ADA4870 [ADI]

Ideal for driving high capacitive or low resistive loads;
ADA4870
型号: ADA4870
厂家: ADI    ADI
描述:

Ideal for driving high capacitive or low resistive loads

文件: 总25页 (文件大小:734K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed, High Voltage,  
1 A Output Drive Amplifier  
ADA4870  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Ideal for driving high capacitive or low resistive loads  
Wide supply range: 10 V to 40 V  
High output current drive: 1 A  
Wide output voltage swing: 37 V swing with 40 V supply  
High slew rate: 2500 V/µs  
High bandwidth: 52 MHz large signal, 70 MHz small signal  
Low noise: 2.1 nV/√Hz  
Quiescent current: 32.5 mA  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
CC  
CC  
V
TFL  
SD  
ADA4870  
CC  
CC  
3
V
4
OUT  
OUT  
OUT  
OUT  
ON  
5
NC  
6
INP  
INN  
OUT  
NC  
7
Power down: 0.75 mA  
Short-circuit protection and flag  
Current limit: 1.2 A  
8
V
EE  
9
V
EE  
10  
V
V
EE  
EE  
Thermal protection  
Figure 1.  
APPLICATIONS  
Envelope tracking  
Power FET driver  
Ultrasound  
Piezo drivers  
PIN diode drivers  
Waveform generation  
Automated test equipment (ATE)  
CCD panel drivers  
Composite amplifiers  
GENERAL DESCRIPTION  
The ADA4870 is a unity gain stable, high speed current  
feedback amplifier capable of delivering 1 A of output current  
and 2500 V/μs slew rate from a 40 V supply. Manufactured  
using the Analog Devices, Inc., proprietary high voltage extra  
fast complementary bipolar (XFCB) process, the innovative  
architecture of the ADA4870 enables high output power, high  
speed signal processing solutions in applications that require  
driving a low impedance load.  
20  
15  
10  
5
4,000  
3,000  
2,000  
1,000  
0
V
OUT  
SLEW RATE  
0
The ADA4870 is ideal for driving high voltage power FETs,  
piezo transducers, PIN diodes, CCD panels, and a variety of  
other demanding applications that require high speed from  
high supply voltage at high output current.  
–5  
–10  
–15  
–20  
–1,000  
–2,000  
–3,000  
–4,000  
The ADA4870 is available in a power SOIC package (PSOP_3),  
featuring an exposed thermal slug that provides high thermal  
conductivity, enabling efficient heat transfer for improved perfor-  
mance and reliability in demanding applications. The ADA4870  
operates over the industrial temperature range (−40°C to +85°C).  
TIME (45ns/DIV)  
Figure 2. Slew Rate, VS = 20 V, VOUT = 30 V p-p, AV = +2,  
RF = 1.5 kΩ, CL = 300 pF, RS = 5 Ω  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2014 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADA4870* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Reference Materials  
View a parametric search of comparable parts  
Press  
• Industry’s Fastest 40-V Amplifier Significantly Improves  
System Performance, Power Efficiency and Integration  
Evaluation Kits  
• ADA4870 Evaluation Board  
Design Resources  
• ADA4870 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Documentation  
Data Sheet  
• ADA4870-KGD: Known Good Die Data Sheet  
• ADA4870: High Speed, High Voltage, 1A Output Drive  
Amplifier Data Sheet  
Discussions  
User Guides  
• UG-685: Evaluating the ADA4870 High Speed, High  
Output Current Amplifier  
View all ADA4870 EngineerZone Discussions  
Sample and Buy  
Visit the product page to see pricing options  
Tools and Simulations  
• ADA4870 SPICE Macro Model  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADA4870  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
SD  
Shutdown ( ) ........................................................................... 19  
Feedback Resistor Selection...................................................... 19  
Capacitive Load Driving ........................................................... 19  
Heat and Thermal Management .............................................. 20  
Power Dissipation....................................................................... 20  
Safe Operating Area................................................................... 21  
Printed Circuit Board (PCB) .................................................... 22  
Thermal Modeling ..................................................................... 22  
Heat Sink Selection .................................................................... 22  
Power Supplies and Decoupling............................................... 22  
Composite Amplifier ................................................................. 23  
Outline Dimensions....................................................................... 24  
Ordering Guide .......................................................................... 24  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
20 V Supply................................................................................. 3  
5 V Supply................................................................................... 4  
Absolute Maximum Ratings............................................................ 6  
Maximum Power Dissipation ..................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Applications Information .............................................................. 19  
ON  
, Initial Power-Up, and Short-Circuit................................ 19  
Thermal Protection.................................................................... 19  
REVISION HISTORY  
5/14—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
Data Sheet  
ADA4870  
SPECIFICATIONS  
20 V SUPPLY  
TCASE = 25°C, AV = −5, RF = 1.21 kΩ, RG = 243 Ω, CL = 300 pF, RS = 5 Ω, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
VOUT = 2 V p-p  
VOUT = 2 V p-p, AV = +2  
VOUT = 20 V p-p  
VOUT = 30 V step, AV = +2  
VOUT = 10 V step  
60  
70  
52  
2500  
82  
MHz  
MHz  
MHz  
V/µs  
ns  
Slew Rate (Peak)  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
f = 30 MHz, VOUT = 20 V p-p, AV = −10  
f = 1 MHz, VOUT = 20 V p-p, AV = −10  
f = 0.1 MHz, VOUT = 20 V p-p, AV = −10  
f = 1 MHz, VOUT = 20 V p-p, RL = 25 Ω, AV = −10  
f = 0.1 MHz, VOUT = 20 V p-p, RL = 25 Ω, AV = −10  
f = 100 kHz  
−40/−39  
−91/−74  
−95/−96  
−70/−77  
−79/−99  
2.1  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
Input Voltage Noise Density  
Input Current Noise Density  
INP  
f = 100 kHz  
4.2  
47  
pA/√Hz  
pA/√Hz  
INN  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
−15  
−1  
4
+10  
mV  
µV/°C  
Noninverting Input  
Inverting Input  
Input Bias Current Drift, Inverting Input  
Open-Loop Transresistance  
INPUT CHARACTERISTICS  
Input Resistance  
9
23  
−25  
µA  
µA  
nA/°C  
MΩ  
−12  
24  
2.5  
INP  
INP  
2
MΩ  
pF  
V
Input Capacitance  
0.75  
18  
60  
Input Common-Mode Voltage Range (VICM  
Common-Mode Rejection Ratio  
SD PIN (SHUTDOWN)  
)
VICM = 2 V, 18 V  
58  
dB  
Input Voltages  
High (enabled)  
VEE + 1.1  
VEE  
VEE + 5  
VEE + 0.9  
V
V
µA  
µA  
Low (power-down)  
Enabled (SD = VEE + 5 V)  
Power down SD = VEE)  
Input Bias Current  
110  
−50  
ON PIN (RESET AND SHORT-CIRCUIT  
PROTECTION)  
Input Voltages  
High (power-down)  
Low (enabled)  
VEE + 1.8  
VEE  
VEE + 5  
VEE + 1.3  
V
V
Input Bias Current  
Enabled (ON = VEE)  
Power down (ON = VEE + 5 V)  
−75  
100  
µA  
µA  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
RG = 1.2 kΩ, RL = open  
RG = 1.2 kΩ, RL = 50 Ω  
18.6  
18  
V
V
A
A
Output Current Drive  
Short-Circuit Protection Current Limit  
1
ON = floating  
1.2  
Rev. 0 | Page 3 of 24  
 
 
ADA4870  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
10  
40  
33  
1
V
SD = VEE + 5 V, ON = VEE  
32.5  
0.75  
5.1  
69  
mA  
mA  
mA  
dB  
dB  
SD = VEE, ON = not applicable  
SD = VEE + 5 V, ON = VEE + 5 V  
5.8  
Positive Power Supply Rejection Ratio  
Negative Power Supply Rejection Ratio  
67  
62  
64  
5 V SUPPLY  
TCASE = 25°C, AV = −5, RF = 1.21 kΩ, RG = 243 Ω, CL = 300 pF, RS = 5 Ω, unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Settling Time to 0.1%  
VOUT = 2 V p-p  
VOUT = 2 V step  
52  
55  
MHz  
ns  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion, HD2/HD3  
f = 30 MHz, VOUT = 2 V p-p, AV = −10  
f = 1 MHz, VOUT = 2 V p-p, AV = −10  
f = 0.1 MHz, VOUT = 2 V p-p, AV = −10  
f = 1 MHz, VOUT = 2 V p-p, RL = 25 Ω, AV = −10  
f = 0.1 MHz, VOUT = 2 V p-p, RL = 25 Ω, AV = −10  
f = 100 kHz  
−42/−38  
−90/−88  
−101/−107  
−70/−66  
−85/−86  
2.1  
dBc  
dBc  
dBc  
dBc  
dBc  
nV/√Hz  
Input Voltage Noise Density  
Input Current Noise Density  
INP  
f = 100 kHz  
4.2  
47  
pA/√Hz  
pA/√Hz  
INN  
DC PERFORMANCE  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
−15  
−4  
14  
+5  
mV  
µV/°C  
Noninverting Input  
Inverting Input  
Input Bias Current Drift, Inverting Input  
Open-Loop Transresistance  
INPUT CHARACTERISTICS  
Input Resistance  
13  
−5  
10  
1.9  
23  
−18  
µA  
µA  
nA/°C  
MΩ  
INP  
INP  
2
MΩ  
pF  
V
Input Capacitance  
0.75  
3.0  
59  
Input Common-Mode Voltage Range (VICM  
Common-Mode Rejection Ratio  
SD PIN (SHUTDOWN)  
)
VICM = 0.5 V, 3.0 V  
57  
dB  
Input Voltages  
High (enabled)  
VEE + 1.1  
VEE  
VEE + 5  
VEE + 0.9  
V
V
µA  
µA  
Low (power-down)  
Enabled (SD = VEE + 5 V)  
Power down (SD = VEE)  
Input Bias Current  
110  
−65  
ON PIN (RESET AND SHORT-CIRCUIT  
PROTECTION)  
Input Voltages  
High (power-down)  
Low (enabled)  
VEE + 1.8  
VEE  
VEE + 5  
VEE + 1.3  
V
V
Input Bias Current  
Enabled (ON = VEE)  
Power down (ON = VEE + 5 V)  
−75  
100  
µA  
µA  
Rev. 0 | Page 4 of 24  
 
Data Sheet  
ADA4870  
Parameter  
Test Conditions/Comments  
RG = 1.2 kΩ, RL = open  
ON = floating  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
Output Current Drive  
3.7  
1
1.2  
V
A
A
Short-Circuit Protection Current Limit  
POWER SUPPLY  
Operating Range  
Quiescent Current  
10  
40  
30  
1
V
SD = VEE + 5 V, ON = VEE  
28  
mA  
mA  
mA  
dB  
dB  
SD = VEE, ON = not applicable  
SD = VEE + 5 V, ON = VEE + 5 V  
0.65  
4.7  
68  
5.5  
Positive Power Supply Rejection Ratio  
Negative Power Supply Rejection Ratio  
66  
61  
63  
Rev. 0 | Page 5 of 24  
ADA4870  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
MAXIMUM POWER DISSIPATION  
The maximum safe power dissipation in the package is limited by  
the associated rise in junction temperature (TJ) on the die. At  
approximately 150°C, which is the glass transition temperature,  
the plastic changes its properties. Exceeding a junction temperature  
of 150°C can result in changes in the silicon devices, potentially  
causing failure. Table 4 shows the junction to case thermal  
resistance (θJC) for the PSOP_3 package. For more detailed  
information on power dissipation and thermal management,  
see the Applications Information section.  
Parameter  
Rating  
Supply Voltage  
Power Dissipation  
42 V  
See the Power Dissipation  
section and the Safe  
Operating Area section  
Common-Mode Input Voltage Range VEE to VCC  
Differential Input Voltage Range  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
Junction Temperature  
0.7 V  
−65°C to +150°C  
−40°C to +85°C  
300°C  
Table 4. Thermal Resistance  
150°C  
Package Type  
θJC  
Unit  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
20-Lead PSOP_3  
1.1  
°C/W  
ESD CAUTION  
Rev. 0 | Page 6 of 24  
 
 
 
 
Data Sheet  
ADA4870  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
CC  
CC  
V
TFL  
SD  
CC  
CC  
3
V
4
OUT  
OUT  
OUT  
OUT  
ON  
NC  
ADA4870  
TOP VIEW  
(Not to Scale)  
5
6
INP  
INN  
OUT  
NC  
7
8
V
EE  
9
V
EE  
10  
V
V
EE  
EE  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
2. CONNECT THE EXPOSED PAD TO A SOLID EXTERNAL  
PLANE WITH LOW THERMAL RESISTANCE.  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
VCC  
Positive Power Supply Input.  
2
3
TFL  
SD  
Thermal Monitor and Short-Circuit Flag (Referenced to VEE).  
Shutdown (Active Low, Referenced to VEE).  
Turn On/Enable (Active Low, Referenced to VEE).  
No Connect. Do not connect to this pin.  
Noninverting Input.  
4
ON  
NC  
INP  
INN  
OUT  
NC  
VEE  
OUT  
VCC  
5
6
7
8
Inverting Input.  
Output Connection for Feedback Resistor.  
No Connect. Do not connect to this pin.  
Negative Power Supply Input.  
Output.  
Positive Power Supply Input.  
9
10 to 13  
14 to 17  
18 to 20  
EPAD  
Exposed Thermal Pad. No internal electrical connection. Connect the exposed pad to a solid external plane  
with low thermal resistance.  
Rev. 0 | Page 7 of 24  
 
ADA4870  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
TCASE = 25°C, unless otherwise noted.  
12  
9
12  
–20°C  
–20°C  
+25°C  
+100°C  
+25°C  
9
6
+100°C  
6
3
3
0
0
–3  
–6  
–9  
–12  
–15  
–18  
–3  
–6  
–9  
V
V
R
A
C
R
= ±20V  
V
V
R
A
C
R
= ±5V  
S
S
= 20V p-p  
= 2V p-p  
OUT  
–12  
–15  
–18  
OUT  
= 1.21kΩ  
= 1.21kΩ  
F
V
L
S
F
V
L
S
= −2  
= −2  
= 300pF  
= 5Ω  
= 300pF  
= 5Ω  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response vs. Case Temperature, AV = −2,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 7. Large Signal Frequency Response vs. Case Temperature, AV = −2,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
21  
21  
–20°C  
–20°C  
+25°C  
+25°C  
18  
15  
18  
+100°C  
+100°C  
15  
12  
9
12  
9
6
6
3
3
0
0
V
V
R
A
C
R
= ±5V  
V
V
R
A
C
R
= ±20V  
S
S
= 2V p-p  
= 20V p-p  
OUT  
–3  
–6  
–9  
OUT  
–3  
–6  
–9  
= 1.21kΩ  
= 1.21kΩ  
F
V
L
S
F
V
L
S
= −5  
= −5  
= 300pF  
= 5Ω  
= 300pF  
= 5Ω  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 5. Small Signal Frequency Response vs. Case Temperature, AV = −5,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 8. Large Signal Frequency Response vs. Case Temperature, AV = −5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
27  
27  
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
24  
24  
+100°C  
21  
18  
15  
12  
9
21  
18  
15  
12  
9
6
6
V
V
R
A
C
R
= ±20V  
OUT  
= 1.21kΩ  
= −10  
= 300pF  
= 5Ω  
V
V
R
A
C
R
= ±5V  
OUT  
= 1.21kΩ  
= −10  
= 300pF  
= 5Ω  
S
S
= 20V p-p  
= 2V p-p  
3
0
3
0
F
V
L
S
F
V
L
S
–3  
–3  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 6. Small Signal Frequency Response vs. Case Temperature, AV = −10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 9. Large Signal Frequency Response vs. Case Temperature, AV = −10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Rev. 0 | Page 8 of 24  
 
Data Sheet  
ADA4870  
12  
9
12  
9
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
+100°C  
6
6
3
3
0
0
–3  
–6  
–9  
–12  
–15  
–18  
–3  
–6  
–9  
V
V
R
A
C
R
= ±20V  
S
V
V
R
A
C
R
= ±5V  
S
= 20V p-p  
OUT  
= 2V p-p  
–12  
–15  
–18  
OUT  
= 1.5kΩ  
F
V
L
S
= 1.5kΩ  
F
V
L
S
= +2  
= +2  
= 300pF  
= 5Ω  
= 300pF  
= 5Ω  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Small Signal Frequency Response vs. Case Temperature, AV = +2,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.5 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 13. Large Signal Frequency Response vs. Case Temperature, AV = +2,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.5 kΩ, CL = 300 pF, RS = 5 Ω  
21  
21  
–20°C  
–20°C  
+25°C  
+25°C  
18  
18  
+100°C  
+100°C  
15  
12  
9
15  
12  
9
6
6
3
3
0
0
V
V
R
A
C
R
= ±20V  
V
V
R
A
C
R
= ±5V  
S
S
= 20V p-p  
= 2V p-p  
OUT  
OUT  
–3  
–6  
–9  
–3  
–6  
–9  
= 1.21kΩ  
= 1.21kΩ  
F
V
L
S
F
V
L
S
= +5  
= +5  
= 300pF  
= 5Ω  
= 300pF  
= 5Ω  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Small Signal Frequency Response vs. Case Temperature, AV = +5,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 14. Large Signal Frequency Response vs. Case Temperature, AV = +5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
27  
27  
–20°C  
–20°C  
+25°C  
+25°C  
24  
21  
24  
21  
+100°C  
+100°C  
18  
17  
12  
9
18  
15  
12  
9
6
6
V
V
R
A
C
R
= ±5V  
OUT  
= 1.21kΩ  
= +10  
= 300pF  
= 5Ω  
V
V
R
A
C
R
= ±20V  
S
S
= 2V p-p  
= 20V p-p  
OUT  
3
0
3
0
= 1.21kΩ  
F
V
L
S
F
V
L
S
= +10  
= 300pF  
= 5Ω  
–3  
–3  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 15. Large Signal Frequency Response vs. Case Temperature, AV = +10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 12. Small Signal Frequency Response vs. Case Temperature, AV = +10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Rev. 0 | Page 9 of 24  
ADA4870  
Data Sheet  
27  
24  
21  
18  
15  
12  
9
27  
24  
21  
18  
15  
12  
9
6
6
V
V
R
A
C
R
= ±5V  
V
V
R
A
C
R
= ±20V  
S
S
= 2V p-p  
= 20V p-p  
3
0
3
OUT  
OUT  
= 1.21kΩ  
= 1.21kΩ  
F
V
L
S
F
V
L
S
= −10  
= –10  
0
= 1000pF  
= 5Ω  
= 1000pF  
= 5Ω  
–3  
–3  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 16. Small Signal Frequency Response, AV = −10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 1000 pF, RS = 5 Ω  
Figure 19. Large Signal Frequency Response, AV = −10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 1000 pF, RS = 5 Ω  
21  
21  
–20°C  
–20°C  
+25°C  
+100°C  
+25°C  
18  
15  
12  
9
18  
+100°C  
15  
12  
9
6
6
3
3
0
0
V
V
R
A
R
= ±5V  
V
V
R
A
R
= ±20V  
S
–3  
–6  
–9  
–3  
–6  
–9  
S
= 2V p-p  
= 20V p-p  
OUT  
OUT  
= 1.21kΩ  
= 1.21kΩ  
F
V
L
F
V
L
= −5  
= –5  
= 50Ω  
= 50Ω  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. Small Signal Frequency Response vs. Case Temperature, AV = −5,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, RL = 50 Ω  
Figure 20. Large Signal Frequency Response vs. Case Temperature, AV = −5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, RL = 50 Ω  
21  
21  
–20°C  
–20°C  
+25°C  
+25°C  
18  
18  
+100°C  
+100°C  
R
A
= 1.21kΩ  
F
V
= –5  
15  
12  
9
15  
12  
9
R
A
= 1.5kΩ  
= +2  
F
V
6
6
3
3
0
0
V
V
R
A
R
= ±20V  
S
OUT  
–3  
–6  
–9  
–3  
–6  
–9  
= 20V p-p  
V
= ±20V  
S
= 1.21kΩ  
V
= 2V p-p  
F
V
L
OUT  
C
R
= −5  
= 300pF  
= 5Ω  
L
S
= 20Ω  
1
10  
100  
1000  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 18. Large Signal Frequency Response vs. Case Temperature, AV = −5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, RL = 20 Ω  
Figure 21. Small Signal Frequency Response vs. Case Temperature,  
VS = 20 V, VOUT = 2 V p-p, CL = 300 pF, RS = 5 Ω  
Rev. 0 | Page 10 of 24  
Data Sheet  
ADA4870  
15  
10  
5
2.0  
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
+100°C  
1.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
V
= ±5V  
V
= ±20V  
= 1.21kΩ  
= –2  
= 300pF  
= 5Ω  
S
S
R
A
C
R
= 1.21kΩ  
= –2  
R
A
C
R
F
V
L
S
F
V
L
S
= 300pF  
= 5Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 22. Small Signal Pulse Response vs. Case Temperature, AV = −2,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 25. Large Signal Pulse Response vs. Case Temperature, AV = −2,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
2.0  
15  
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
+100°C  
1.5  
1.0  
10  
5
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
V
= ±5V  
V
= ±20V  
= 1.21kΩ  
= –5  
= 300pF  
= 5Ω  
S
S
R
A
C
R
= 1.21kΩ  
= –5  
–10  
–15  
R
A
C
R
F
V
L
S
F
V
L
S
= 300pF  
= 5Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 23. Small Signal Pulse Response vs. Case Temperature, AV = −5,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 26. Large Signal Pulse Response vs. Case Temperature, AV = −5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
15  
2.0  
–20°C  
+25°C  
+100°C  
10  
–20°C  
+25°C  
+100°C  
1.5  
1.0  
5
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
V
= ±5V  
V
= ±20V  
= 1.21kΩ  
= –10  
= 300pF  
= 5Ω  
S
S
–10  
–15  
R
A
C
R
= 1.21kΩ  
= –10  
R
A
C
R
F
V
L
S
F
V
L
S
= 300pF  
= 5Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 24. Small Signal Pulse Response vs. Case Temperature, AV = −10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 27. Large Signal Pulse Response vs. Case Temperature, AV = −10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Rev. 0 | Page 11 of 24  
ADA4870  
Data Sheet  
2.0  
15  
10  
5
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
+100°C  
1.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
V
= ±5V  
= 1.5kΩ  
= +2  
V
= ±20V  
= 1.5kΩ  
= +2  
S
S
R
A
C
R
R
A
C
R
F
V
L
S
F
V
L
S
= 300pF  
= 5Ω  
= 300pF  
= 5Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 28. Small Signal Pulse Response vs. Case Temperature, AV = +2,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.5 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 31. Large Signal Pulse Response vs. Case Temperature, AV = +2,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.5 kΩ, CL = 300 pF, RS = 5 Ω  
2.0  
15  
–20°C  
+25°C  
+100°C  
10  
–20°C  
+25°C  
+100°C  
1.5  
1.0  
0.5  
5
0
0
–0.5  
–1.0  
–5  
V
= ±5V  
V
= ±20V  
= 1.21kΩ  
= +5  
= 300pF  
= 5Ω  
S
S
R
A
C
R
= 1.21kΩ  
= +5  
–10  
–15  
R
A
C
R
F
V
L
S
F
V
L
S
–1.5  
–2.0  
= 300pF  
= 5Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 29. Small Signal Pulse Response vs. Case Temperature, AV = +5,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 32. Large Signal Pulse Response vs. Case Temperature, AV = +5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
2.0  
15  
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
+100°C  
10  
1.5  
1.0  
5
0
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
V
= ±5V  
V
= ±20V  
= 1.21kΩ  
= +10  
S
S
R
A
C
R
= 1.21kΩ  
= +10  
–10  
–15  
R
A
C
R
F
V
L
S
F
V
L
S
= 300pF  
= 5Ω  
= 300pF  
= 5Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 30. Small Signal Pulse Response vs. Case Temperature, AV = +10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 33. Large Signal Pulse Response vs. Case Temperature, AV = +10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 300 pF, RS = 5 Ω  
Rev. 0 | Page 12 of 24  
Data Sheet  
ADA4870  
15  
10  
5
2.0  
1.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
V
= ±20V  
= 1.5kΩ  
= +2  
= 1000pF  
= 5Ω  
V
= ±5V  
S
S
R
A
C
R
R
A
C
R
= 1.5kΩ  
= +2  
F
V
L
S
F
V
L
S
= 1000pF  
= 5Ω  
TIME (40ns/DIV)  
TIME (40ns/DIV)  
Figure 34. Small Signal Pulse Response, AV = +2,  
Figure 37. Large Signal Pulse Response, AV = +2,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.5 kΩ, CL = 1000 pF, RS = 5 Ω  
VS = 20 V, VOUT = 20 V p-p, RF = 1.5 kΩ, CL = 1000 pF, RS = 5 Ω  
2.0  
15  
1.5  
1.0  
10  
5
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
V
= ±5V  
V
= ±20V  
= 1.21kΩ  
= –10  
= 1000pF  
= 5Ω  
S
S
R
A
C
R
= 1.21kΩ  
= –10  
R
A
C
R
F
V
L
S
–10  
–15  
F
V
L
S
= 1000pF  
= 5Ω  
TIME (40ns/DIV)  
TIME (40ns/DIV)  
Figure 35. Small Signal Pulse Response, AV = −10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 1000 pF, RS = 5 Ω  
Figure 38. Large Signal Pulse Response, AV = −10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 1000 pF, RS = 5 Ω  
2.0  
15  
1.5  
1.0  
10  
5
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
V
= ±5V  
= 1.5kΩ  
= +2  
= 1µF  
= 5Ω  
V
= ±20V  
= 1.5kΩ  
= +2  
= 1µF  
= 5Ω  
S
S
R
A
C
R
R
A
C
R
F
V
L
S
–10  
–15  
F
V
L
S
TIME (25µs/DIV)  
TIME (25µs/DIV)  
Figure 36. Small Signal Pulse Response, AV = +2,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.5 kΩ, CL = 1 μF, RS = 5 Ω  
Figure 39. Large Signal Pulse Response, AV = +2,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.5 kΩ, CL = 1 μF, RS = 5 Ω  
Rev. 0 | Page 13 of 24  
ADA4870  
Data Sheet  
2.0  
15  
10  
5
1.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
V
= ±20V  
= 1.21kΩ  
= –10  
V
= ±5V  
= 1.21kΩ  
= –10  
= 1µF  
= 5Ω  
S
S
R
A
C
R
R
A
C
R
F
V
L
S
F
V
L
S
= 1µF  
= 5Ω  
TIME (25µs/DIV)  
TIME (25µs/DIV)  
Figure 40. Small Signal Pulse Response, AV = −10,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, CL = 1 μF, RS = 5 Ω  
Figure 43. Large Signal Pulse Response, AV = −10,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, CL = 1μF, RS = 5 Ω  
15  
2.0  
1.5  
–20°C  
+25°C  
+100°C  
–20°C  
+25°C  
+100°C  
10  
5
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
V
= ±20V  
= 1.21kΩ  
= –5  
V
= ±5V  
= 1.21kΩ  
= –5  
S
S
R
A
R
R
A
R
F
V
L
F
V
L
= 50Ω  
= 50Ω  
TIME (25ns/DIV)  
TIME (25ns/DIV)  
Figure 44. Large Signal Pulse Response vs. Case Temperature, AV = −5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, RL = 50 Ω  
Figure 41. Small Signal Pulse Response vs. Case Temperature, AV = −5,  
VS = 5 V, VOUT = 2 V p-p, RF = 1.21 kΩ, RL = 50 Ω  
140  
120  
100  
80  
200  
150  
100  
50  
15  
–20°C  
+25°C  
+100°C  
10  
PHASE  
5
0
TRANSIMPEDANCE  
60  
0
40  
–50  
–100  
–150  
–200  
–5  
20  
V
= ±20V  
= 1.21kΩ  
= –5  
–10  
–15  
S
0
R
A
R
F
V
L
= 20Ω  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
TIME (25ns/DIV)  
FREQUENCY (Hz)  
Figure 42. Large Signal Pulse Response vs. Case Temperature, AV = −5,  
VS = 20 V, VOUT = 20 V p-p, RF = 1.21 kΩ, RL = 20 Ω  
Figure 45. Open-Loop Transimpedance and Phase vs. Frequency  
Rev. 0 | Page 14 of 24  
Data Sheet  
ADA4870  
–10  
–10  
–20  
HD2 2V p-p, V = ±5V  
HD2 2V p-p, V = ±5V  
S
S
HD3 2V p-p, V = ±5V  
HD3 2V p-p, V = ±5V  
–20  
–30  
S
S
HD2 20V p-p, V = ±20V  
S
HD2 20V p-p, V = ±20V  
S
HD3 20V p-p, V = ±20V  
HD3 20V p-p, V = ±20V  
–30  
S
S
–40  
–40  
–50  
–50  
–60  
–60  
–70  
–70  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 46. Harmonic Distortion vs. Frequency, CL = 300 pF, RS = 5 Ω,  
RF = 1.21 kΩ, AV = −10  
Figure 49. Harmonic Distortion vs. Frequency, RL = 25 Ω,  
RF = 1.21 kΩ, AV = −10  
–60  
–60  
HD2, C = 300pF, R = 5Ω  
L
S
HD3, C = 300pF, R = 5Ω  
L
L
S
HD2, R = 25Ω  
HD3, R = 25Ω  
–70  
–80  
–70  
–80  
L
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
HD2, C = 300pF, R = 5Ω  
L
S
HD3, C = 300pF, R = 5Ω  
L
L
S
HD2, R = 25Ω  
HD3, R = 25Ω  
L
0
5
10  
(V p-p)  
15  
20  
0
5
10  
(V p-p)  
15  
20  
V
V
OUT  
OUT  
Figure 47. Harmonic Distortion vs. VOUT, VS = 20 V, Frequency = 100 kHz,  
RF = 1.21 kΩ, AV = −10  
Figure 50. Harmonic Distortion vs. VOUT, VS = 20 V, Frequency = 1 MHz,  
RF = 1.21 kΩ, AV = −10  
–30  
–30  
–40  
–50  
–60  
HD2, C = 300pF, R = 5Ω  
L
S
HD3, C = 300pF, R = 5Ω  
L
L
S
HD2, R = 25Ω  
HD3, R = 25Ω  
L
–40  
–50  
–60  
–70  
HD2, C = 300pF, R = 5Ω  
L
L
S
S
HD3, C = 300pF, R = 5Ω  
HD2, R = 25Ω  
L
HD3, R = 25Ω  
L
–70  
0
5
10  
(V p-p)  
15  
20  
0
5
10  
(V p-p)  
15  
20  
V
V
OUT  
OUT  
Figure 48. Harmonic Distortion vs. VOUT, VS = 20 V, Frequency = 10 MHz,  
RF = 1.21 kΩ, AV = −10  
Figure 51. Harmonic Distortion vs. VOUT, VS = 20 V, Frequency = 30 MHz,  
RF = 1.21 kΩ, AV = −10  
Rev. 0 | Page 15 of 24  
ADA4870  
Data Sheet  
20  
15  
10  
5
20  
15  
10  
5
4,000  
3,000  
2,000  
1,000  
0
4,000  
3,000  
2,000  
1,000  
0
V
V
OUT  
OUT  
SLEW RATE  
SLEW RATE  
0
0
–5  
–10  
–15  
–20  
–1,000  
–2,000  
–3,000  
–4,000  
–5  
–10  
–15  
–20  
–1,000  
–2,000  
–3,000  
–4,000  
TIME (45ns/DIV)  
TIME (45ns/DIV)  
Figure 52. Large Signal Instantaneous Slew Rate, AV = +2,  
VS = 20 V, RF = 1.5 kΩ, CL = 300 pF, RS = 5 Ω  
Figure 55. Large Signal Instantaneous Slew Rate, AV = +2,  
VS = 20 V, RF = 1.5 kΩ, RL = 25 Ω  
30  
25  
6
5
4
3
2
1
0
3.5  
V
= ±20V  
= +5  
= 50Ω  
S
V
L
3.0  
2.5  
A
R
+100°C  
+25°C  
–20°C  
V
V
OUT  
IN  
20  
2.0  
15  
V
– V  
EE  
OUT  
1.5  
10  
1.0  
5
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–5  
1
2
3
4
5
6
–10  
–15  
–20  
–25  
–30  
V
– V  
CC  
OUT  
–20°C  
+25°C  
+100°C  
10  
100  
1k  
TIME (150ns/DIV)  
R
(Ω)  
LOAD  
Figure 53. Output Overdrive Recovery, VS = 20 V, AV = +5, RL = 50 Ω  
Figure 56. Output Headroom vs. RLOAD Over Case Temperature, VS = 20 V  
100  
10000  
V
= ±20V  
= 1.21kΩ  
= +1  
V
= ±20V  
= 1.21kΩ  
= +1  
S
F
V
S
F
V
SD  
ON  
R
A
R
A
10  
1
1000  
100  
10  
0.1  
0.01  
1
0.1  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 54. Enabled Closed-Loop Output Impedance vs. Frequency  
Figure 57. Disabled Closed-Loop Output Impedance vs. Frequency  
Rev. 0 | Page 16 of 24  
Data Sheet  
ADA4870  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
+PSR  
–PSR  
V
V
= ±20V  
= ±5V  
S
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
100  
1k  
10k  
100k  
1M  
10M  
100M  
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 61. Power Supply Rejection (PSR) vs. Frequency, VS = 20 V  
Figure 58. Common-Mode Rejection vs. Frequency  
1000  
100  
100  
INN  
10  
10  
INP  
1
1
1
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 62. Input Current Noise vs. Frequency  
Figure 59. Input Voltage Noise vs. Frequency  
50  
40  
15  
10  
V
V
= ±10V  
S
30  
V
= ±5V  
S
20  
5
0
10  
V
= ±20V  
S
OUT  
0
–10  
–20  
–30  
–40  
–50  
–5  
SD  
–10  
–15  
–20 –16 –12  
–8  
–4  
0
4
8
12  
16  
20  
TIME (1µs/DIV)  
V
(V)  
ICM  
Figure 63. Input Common-Mode Voltage Range  
Figure 60. Turn-On/Turn-Off Time, VS = 10 V  
Rev. 0 | Page 17 of 24  
ADA4870  
Data Sheet  
1
3500  
3000  
2500  
2000  
1500  
1000  
500  
V
V
= ±5V  
= ±20V  
S
S
0
V
= ±20V  
S
–1  
–2  
–3  
–4  
–5  
V
= ±5V  
45  
S
0
–10  
–6  
0
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
25  
65  
85  
V
(mV)  
TEMPERATURE (°C)  
S
Figure 67. Input Offset Voltage Distribution, VS = 5 V,  
VS = 20 V  
Figure 64. Input Offset Voltage vs. Temperature, VS = 5 V,  
VS = 20 V  
14  
10  
6
35  
30  
25  
20  
15  
10  
5
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
INP, V = ±5V  
S
V
= ±20V  
= ±5V  
S
INP, V = ±20V  
S
V
S
V
= ±20V  
= ±5V  
S
2
–2  
–6  
–10  
–14  
V
S
INN, V = ±5V  
S
INN, V = ±20V  
S
0
0
25  
45  
65  
85  
0
25  
45  
65  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 68. Input Bias Current vs. Temperature, VS = 5 V, VS = 20 V  
Figure 65. Quiescent Supply Current (Iq) vs. Temperature, VS = 5 V, VS = 20 V  
SD  
)
(Enabled/Disabled via  
40  
20  
ENABLED  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
DISABLED P = 10dBm  
IN  
DISABLED P = 0dBm  
IN  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 66. Forward Isolation vs. Frequency for 0 dBm and 10 dBm Input Levels  
SD ON  
(Disabled via or  
)
Rev. 0 | Page 18 of 24  
Data Sheet  
ADA4870  
APPLICATIONS INFORMATION  
ON, INITIAL POWER-UP, AND SHORT-CIRCUIT  
Table 6. Recommended RF Values  
Closed-Loop  
Gain (V/V)  
ON  
After initial power-up, the  
pin must be pulled low to ensure  
RF (Ω)  
2000  
1210  
1500  
1210  
1210  
1210  
RG (Ω)  
Open  
1210  
1500  
604  
CL (pF)  
300  
300  
300  
300  
RS (Ω)  
ON  
that the amplifier is turned on. Subsequently, floating the  
pin enables the short-circuit protection feature while the  
+1  
−1  
+2  
−2  
+5  
+10  
5
5
5
5
5
5
ON  
amplifier remains on. While  
protection feature is disabled.  
is held low, the short-circuit  
When a short-circuit condition is detected, the amplifier is  
disabled, the supply current drops to about 5 mA, and the TFL  
pin outputs a dc voltage of ~300 m V. To turn the amplifier back  
on after a short-circuit event, follow the sequence for initial  
power-up.  
301  
133  
300  
300  
CAPACITIVE LOAD DRIVING  
When driving a capacitive load (CL), the amplifier output resistance  
and the load capacitance form a pole in the transfer function of  
the amplifier. This additional pole reduces phase margin at  
higher frequencies and, if left uncompensated, can result in  
excessive peaking and instability. Placing a small series resistor (RS)  
between the amplifier output and CL (as shown in Figure 69)  
allows the ADA4870 to drive capacitive loads beyond 1 μF.  
Figure 70 shows the series resistor value vs. capacitive load for a  
maximum of 1 dB peaking in the circuit of Figure 69. For large  
capacitive loads, RS values of less than 0.3 Ω are not  
recommended.  
ON  
Pulling the  
pin high disables the amplifier and causes the  
supply current to drop to about 5 mA, as if a short-circuit  
condition had been detected.  
ON  
The impedance at the  
pin is ~20 kΩ. Lay out the PCB trace  
to avoid noise coupling into it and triggering a  
ON  
ON  
leading to  
false event. A 1 nF capacitor between  
and VEE is recommended  
ON  
to help shunt noise away from  
.
THERMAL PROTECTION  
In addition to short-circuit protection, the ADA4870 is also  
protected against excessive die temperatures.  
Figure 71 shows the small signal bandwidth (SSBW) vs. CL with  
corresponding RS values from Figure 70.  
During normal operation, the TFL pin outputs a dc voltage  
(referenced to VEE) ranging from 1.5 V to 1.9 V that is relative to  
die temperature. The voltage on TFL changes at approximately  
−3 mV/°C and can be used to indicate approximate increases in  
die temperature. When excessive die temperatures are detected,  
the amplifier switches to an off state, dropping the supply current to  
approximately 5 mA, and TFL continues to report a voltage  
relative to die temperature. When the die temperature returns  
to an acceptable level, the amplifier automatically resumes  
normal operation.  
50Ω  
V
IN  
R
S
C
L
1.5kΩ  
1.5kΩ  
Figure 69. Circuit for Capacitive Load Drive  
8
7
6
5
4
3
2
1
0
SHUTDOWN (SD)  
The ADA4870 is equipped with a power saving shutdown feature.  
SD  
Pulling  
quiescent current to approximately 750 µA. When turning the  
SD  
low places the amplifier in a shutdown state, reducing  
amplifier back on from the shutdown state, pull the  
pin high  
pin low. Following this sequence ensures  
ON  
and then pull the  
ON  
power-on. Afterwards, the  
short-circuit protection.  
pin can be floated to enable  
10p  
100p  
1n  
10n  
100n  
1µ  
C
(F)  
L
SD  
SD  
floating.  
Pull  
high or low; do not leave  
Figure 70. RS vs. CL for Maximum 1 dB Peaking for Circuit from Figure 69  
FEEDBACK RESISTOR SELECTION  
The feedback resistor value has a direct impact on the stability  
and closed-loop bandwidth of current feedback amplifiers.  
Table 6 provides a guideline for the selection of feedback  
resistors for some common gain configurations.  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
 
 
 
 
ADA4870  
Data Sheet  
9
The total power dissipation in the amplifier is the sum of the  
power dissipated in the output stage plus the quiescent power.  
The average power for an amplifier processing sine signals is  
computed by Equation 1. Equation 2 can be used to compute the  
peak power of a sine wave and can be used to compute the  
continuous power dissipation of dc output voltages where VPEAK is  
the dc load voltage. These equations assume symmetrical supplies  
and a load referred to midsupply.  
6
3
0
–3  
–6  
C
L = 330pF, RS = 6.8Ω  
CL = 1nF, RS = 4Ω  
2
–9  
–12  
–15  
VCC VPEAK  
VPEAK  
CL = 3.3nF, RS = 2.5Ω  
CL = 10nF, RS = 1.4Ω  
CL = 33nF, RS = 0.7Ω  
CL = 100nF, RS = 0.3Ω  
2
(1)  
PAVG , SINE  
=
(
VS × I q  
)
+
×
π
RL  
2 RL  
CL = 1µF, RS = 0.3Ω  
0.1  
1
10  
100  
FREQUENCY (MHz)  
VPEAK  
(2)  
PPEAK  
=
(
VS  
×
I
)
+
(
VS VPEAK ×  
)
q
Figure 71. Small Signal Bandwidth for Various CL and RS Values from Figure 70  
RL  
HEAT AND THERMAL MANAGEMENT  
where  
VS is the total supply voltage (VCC VEE).  
Iq is the amplifier quiescent current.  
High output current amplifiers like the ADA4870 generate heat,  
instantaneous or continuous, depending on the signal being  
processed. Properly applied thermal management techniques  
move heat away from the ADA4870 die and help to maintain  
acceptable junction temperatures (TJ). A highly conductive  
thermal path from the slug of the PSOP_3 package to the  
ambient air is required to obtain the best performance at the  
lowest TJ.  
A graphical representation of the PAVG, SINE and PPEAK power  
equations is shown in Figure 73. The power curves were generated  
for the ADA4870 operating from 20 V supplies and driving a  
20 Ω load. The quiescent power intersects the vertical axis at  
~1.3 W when VOUT is at 0 V or midsupply. The graphs stop at  
the output swing limit of 18 V.  
POWER DISSIPATION  
For dc analysis, peak power dissipation occurs at VOUT = VCC/2,  
while the maximum average power for sine wave signals occurs  
at VOUT = 2VCC/π.  
The first step in identifying a thermal solution is to compute the  
power generated in the amplifier during normal operation. The  
schematic in Figure 72 shows a simplified output stage of the  
ADA4870. The most significant heat is generated by the output  
stage push-pull pair, particularly when driving heavy loads.  
7
PEAK (W)  
6
V
CC  
5
AVG, SINE (W)  
4
3
2
1
0
V
OUT  
R
L
GND  
0
5
10  
15  
20  
V
EE  
V
(V)  
OUT  
Figure 72. Simplified Output Stage  
Figure 73. Average Sine and Peak Power vs. VOUT, VS = 20 V, RL = 20 Ω  
Rev. 0 | Page 20 of 24  
 
 
 
 
 
Data Sheet  
ADA4870  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
SAFE OPERATING AREA  
MAXIMUM T = 150°C  
J
The safe operating area (SOA) is a curve of output current vs.  
output stage collector-emitter voltage (VCE), under which the  
amplifier can operate at a safe junction temperature (TJ). The  
area under the curves of Figure 74 shows the operational  
boundaries of the ADA4870 for the PCB of Figure 75 that  
maintains a TJ ≤ 150°C. The SOA curves of Figure 74 are unique  
to the conditions under which they were developed, such as  
PCB, heat sink, and ambient temperature.  
25°C WITH VHS-45  
25°C NO HEATSINK  
85°C WITH VHS-95  
85°C WITH VHS-45  
85°C NO HEATSINK  
Two heat sinks (VHS-45 and VHS-95) were used in the evaluation.  
Both were assembled to the PCB using CT40-5 thermal interface  
material.  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUTPUT STAGE V (V)  
All testing was done in a still-air environment. Forced air  
convection in any of the test cases effectively lowers θJA and  
moves the corresponding curve toward the upper right,  
expanding the SOA. For more information on the ADA4870  
evaluation board, see the ADA4870 User Guide.  
CE  
Figure 74. Safe Operating Area for Evaluation Board from Figure 75 at 25°C  
and 85°C Ambient Temperature With and Without Heat Sink, No Air Flow  
In Figure 74, the horizontal line at 1 A is the output current  
drive of the ADA4870. The curved section maintains a fixed  
power dissipation that results in a junction temperature (TJ) of  
150°C or less. Note that the x-axis is the output stage VCE (VCC  
VOUT or VOUT – VEE) developed across the relevant output  
transistor of Figure 72 and ends at a maximum VCE of 20 V.  
EXPOSED PAD LANDING VIAS  
COUNT: 136  
FILL: AE3030  
DIAMETER: 12mil  
PITCH: 35mil  
2.45in (62mm)  
6-LAYER HR370 PCB  
WITH INTERNAL GROUND TOP/BOTTOM: 1.5oz  
AND POWER PLANES INNER LAYERS: 1oz  
COPPER  
Figure 75. Details of the ADA4870 Evaluation Board  
Rev. 0 | Page 21 of 24  
 
 
 
ADA4870  
Data Sheet  
PRINTED CIRCUIT BOARD (PCB)  
HEAT SINK SELECTION  
All current feedback amplifiers, including the ADA4870, can be  
affected by stray capacitance. Paying careful attention during  
PCB layout can reduce parasitic capacitance and improve  
overall circuit performance. Minimize signal trace lengths by  
placing feedback and gain setting resistors as close as possible to  
the amplifier.  
A heat sink increases the surface area to ambient temperature  
(TA) and extends the power dissipation capability of the  
ADA4870 and PCB combination. To maximize heat transfer  
from the board to the heat sink, attach the heat sink to the PCB  
using a high conductivity thermal interface material (TIM). The  
heat sinks presented in the Safe Operating Area section and  
Figure 74 are effective up to ~10 W in still air. If lower power  
dissipation is anticipated and/or forced air convection is used, a  
smaller heat sink may be appropriate. If the thermal resistance  
of the chip (θJC), PCB (θCB), and TIM (θTIM) are known, use  
Equation 3 to compute the thermal resistance (θHS) of the  
required heat sink.  
Additionally, for high output current amplifiers like the  
ADA4870, lay out the PCB with heat dissipation in mind. A  
good thermal design includes an exposed copper landing area  
on the top side of the board on which to solder the thermal slug  
of the PSOP3 package. The PCB should also provide an exposed  
copper area on the bottom side to accommodate a heat sink.  
Stitch the top and bottom layers together with an array of  
plated-through thermal vias to facilitate efficient heat transfer  
through the board. Thermal conductivity may be further  
improved by using widely available via fill materials.  
TJ TA  
(3)  
θ HS  
=
(
θ JC +θ CB +θ TIM  
)
PDISS  
POWER SUPPLIES AND DECOUPLING  
THERMAL MODELING  
The ADA4870 can operate from a single supply or dual supplies.  
The total supply voltage (VCC − VEE) must be between 10 V and  
40 V. Decouple each supply pin to ground using high quality,  
low ESR, 0.1 μF capacitors. Place decoupling capacitors as close  
to the supply pins as possible. Additionally, place 22 μF tantalum  
capacitors from each supply to ground to provide good low  
frequency decoupling and supply the needed current to support  
large, fast slewing signals at the ADA4870 output.  
Computational fluid dynamics (CFD) tools like FloTherm® can  
be used to create layers of materials that include PCB construction,  
thermal vias, thermal interface materials, and heat sinks, and  
can predict junction temperature and/or junction to ambient  
thermal resistance (θJA) for a given set of conditions. Table 7  
shows an example of how θJA is affected by the addition of an  
aluminum heat sink and forced convection. Figure 76 shows an  
image of the model used to establish the thermal results in Table 7.  
T
BOARD  
T
T
CASE  
T
CU SLUG  
LEADS  
DIE  
JUNCTION  
ADA4870  
T
PLASTIC  
Figure 76. Thermal Model Stack-Up for Data in Table 7  
(Heat Sink Not Shown)  
Table 7. Effects of Heat Sink and Forced Convection on θJA  
Heat Sink Dimensions, L × W × Total Height (mm)  
Heat Sink Base Thickness (mm)  
No. of Fins  
Air Flow (m/sec)  
θJA (°C/W)  
15.95  
12.27  
10.95  
11.36  
4.90  
3.86  
5.74  
3.59  
3.18  
61 × 58, Exposed Copper on Board, No Heat Sink  
61 × 58, Exposed Copper on Board, No Heat Sink  
61 × 58, Exposed Copper on Board, No Heat Sink  
30 × 30 × 24  
30 × 30 × 24  
30 × 30 × 24  
61 × 58 × 24  
61 × 58 × 24  
61 × 58 × 24  
Not applicable  
Not applicable  
Not applicable  
3
3
3
3
3
3
Not applicable  
Not applicable  
Not applicable  
10  
10  
10  
10  
10  
10  
0
1
2
0
1
2
0
1
2
Rev. 0 | Page 22 of 24  
 
 
 
 
 
 
Data Sheet  
ADA4870  
1.5  
1.0  
COMPOSITE AMPLIFIER  
When dc precision and high output current are required, the  
ADA4870 can be combined with a precision amplifier such as  
the ADA4637-1 to form a composite amplifier as shown in  
Figure 77.  
0.5  
0
By placing the ADA4870 inside the feedback loop of the  
ADA4637-1, the composite amplifier provides the high output  
current of the ADA4870 while preserving the dc precision of  
the ADA4637-1.  
–0.5  
–1.0  
–1.5  
ADA4637-1  
ADA4870  
V
= ±15V  
= 300pF  
= 10Ω  
S
L
S
C
R
V
IN  
50Ω  
R
50Ω  
S
V
OUT  
TIME (100ns/DIV)  
C
L
Figure 79. Composite Amplifier Small Signal Pulse Response  
3.01kΩ  
3.01kΩ  
110Ω  
1kΩ  
15  
6pF  
A
= 10V/V  
V
10  
5
OUTPUT OFFSET <500µV  
Figure 77. Composite Amplifier  
Figure 78 shows the bandwidth of the composite amplifier at a  
gain of 10. The offset voltage at the output is <500 μV.  
0
The circuit can be tailored for different gains as desired.  
Depending on the board parasitics, the 6 pF capacitor may need  
to be empirically adjusted to optimize performance. Minimize  
PCB stray capacitance as much as possible, particularly in the  
feedback path.  
–5  
–10  
–15  
V
= ±15V  
= 300pF  
= 10Ω  
S
L
S
C
R
The small signal and large signal pulse response is shown in  
TIME (100ns/DIV)  
Figure 79 and Figure 80, respectively.  
Figure 80. Composite Amplifier Large Signal Pulse Response  
25  
20  
15  
10  
C
R
OUT  
= 300pF  
= 10Ω  
= 10V p-p  
L
S
5
0
V
C
R
= 300pF  
= 10Ω  
= 1V p-p  
L
S
–5  
V
OUT  
–10  
–15  
–20  
–25  
–30  
–35  
R
V
= 50Ω  
L
= 1V p-p  
OUT  
0.1  
1
10  
FREQUENCY (MHz)  
100  
1000  
Figure 78. Composite Amplifier Frequency Response  
Rev. 0 | Page 23 of 24  
 
 
 
 
 
ADA4870  
Data Sheet  
OUTLINE DIMENSIONS  
1.10 MAX × 45°  
13.00  
9.00  
1
10  
PIN 1  
6.20  
5.80  
14.20  
BSC  
11.00  
BSC  
11  
20  
BOTTOM VIEW  
TOP VIEW  
1.10 MAX  
(2 PLACES)  
15.90  
BSC  
2.90 MAX  
(2 PLACES)  
3.60  
3.35  
3.10  
DETAIL A  
1.00  
0.90  
0.80  
SIDE VIEW  
END VIEW  
8°  
0°  
1.10  
0.80  
SEATING  
PLANE  
0.53  
0.40  
1.27  
BSC  
3.30  
3.15  
3.00  
DETAIL A  
3.60  
3.35  
3.10  
0.10  
0.05  
0.00  
0.32  
0.23  
0.30  
0.20  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-166-AA  
Figure 81. 20-Lead Power SOIC, Thermally Enhanced Package [PSOP_3]  
(RR-20-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Package Option  
ADA4870ARRZ  
ADA4870ARRZ-RL  
ADA4870ARR-EBZ  
20-Lead PSOP_3  
20-Lead PSOP_3  
Evaluation Board  
RR-20-1  
RR-20-1  
1 Z = RoHs Compliant Part.  
©2014 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12125-0-5/14(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

ADA4870-KGD-DF

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4870-KGD-WP

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4870ARR-EBZ

Ideal for driving high capacitive or low resistive loads
ADI

ADA4870ARRZ

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4870ARRZ-RL

High Speed, High Voltage, 1 A Output Drive Amplifier
ADI

ADA4891-1

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1AR-EBZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJ-EBZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJZ-R7

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARJZ-RL

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI

ADA4891-1ARZ

Low Cost CMOS, High Speed, Rail-to-Rail Amplifiers
ADI