μs prior to the rising  
In this configuration, the ADA4805-1/ADA4805-2 consume  
7.2 mW of quiescent power. The measured signal-to-noise ratio  
(SNR), total harmonic distortion (THD), and signal-to-noise-  
and-distortion ratio (SINAD) of the whole system for a 10 kHz  
signal are 89.4 dB, 104 dBc, and 89.3 dB, respectively. This  
translates to an effective number of bits (ENOB) of 14.5 at  
10 kHz, which is compatible with the AD7980 performance.  
Table 10 shows the performance of this setup at selected input  
frequencies.  
SHUTDOWN  
edge of the CNV signal. The  
pin of the  
ADA4805-1/ADA4805-2 is pulled low when the ADC input is  
inactive in between samples. The quiescent current of the  
amplifier typically falls to 10% of the normal operating value  
within 0.9 μs at VS = 5 V. While in shutdown mode, the  
ADA4805-1/ADA4805-2 output impedance is high.  
Table 10. System Performance at Selected Input Frequency for Driving the AD7980 Single-Ended  
ADC Driver Reference Buffer  
Results  
THD (dBc)  
Input Frequency (kHz)  
Supply (V)  
Gain  
Supply (V)  
Gain  
SNR (dB)  
89.8  
89.4  
89.9  
88.5  
SINAD (dB)  
89.6  
ENOB  
14.6  
14.5  
14.6  
14.3  
13.9  
1
7.5  
7.5  
7.5  
7.5  
7.5  
1
1
1
1
1
7.5  
7.5  
7.5  
7.5  
7.5  
1
1
1
1
1
103  
104  
103  
99  
10  
20  
50  
100  
89.3  
89.7  
88.1  
86.3  
93.7  
85.6  
Rev. B | Page 21 of 25  
 
 
 
 
ADA4805-1/ADA4805-2  
Data Sheet  
SAMPLING FREQUENCY = 100kHz  
tS = 10µs  
ACQUISITION  
CONVERSION  
ACQUISITION  
CONVERSION  
ACQUISITION  
CONVERSION  
ADC  
MODE  
CNV  
POWERED  
POWERED  
POWERED  
ADA4805-1/  
ADA4805-2  
ON  
ON  
ON  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
SHUTDOWN  
tAMP, ON  
MINIMUM  
POWERED ON TIME = 3µs  
3µs  
3µs  
V
V
f3  
f1  
V
f2  
ADA4805-1/  
ADA4805-2  
OUTPUT  
tTURNOFF1  
tTURNOFF3  
tTURNOFF2  
t
t
t
f3  
f1  
f2  
Figure 62. Timing Waveforms  
100000  
10000  
1000  
100  
Figure 63 shows the quiescent power of the ADA4805-1/  
ADA4805-1/ADA4805-2, 6V SINGLE SUPP LY  
V
f
= 4.72V p-p (–0.5dBFS)  
= 100Hz  
ON TIME = 3µs  
IN  
ADA4805-2 with and without the power scaling. Without power  
scaling, the ADA4805-1/ADA4805-2 consumes constant power  
regardless of the sampling frequency, as shown in Equation 1.  
IN  
PQ = IQ × VS  
(1)  
With power scaling, the quiescent power becomes proportional  
to the ratio between the amplifier on time, tAMP, ON, and the  
sampling time, tS:  
ADA4805-1/ADA4805-2  
CONTINUOUSLY ON  
ADA4805-1/ADA4805-2  
ON TIME = 3µs  
tAMP,ON  
AD7980 (ADC)  
PQ IQ VS   
(2)  
tS  
10  
Thus, by dynamically switching the ADA4805-1/ADA4805-2  
between shutdown and full power modes between consecutive  
samples, the quiescent power of the driver scales with the  
sampling rate.  
10  
100  
1k  
10k  
100k  
1M  
ADC SAMPLING FREQUENCY (Hz/s)  
Figure 63. Quiescent Power Consumption of the ADA4805-1/ADA4805-2 vs.  
ADC Sampling Frequency  
Rev. B | Page 22 of 25  
 
 
Data Sheet  
ADA4805-1/ADA4805-2  
SINGLE-ENDED TO DIFFERENTIAL CONVERSION  
LAYOUT CONSIDERATIONS  
Most high resolution ADCs have differential inputs to reduce  
common-mode noise and harmonic distortion. Therefore, it is  
necessary to use an amplifier to convert a single-ended signal  
into a differential signal to drive the ADCs.  
To ensure optimal performance, careful and deliberate attention  
must be paid to the board layout, signal routing, power supply  
bypassing, and grounding.  
Ground Plane  
There are two common ways the user can convert a single-ended  
signal into a differential signal: either use a differential  
It is important to avoid ground in the areas under and around the  
input and output of the ADA4805-1/ADA4805-2. Stray capacitance  
between the ground plane and the input and output pads of a  
device is detrimental to high speed amplifier performance.  
Stray capacitance at the inverting input, together with the  
amplifier input capacitance, lowers the phase margin and can  
cause instability. Stray capacitance at the output creates a pole in  
the feedback loop, which can reduce phase margin and cause  
the circuit to become unstable.  
amplifier, or configure two amplifiers as shown in Figure 64.  
The use of a differential amplifier yields better performance,  
whereas the 2-op-amp solution results in lower system cost. The  
ADA4805-1/ADA4805-2 solve this dilemma of choosing between  
the two methods by combining the advantages of both. Their  
low harmonic distortion, low offset voltage, and low bias current  
mean that they can produce a differential output that is well  
matched with the performance of the high resolution ADCs.  
Power Supply Bypassing  
Figure 64 shows how the ADA4805-1/ADA4805-2 convert a  
single-ended signal into a differential output. The first amplifier  
is configured in a gain = +1 with its output then inverted to  
produce the complementary signal. The differential output then  
drives the AD7982, an 18-bit, 1 MSPS SAR ADC. To further  
reduce noise, the user can reduce the values of R1 and R2.  
However, note that this increases the power consumption. The  
low-pass filter of the ADC driver limits the noise to the ADC.  
Power supply bypassing is a critical aspect in the performance  
of the ADA4805-1/ADA4805-2. A parallel connection of  
capacitors from each power supply pin to ground works best.  
Smaller value ceramic capacitors offer better high frequency  
response, whereas larger value ceramic capacitors offer better  
low frequency performance.  
Paralleling different values and sizes of capacitors helps to ensure  
that the power supply pins are provided with a low ac impedance  
across a wide band of frequencies. This is important for minimizing  
the coupling of noise into the amplifier—especially when the  
amplifier PSRR begins to roll off—because the bypass capacitors  
can help lessen the degradation in PSRR performance.  
The measured SNR, THD, and SINAD of the whole system for a  
10 kHz signal are 93 dB, 113 dBc, and 93 dB, respectively. This  
translates to an ENOB of 15.1 at 10 kHz, which is compatible  
with the performance of the AD7982. Table 11 shows the  
performance of this setup at selected input frequencies.  
Place the smallest value capacitor on the same side of the board  
as the amplifier and as close as possible to the amplifier power  
supply pins. Connect the ground end of the capacitor directly to  
the ground plane.  
Table 11. System Performance at Selected Input Frequency  
for Driving the AD7982 Differentially  
Results  
Input Frequency  
(kHz)  
SNR  
(dB)  
THD  
(dBc)  
SINAD  
(dB)  
It is recommended that a 0.1 μF ceramic capacitor with a  
0508 case size be used. The 0508 case size offers low series  
inductance and excellent high frequency performance. Place a  
10 μF electrolytic capacitor in parallel with the 0.1 μF capacitor.  
Depending on the circuit parameters, some enhancement to  
performance can be realized by adding additional capacitors.  
Each circuit is different and must be analyzed individually for  
optimal performance.  
ENOB  
15.1  
15.1  
15.1  
14.8  
14.3  
1
93  
93  
93  
92  
89  
104  
113  
110  
102  
96  
93  
93  
93  
91  
88  
10  
20  
50  
100  
VDD  
C4  
0.1µF  
R3  
22  
+5V  
R2  
1kꢀ  
C2  
2.7nF  
+7.5V  
REF VDD  
IN+  
AD7982  
IN–  
+7.5V  
R1  
1kꢀ  
R4  
22ꢀ  
ADA4805-1/  
ADA4805-2  
C3  
2.7nF  
ADA4805-1/  
ADA4805-2  
V
C1  
0.1µF  
IN  
+2.5V  
+2.5V  
Figure 64. Driving the AD7982 with the ADA4805-1/ADA4805-2  
Rev. B | Page 23 of 25  
 
 
 
 
ADA4805-1/ADA4805-2  
OUTLINE DIMENSIONS  
Data Sheet  
3.00  
2.90  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 65. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
0.65 BSC  
1.30 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.22  
0.08  
SEATING  
PLANE  
0.10 MAX  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 66. 6-Lead Plastic Surface-Mount Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
Rev. B | Page 24 of 25  
 
Data Sheet  
ADA4805-1/ADA4805-2  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 67. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
10  
6
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 68. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option Branding  
ADA4805-1ARJZ-R2  
ADA4805-1ARJZ-R7  
ADA4805-1AKSZ-R2  
ADA4805-1AKSZ-R7  
ADA4805-2ARMZ  
ADA4805-2ARMZ-R7  
ADA4805-2ACPZ-R7  
ADA4805-2ACPZ-R2  
ADA4805-1ARJZ-EBZ  
ADA4805-1AKSZ-EBZ  
ADA4805-2ARMZ-EBZ  
ADA4805-2ACPZ-EBZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
6-Lead Small Outline Transistor Package [SOT-23]  
RJ-6  
RJ-6  
KS-6  
KS-6  
RM-8  
RM-8  
H3H  
H3H  
H3H  
H3H  
H3K  
H3K  
H3K  
H3K  
6-Lead Small Outline Transistor Package [SOT-23]  
6-Lead Plastic Surface-Mount Package [SC70]  
6-Lead Plastic Surface-Mount Package [SC70]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD] CP-10-9  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD] CP-10-9  
Evaluation Board for 6-Lead SOT-23  
Evaluation Board for 6-Lead SC70  
Evaluation Board for 8-Lead MSOP  
Evaluation Board for 10-Lead LFCSP  
1 Z = RoHS Compliant Part.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D11345-0-12/14(B)  
Rev. B | Page 25 of 25  
 

相关型号:

ADA4805-2ACPZ-R7

Dual, 0.2 &#181;V/&deg;C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier
ADI

ADA4805-2ARMZ

Dual, 0.2 &#181;V/&deg;C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier
ADI

ADA4805-2ARMZ-EBZ

0.2 μV/°C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifiers
ADI

ADA4805-2ARMZ-R7

Dual, 0.2 &#181;V/&deg;C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier
ADI

ADA4805-2TRMZ-EP

Dual, 0.2 &#181;V/&deg;C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier
ADI

ADA4805-2TRMZ-EPR7

Dual, 0.2 &#181;V/&deg;C Offset Drift, 105 MHz Low Power, Low Noise, Rail-to-Rail Amplifier
ADI

ADA4806-1

0.2 μV/°C Offset Drift, 105 MHz, Low Power, Multimode, Rail-to-Rail Amplifier
ADI

ADA4806-1ARJZ-R2

暂无描述
ADI

ADA4806-1ARJZ-R7

0.2 &#181;V/&deg;C Offset Drift, 105 MHz, Low Power, Multimode, Rail-to-Rail Amplifier
ADI

ADA4806-1RJ-EBZ

0.2 μV/°C Offset Drift, 105 MHz, Low Power, Multimode, Rail-to-Rail Amplifier
ADI

ADA4806-1_16

0.2 μV/°C Offset Drift, 105 MHz, Low Power, Multimode, Rail-to-Rail Amplifier
ADI

ADA4807-1

3.1 nV/√Hz, 1 mA, 180 MHz, Rail-to-Rail Input/Output Amplifiers
ADI