ADA4850-2YCP-EBZ [ADI]

High Speed, Rail-to-Rail Output Op Amps with Ultralow Power-Down;
ADA4850-2YCP-EBZ
型号: ADA4850-2YCP-EBZ
厂家: ADI    ADI
描述:

High Speed, Rail-to-Rail Output Op Amps with Ultralow Power-Down

文件: 总14页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, Rail-to-Rail Output  
Op Amps with Ultralow Power-Down  
Data Sheet  
ADA4850-1/ADA4850-2  
FEATURES  
PIN CONFIGURATIONS  
ADA4850-1  
Ultralow power-down current: 150 nA/amplifier maximum  
Low quiescent current: 2.4 mA/amplifier  
High speed  
175 MHz, −3 dB bandwidth  
220 V/μs slew rate  
TOP VIEW  
POWER DOWN  
+V  
S
1
2
3
4
8
7
6
5
NIC  
–IN  
+IN  
OUTPUT  
NIC  
–V  
S
85 ns settling time to 0.1%  
Excellent video specifications  
0.1 dB flatness: 14 MHz  
NOTES  
1. EXPOSED PAD CAN BE CONNECTED TO GND,  
OR LEFT FLOATING.  
2. NIC = NO INTERNAL CONNECTION.  
Differential gain: 0.12%  
Differential phase: 0.09°  
Single-supply operation: 2.7 V to 6 V  
Rail-to-rail output  
Figure 1. 8-Lead, 3 mm × 3 mm LFCSP  
ADA4850-2  
TOP VIEW  
Output swings to within 80 mV of either rail  
Low voltage offset: 0.6 mV  
V
1
1
2
3
4
12 +V  
OUT  
S
APPLICATIONS  
–IN1  
+IN1  
11  
10  
9
V
2
OUT  
Portable multimedia players  
Video cameras  
Digital still cameras  
Consumer video  
–IN2  
+IN2  
–V  
S
Clock buffers  
NOTES  
1. EXPOSED PAD CAN BE CONNECTED TO GND,  
OR LEFT FLOATING.  
2. NIC = NO INTERNAL CONNECTION.  
Figure 2. 16-Lead, 3 mm × 3 mm LFCSP  
GENERAL DESCRIPTION  
The ADA4850-1/ADA4850-2 are low price, high speed, voltage  
feedbacks rail-to-rail output op amps with ultralow power-down.  
Despite their low price, the ADA4850-1/ADA4850-2 provide  
excellent overall performance and versatility. The 175 MHz,  
−3 dB bandwidth and 220 V/μs slew rate make these amplifiers  
well-suited for many general-purpose, high speed applications.  
The ADA4850-1/ADA4850-2 are designed to work in the  
extended temperature range of −40°C to +125°C.  
2
1
0
The ADA4850-1/ADA4850-2 are designed to operate at supply  
voltages as low as 2.7 V and up to 6 V at 2.4 mA of supply  
current per amplifier. In power-down mode, the supply current  
is less than 150 nA, ideal for battery-powered applications.  
–1  
–2  
–3  
The ADA4850-1/ADA4850-2 family provides users with a true  
single-supply capability, allowing input signals to extend  
200 mV below the negative rail and to within 2.2 V of the  
positive rail. The output of the amplifier can swing within  
80 mV of either supply rail.  
–4  
G = +1  
V
= 5V  
S
–5  
–6  
R
V
= 1k  
L
= 0.1V p-p  
OUT  
1
10  
100  
1000  
FREQUENCY (MHz)  
With its combination of low price, excellent differential gain  
(0.12%), differential phase (0.09°), and 0.1 dB flatness out to  
14 MHz, these amplifiers are ideal for video applications.  
Figure 3. Small Signal Frequency Response  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADA4850-1/ADA4850-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................5  
Typical Performance Characteristics ..............................................6  
Circuit Description......................................................................... 12  
Headroom and Overdrive Recovery Considerations............ 12  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Specifications with +3 V Supply................................................. 3  
Specifications with +5 V Supply................................................. 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Operating the ADA4850-1/ADA4850-2 on Bipolar Supplies  
....................................................................................................... 13  
Power-Down Pins....................................................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
REVISION HISTORY  
5/16—Rev. C to Rev. D  
4/05—Rev. 0 to Rev. A  
Change CP-8-2 to CP-8-13 and CP-16-3 to CP-16-21 ..Throughout  
Changes to Figure 1 and Figure 2................................................... 1  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 14  
Added ADA4850-1.............................................................Universal  
Added 8-Lead LFCSP.........................................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Figure 3...........................................................................1  
Changes to Table 1.............................................................................3  
Changes to Table 2.............................................................................4  
Changes to Power-Down Pins Section and Table 5................... 13  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 14  
5/12—Rev. B to Rev. C  
Added Exposed Pat Notation to Figure 1 and Figure 2............... 1  
Changes to Table 4 and Figure 4..................................................... 5  
Added Exposed Pad Notation to Outline Dimensions ............. 14  
Changes to Ordering Guide .......................................................... 14  
12/07—Rev. A to Rev. B  
2/05—Revision 0: Initial Version  
Changes to Applications .................................................................. 1  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 14  
Rev. D | Page 2 of 14  
 
Data Sheet  
ADA4850-1/ADA4850-2  
SPECIFICATIONS  
SPECIFICATIONS WITH +3 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
160  
45  
14  
110  
80  
MHz  
MHz  
MHz  
V/µs  
ns  
G = +2, VO = 0.5 V p-p, RL = 150 Ω  
G = +2, VO = 0.5 V p-p, RL = 150 Ω  
G = +2, VO = 1 V step  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
G = +2, VO = 1 V step, RL = 150 Ω  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VO = 2 V p-p, G = +3, RL = 150 Ω  
f = 100 kHz  
−72/−77  
10  
dBc  
nV/√Hz  
Input Current Noise  
Differential Gain  
Differential Phase  
f = 100 kHz  
G = +3, NTSC, RL = 150 Ω, VO = 2 V p-p  
G = +3, NTSC, RL = 150 Ω, VO = 2 V p-p  
2.5  
0.2  
0.2  
pA/√Hz  
%
Degrees  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
2.4  
4
30  
100  
4.1  
4.4  
mV  
µV/°C  
µA  
nA/°C  
nA  
dB  
VO = 0.25 V to 0.75 V  
78  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +0.8  
60/50  
MΩ  
pF  
V
ns  
dB  
VIN = +3.5 V to −0.5 V, G = +1  
VCM = 0.5 V  
−76  
−108  
Power-Down Input Voltage  
Power-down ADA4850-1/ADA4850-2  
Enabled ADA4850-1/ADA4850-2  
<0.7/<0.6  
>0.8/>1.7  
0.7  
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
60  
Power-Down Bias Current/ Power Down Pin  
Enabled  
Power-Down  
Power-down = 3 V  
Power-down = 0 V  
37  
0.01  
55  
0.2  
µA  
µA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = +0.7 V to −0.1 V, G = +5  
Sinking/sourcing  
70/100  
0.06 to 2.83 0.03 to 2.92  
105/74  
ns  
V
mA  
Short-Circuit Current  
POWER SUPPLY  
Operating Range1  
2.7  
2.4  
15  
6
2.8  
150  
V
Quiescent Current/Amplifier  
Quiescent Current (Power-Down)/Amplifier  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
mA  
nA  
dB  
dB  
+VS = +3 V to +4 V, −VS = 0 V  
+VS = +3 V, −VS = 0 V to –1 V  
−83  
−83  
−100  
−102  
1 For operation on bipolar supplies, see the Operating the ADA4850-1/ADA4850-2 on Bipolar Supplies section.  
Rev. D | Page 3 of 14  
 
 
ADA4850-1/ADA4850-2  
Data Sheet  
SPECIFICATIONS WITH +5 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 0.5 V p-p  
G = +2, VO = 1.4 V p-p, RL = 150 Ω  
G = +2, VO = 4 V step  
G = +2, VO = 2 V step  
175  
110  
9
220  
160  
85  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk (RTI)–ADA4850-2  
DC PERFORMANCE  
G = +2, VO = 1 V step, RL = 150 Ω  
fC = 1 MHz, VO = 2 V p-p, G = +2, RL = 150 Ω  
f = 100 kHz  
f = 100 kHz  
G = +3, NTSC, RL = 150 Ω  
G = +3, NTSC, RL = 150 Ω  
f = 4.5 MHz, RL = 150 Ω, VO = 2 V p-p  
−81/−86  
10  
2.5  
0.12  
0.09  
60  
dBc  
nV/√Hz  
pA/√Hz  
%
Degrees  
dB  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
2.3  
4
30  
105  
4.2  
4.2  
mV  
µV/°C  
µA  
nA/°C  
nA  
dB  
VO = 2.25 V to 2.75 V  
83  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +2.8  
50/40  
MΩ  
pF  
V
ns  
dB  
VIN = +5.5 V to −0.5 V, G = +1  
VCM = 2.0 V  
−85  
−110  
Power-Down Input Voltage  
Power-down ADA4850-1/ADA4850-2  
Enabled ADA4850-1/ADA4850-2  
<0.7/<0.6  
>0.8/>1.7  
0.7  
V
V
µs  
ns  
Turn-Off Time  
Turn-On Time  
50  
Power-Down Bias Current/Power Down Pin  
Enabled  
Power-Down  
Power-down = 5 V  
Power-down = 0 V  
0.05  
0.02  
0.13 mA  
0.2  
µA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
VIN = +1.1 V to −0.1 V, G = +5  
Sinking/sourcing  
60/70  
ns  
V
mA  
0.14 to 4.83 0.07 to 4.92  
118/94  
Short-Circuit Current  
POWER SUPPLY  
Operating Range1  
2.7  
2.5  
15  
6
2.9  
150  
V
Quiescent Current/Amplifier  
Quiescent Current (Power-Down)/Amplifier  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
mA  
nA  
dB  
dB  
+VS = +5 V to +6 V, −VS = 0 V  
+VS = +5 V, −VS = −0 V to −1 V  
−84  
−84  
−100  
−102  
1 For operation on bipolar supplies, see the Operating the ADA4850-1/ADA4850-2 on Bipolar Supplies section.  
Rev. D | Page 4 of 14  
 
Data Sheet  
ADA4850-1/ADA4850-2  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the die  
due to the ADA4850-1/ADA4850-2 drive at the output. The  
quiescent power is the voltage between the supply pins (VS)  
times the quiescent current (IS).  
Parameter  
Rating  
Supply Voltage  
12.6 V  
Power Dissipation  
Power Down Pin Voltage  
See Figure 4  
(−VS + 6) V  
PD = Quiescent Power + (Total Drive Power Load Power)  
Common-Mode Input Voltage Range (−VS − 0.5 ) V to (+VS + 0.5) V  
2
Differential Input Voltage Range  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature Range  
(Soldering 10 sec)  
+VS to −VS  
VS VOUT  
VOUT  
RL  
PD =  
(
VS ×IS  
)
+
×
−65°C to +125°C  
−40°C to +125°C  
300°C  
2
RL  
Consider rms output voltages. If RL is referenced to −VS, as in  
single-supply operation, the total drive power is VS × IOUT. If the  
rms signal levels are indeterminate, consider the worst case,  
when VOUT = VS/4 for RL to midsupply.  
Junction Temperature  
150°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
2
(
VS /4  
RL  
)
PD =  
(
VS × IS  
)
+
In single-supply operation with RL referenced to −VS, the worst  
case is VOUT = VS/2.  
Airflow increases heat dissipation, effectively reducing θJA. In  
addition, more metal directly in contact with the package leads  
and exposed paddle from metal traces through holes, ground,  
and power planes reduce θJA.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, θJA is specified  
for the device soldered in the circuit board for surface-mount  
packages.  
Figure 4 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the LFCSP (91°C/W)  
package on a JEDEC standard 4-layer board. θJA values are  
approximations.  
Table 4.  
Package Type  
16-Lead LFCSP  
8-Lead LFCSP  
θJA  
72.8  
80  
Unit  
°C/W  
°C/W  
3.0  
T
= 150°C  
J
2.5  
2.0  
1.5  
1.0  
0.5  
0
Maximum Power Dissipation  
LFCSP-16  
The maximum safe power dissipation for the ADA4850-1/  
ADA4850-2 is limited by the associated rise in junction  
temperature (TJ) on the die. At approximately 150°C, which  
is the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature limit  
may change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the  
ADA4850-1/ADA4850-2. Exceeding a junction temperature  
of 150°C for an extended period of time can result in changes  
in silicon devices, potentially causing degradation or loss of  
functionality.  
LFCSP-8  
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
AMBIENT TEMPERATURE (°C)  
Figure 4. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
Rev. D | Page 5 of 14  
 
 
 
 
ADA4850-1/ADA4850-2  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
4
1
6pF  
G = +1  
V
R
V
= 5V  
= 150  
V
= 5V  
S
3
2
S
R
V
= 1k  
L
L
0
–1  
–2  
–3  
–4  
–5  
–6  
= 0.1V p-p  
= 0.1V p-p  
OUT  
OUT  
1
G = –1  
0
G = +2  
1pF  
0pF  
–1  
–2  
–3  
–4  
–5  
–6  
G = +10  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
Figure 5. Small Signal Frequency Response for Various Gains  
Figure 8. Small Signal Frequency Response for Various Capacitor Loads  
2
6.2  
V
= 5V  
S
1
0
G = +2  
= 150  
R
= 150  
L
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
R
L
–1  
–2  
–3  
–4  
V
= 5V, V  
= 2V p-p  
S
OUT  
R
= 1k  
L
V
= 5V, V  
= 1.4V p-p  
= 0.5V p-p  
OUT  
S
OUT  
V
= 3V, V  
S
V
= 5V, V = 0.1V p-p  
OUT  
S
V
= 5V  
S
G = +1  
= 0.1V p-p  
–5  
–6  
V
OUT  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response for Various Loads  
Figure 9. 0.1 dB Flatness Response  
3
2
1
0
V
= 5V  
S
G = +1  
V
= 0.5V p-p  
OUT  
V
= 3V  
S
1
–1  
–2  
–3  
–4  
–5  
R
= 150  
L
0
–1  
–2  
–3  
–4  
–5  
–6  
R
= 1k  
L
V
= 5V  
S
G = +1  
–6  
–7  
R
= 150  
L
V
= 0.1V p-p  
OUT  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Large Frequency Response for Various Loads  
Figure 7. Small Signal Frequency Response for Various Supplies  
Rev. D | Page 6 of 14  
 
Data Sheet  
ADA4850-1/ADA4850-2  
3
300  
250  
200  
150  
100  
50  
G = +2  
= 5V  
V
= 3V  
S
+125C  
+85C  
V
G = +1  
R
V
S
2
1
R
= 1k  
= 1k  
L
NEGATIVE SLEW RATE  
L
= 0.1V p-p  
OUT  
0
POSITIVE SLEW RATE  
+25C  
–40C  
–1  
–2  
–3  
–4  
–5  
0
1
10  
100  
1000  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
FREQUENCY (MHz)  
OUTPUT VOLTAGE STEP (V)  
Figure 11. Small Signal Frequency Response for Various Temperatures  
Figure 14. Slew Rate vs. Output Voltage  
10k  
1k  
3
V
= 5V  
S
G = +1  
= 1k  
2
1
R
L
+125C  
+85C  
V
= 0.1V p-p  
OUT  
V
= 3V, 5V, ADA4850-2  
S
0
100  
10  
–1  
–2  
–3  
–4  
–5  
+25C  
–40C  
V
= 3V, 5V, ADA4850-1 ENABLE  
S
V
= 3V, 5V, ADA4850-1 POWER DOWN  
S
1
0.1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
1
10  
100  
1000  
FREQUENCY (MHz)  
POWER-DOWN VOLTAGE (V)  
Figure 12. Small Signal Frequency Response for Various Temperatures  
Figure 15. Supply Current vs. Power-Down Voltage  
140  
120  
100  
80  
0
–40  
–50  
–60  
–70  
–80  
–90  
–100  
G = +2  
V
= 5V  
S
V
= 5V  
S
–30  
R
= 150  
L
V
= 2V p-p  
OUT  
–60  
PHASE  
–90  
V
2 TO V  
1
OUT  
OUT  
60  
–120  
–150  
–180  
–210  
–240  
40  
GAIN  
V
1 TO V  
2
OUT  
OUT  
20  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
FREQUENCY (Hz)  
Figure 16. Crosstalk vs. Frequency  
Figure 13. Open-Loop Gain and Phase vs. Frequency  
Rev. D | Page 7 of 14  
ADA4850-1/ADA4850-2  
Data Sheet  
–40  
2.575  
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
10pF  
0pF  
G = +1  
G = +1  
V
V
= 5V  
V
= 5V  
S
S
–50  
–60  
= 500mV p-p  
R
= 150  
OUT  
L
R
= 1kHD2  
L
–70  
R
= 150HD2  
L
–80  
R
= 1kHD3  
L
–90  
R
= 150HD3  
–100  
–110  
L
0.1  
1
10  
100  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (MHz)  
Figure 17. Harmonic Distortion vs. Frequency for Various Loads  
Figure 20. Small Signal Transient Response for Capacitive Load  
–50  
3.25  
G = +2  
G = +2  
V
= 5V  
R
V
= 1k  
S
L
= 5V  
R
= 1k  
S
L
–60  
–70  
V
= 500mV p-p  
HD2  
OUT  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
V
= 200mV p-p  
HD2  
OUT  
–80  
–90  
V
= 200mV p-p  
OUT  
HD3  
–100  
–110  
–120  
V
= 500mV p-p  
OUT  
HD3  
0.1  
1
10  
100  
0
50  
100  
150  
200  
FREQUENCY (MHz)  
TIME (ns)  
Figure 18. Harmonic Distortion vs. Frequency for Various VOUT  
Figure 21. Large Signal Transient Response  
0.65  
2.875  
2.750  
2.625  
2.500  
2.375  
2.250  
2.125  
0.875  
G = +2  
G = +1  
= 1k  
R
= 1k  
L
S
R
L
V
= 5V  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
V
= 5V  
S
V
= 3V  
S
0
50  
100  
150  
200  
0
50  
100  
150  
200  
TIME (ns)  
TIME (ns)  
Figure 19. Small Signal Transient Response for Various Supplies  
Figure 22. Large Signal Transient Response for Various Supplies  
Rev. D | Page 8 of 14  
Data Sheet  
ADA4850-1/ADA4850-2  
6
1000  
100  
10  
G = +2  
V
= 5V  
S
f
= 400kHz  
IN  
5
V
4
3
DISABLE  
2
1
0
V
OUT  
–1  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
15  
30  
45  
TIME (s)  
FREQUENCY (Hz)  
Figure 23. Enable/Disable Time  
Figure 26. Voltage Noise vs. Frequency  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
100  
10  
1
G = +1  
V
= 5V  
S
INPUT  
R
= 150  
L
f = 1MHz  
OUTPUT  
–0.5  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 24. Input Overdrive Recovery  
Figure 27. Current Noise vs. Frequency  
350  
300  
250  
200  
150  
100  
50  
3.5  
3.0  
V
= 5V  
S
G = +5  
N = 1720  
x = 450V  
= 750V  
V
= 3V  
S
R
= 150  
L
OUTPUT  
f = 1MHz  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5 INPUT  
0
–4  
–0.5  
–3  
–2  
–1  
0
1
2
3
4
0
100 200 300 400 500 600 700 800 900 1000  
TIME (ns)  
V
(mV)  
OFFSET  
Figure 25. Output Overdrive Recovery  
Figure 28. Input Offset Voltage Distribution  
Rev. D | Page 9 of 14  
ADA4850-1/ADA4850-2  
Data Sheet  
400  
380  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
–2.2  
–2.4  
+I  
B
V
= 5V  
S
360  
340  
320  
300  
280  
260  
240  
220  
200  
V
= 5V  
S
–I  
B
V
= 3V  
S
–1.0 –0.5  
0
0.5  
1.0  
V
1.5  
(V)  
2.0  
2.5  
3.0  
3.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (C)  
CM  
Figure 29. Input Offset Voltage vs. Common-Mode Voltage  
Figure 32. Input Bias Current vs. Temperature for Various Supplies  
95  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
R
= 5V  
= 1k  
S
L
V
= 3V  
90  
85  
80  
75  
70  
65  
S
+V  
SAT  
+V – V  
S
OUT  
–V  
SAT  
–V – V  
OUT  
S
V
= 5V  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TEMPERATURE (C)  
LOAD CURRENT (mA)  
Figure 30. Output Saturation Voltage vs. Load Current  
(Voltage Differential from Rails)  
Figure 33. Output Saturation Voltage vs. Temperature  
(Voltage Differential from Rails)  
4.9  
–30  
–32  
–34  
–36  
–38  
–40  
–42  
–44  
–46  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
V
= 3V  
S
V
= 5V  
S
V
= 3V  
S
V
= 5V  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (C)  
TEMPERATURE (C)  
Figure 31. Power-Down Bias Current vs. Temperature for Various Supplies  
Figure 34. Current vs. Temperature for Various Supplies  
Rev. D | Page 10 of 14  
Data Sheet  
ADA4850-1/ADA4850-2  
0
–20  
–30  
V
= 5V  
V = 5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–40  
–50  
+PSR  
CHANNEL 1  
–60  
–70  
CHANNEL 2  
–PSR  
–80  
–90  
–100  
–110  
–120  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37. Common-Mode Rejection (CMR) vs. Frequency  
Figure 35. Power Supply Rejection (PSR) vs. Frequency  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 5V  
S
V
= 3V  
S
–0.1  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (C)  
Figure 36. Input Offset Voltage vs. Temperature for Various Supplies  
Rev. D | Page 11 of 14  
ADA4850-1/ADA4850-2  
Data Sheet  
CIRCUIT DESCRIPTION  
The ADA4850-1/ADA4850-2 feature a high slew rate input  
stage that is a true single-supply topology, capable of sensing  
signals at or below the negative supply rail. The rail-to-rail output  
stage can swing to within 80 mV of either supply rail when driving  
light loads and within 0.17 V when driving 150 Ω. High speed  
performance is maintained at supply voltages as low as 2.7 V.  
Higher frequency signals require more headroom than the  
lower frequencies to maintain distortion performance. Figure 39  
illustrates how the rising edge settling time for the amplifier  
configured as a unity-gain follower stretches out as the top of  
a 1 V step input approaches and exceeds the specified input  
common-mode voltage limit.  
3.6  
HEADROOM AND OVERDRIVE RECOVERY  
CONSIDERATIONS  
Input  
V
= 5V  
S
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
G = +1  
R
= 1k  
L
The ADA4850-1/ADA4850-2 are designed for use in low voltage  
systems. To obtain optimum performance, it is useful to  
understand the behavior of the amplifier as input and output  
signals approach the headroom limits of the amplifier. The  
input common-mode voltage range extends 200 mV below the  
negative supply voltage or ground for single-supply operation to  
within 2.2 V of the positive supply voltage. Therefore, in a gain  
of +3, the ADA4850-1/ADA4850-2 can provide full rail-to-rail  
output swing for supply voltage as low as 3.3 V, assuming the  
input signal swing is from −VS (or ground) to 1.1 V.  
V
= 2V TO 3V  
STEP  
V
= 2.1V TO 3.1V  
STEP  
V
= 2.2V TO 3.2V  
STEP  
V
= 2.3V TO 3.3V  
STEP  
V
= 2.4V TO 3.4V  
STEP  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage, as long as the reference voltage at  
the positive input of the amplifier lies within the input  
common-mode range of the amplifier.  
Figure 39. Pulse Response, Input Headroom Limits  
The recovery time from input voltages 2.2 V or closer to the  
positive supply is approximately 50 ns, which is limited by the  
settling artifacts caused by transistors in the input stage coming  
out of saturation.  
The input stage sets the headroom limit for signals when the  
amplifier is used in a gain of +1 for signals approaching the  
positive rail. For high speed signals, however, there are other  
considerations. Figure 38 shows −3 dB bandwidth vs. dc input  
voltage for a unity-gain follower. As the common-mode voltage  
approaches the positive supply, the bandwidth begins to drop  
when within 2 V of +VS. This can manifest itself in increased  
distortion or settling time.  
The ADA4850-1/ADA4850-2 do not exhibit phase reversal, even  
for input voltages beyond the voltage supply rails. Going more than  
0.6 V beyond the power supplies turns on protection diodes at the  
input stage, which greatly increase the current draw of the devices.  
Output  
For signals approaching the negative supply and inverting gain,  
and high positive gain configurations, the headroom limit is the  
output stage. The ADA4850-1/ADA4850-2 amplifiers use a  
common-emitter output stage. This output stage maximizes the  
available output range, limited by the saturation voltage of the  
output transistors. The saturation voltage increases with drive  
current, due to the output transistor collector resistance.  
2
V
V
V
V
= 3V  
CM  
CM  
CM  
CM  
1
0
= 3.1V  
= 3.2V  
= 3.3V  
–1  
–2  
–3  
–4  
–5  
–6  
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. As in the input headroom case, higher frequency signals  
require a bit more headroom than the lower frequency signals.  
V
= 5V  
S
G = +1  
R
V
= 1k  
= 0.1V p-p  
L
OUT  
Output overload recovery is typically within 40 ns after the  
input of the amplifier is brought to a nonoverloading value.  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 38. Unity-Gain Follower Bandwidth vs.  
Frequency for Various Input Common-Mode  
Rev. D | Page 12 of 14  
 
 
 
 
Data Sheet  
ADA4850-1/ADA4850-2  
Figure 40 shows the output recovery transients for the amplifier  
recovering from a saturated output from the top and bottom  
supplies to a point at midsupply.  
OPERATING THE ADA4850-1/ADA4850-2 ON  
BIPOLAR SUPPLIES  
The ADA4850-1/ADA4850-2 can operate on bipolar supplies  
up to 5 V. The only restriction is that the voltage between −VS  
and the POWER DOWN pin must not exceed 6 V. Voltage  
differences greater than 6 V can cause permanent damage to the  
amplifier. For example, when operating on 5 V supplies, the  
POWER DOWN pin must not exceed +1 V.  
6.5  
V
= 5V  
S
V
= +2.5V TO 0V  
G = –1  
OUT  
5.5  
4.5  
R
= 1kΩ  
L
3.5  
INPUT  
VOLTAGE  
EDGES  
POWER-DOWN PINS  
2.5  
The ADA4850-1/ADA4850-2 feature an ultralow power-down  
mode that lowers the supply current to less than 150 nA. When  
a power-down pin is brought to within 0.6 V of the negative  
supply, the amplifier is powered down. Table 5 outlines the  
power-down pins functionality. To ensure proper operation, do  
not leave the power-down pins (PD1, PD2) floating.  
1.5  
0.5  
V
= –2.5V TO 0V  
OUT  
–0.5  
–1.5  
0
10  
20  
30  
40  
50  
TIME (ns)  
60  
70  
80  
90  
100  
Table 5. Power-Down Pins Functionality  
Figure 40. Overload Recovery  
3 V and 5 V  
Supply Voltage  
Power Down  
Enabled  
ADA4850-1  
0 V to 0.7 V  
0.8 to +VS  
ADA4850-2  
0 V to 0.6 V  
1.7 V to +VS  
Rev. D | Page 13 of 14  
 
 
 
 
ADA4850-1/ADA4850-2  
OUTLINE DIMENSIONS  
Data Sheet  
1.84  
1.74  
1.64  
3.10  
3.00 SQ  
2.90  
0.50 BSC  
8
5
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.55  
1.45  
1.35  
0.50  
0.40  
0.30  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.203 REF  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED  
Figure 41. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-8-13)  
Dimensions shown in millimeters  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
12  
1
4
EXPOSED  
PAD  
1.45  
1.30 SQ  
1.15  
9
0.25 MIN  
8
5
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED.  
Figure 42. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-21)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
Branding  
HWB  
ADA4850-1YCPZ-RL7  
ADA4850-2YCPZ-RL  
ADA4850-2YCPZ-RL7  
ADA4850-2YCP-EBZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board for 16-Lead LFCP  
CP-8-13  
CP-16-21  
CP-16-21  
HTB  
HTB  
1 Z = RoHS Compliant Part.  
©2005–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05320-0-5/16(D)  
Rev. D | Page 14 of 14  
 
 

相关型号:

ADA4850-2YCPZ-R2

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down
ADI

ADA4850-2YCPZ-RL

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down
ADI

ADA4850-2YCPZ-RL7

High Speed, Rail-to-Rail Output, Op Amp with Ultralow Power-Down
ADI

ADA4851-1

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1ART-R2

IC OP-AMP, 5000 uV OFFSET-MAX, PDSO6, MO-178AB, SOT-23, 6 PIN, Operational Amplifier
ADI

ADA4851-1ART-REEL

IC OP-AMP, 5000 uV OFFSET-MAX, PDSO6, MO-178AB, SOT-23, 6 PIN, Operational Amplifier
ADI

ADA4851-1ART-REEL7

IC OP-AMP, 5000 uV OFFSET-MAX, PDSO6, MO-178AB, SOT-23, 6 PIN, Operational Amplifier
ADI

ADA4851-1WYRJZ-R7

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-1YRJ-EBZ

Low Cost, High Speed, Rail-to-Rail, Output Op Amps
ADI

ADA4851-1YRJZ-R2

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1YRJZ-RL

Low Cost, High Speed, Rail-to-Rail Output Op Amps
ADI

ADA4851-1YRJZ-RL

1 CHANNEL, VIDEO AMPLIFIER, PDSO6, ROHS COMPLIANT, MO-178AB, SOT-23, 6 PIN
ROCHESTER