ADA4807-1AKSZ-EBZ [ADI]

3.1 nV/√Hz, 1 mA, 180 MHz, Rail-to-Rail Input/Output Amplifiers;
ADA4807-1AKSZ-EBZ
型号: ADA4807-1AKSZ-EBZ
厂家: ADI    ADI
描述:

3.1 nV/√Hz, 1 mA, 180 MHz, Rail-to-Rail Input/Output Amplifiers

文件: 总33页 (文件大小:748K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.1 nV/√Hz, 1 mA, 180 MHz,  
Rail-to-Rail Input/Output Amplifiers  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
FEATURES  
PIN CONNECTION DIAGRAMS  
Low input noise  
V
1
2
3
6
5
4
+V  
S
OUT  
3.1 nV/√Hz at f = 100 kHz with 29 Hz 1/f corner  
0.7 pA/√Hz at f = 100 kHz with 2 kHz 1/f corner  
High speed performance with dc precision  
180 MHz, −3 dB bandwidth (G = +1, VOUT = 20 mV p-p)  
225 V/μs slew rate for 5 V step (rise)  
47 ns settling time to 0.1% for 4 V step  
125 μV and 3.7 μV/°C maximum input offset voltage and drift  
100 nA and 250 pA/°C maximum input offset current and drift  
Low distortion (HD2/HD3), VS = 5 V, VOUT = 2 V p-p  
−141 dBc/−144 dBc at 1 kHz  
–V  
S
DISABLE  
–IN  
+IN  
Figure 1. 6-Lead SC70 and 6-Lead SOT-23 Pin Configuration (ADA4807-1)  
V
1
2
3
4
8
7
6
5
+V  
OUT1  
–IN1  
S
V
OUT2  
+IN1  
–IN2  
+IN2  
–V  
S
Figure 2. 8-Lead MSOP Pin Configuration (ADA4807-2)  
−112 dBc/−115 dBc at 100 kHz  
−95 dBc/−79 dBc at 1 MHz  
Low power operation  
1.0 mA quiescent supply current per amplifier at 5 V  
Dynamic power scaling  
10 +V  
V
1
2
3
4
5
S
OUT1  
–IN1  
+IN1  
9
8
7
6
V
OUT2  
–IN2  
–V  
+IN2  
S
DISABLE1  
DISABLE2  
Fully specified at +3 V, +5 V, and 5 V supplies  
Rail-to-rail inputs and outputs  
Figure 3. 10-Lead LFCSP Pin Configuration (ADA4807-2)  
1
2
3
4
5
6
7
14  
13  
V
OUT4  
V
OUT1  
APPLICATIONS  
–IN1  
–IN4  
High resolution analog-to-digital converter (ADC) drivers  
Portable and battery-powered instruments and systems  
High component density data acquisition systems  
Audio signal conditioning  
12 +IN4  
+IN1  
11  
–V  
S
+V  
S
ADA4807-4  
10  
9
+IN3  
–IN3  
V
+IN2  
–IN2  
Active filters  
8
V
OUT3  
OUT2  
Figure 4. 14-Lead TSSOP Pin Configuration (ADA4807-4)  
GENERAL DESCRIPTION  
The ADA4807-1 (single), ADA4807-2 (dual), and ADA4807-4  
(quad) are low noise, rail-to-rail input and output, voltage  
feedback amplifiers. These amplifiers combine low power, low  
noise, high speed, and dc precision to provide an attractive  
solution for a wide range of applications from high resolution  
data acquisition instrumentation to high performance battery-  
powered and high component density systems where power  
consumption is of key importance.  
These amplifiers are fully specified at +3 V, +5 V, and 5 V supplies  
and can operate over the industrial −40°C to +125°C  
temperature range.  
The ADA4807-1 is available in 6-lead SOT-23 and space-saving  
6-lead SC70 packages. The ADA4807-2 is available in an 8-lead  
MSOP and a compact, 3 mm × 3 mm, 10-lead LFCSP. The  
ADA4807-4 is available in a 14-lead TSSOP package.  
Table 1. Other Rail-to-Rail Amplifiers  
With only 1.0 mA of supply current per amplifier, the ADA4807-1/  
ADA4807-2/ADA4807-4 feature the lowest input voltage noise  
among high speed, rail-to-rail input/output amplifiers in the  
industry and offer a wide bandwidth, high slew rate, fast settling  
time, and excellent distortion performance. Additionally, these  
amplifiers offer very low input offset voltage and drift performance,  
making them ideal for driving multiplexed and high throughput  
precision 16-/18-bit successive approximation registers (SARs)  
and 24-bit -ADCs.  
Slew  
Voltage  
Noise  
Max.  
VOS  
Bandwidth Rate  
Device  
(MHz)  
(V/μs)  
(nV/√Hz) (mV)  
AD8031/AD8032  
AD8027/AD8028  
AD8029/AD8030/  
AD8040  
80  
190  
125  
35  
90  
62  
15  
4ꢀ3  
16ꢀ5  
1ꢀ5  
0ꢀ8  
5
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Slew, Transient, Settling Time, and Crosstalk............................. 18  
Distortion and Noise.................................................................. 20  
Output Characteristics............................................................... 22  
Overdrive Recovery and Turn On/Turn Off Times .............. 23  
Theory of Operation ...................................................................... 24  
Disable Circuitry ........................................................................ 2±  
Input Protection ......................................................................... 2±  
Noise Considerations................................................................. 2±  
Applications Information.............................................................. 26  
Capacitive Load Drive ............................................................... 26  
Low Noise FET Operational Amplifier................................... 26  
Power Mode ADC Driver ......................................................... 27  
ADC Driving............................................................................... 28  
ADC Driving with Dynamic Power Scaling........................... 29  
Layout, Grounding, and Bypassing.......................................... 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 33  
Applications....................................................................................... 1  
Pin Connection Diagrams............................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
±± ꢀ Supply................................................................................... 3  
± ꢀ Supply...................................................................................... ±  
3 ꢀ Supply...................................................................................... 7  
Absolute Maximum Ratings............................................................ 9  
Maximum Power Dissipation ..................................................... 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 13  
Frequency Response................................................................... 13  
Frequency and Supply Current................................................. 1±  
DC and Input Common-Mode Performance......................... 16  
REVISION HISTORY  
9/15—Rev. A to Rev. B  
Added Figure ±8 ............................................................................. 33  
Changes to Ordering Guide.......................................................... 33  
Added ADA4807-4.............................................................Universal  
Changes to Features Section, General Description Section, and  
Table 1 ..........................................................................................................1  
Added Figure 4, Renumbered Sequentially .................................. 1  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ ±  
Changes to Table 4............................................................................ 7  
Deleted Figure 6, Renumbered Sequentially............................... 10  
Changes to Figure 6........................................................................ 10  
Added Figure 9 and Table 9, Renumbered Sequentially ........... 12  
Changes to Figure 20...................................................................... 14  
Added Figure 21.............................................................................. 14  
Added Figure 31 and Figure 32..................................................... 16  
Added Figure 3±.............................................................................. 17  
Changes to Figure 39...................................................................... 18  
Added Figure 42.............................................................................. 19  
Deleted Figure ±0, Figure ±1, Figure ±3, and Figure ±4............. 19  
Added Figure 46.............................................................................. 20  
Added Figure 49 and Figure ±1..................................................... 21  
Added Figure ±9 and Figure 61..................................................... 23  
4/15—Rev. 0 to Rev. A  
Added ADA4807-2.............................................................Universal  
Changes to Features Section, General Description  
Section, and Pin Connection Diagrams Heading.........................1  
Added Figure 2 and Figure 3; Renumbered Sequentially ............1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................±  
Changes to Table 3.............................................................................7  
Changes to Table 6 and Figure 4......................................................9  
Added Figure 7, Figure 8, and Table 8; Renumbered Sequentially....11  
Reorganized Layout, Typical Performance Characteristics  
Section.............................................................................................. 12  
Added Figure 36 ............................................................................. 16  
Changes to Figure 37 Caption, Figure 38 Caption, Figure 39  
Caption, and Figure 40 Caption ................................................... 17  
Changes to Figure 44 and Figure 47............................................. 18  
Change to Theory of Operation Section ..................................... 20  
DISABLE  
Changes to  
Circuitry Section, Table 9, and Noise  
DISABLE  
Changes to  
Circuitry Section...................................... 2±  
Considerations Section.................................................................. 21  
Added Figure 6± and Figure 66 .................................................... 23  
Changes to Ordering Guide.......................................................... 2±  
Added Low Noise FET Operational Amplifier Section............. 26  
Added Figure 70, Figure 71, Figure 72, and Power Mode ADC  
Driver Section ................................................................................. 27  
Added ADC Driving Section and Figure 73 through Figure 77.....28  
Added ADC Driving with Dynamic Power Scaling Section,  
Figure 78, Figure 79, and Figure 80.............................................. 29  
12/14—Revision 0: Initial Version  
Rev. B | Page 2 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
SPECIFICATIONS  
±±5 5ꢀSUUPL5  
TA = 25°C, VS = 5 V, RLOAD = 1 kΩ to midsupply, RF = 0 ꢀ, G = +1, −VS ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted.  
Table 2.  
Uarameter5Test5  
Conditions/Comments5  
Min5  
Typ5  
Max5  
Snit5  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VOUT = 20 mV p-p  
G = +1, VOUT = 2 V p-p  
G = +1, VOUT = 5 V step, 20% to 80%, rise/fall  
G = +1, VOUT = 4 V step  
180  
28  
225/250  
47  
MHz  
MHz  
V/μs  
ns  
Slew Rate  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
Second Harmonic (HD2)  
fC = 1 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-1  
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-2,  
ADA4807-4  
−141  
−112  
−95  
dBc  
dBc  
dBc  
dBc  
−84  
Third Harmonic (HD3)  
fC = 1 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 1 MHz, VOUT = 2 V p-p  
f = 0.1 Hz to 10 Hz  
f = 100 kHz  
−144  
−115  
−79  
160  
3.1  
3.3  
5.8  
29  
0.7  
dBc  
dBc  
dBc  
Peak-to-Peak Noise  
Input Voltage Noise  
nV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Hz  
pA/√Hz  
pA/√Hz  
kHz  
f = 1 kHz  
f = 10 Hz  
Input Voltage Noise 1/f Corner  
Input Current Noise  
f = 100 kHz  
f = 10 Hz  
10  
2
Input Current Noise 1/f Corner  
DC PERFORMANCE  
Input Offset Voltage  
−VS ≤ VICM ≤ +VS − 1.5 V  
ADA4807-1, ADA4807-2  
ADA4807-4  
ADA4807-1, ADA4807-2  
ADA4807-4  
−VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX  
−VS ≤ VICM ≤ +VS − 1.5 V  
+VS − 1.5 V ≤ VICM ≤ +VS  
−VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX  
−VS ≤ VICM ≤ +VS − 1.5 V  
+VS − 1.5 V ≤ VICM ≤ +VS  
−VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX  
−125  
−175  
−750  
−850  
20  
20  
+125  
+175  
+750  
+850  
3.7  
−1.6  
1000  
3.6  
μV  
μV  
μV  
μV  
μV/°C  
μA  
nA  
nA/°C  
nA  
nA  
+VS − 1.5 V ≤ VICM ≤ +VS  
140  
140  
0.7  
−1.2  
530  
2.5  
8
25  
30  
130  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
100  
150  
250  
Input Offset Current Drift  
Open-Loop Gain  
pA/°C  
dB  
120  
INPUT CHARACTERISTICS  
Common-Mode Input Resistance  
Differential Input Resistance  
Common-Mode Input Capacitance  
Differential Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio (CMRR)  
45  
35  
1
MΩ  
kΩ  
pF  
pF  
V
1
−VS − 0.2  
96  
+VS + 0.2  
VICM = −3 V to +2 V  
110  
dB  
Rev. B | Page 3 of 33  
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DISABLE CHARACTERISTICS1  
DISABLE Input Voltage2  
Low  
High  
Disabled  
Enabled  
<1.3  
>1.7  
V
V
DISABLE Input Current  
Low  
High  
Disabled  
Enabled  
−470  
−3  
1.3  
nA  
nA  
μs  
DISABLE On Time  
DISABLE input midswing point to >90%  
of final VOUT, VPD = +VS  
1.8  
DISABLE Off Time  
DISABLE input midswing point to <10%  
of enabled quiescent current, VPD = −VS  
270  
340  
ns  
OUTPUT CHARACTERISTICS  
Saturated Output Voltage Swing  
High  
RLOAD = 1 kΩ  
+VS − 0.08  
−VS + 0.1  
+VS − 0.04  
−VS + 0.07  
50  
60  
80  
V
V
mA  
mA  
mA  
Low  
Linear Output Current3  
Sourcing, G = +1, VIN = +VS, RLOAD = varied  
Sinking, G = +1, VIN = −VS, RLOAD = varied  
Sourcing, G = +1, VIN =+VS, RLOAD= 0 Ω to  
10 Ω  
Short-Circuit Current  
Sinking, G= +1, VIN = −VS, RLOAD = 0 Ω to 10 Ω  
CLOAD = 15 pF, VOUT = 20 mV p-p  
80  
17  
mA  
% overshoot  
Capacitive Load Drive  
POWER SUPPLY  
Operating Range  
2.7  
11  
V
Quiescent Current per Amplifier  
Enabled, no load, TA = 25°C  
Disabled, TA = 25°C  
1.0  
2.4  
1.1  
4.0  
mA  
μA  
Power Supply Rejection Ratio (PSRR)  
Positive  
Negative  
+VS = 3 V to 5 V, −VS = −5 V  
+VS = 5 V, −VS = −3 V to −5 V  
98  
98  
107  
120  
dB  
dB  
1
DISABLE  
DISABLE1 DISABLE2  
or  
DISABLE  
for the ADA4807-2 LFCSP package, hereafter referred to as for the ADA4807-1/ADA4807-2.  
The disable pin is  
on the ADA4807-1 and  
2 See the Disable Circuitry section.  
3 See Figure 53 and Figure 56.  
Rev. B | Page 4 of 33  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
5 V SUPPLY  
TA = 25°C, VS = 5 V, RLOAD = 1 kΩ to midsupply, RF = 0 ꢀ, G = +1, 0 V ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Bandwidth  
G = +1, VOUT = 20 mV p-p  
G = +1, VOUT = 2 V p-p  
G = +1, VOUT = 2V step, 20% to 80%, rise/fall  
G = +1, VOUT = 2 V step  
170  
28  
145/160  
40  
MHz  
MHz  
V/μs  
ns  
Slew Rate  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
Second Harmonic (HD2)  
fC = 1 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-1  
fC = 1 MHz, VOUT = 2 V p-p, ADA4807-2,  
ADA4807-4  
−141  
−111  
−93  
dBc  
dBc  
dBc  
dBc  
−83  
Third Harmonic (HD3)  
fC = 1 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 1 MHz, VOUT = 2 V p-p  
f = 0.1 Hz to 10 Hz  
f = 100 kHz  
−153  
−115  
−78  
160  
3.1  
3.3  
5.8  
29  
0.7  
dBc  
dBc  
dBc  
Peak-to-Peak Noise  
Input Voltage Noise  
nV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Hz  
pA/√Hz  
pA/√Hz  
kHz  
f = 1 kHz  
f = 10 Hz  
Input Voltage Noise 1/f Corner  
Input Current Noise  
f = 100 kHz  
f = 10 Hz  
10  
2
Input Current Noise 1/f Corner  
DC PERFORMANCE  
Input Offset Voltage  
0 V ≤ VICM ≤ +VS − 1.5 V  
ADA4807-1, ADA4807-2  
ADA4807-4  
ADA4807-1, ADA4807-2  
ADA4807-4  
0 V VICM ≤ +VS − 1.2 V, TMIN to TMAX  
0 V ≤ VICM ≤ +VS − 1.5 V  
+VS − 1.5 V ≤ VICM ≤ +VS  
0 V VICM ≤ +VS − 1.2 V, TMIN to TMAX  
0 V ≤ VICM ≤ +VS − 1.5 V  
+VS − 1.5 V ≤ VICM ≤ +VS  
0 V VICM ≤ +VS − 1.2 V, TMIN to TMAX  
−125  
−175  
−720  
−850  
20  
20  
+125  
+175  
+720  
+850  
3.7  
−2.0  
1000  
3.8  
μV  
μV  
μV  
μV  
μV/°C  
μA  
nA  
nA/°C  
nA  
nA  
+VS − 1.5 V ≤ VICM ≤ +VS  
110  
110  
0.7  
−1.2  
500  
2.6  
8
25  
30  
130  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
100  
150  
250  
Input Offset Current Drift  
Open-Loop Gain  
pA/°C  
dB  
113  
INPUT CHARACTERISTICS  
Common-Mode Input Resistance  
Differential Input Resistance  
Common-Mode Input Capacitance  
Differential Input Capacitance  
Input Common-Mode Voltage Range  
CMRR  
45  
35  
1
MΩ  
kΩ  
pF  
pF  
V
1
−VS − 0.2  
96  
+VS + 0.2  
VICM = 1 V to 3 V  
110  
dB  
Rev. B | Page 5 of 33  
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DISABLE CHARACTERISTICS1  
DISABLE Input Voltage2  
Low  
High  
Disabled  
Enabled  
<1.3  
>1.8  
V
V
DISABLE Input Current  
Low  
High  
Disabled  
Enabled  
−360  
−1.3  
450  
nA  
nA  
ns  
DISABLE On Time  
DISABLE input midswing point to >90%  
of final VOUT, VPD = +VS  
DISABLE input midswing point to <10%  
of enabled quiescent current, VPD = −VS  
700  
450  
DISABLE Off Time  
270  
ns  
OUTPUT CHARACTERISTICS  
Saturated Output Voltage Swing  
High  
RLOAD = 1 kΩ  
+VS − 0.05  
−VS + 0.05  
+VS − 0.03  
−VS + 0.04  
50  
60  
80  
V
V
mA  
mA  
mA  
Low  
Linear Output Current3  
Sourcing, G = +1, VIN = +VS, RLOAD = varied  
Sinking, G = +1, VIN = −VS, RLOAD = varied  
Sourcing, G = +1, VIN = +VS, RLOAD = 0 Ω  
to 10 Ω  
Short-Circuit Current  
Sinking, G = +1, VIN = −VS, RLOAD = 0 Ω to  
10 Ω  
CLOAD = 15 pF, VOUT = 20 mV p-p  
80  
24  
mA  
Capacitive Load Drive  
POWER SUPPLY  
% overshoot  
Operating Range  
2.7  
11  
V
Quiescent Current per Amplifier  
Enabled, no load, TA = 25°C  
Disabled, TA = 25°C  
950  
1.3  
1000  
2.0  
μA  
μA  
PSRR  
Positive  
Negative  
+VS = 1.5 V to 3.5 V, −VS = −2.5 V  
+VS = 2.5 V, −VS = −1.5 V to −3.5 V  
98  
98  
115  
130  
dB  
dB  
1
DISABLE  
DISABLE1 DISABLE2  
or  
DISABLE  
for the ADA4807-2 LFCSP package, hereafter referred to as for the ADA4807-1/ADA4807-2.  
The disable pin is  
on the ADA4807-1 and  
2 See the Disable Circuitry section.  
3 See Figure 53 and Figure 56.  
Rev. B | Page 6 of 33  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
3 V SUPPLY  
TA = 25°C, VS = 3 V, RLOAD = 1 kΩ to midsupply, RF = 0 ꢀ, G = +1, 0 V ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted.  
Table 4.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = +1, VOUT = 20 mV p-p  
G = +1, VOUT = 2 V p-p  
G = +1, VOUT = 2 V step, 20% to 80%, rise/fall  
G = +1, VOUT = 2 V step  
165  
28  
118/237  
40  
MHz  
MHz  
V/μs  
ns  
Slew Rate  
Settling Time to 0.1%  
DISTORTION/NOISE PERFORMANCE  
Second Harmonic (HD2)  
fC = 1 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 1 MHz, VOUT = 2 V p-p  
fC = 1 kHz, VOUT = 2 V p-p  
fC = 100 kHz, VOUT = 2 V p-p  
fC = 1 MHz, VOUT = 2 V p-p  
f = 0.1 Hz to 10 Hz  
f = 100 kHz  
−98  
−85  
−65  
−94  
−91  
−68  
160  
3.1  
3.3  
5.8  
29  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
nV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
Hz  
pA/√Hz  
pA/√Hz  
kHz  
Third Harmonic (HD3)  
Peak-to-Peak Noise  
Input Voltage Noise  
f = 10 kHz  
f = 10 Hz  
Input Voltage Noise 1/f Corner  
Input Current Noise  
f = 100 kHz  
f = 10 Hz  
0.7  
10  
2
Input Current Noise 1/f Corner  
DC PERFORMANCE  
Input Offset Voltage  
0 V ≤ VICM ≤ +VS − 1.5 V  
ADA4807-1, ADA4807-2  
ADA4807-4  
ADA4807-1, ADA4807-2  
ADA4807-4  
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX  
0 V ≤ VICM ≤ +VS − 1.5 V  
+VS − 1.5 V ≤ VICM ≤ +VS  
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX  
0 V ≤ VICM ≤ +VS − 1.5 V  
+VS − 1.5 V ≤ VICM ≤ +VS  
0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX  
−125  
−175  
−720  
−850  
20  
20  
+125  
+175  
+720  
+850  
3.8  
−2.0  
1000  
3.8  
μV  
μV  
μV  
μV  
μV/°C  
μA  
nA  
nA/°C  
nA  
nA  
+VS − 1.5 V ≤ VICM ≤ +VS  
125  
125  
0.7  
−1.2  
500  
2.7  
8
25  
40  
113  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Offset Current  
130  
150  
230  
Input Offset Current Drift  
Open-Loop Gain  
pA/°C  
dB  
104  
INPUT CHARACTERISTICS  
Common-Mode Input Resistance  
Differential Input Resistance  
Common-Mode Input Capacitance  
Differential Input Capacitance  
Input Common-Mode Voltage Range  
CMRR  
45  
35  
1
MΩ  
kΩ  
pF  
pF  
V
1
−VS − 0.2  
92  
+VS + 0.2  
VICM = 0.3 V to 1.3 V  
110  
dB  
Rev. B | Page 7 of 33  
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DISABLE CHARACTERISTICS1  
DISABLE Input Voltage2  
Low  
High  
Disabled  
Enabled  
<1.1  
>1.5  
V
V
DISABLE Input Current  
Low  
High  
Disabled  
Enabled  
−325  
−500  
nA  
nA  
DISABLE On Time  
DISABLE Off Time  
DISABLE input midswing point to >90%  
of final VOUT, VPD = +VS  
DISABLE input midswing point to <10%  
of enabled quiescent current, VPD = −VS  
500  
270  
700  
460  
ns  
ns  
OUTPUT CHARACTERISTICS  
Saturated Output Voltage Swing  
High  
RLOAD = 1 kΩ  
+VS − 0.04  
−VS + 0.04  
+VS − 0.02  
−VS + 0.03  
50  
60  
65  
V
V
mA  
mA  
mA  
Low  
Linear Output Current3  
Sourcing, G = +1, VIN = +VS, RLOAD = varied  
Sinking, G = +1, VIN = −VS, RLOAD = varied  
Sourcing, G = +1, VIN = +VS, RLOAD = 0 Ω to  
10 Ω  
Short-Circuit Current  
Sinking, G = +1, VIN = −VS, RLOAD = 0 Ω to  
10 Ω  
CLOAD = 15 pF, VOUT = 20 mV p-p  
70  
30  
mA  
Capacitive Load Drive  
POWER SUPPLY  
% overshoot  
Operating Range  
2.7  
11  
V
Quiescent Current per Amplifier  
Enabled, no load, TA = 25°C  
Disabled, TA = 25°C  
915  
1.0  
1000  
2.0  
μA  
μA  
PSRR  
Positive  
Negative  
+VS = 1.5 V to 3.5 V, −VS = −1.5 V  
+VS = 1.5 V, −VS = −1.5 V to −3.5 V  
97  
97  
113  
130  
dB  
dB  
1
DISABLE  
DISABLE1 DISABLE2  
or  
DISABLE  
for the ADA4807-2 LFCSP package, hereafter referred to as for the ADA4807-1/ADA4807-2.  
The disable pin is  
on the ADA4807-1 and  
2 See the Disable Circuitry section.  
3 See Figure 53 and Figure 56.  
Rev. B | Page 8 of 33  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
θJA is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
Supply Voltage  
11 V  
Internal Power Dissipation  
Input Voltage (Common Mode)  
Differential Input Voltage  
Output Short-Circuit Duration  
See Figure 5  
VS 0.2 V  
1.4 V  
See power  
derating curves in  
Figure 5  
Table 6. Thermal Resistance  
Package Type  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
6-Lead SC70, 4-Layer Board  
6-Lead SOT-23, 4-Layer Board  
8-Lead MSOP  
209  
223  
123  
51  
10-Lead LFCSP  
Storage Temperature Range (All Packages)  
Lead Temperature (Soldering 10 sec)  
−65°C to +125°C  
300°C  
14-Lead TSSOP  
130  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
LFCSP  
MAXIMUM POWER DISSIPATION  
The maximum power that can be safely dissipated by the  
ADA4807-1/ADA4807-2/ADA4807-4 is limited by the associated  
rise in junction temperature. The maximum safe junction  
temperature for plastic encapsulated devices is determined by  
the glass transition temperature of the plastic, approximately  
150°C. Exceeding this limit temporarily can cause a shift in  
parametric performance due to a change in the stresses exerted  
on the die by the package. Exceeding a junction temperature of  
175°C for an extended period can result in device failure.  
1.0 SOT-23  
TSSOP  
MSOP  
SC70  
0.5  
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
AMBIENT TEMPERATURE (°C)  
Figure 5. Maximum Power Dissipation vs. Ambient Temperature for a  
4-Layer Board  
ESD CAUTION  
Although the ADA4807-1/ADA4807-2/ADA4807-4 are  
internally short-circuit protected, this may not be sufficient to  
guarantee that the maximum junction temperature (150°C) is  
not exceeded under all conditions. To ensure proper operation,  
it is necessary to observe the power derating curves shown in  
Figure 5.  
Rev. B | Page 9 of 33  
 
 
 
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
6
5
4
+V  
S
OUT  
–V  
S
DISABLE  
–IN  
+IN  
Figure 6. ADA4807-1 Pin Configuration  
Table 7. ADA4807-1 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
VOUT  
−VS  
+IN  
−IN  
DISABLE  
+VS  
Output  
Negative Supply  
Noninverting Input  
Inverting Input  
Active Low Power-Down  
Positive Supply  
Rev. B | Page 10 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
10 +V  
V
1
2
3
4
5
S
OUT1  
–IN1  
+IN1  
9
8
7
6
V
OUT2  
–IN2  
V
1
2
3
4
8
7
6
5
+V  
V
OUT1  
S
–IN1  
–V  
+IN2  
OUT2  
S
DISABLE1  
NOTES  
DISABLE2  
+IN1  
–IN2  
+IN2  
–V  
S
1. THE EXPOSED PAD CAN BE CONNECTED TO  
GROUND OR POWER PLANES, OR IT CAN  
BE LEFT FLOATING.  
Figure 7. ADA4807-2 10-Lead LFCSP Pin Configuration  
Figure 8. ADA4807-2 8-Lead MSOP Pin Configuration  
Table 8. ADA4807-2 Pin Function Descriptions  
Pin No.  
10-Lead LFCSP  
8-Lead MSOP  
Mnemonic  
VOUT1  
−IN1  
+IN1  
−VS  
DISABLE1  
DISABLE2  
+IN2  
−IN2  
VOUT2  
Description  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
Output 1.  
Inverting Input 1.  
Noninverting Input 1.  
Negative Supply.  
Active Low Power-Down 1.  
Active Low Power-Down 2.  
Noninverting Input 2.  
Inverting Input 2.  
Output 2.  
Not applicable  
Not applicable  
5
6
7
8
+VS  
Positive Supply.  
Not applicable  
EPAD  
Exposed Pad. For the 10-Lead LFCSP, the exposed pad can be connected to ground  
or power planes, or it can be left floating.  
Rev. B | Page 11 of 33  
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
1
2
3
4
5
6
7
14  
13  
V
V
OUT4  
OUT1  
–IN1  
+IN1  
–IN4  
12 +IN4  
11  
–V  
S
+V  
S
ADA4807-4  
10  
9
+IN3  
–IN3  
V
+IN2  
–IN2  
8
V
OUT3  
OUT2  
Figure 9. ADA4807-4 Pin Configuration  
Table 9. ADA4807-4 Pin Function Descriptions  
Pin No.  
Mnemonic  
VOUT1  
−IN1  
+IN1  
+VS  
+IN2  
−IN2  
VOUT2  
VOUT3  
−IN3  
+IN3  
−VS  
Description  
1
2
3
4
5
6
7
8
Output 1  
Inverting Input 1  
Noninverting Input 1  
Positive Supply  
Noninverting Input 2  
Inverting Input 2  
Output 2  
Output 3  
9
Inverting Input 3  
Noninverting Input 3  
Negative Supply  
Noninverting Input 4  
Inverting Input 4  
Output 4  
10  
11  
12  
13  
14  
+IN4  
−IN4  
VOUT4  
Rev. B | Page 12 of 33  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
FREQUENCY RESPONSE  
6
3
27  
V
= ±2.5V  
LOAD  
= 20mV p-p  
V RANGE = ±2.5V TO ±5V  
S
S
24  
21  
18  
15  
12  
9
200mV p-p  
R
= 1kΩ  
G = +1  
G = +10  
G = +5  
V
R
= 1kΩ  
OUT  
LOAD  
0
20mV p-p  
–3  
G = +2  
–6  
6
3
–9  
2V p-p  
0
G = +1  
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–12  
–15  
–18  
–21  
–24  
G = –1  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 10. Small Signal Frequency Response for Various Gains,  
RF = 499 Ω  
Figure 13. Frequency Response for Various Output Amplitudes, G = +1  
6
6
V
= 20mV p-p  
V
= 2V p-p  
OUT  
±1.5V  
OUT  
G = +1  
G = +1  
3
0
3
0
R
= 1kΩ  
R
= 1kΩ  
LOAD  
LOAD  
–3  
±5.0V  
–3  
–6  
–9  
–6  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–9  
–12  
–15  
–18  
–21  
±5.0V  
±1.5V  
±2.5V  
±2.5V  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 11. Small Signal Frequency Response for Various Supplies  
Figure 14. Large Signal Frequency Response for Various Supplies  
6
3
6
–40°C  
+25°C  
3
0
+85°C  
+125°C  
0
–3  
–6  
–9  
–3  
–6  
–12  
–9  
–40°C  
+125°C  
–15  
–12  
–15  
–18  
–21  
–24  
–18  
+25°C  
–21  
V
RANGE = ±2.5V TO ±5V  
–24  
–27  
–30  
V
RANGE = ±1.5V TO ±5V  
S
S
G = +1  
= 2V p-p  
G = +1  
V
R
V
= 20mV p-p  
OUT  
LOAD  
OUT  
= 1kΩ  
R
= 1kΩ  
LOAD  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Small Signal Frequency Response for Various Temperatures  
Figure 15. Large Signal Frequency Response for Various Temperatures  
Rev. B | Page 13 of 33  
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
6
6
3
V
V
RANGE = ±2.5V TO ±5V  
= 2V p-p  
V
V
= ±2.5V  
OUT  
G = +1  
S
S
= 20mV p-p  
OUT  
3
0
G = +1  
0
1kΩ  
–3  
–3  
–6  
1kΩ  
–6  
–9  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
100Ω  
100Ω  
–12  
–15  
–18  
–21  
–24  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Small Signal Frequency Response for Various Resistive Loads  
Figure 19. Large Signal Frequency Response for Various Resistive Loads  
0.6  
12  
G = +1  
LOAD  
V
= ±2.5V  
S
R
= 1kΩ  
0.5  
0.4  
9
6
G = +1  
= 20mV p-p  
V
R
OUT  
= 1kΩ  
LOAD  
V
V
RANGE = ±1.5V TO ±5V  
OUT  
S
0.3  
3
= 20mV p-p  
0.2  
0
0.1  
–3  
0pF  
0
–6  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–9  
5pF  
–12  
–15  
–18  
–21  
–24  
V
V
RANGE = ±2.5V TO ±5V  
OUT  
S
10pF  
= 2V p-p  
15pF  
0.1  
1
10  
FREQUENCY (MHz)  
100  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 17. Small Signal Frequency Response for Various Capacitive Loads  
Figure 20. 0.1 dB Flatness Frequency Response for Various Output Amplitudes  
6
6
V
= ±2.5V  
Vs = ±2.5V, ±5V  
V = 200mV p-p  
OUT  
G = 2  
F
LOAD  
S
G = +1  
= 20mV p-p  
R
R
= 499Ω  
3
0
3
0
V
= 1kΩ  
OUT  
V
= 0V  
CM  
R
= 1kΩ  
LOAD  
Vs = ±2.5V, ±5V  
= 20mV p-p  
V
OUT  
B)  
d
–3  
–3  
N(  
AI  
–6  
G
–6  
V
= +V – 0.5V  
CM S  
P
–9  
LO  
–9  
-
D
–12  
–15  
–18  
–21  
–24  
E
–12  
–15  
–18  
–21  
LOS  
Vs = ±2.5V, ±5V  
= 2V p-p  
C
V
OUT  
Vs = ±5V  
= 4V p-p  
V
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 18. Small Signal Frequency Response for  
Various Input Common-Mode Voltages (VCM  
Figure 21. Frequency Response for Various Output Amplitudes, G = +2  
)
Rev. B | Page 14 of 33  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
FREQUENCY AND SUPPLY CURRENT  
20  
–40  
–50  
V
= ±2.5V  
V
= ±2.5V  
ON  
S
S
G = +1  
ΔV  
= 0dBm  
DISABLE = +V  
CM  
S
0
–20  
–60  
–70  
–40  
–80  
–60  
–90  
OFF  
–80  
DISABLE = –V  
S
–100  
–110  
–120  
–130  
–100  
–120  
–140  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
100  
100  
6
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 22. Off Isolation vs. Frequency  
Figure 25. CMRR vs. Frequency  
120  
160  
140  
120  
100  
80  
–30  
–40  
V
= ±2.5V  
S
V
= ±5V  
S
ΔV = –16dBm  
S
100  
80  
60  
40  
20  
0
–50  
–PSRR  
–60  
–70  
+PSRR  
–80  
60  
–90  
40  
–100  
–110  
–120  
–20  
–40  
20  
0
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 23. Open-Loop Gain and Phase vs. Frequency  
Figure 26. PSRR vs. Frequency  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
DISABLE = –V  
S
+I  
S
V
= ±5.0V  
1.5  
S
1.0  
0.5  
V
= ±1.5V  
S
V
= ±2.5V  
S
0
–0.5  
–1.0  
–1.5  
–2.0  
–I  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
1
2
3
4
5
TEMPERATURE (°C)  
POWER SUPPLY, ±V (V)  
S
Figure 24. Quiescent Supply Current vs. Temperature  
DISABLE  
Figure 27.  
Supply Current vs. Power Supply, VS  
Rev. B | Page 15 of 33  
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
DC AND INPUT COMMON-MODE PERFORMANCE  
400  
60  
50  
40  
30  
20  
10  
0
NPN  
= ±5V  
PNP  
V
= ±2.5V  
S
V
V
V
V
= ±5V  
–40°C TO +125°C  
COUNT = 361 AMPLIFIERS  
x = 0.7µV/°C  
S
S
= +V – 0.5V  
350  
300  
250  
200  
150  
100  
50  
= 0V  
CM  
S
CM  
450 UNITS  
x = –32.7µV  
σ = 109.4µV  
450 UNITS  
x = –1.5µV  
σ = 17.9µV  
σ
= 0.5µV/°C  
0
–600  
–2.8 –2.2 –1.6 –1.0 –0.4  
0.2  
0.8  
1.4  
2.0  
2.6  
3.2  
3.8  
–400  
–200  
0
200  
400  
600  
INPUT REFERRED OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE DRIFT (µV/°C)  
Figure 28. Input Referred Offset Voltage Distribution for the ADA4807-1 and  
ADA4807-2  
Figure 31. Input Referred Offset Voltage Drift Distribution, VCM = 0 V  
90  
NPN  
= ±5V  
PNP  
V
= ±2.5V  
S
300  
250  
200  
150  
100  
50  
V
V
V
V
= ±5V  
CM  
S
S
–40°C TO +125°C  
COUNT = 283 AMPLIFIERS  
x = 30pA/°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
= +V – 0.5V  
= 0V  
CM  
S
450 UNITS  
x = –1.18nA  
σ = 22.59nA  
450 UNITS  
x = –1.58nA  
σ = 6.62nA  
σ = 35pA/°C  
0
–150  
–200  
–140  
–80  
–20  
40  
100  
160  
220  
280  
–100  
–50  
0
50  
100  
150  
INPUT OFFSET CURRENT (nA)  
INPUT OFFSET CURRENT DRIFT (pA/°C)  
Figure 29. Input Offset Current Distribution  
Figure 32. Input Offset Current Drift Distribution, VCM = 0 V  
40  
30  
1.0  
V
= ±5.0V  
V
= ±5.0V  
S
S
10 UNITS  
10 UNITS  
0.5  
0
20  
10  
0
–0.5  
–1.0  
–1.5  
–10  
–20  
–30  
–40  
–2.0  
5.2  
–3.9  
–2.6  
–1.3  
0
1.3  
2.6  
3.9  
5.2  
5.2  
–3.9  
–2.6  
–1.3  
0
1.3  
2.6  
3.9  
5.2  
INPUT COMMON-MODE VOLTAGE (V)  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 30. Input Bias Current vs. Input Common-Mode Voltage  
Figure 33. Input Offset Current vs. Input Common-Mode Voltage  
Rev. B | Page 16 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
300  
10  
9
25  
V
= ±5V  
S
OIL BATH TEMPERATURE  
24  
10 UNITS  
8
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
200  
100  
0
7
6
5
4
3
2
1
–100  
–200  
0
–1  
–2  
–3  
–4  
V
= ±2.5V  
S
12  
11  
8 UNITS, SOLDERED TO PCB  
100 200 300  
TIME (Hours)  
–300  
5.2  
3.9  
2.6  
1.3  
0
1.3  
2.6  
3.9  
5.2  
0
400  
500  
600  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 34. Input Referred Offset Voltage vs. Input Common-Mode Voltage  
Figure 35. Long-Term Input Offset Voltage (VOS) Drift  
Rev. B | Page 17 of 33  
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
SLEW, TRANSIENT, SETTLING TIME, AND CROSSTALK  
280  
1.5  
1.0  
G = +1  
LOAD  
G = +1  
LOAD  
R
= 1kΩ  
R
= 1kΩ  
V
OUT  
= ±5V  
S
FALLING EDGE  
RISING EDGE  
260  
240  
220  
200  
180  
160  
140  
120  
100  
V
= 5V p-p  
±2.5V  
0.5  
0
FALLING EDGE  
V
OUT  
= ±2.5V  
= 2V p-p  
S
V
–0.5  
–1.0  
–1.5  
±1.5V  
RISING EDGE  
±5V  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
TEMPERATURE (°C)  
TIME (ns)  
Figure 36. Slew Rate vs. Temperature  
Figure 38. Large Signal Transient Response for Various Supplies  
0.5  
0.4  
0.3  
15  
10  
5
V
= ±2.5V  
S
OUTPUT STEP = 2V p-p  
0.2  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–5  
–10  
–15  
V
= ±5V  
S
OUTPUT STEP = 5V p-p  
G = +1  
R
= 1kΩ  
LOAD  
V
RANGE = ±1.5V TO ±5V  
S
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0
20  
40  
60  
80  
90  
TIME (µs)  
TIME (ns)  
Figure 39. Settling Time to 0.1%  
Figure 37. Small Signal Transient Response for Various Supplies  
Rev. B | Page 18 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
15  
10  
5
0
–20  
V
V
= ±2.5V  
, V  
V
= ±2.5V  
S
S
, V  
= 1V p-p  
G = +1  
OUT2 OUT3 OUT4  
G = +1  
R
= 1kΩ  
LOAD  
–40  
0pF  
–60  
5pF  
10pF  
15pF  
V
OUT1  
0
–80  
–5  
–10  
–15  
–100  
–120  
–140  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
TIME (µs)  
FREQUENCY (Hz)  
Figure 40. Small Signal Transient Response for Various Capacitive Loads  
Figure 42. ADA4807-4 All Hostile Crosstalk  
0
V
V
= ±2.5V  
OUT  
S
= 2V p-p  
–20  
–40  
DISABLE = 2.5V  
–60  
–80  
–100  
–120  
–140  
–160  
DRIVING AMP 1  
DRIVING AMP 2  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 41. ADA4807-2 Crosstalk vs. Frequency  
Rev. B | Page 19 of 33  
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
DISTORTION AND NOISE  
0
–10  
–20  
G = +1  
V
V
V
= ±1.5V  
= ±2.5V  
= ±5V  
G = +1  
S
S
S
R
V
= 1k  
R
V
= 1k  
LOAD  
LOAD  
= 2V p-p  
–20  
= 2V p-p  
–40  
–60  
OUT  
OUT  
HD2  
HD3  
–30  
V
= ±1.5V, HD2  
S
–40  
–50  
V
= ±1.5V, HD3  
S
–60  
–80  
–70  
–80  
–100  
–120  
–140  
–160  
–180  
–90  
V
= ±5V, HD2  
S
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
V
= ±5V, HD3  
S
V
= ±2.5V, HD2  
10  
S
V
= ±2.5V, HD3  
100  
S
1
1000  
10000  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
FREQUENCY (MHz)  
Figure 43. ADA4807-1 Harmonic Distortion vs. Frequency for Various Supplies  
Figure 46. ADA4807-2/ADA4807-4 Harmonic Distortion vs. Frequency for  
Various Supplies  
0
V
V
= ±2.5V  
S
–20  
= 2V p-p  
OUT  
G = +1  
–20  
–40  
R
= 1k  
LOAD  
V
V
= 2V p-p  
OUT  
–40  
–60  
= ±2.5V  
S
R
= 100  
HD2  
LOAD  
–60  
G = +5, HD2  
–80  
–80  
R
= 1kΩ  
HD2  
LOAD  
G = +2, HD2  
G = +1, HD2  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
R
= 1kΩ  
LOAD  
HD3  
G = +5, HD3  
G = +2, HD3  
R
= 100Ω  
LOAD  
HD3  
G = +1, HD3  
1
10  
100  
FREQUENCY (kHz)  
1000  
10000  
1
10  
100  
FREQUENCY (kHz)  
1000  
10000  
Figure 44. ADA4807-1 Harmonic Distortion vs. Frequency for Various Gains  
Figure 47. ADA4807-1 Harmonic Distortion vs. Frequency for Various  
Resistive Loads  
–40  
0
V
= ±2.5V  
S
G = + 1  
VOUT = 2V p-p  
G = +1  
LOAD  
–50  
–60  
–10  
RLOAD = 1k  
f = 100kHz  
R
= 1k  
–20  
–30  
V
= 10V  
V
= 5V  
V
= 3V  
S
S
S
–70  
f = 1MHz  
–40  
–80  
–50  
–90  
–60  
HD2  
HD3  
–70  
HD2  
HD2  
HD3  
–100  
–110  
–120  
–130  
–140  
–150  
f = 100kHz  
f = 1kHz  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
HD3  
9
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
1
2
3
4
5
6
7
8
10  
V
(V p-p)  
OUT  
INPUT COMMON-MODE VOLTAGE (V)  
Figure 45. Total Harmonic Distortion vs. Output Voltage (VOUT  
)
Figure 48. Harmonic Distortion vs. Input Common-Mode Voltage  
Rev. B | Page 20 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
6
5
4
3
2
12  
10  
8
V
= ±2.5V  
V = ±5V  
S
S
G = +2  
G = +2  
R
R
= 499Ω  
R
= 499Ω  
F
F
= 1kΩ  
R
= 1kΩ  
LOAD  
LOAD  
6
4
THD = –80dB  
THD = –90dB  
THD = –80dB  
THD = –90dB  
THD = –100dB  
THD = –100dB  
1
2
ADA4807-1,  
ADA4807-2  
ADA4807-1,  
ADA4807-2  
ADA4807-4  
ADA4807-4  
0
1
0
10  
100  
FREQUENCY (kHz)  
1000  
1
10  
100  
FREQUENCY (kHz)  
1000  
Figure 49. Output Voltage vs. Frequency for VS = 2.5 V  
Figure 51. Output Voltage vs. Frequency for VS = 5 V  
1
0.1  
V
= ±2.5V  
S
G = +1  
f = 1kHz  
0.01  
0.001  
0.0001  
0.00001  
16Ω  
32Ω  
600Ω  
0.001  
0.01  
0.1  
1
OUTPUT VOLTAGE (V rms)  
Figure 50. Total Harmonic Distortion vs. Output Voltage for Various  
Resistive Loads  
Rev. B | Page 21 of 33  
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
OUTPUT CHARACTERISTICS  
100  
100  
10  
1
100  
10  
1
100  
V
RANGE = ±1.5V TO ±5V  
V RANGE = ±1.5V TO ±5V  
S
NPN ACTIVE  
S
PNP ACTIVE  
10  
10  
VOLTAGE NOISE  
VOLTAGE NOISE  
1
1
CURRENT NOISE  
CURRENT NOISE  
0.1  
0.1  
100M  
0.1  
0.1  
100M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52. Input Voltage Noise and Current Noise vs. Frequency,  
VCM = 0 V  
Figure 55. Input Voltage Noise and Current Noise vs. Frequency,  
VCM = +VS − 0.5 V  
1.8  
1.8  
V
= ±2.5V  
S
V
= ±2.5V  
S
G = +1  
G = +1  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
+125°C  
+85°C  
+25°C  
+85°C  
+25°C  
+125°C  
–40°C  
–40°C  
60  
0
10  
20  
30  
40  
50  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 56. Negative Rail Output Saturation Voltage (−VS + VOUT) vs.  
Load Current for Various Temperatures  
Figure 53. Positive Rail Output Saturation Voltage (+VS – VOUT) vs.  
Load Current for Various Temperatures  
1000  
1000  
V
= ±2.5V  
V
= ±2.5V  
S
S
DISABLE = –V  
DISABLE = +V  
S
S
100  
10  
100  
10  
1
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 57. Disabled Output Impedance vs. Frequency  
Figure 54. Enabled Output Impedance vs. Frequency  
Rev. B | Page 22 of 33  
 
 
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
OVERDRIVE RECOVERY AND TURN ON/TURN OFF TIMES  
3
1.5  
1.0  
3
V
= ±2.5V  
V
= ±2.5V  
V
S
V
V
S
IN  
IN  
OUT  
V
G = +1  
OUT  
G = +2  
R
= 1k  
R
= 1k  
LOAD  
LOAD  
2
1
2
0.5  
1
0
0
0
–1  
–2  
–3  
–0.5  
–1.0  
–1.5  
–1  
–2  
–3  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
TIME (µs)  
TIME (µs)  
Figure 58. Input Overdrive Recovery  
Figure 60. Output Overdrive Recovery  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
400  
350  
300  
250  
200  
150  
100  
G = +1  
LOAD  
DISABLE = –V TO +V  
G = +1  
LOAD  
DISABLE = +V TO –V  
S
R
= 1k  
R
= 1k  
S
S
S
V
= ±1.5V  
S
V
= ±5.0V  
V
= ±5.0V  
S
S
V
= ±2.5V  
S
V
V
= ±2.5V  
= ±1.5V  
S
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 59. Turn On Time vs. Temperature and Supply  
Figure 61. Turn Off Time vs. Temperature and Supply  
Rev. B | Page 23 of 33  
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
THEORY OF OPERATION  
The ADA4807-1/ADA4807-2/ADA4807-4 have a rail-to-rail  
input stage with an input range that goes 200 mV beyond either  
rail. A PNP transistor input pair is active for a majority of the  
input range, while an NPN transistor input pair is active for the  
common-mode voltages within 1.3 V of the positive rail. The  
ADA4807-1/ADA4807-2/ADA4807-4 are fabricated using the  
Analog Devices, Inc., third generation, extra fast complementary  
bipolar (XFCB) process resulting in exceptionally good distortion,  
noise, slew rate, and settling characteristics for 1 mA devices.  
Given traditional rail-to-rail input architecture performance, the  
input 1/f noise is surprisingly low, and the current noise is only  
0.7 pA/√Hz for a 3 nV/√Hz voltage noise. Typical high slew rate  
devices suffer from increased current noise because of input pair  
degeneration and higher input stage current. The ADA4807-1/  
ADA4807-2/ADA4807-4 exceed current benchmark parameters  
given the performance of the XFCB process.  
The rail-to-rail input stage is useful in many different applications.  
Although the precision is reduced from input to input, many  
applications can tolerate this loss when the alternative is no  
functionality at all. The positive rail input range is indispensable  
for servo loops with a high-side input range  
The ADA4807-1/ADA4807-2/ADA4807-4 input operates 200 mV  
beyond either rail. Internal protection circuitry prevents the output  
from phase inverting when the input range is exceeded. When  
the input exceeds a diode beyond either rail, internal electrostatic  
discharge (ESD) protection diodes source or sink current through  
the input.  
I2  
I1  
Q51  
Q42  
Q47  
DIFFERENTIAL  
DRIVE  
Q37  
Q38  
FROM  
Q68  
INPUT STAGE  
C9  
The multistage design of the ADA4807-1/ADA4807-2/  
ADA4807-4 has excellent precision specifications, such as input  
drift, offset, open-loop gain, CMRR, and PSRR. Typical harmonic  
distortion numbers fall in the range of −130 dBc for a 10 kHz  
fundamental (see the Distortion and Noise section). This level of  
performance makes the ADA4807-1/ADA4807-2/ADA4807-4 the  
best choices when driving 18-bit precision converters.  
Q20  
R29  
Q27  
Q21  
V
OUT  
Q43  
Q48  
C5  
Q49  
I4  
I5  
Q50  
Q44  
The ADA4807-1/ADA4807-2 are optimized for a low shutdown  
current (4 μA maximum), in the order of a few microamperes. In  
power sensitive applications, this can eliminate the use of a power  
FET and enable time interleaved power saving operation schemes.  
Figure 62. Differential Drive from Input Stage  
+V  
S
R1  
R2  
I2  
Q9  
1.3V  
V
Q3  
Q2  
R5  
IN  
Q8  
Q7  
Q5  
V
BIAS1  
V
Q13  
Q17  
IP  
OUTPUT STAGE,  
COMMON-MODE  
FEEDBACK  
Q14  
Q11  
V
BIAS2  
R3  
R4  
I1  
5µA  
Q18  
Q4  
–V  
S
Figure 63. Simplified Schematic  
Rev. B | Page 24 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
heating. If large differential voltages must be sustained across the  
input terminals, it is recommended that the current through the  
input clamps be limited to less than 10 mA. Series input resistors  
sized appropriately for the expected differential overvoltage  
provide the needed protection.  
DISABLE CIRCUITRY  
DISABLE  
When the  
if the logic leakage currents exceed 300 nA. For a 10 V supply,  
DISABLE  
pin is an option, a pull-up resistor is required  
pulling the  
ADA4807-2 off, which reduces the supply current to 2.4 µA.  
DISABLE  
pin to below 6.3 V turns the ADA4807-1/  
+V  
S
Conversely, pulling the  
pin voltage to above 6.6 V  
enables the ADA4807-1/ADA4807-2 with a quiescent current of  
1 mA. When the ADA4807-1/ADA4807-2 device is disabled, its  
output enters a high impedance state. Figure 64 and Table 10  
BIAS  
ESD  
+INx  
ESD  
ESD  
ESD  
–INx  
DISABLE  
show the  
functionality over the complete supply range.  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
–V  
S
TO THE REST OF THE AMPLIFIER  
NOTES  
1. THE ±INx PINS ARE ±IN ON THE ADA4807-1,  
±IN1 AND ±IN2 ON THE ADA4807-2,  
AND ±IN1 TO ±IN4 ON THE ADA4807-4.  
Figure 65. Input Stage and Protection Diodes  
NOISE CONSIDERATIONS  
Figure 66 illustrates the primary noise contributors for the typical  
gain configurations. The total output noise (VN_OUT) is the root  
sum square of all the noise contributions.  
V
V
V
TH  
ON  
OFF  
= V +150mV  
TH  
= V –150mV  
TH  
V
_ R =  
4kT × R  
F
R
N
F
F
3
4
5
6
7
8
9
10  
POWER SUPPLY, V (V)  
S
ven  
R
V
_ R  
=
G
G
S
4kT × R  
N
G
DISABLE  
Figure 64.  
Trigger Voltage  
+ vout_en –  
ien  
iep  
Table 10. Threshold Voltages for Disabled and Enabled Modes  
R
V
_ R =  
S
4kT × R  
N
S
Mode  
+3 V  
+5 V  
1.6 V  
1.3 V  
+10 V  
6.6 V  
6.3 V  
5 V  
1.6 V  
1.3 V  
+7 V/−2 V  
Enabled  
Disabled  
1.35 V  
1.05 V  
3.6 V  
3.3 V  
Figure 66. Noise Sources in Typical Gain Configurations  
Source resistance noise, amplifier input voltage noise, and the  
voltage noise from the amplifier input current noise (IN+ × RS)  
are all subject to the noise gain term (1 + RF/RG).  
The output impedance decreases as the frequency increases. When  
disabled, a forward isolation of 120 dB is achieved at 100 kHz (see  
DISABLE  
Figure 22). ESD clamps protect the  
pin, as shown in  
Figure 65. Voltages beyond the power supplies cause these diodes  
to conduct. To avoid excessive current in the ESD diodes, ensure  
Calculate the output noise spectral density using the following  
equation:  
DISABLE  
that the voltage to the  
pin is not 0.7 V greater than the  
2  
2  
RF  
RG  
RF  
RG  
2
2
positive supply or that it is not 0.7 V less than the negative supply.  
If an overvoltage condition is expected, limit the input current to  
less than 10 mA with a series resistor.  
VN  
=
4kTRF + 1+  
[
4kTRs + IN+2RS2 +VN  
]
+
4kTRG + IN2 RF  
_
OUT  
where:  
k is Boltzmann’s constant.  
T is the absolute temperature in degrees Kelvin.  
RF and RG are the feedback network resistances, as shown in  
Figure 66.  
INPUT PROTECTION  
The ADA4807-1/ADA4807-2/ADA4807-4 are fully protected  
from ESD events, withstanding human body model ESD events  
of 3 kV and charged device model events of 1.25 kV with no  
measured performance degradation. The precision input is  
protected with an ESD network between the power supplies and  
diode clamps across the input device pair, as shown in Figure 65.  
RS is the source resistance, as shown in Figure 66.  
IN+ and INrepresent the amplifier input current noise spectral  
density in pA/√Hz.  
VN is the amplifier input voltage noise spectral density in nV/√Hz.  
For differential voltages above approximately 1.2 V at room  
temperature and 0.8 V at 125°C, the diode clamps begin to  
conduct. Too much current can cause damage due to excessive  
Rev. B | Page 25 of 33  
 
 
 
 
 
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
APPLICATIONS INFORMATION  
CAPACITIVE LOAD DRIVE  
LOW NOISE FET OPERATIONAL AMPLIFIER  
Figure 67 shows the schematic for driving large capacitive loads, and  
Figure 68 shows the frequency response for a gain of +2. Note that  
the bandwidth decreases with larger capacitive loads (see Figure 68).  
Low noise amplifiers for photodiode, piezoelectric, and other  
instrumentation applications typically call for circuit parameters  
such as extremely high input impedance, low 1/f noise, or sub-  
picoamp bias currents that can be met only with a discrete  
amplifier design.  
Figure 69 shows the required series resistor (RSERIES) when  
limiting the peaking to 3 dB for a range of load capacitors  
(CLOAD) at a gain of +2. From Figure 69, no series resistors are  
necessary to maintain stability for larger capacitors.  
The discrete amplifier shown in Figure 70 uses a high-speed op  
amp preceded by a differential amplifier stage. This discrete config-  
uration is implemented with dual matched JFETs, which provide  
high input impedance and some initial gain, reducing the noise  
and precision specifications of the second stage. The low current  
consumption of the ADA4807-1/ADA4807-2/ADA4807-4, in  
addition to their precision and low noise characteristics, results  
in a composite design with 7 mA of total supply current,  
1.5 nV/√Hz noise at 1 kHz, and 4 nV/√Hz noise at 10 Hz.  
R
F
R
G
V
R
V
OUT  
SERIES  
LOAD  
V
IN  
C
LOAD  
R
LOAD  
R
T
49.9Ω  
Figure 67. Schematic for Driving Large Capacitive Loads  
6
3
The unbalanced output impedance of the FETs is negated by  
the use of an inverting amplifier cascode. The ADA4807-1/  
ADA4807-2/ADA4807-4 are ideally suited for the cascode due  
to their rail-to-rail input structure, which results in excellent  
overload behavior of the overall discrete amplifier. Using this  
cascode structure, the CMRR is greater than 100 dB.  
15pF, 100Ω  
47pF, 82.5Ω  
470pF, 20Ω  
1nF, 10.5Ω  
0
–3  
–6  
10nF, 1.69Ω  
100nF, 0.5Ω  
A high output impedance current source is also needed to  
maintain the CMRR of the discrete amplifier. An ADR510  
maintains a precise current over the supply voltage, and the low  
collector capacitance of the PMP4201 results in a balanced and  
predictable slew rate behavior. This is shown in Figure 71 with a  
0.4 V p-p input and a 4 V p-p output with a gain of 10. Figure 72  
shows output referred total harmonic distortion plus noise  
(THD + N) for a gain of 10.  
–9  
–12  
–15  
–18  
V
= ±5V  
S
R
= 1kΩ  
LOAD  
G = +2  
V
= 70mV p-p  
OUT  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 68. Frequency Response for Driving Large Capacitive Loads,  
RF = RG = 249 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.001  
0.01  
0.1  
1
10  
100  
C
(nF)  
LOAD  
Figure 69. Required Series Resistor (RSERIES) vs. Capacitive Load (CLOAD  
)
at 3 dB Peaking  
Rev. B | Page 26 of 33  
 
 
 
 
 
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
C7  
27pF  
R0  
100  
Rb  
V
OS  
100Ω  
V
TRIM  
TRIM  
OS  
C0  
20pF  
R1  
10Ω  
R13  
100Ω  
R12  
100Ω  
+5V  
+
V
OUT  
–5V  
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
+5V  
–5V  
C9  
2pF  
R4  
5kΩ  
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
+
V+  
V–  
1/2 LSK489  
+5V  
1/2 LSK489  
R2  
100Ω  
R3  
1kΩ  
R6  
5kΩ  
qn1  
qn0  
1/2 PMP4201  
1/2 PMP4201  
R7  
200Ω  
ADR510  
–5V  
Figure 70. Low Noise FET Operational Amplifier Schematic  
POWER MODE ADC DRIVER  
One of the merits of a SAR ADC, such as the AD7980, is that its  
power scales with the sampling rate. This power scaling makes  
SAR ADCs very power efficient, especially when running at a  
low sampling frequency. However, the ADC driver used with  
the SAR ADC traditionally consumes constant power regardless  
of the sampling frequency.  
1
2
Figure 73 illustrates a method by which the quiescent power of  
the ADC driver can be reduced by 95% while still maintaining  
the input signal to the ADC. Both the ADA4807-1/ADA4807-2/  
ADA4807-4 and the AD8603 are rail-to-rail input and output  
(RRIO) amplifiers and can operate on a single 5 V analog supply.  
Connecting the AD8603 in parallel with a sharing resistor allows  
the ADA4807-1/ADA4807-2/ADA4807-4 to be powered down,  
reducing the total supply current for the driver from 1 mA to  
50 μA. The sampling frequency of the AD7980 can then be  
reduced to match the power consumption of the AD8603. With  
the ADA4807-1/ADA4807-2/ADA4807-4 powered on, the SNR  
and THD are 84.1 dB and −100.3 dB for a 3 V p-p, 1 kHz input  
and a 4.096 V reference. The SNR and THD degrade to 81.4 dB  
and −77.3 dB for the same input signal in the low power mode  
when only the AD8603 is on.  
CH1 200mV  
CH2 1V  
M100ns  
A CH1  
0V  
Figure 71. Pulse Response, G = 10, 4 V p-p Output  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
One issue with this method is that the reference and reference  
buffer power do not scale with the ADC or the driver. This  
makes this configuration most useful in multichannel systems  
where the reference can be reused across many inputs.  
Alternately, the reference buffer can be scaled in the same  
fashion as the input driver; however, the reference itself must  
remain on in any of the modes.  
–100  
–105  
–110  
100  
1k  
10k  
20k  
FREQUENCY (Hz)  
Figure 72. 8 V p-p Output, THD + N for G = 10, RLOAD = 600 Ω  
Rev. B | Page 27 of 33  
 
 
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
5V  
5V  
+
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
ADR4540  
C3  
10µF  
C2  
0.1µF  
C4  
0.1µF  
LP MODE  
5V  
R10  
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
22  
REF  
IN+  
IN–  
AD7980  
C1  
2.7µF  
V
+
IN  
R11  
49.9Ω  
GND  
5V  
+
AD8603  
Figure 73. Dual Power Mode ADC Driver  
Figure 76 shows the ADA4807-1/ADA4807-2/ADA4807-4  
configured to convert a single-ended to differential signal and  
drive an 18-bit ADC. This configuration results in an ENOB of  
15.3. The FFT is shown in Figure 77.  
ADC DRIVING  
The ADA4807-1/ADA4807-2/ADA4807-4 can be used in ADC  
driving applications. Figure 74 is a simplified schematic of the  
ADA4807-1/ADA4807-2/ADA4807-4 driving an 18-bit differential  
ADC, the AD7982, in a fully differential signal chain. This configu-  
ration results in an effective number of bits (ENOB) of 15.7; results  
are shown in Figure 75.  
20  
V
2.7nF  
IN  
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
IN+  
IN–  
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
ADC  
1kΩ  
1kΩ  
20Ω  
V
IN+  
20  
REF  
2
2.7nF  
2.7nF  
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
IN+  
IN–  
ADC  
20Ω  
Figure 76. Schematic for Driving the AD7982 Differential Converter from a  
Single-Ended Input Signal, +VS = +7 V, −VS = −1 V  
V
2.7nF  
IN–  
0
ADA4807-1/  
ADA4807-2/  
ADA4807-4  
fs = 200kSPS  
fIN = 1kHz  
–20  
SNR = 94.5dB  
THD = –110.3dB  
–40  
–60  
SFDR = –111.1dB  
SINAD = 94.4dB  
Figure 74. Schematic for Driving the AD7982, +VS = +7 V, −VS = −1 V  
0
fs = 200kSPS  
fIN = 1kHz  
–20  
–80  
SNR = 96.6dB  
THD = –111.5dB  
–40  
–60  
SFDR = –112.3dB  
SINAD = 96.5dB  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
–160  
–180  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
Figure 77. FFT for Driving a Single-Ended Input Signal into a Differential  
Converter  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
Figure 75. FFT for Driving a Differential Converter, −0.5 dBFS  
Rev. B | Page 28 of 33  
 
 
 
 
 
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
ADC DRIVING WITH DYNAMIC POWER SCALING  
CONV  
In power sensitive applications, the ADA4807-1/ADA4807-2  
can be switched on prior to the ADC turning on. Figure 78  
shows the timing diagram for dynamically power scaling the  
ADA4807-1/ADA4807-2 with the AD7982 configuration shown in  
1
DISABLE  
DISABLE  
Figure 79. The falling edge of the  
signal must align  
with the rising edge of the CONV signal of the ADC to obtain a  
clean data acquisition. Figure 79 gives the FFT for driving a fully  
differential signal chain with a 1.2 µs on time as shown in Figure 78.  
With this method, the ADA4807-1/ADA4807-2 quiescent current  
(per amplifier) is reduced from 2 mA to 0.25 mA. Figure 81 gives  
the FFT for dynamically power scaling a single-ended input  
signal chain into a differential ADC with a 4 µs on time as  
shown in Figure 80. This configuration results in a quiescent  
current reduction of 20%.  
2
CH1 2V  
CH2 2V M1µs  
A CH1  
2.56V  
Figure 80. Dynamic Power Scaling Timing Diagram for Driving a Single-  
Ended Input Signal Chain into a Differential ADC (AD7982)  
0
fs = 200kSPS  
fIN = 1kHz  
–20  
SNR = 94.7dB  
CONV  
THD = –107.11dB  
SFDR = –108.8dB  
SINAD = 94.4dB  
–40  
–60  
1
–80  
DISABLE  
–100  
–120  
–140  
–160  
–180  
2
0
2
4
6
8
10  
12  
14  
16  
18  
20  
CH1 2V  
CH2 2V M1µs  
A CH1  
2.56V  
FREQUENCY (kHz)  
Figure 78. Dynamic Power Scaling Timing Diagram for Driving a Fully  
Differential Signal Chain into a Differential ADC (AD7982)  
Figure 81. FFT for Driving a Single-Ended to Differential Converter Using  
Dynamic Power Scaling, −0.5 dBFS, On Time of 4 µs, for the Schematic Shown in  
Figure 76  
0
fs = 200kSPS  
fIN = 1kHz  
–20  
SNR = 96.7dB  
THD = –110.9dB  
SFDR = –111.8dB  
SINAD = 96.6dB  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
Figure 79. FFT for Driving a Differential Converter using Dynamic Power Scaling,  
−0.5 dBFS, On Time of 1.2 µs, for the Schematic Shown in Figure 74  
Rev. B | Page 29 of 33  
 
 
 
 
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
high frequencies, resulting in excessive gain peaking or possible  
oscillation. Signal routing must be short and direct to avoid such  
parasitic effects. Provide symmetrical layout for complementary  
signals to maximize balanced performance.  
LAYOUT, GROUNDING, AND BYPASSING  
The ADA4807-1/ADA4807-2/ADA4807-4 are high speed  
devices. Realizing their superior performance requires attention  
to the details of high speed printed circuit board (PCB) design.  
Use radio frequency transmission lines to connect the driver  
and receiver to the amplifier.  
The first requirement is to use a multilayer PCB with solid ground  
and power planes that cover as much of the board area as possible.  
Minimize stray capacitance at the input and output pins by  
clearing the underlying ground and low impedance planes  
near these pins.  
Bypass each power supply pin directly to a nearby ground plane,  
as close to the device as possible. Use 0.1 µF high frequency  
ceramic chip capacitors.  
If the driver and receiver are more than one-eighth of the  
wavelength from the amplifier, minimize the signal trace  
widths. This nontransmission line configuration requires  
clearing of the underlying and adjacent ground and low  
impedance planes near the signal lines.  
Provide low frequency bulk bypassing using 10 µF tantalum  
capacitors from each supply to ground.  
Stray transmission line capacitance in combination with  
package parasitics can potentially form a resonant circuit at  
Rev. B | Page 30 of 33  
 
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
0.65 BSC  
1.30 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.22  
0.08  
SEATING  
PLANE  
0.10 MAX  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 82. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
3.00  
2.90  
2.80  
6
1
5
2
4
3
3.00  
2.80  
2.60  
1.70  
1.60  
1.50  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
0.20 MAX  
0.08 MIN  
1.45 MAX  
0.95 MIN  
0.55  
0.45  
0.35  
0.15 MAX  
0.05 MIN  
10°  
4°  
0°  
SEATING  
PLANE  
0.60  
BSC  
0.50 MAX  
0.30 MIN  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 83. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
Rev. B | Page 31 of 33  
 
ADA4807-1/ADA4807-2/ADA4807-4  
Data Sheet  
3.20  
3.00  
2.80  
8
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
1
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 84. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
10  
6
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
0.20 MIN  
1
5
BOTTOM VIEW  
TOP VIEW  
PIN 1  
INDICATOR  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 85. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. B | Page 32 of 33  
Data Sheet  
ADA4807-1/ADA4807-2/ADA4807-4  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 86. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Branding  
H3J  
H3J  
H3J  
H3J  
ADA4807-1AKSZ-R2  
ADA4807-1AKSZ-R7  
ADA4807-1ARJZ-R2  
ADA4807-1ARJZ-R7  
ADA4807-2ACPZ-R2  
ADA4807-2ACPZ-R7  
ADA4807-2ARMZ  
6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
6-Lead Small Outline Transistor Package [SOT-23]  
6-Lead Small Outline Transistor Package [SOT-23]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board for 6-Lead SC70  
KS-6  
KS-6  
RJ-6  
RJ-6  
CP-10-9  
CP-10-9  
RM-8  
RM-8  
RU-14  
RU-14  
H3S  
H3S  
H3S  
H3S  
ADA4807-2ARMZ-R7  
ADA4807-4ARUZ  
ADA4807-4ARUZ-R7  
ADA4807-1AKSZ-EBZ  
ADA4807-1ARJZ-EBZ  
ADA4807-2ACPZ-EBZ  
ADA4807-2ARMZ-EBZ  
ADA4807-4AURZ-EBZ  
Evaluation Board for 6-Lead SOT-23  
Evaluation Board for 10-Lead LFCSP_WD  
Evaluation Board for 8-Lead MSOP  
Evaluation Board for 14-Lead TSSOP  
1 Z = RoHS Compliant Part.  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12611-0-9/15(B)  
Rev. B | Page 33 of 33  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY